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ABSTRACT

Cyber-Physical Systems (CPS) are complex engineered systems which consist of

physical components with an underlying cyber network. The three main components of a

cyber-physical System are: physical system, networking and communications element and

a distributed cyber system. The primary challenge for cyber-physical systems is to under-

stand what happens when various sub-systems, which have been developed in an isolated

environment, are integrated. CPS studies need to ensure sub-systems that had been de-

signed in isolation to meet certain specifications, when combined, do not cause the overall

system to fail. The crux of cyber-physical research is thus to find a common platform to

bind all these different components, so as to monitor the overall system performance.

This dissertation discusses how to unify these different aspects and tackles the issue

of synthesizing, verifying and monitoring highly diverse environments by introducing the

concept of Unified Invariants. In this dissertation, a smart grid has been used to implement

and validate this concept of Unified Invariants towards building a robust cyber-physical

system. There are several ways to compromise the reliable operation of a smart grid. Ex-

amples of such contingent events are voltage collapse, line overloading and transient sta-

bility. Physical system invariants have been developed to identify and thwart such events

which threaten the integrity of the physical system. These physical invariants have be in-

tegrated with cyber controllers to ensure a safe, stable and reliable operation of the smart

grid. This is an unique concept and differs from previous methods in the fact that while

earlier methods have tried to compose functionality of each domain of the cyber-physical

world, the Unified Invariant method serves as a transformative approach to express and im-

pose system properties that are common to all the domains (cyber, physical, networking).

The net outcome of such an approach is that the resulting CPSs will be safe and stable at

the system level, rather than just the sub-system level.
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SECTION

1. INTRODUCTION

1.1. UNIFIED INVARIANTS IN MULTI DOMAIN CYBER-PHYSICAL SYSTEMS

Cyber-physical systems are multi disciplinary systems, which means they are com-

prised of different sub-systems using distinct metrics and methods. The foundational ap-

proach of this research is fundamentally different from any other kind of CPS work because

the focus here is to compose such different sub-systems, not through their functionality

but through their correctness to create safe, stable and predictable multi disciplinary sys-

tems. Thus, we construct CPSs through compositional integration of the cyber, networking,

scheduling, and physical components rooted in correctness. Examples of such systems in-

clude the electrical smart grid, unmanned air vehicles and automated motor vehicles on the

highway. The common underlying feature of all these systems is that not only do they have

complicated physical dynamics (physical systems) governing them, but also relatively com-

plex distributed computation (cyber systems) and communication (network systems). This

gives rise to the fundamental question of how to compose such correct multi disciplinary

systems.

When treated in isolation, it is diifficult to grasp why certain constraints are present

in a system; for instance, why is there a certain maximum message delay or why does a

certain scheduling deadline needs to be met? These questions can only be partially an-

swered by developing individual invariants; the response of the entire CPS is based on the

composition of these invariants. Thus, the concept of unified invariants makes it possi-

ble to develop an approach to compositionally integrate the CPS system aspects. In each

aspect, cyber, physical, scheduling and network, stability invariants, based on individual
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system theories are developed. These invariants are refined through the property of nonin-

terference to develop a CPS. The first step in the application of Unified Invariants to study

cyber-physical systems is to create predictable multi disciplinary systems by composing the

distinct sub-systems not through their mere functionality but also through their correctness.

"Invariant", as used here is a common terminology in the cyber domain. An in-

variant is a logical predicate on a system state that must remain true throughout system

execution [1]. However, every domain has its own way of denoting correctness. The fun-

damental challenge in this case is how to make all the domains speak in the same language.

Unified Invariants serve as the lingua franca for all sub-systems of a CPS.

Invariants, although well known in the cyber world are not much used in other

domains. But every domain has its own equivalent of invariants to define correctness and

the challenge is to translate the language of each of these domains to the lingua franca of

invariants. The following sections give a few initial translations for the domains of interest.

1.1.1. Physical Systems. The physical system specifications can be broadly di-

vided into constraints. There can be various constraints to monitor the correctness of a

physical system. Example constraints include maximum or minimum voltage at a certain

bus in a smart grid, the amount of power that can flow in a line in the power system,

transient stability and frequency stability. These constraints serve as the physical system

equivalent of invariants. These constraints can be expressed as in equality/inequality whose

truth value denotes the invariant. In other words, if the constraint is satisfied, the invariant

is true and system correctness is maintained. If the constraint is not satisfied, the invariant

is false and system correctness is no longer preserved.

1.1.2. Networks. The network correctness is quantified by means of desired relia-

bility in delivery of packets and the desired quality of service. (QoS). The metrics include

minimum throughput, minimum packet delivery ratio, maximum delay and maximum jitter.

The network correctness is hampered by various interference vectors including increased

traffic generation, link failures and external RF interference. As the controller requests
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increase, the network congestion increases which leads to delay in transferring packets

thereby causing lower throughput and eventually results in packet losses. Consequently the

invariant fails thereby potentially affecting the CPS’s overall correctness.

1.1.3. Scheduling. In traditional real time embedded systems, correct scheduling

refers to deterministic scheduling with a priori schedulability guarantees [2]. In a net-

worked or distributed real-time embedded system, scheduling frameworks on each compo-

nent typically abstract the details of the network in the form of bounded delays. However

the intricately dynamic nature of the physical system and complex distributed operations

makes such kind of scheduling unrealistic for CPSs. This is due to the fact that delays and

system stability in a CPS are not only contingent to system design but also on changes in

the physical environment, cyber failure and recovery, lost packets, congestion, changes in

topology and complex distributed computations and optimizations. Moreover, in a cyber-

physical system, the actions of one domain may affect other domains. Such inter-domain

actions need to be scheduled properly. Therefore in light of all these changes, it is very

important to develop a scheduling that can adapt its behavior in response to system state

and hence the need for adaptive scheduling arises.

It is quite natural to express Adaptive scheduling as a conjunction of logical con-

ditions on the system state that must be satisfied before a certain action can be taken. For

instance, it may be established to preserve system correctness, consecutive messages of a

certain type, that actually correspond to actions of a specific domain, must be scheduled

at a fixed time interval from one another and may only be scheduled if there are no more

than a critical number of unacknowledged pending messages. The conjunction of all these

conditions can form a part of a scheduling invariant which can then serve as a guard for all

scheduling actions.
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1.2. LITERATURE REVIEW

The challenge encountered in cyber-physical research work is integrating all the

sub-systems. Issues in correctness, timing and stability in one sub-system can considerably

affect the same features throughout the overall system. The prevalent practice of trying to

compose cyber-physical systems based on mere functionalities of the sub-systems is not

a very intelligent method of CPS design. This is because sub-systems that have been de-

signed in isolation, may not behave as expected when they are integrated. Such unintended

interactions might cause the overall system to crash. A semantically common method is

required to relate all the cyber, network and physical actions. Some work towards this has

been done by Acumen [3] who has tried to reduce the void between simulation codes and

analytical models. Predicate transformers were used to study cyber-physical systems in dy-

namical systems [4] and then in [5] which describes invariant interaction and composition.

The concept of non-interference of invariants for purely cyber systems has been explored

in [6].

In controls literature, system stabilty is adversely affected by network congestion

and studies have been done to impose bounds on system stability in terms of congestion

introduced into the system [7]. This kind of stability analysis can be done by using results

from switched system theory [8]. The controller is usually modeled using discrete time

or continuous time state space models. With the increasing complexity of cyber-physical

systems, the control becomes non trivial and it is difficult to represent the system in the

same semantics as a common plant/network delay model. In this regard, hybrid automata

[9] and timed I/O automata [10] exhibit an interesting mix of both continuous and discrete

states. Thus, different methods used in different disciplines pose a tremendous difficulty in

binding all the domains in a common semantic.

As described earlier, an invariant is a logical predicate on a system state that must

remain true throughout system execution. Invariants can be used in cyber systems to check
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all kinds of system correctness [11-12]. However, although they are well received in the

cyber world, a lot still needs to be done to extend their usage into the physical and network

domains.

In the physical domain, Lyapunov functions are well developed tools to study the

dynamics of the physical system [13]. Lyapunov functions have also been used to describe

complicated physical systems, such as a smart grid [14]. Lyapunov functions can be ap-

plied on a linear system (or a linearized nonlinear system) to break the continuous system

response into a scalar function. While Lyapunov functions can be used to describe the sta-

bility of a certain operating mode, Lyapunov-like functions [15] can be used to address the

stability problem if the system switched between these supposed "stable" operating modes.

Lyapunov functions can be used to address network stability [16-18] as well. The

network congestion can be modeled as a control feedback problem, and bounds can be im-

posed on the number and timing of pending requests to construct Lyapunov-like functions

for the network domain.

As described above, there are several tools to describe the correctness of each sub-

system. What is needed now, is a way to bring together all these sub-systems in an unifying

framework, ensuring that there is no interference between them.

1.3. PROPOSED APPROACH

The proposed research focuses on using Unified Invariants for an islanded electrical

smart grid to show how complex interactions of advanced power electronics governed by

sophisticated, distributed, cyber algorithms interconnected by adaptive network scheduling

disciplines can produce a robust CPS. This dissertation primarily discusses how to develop

invariants to preserve the physical system correctness. These physical system invariants can

be adapted for distributed computation in a Distributed Grid Intelligence (DGI) system, to

come up with fully functional non interfering cyber physical invariants to ensure correct
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operation of the smart grid in its entirety. Integrating the physical system invariants with

DGI would require the combined efforts of multiple disciplines which is again the crux of

cyber-physical research.

1.4. CONTRIBUTION TO DATE

In paper 1, an invariant based method has been developed to monitor the voltage

correctness of a smart grid type system with multiple independent entities.Voltage stabil-

ity of the entire system is ensured by voltage stability at all the sub-systems. The DGI-

interfaced voltage stability invariant is sufficiently equipped such that it can take necessary

steps to not only predict, but also prevent a voltage collapse, at one or more sub-systems,

should the need arise.

In paper 2, line flow invariants have been developed to monitor system correctness

in terms of line overloading. If a transaction between two or more entities in the smart grid

result in one or more lines being overloaded, system correctness is no longer maintained.

The DGI-interfaced line flow invariant checks the legitimacy of every power transaction

between two sub-systems, to ensure none of the lines in the system gets overloaded. Any

proposed transaction that violates the invariant, is rejected, thereby preventing line over-

loading.

In paper 3, invariants have been developed to preserve the transient stability of

a reduced order islanded microgrid type system. The transient invariant is rooted in the

notion that stability of a switched system depends on sufficient relaxation time in between

switching, so as to allow the system states to settle down, before they are perturbed again.

Lyapunov-like functions have been used to plot the dynamics of the switched system. The

transient response has been verified by performing simulations on a model of the system.
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ABSTRACT— Voltage stability analysis is essential in any power system. This

paper addresses the voltage stability in a next-generation smart grid system with multi-

ple independent entities. A typical operation in this system involves loading excursions

(changes in power, both generated and consumed) undertaken by all these independent en-

tities. Correct behavior of all the entities (sub-systems) will ensure correct behavior of the

overall system (smart grid). An invariant is a logical predicate on a system state that must

remain true throughout system execution. Invariants, if forced to be true, ensure correct

behavior on a subsystem level and thus preserve the overall system correctness. This paper

derives an invariant that preserves voltage stability. This invariant has been adapted for

distributed computation in a Distributed Grid Intelligence (DGI) system. This invariant is

the next step in building a self checking, robust cyber-physical system. The DGI-interfaced

invariant not only predicts the proximity of voltage collapse at one or more entities in a

smart grid, but also prevents a collapse by shutting off future increases in load. The use
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of the invariant in predicting voltage collapse and preventing such an occurrence has been

verified with simulations performed in RTDS on a seven node smart grid system with DGI.

Index Terms— Cyber-Physical System, distributed-grid intelligence, invariants, smart

grid, stability, voltage

1.1. INTRODUCTION

Voltage stability is of utmost importance to power system operation. Drop in volt-

age levels poses serious concerns in electric utilities and appliances. According to ANSI

standards, system voltages should not drop below 5% their nominal value for a satisfactory

operation of the power system [1, 2, 3]. Any study on voltage stability of a power system

should investigate how close the system voltage is to collapsing, at what precise moment

does the collapse occur, what are the vulnerable areas in the system and what are the fac-

tors contributing to this collapse. Analysis and operation are more complex when control

of system elements is distributed, rather than centralized.

The problem of voltage stability can be attributed to the inability of the system to

cater to the reactive power needs of its elements [4]. Studies undertaken to analyze voltage

stability require careful investigation of a large number of system states and contingency

situations. This makes a steady state approach seem more feasible. Literature studies re-

veal special algorithms that target the voltage stability problem using static methods [5].

However, such studies are labor intensive and fail to provide sensitivity information. Cer-

tain operators make use of the Q-V curve at some of the independent entities to determine

the proximity of voltage instability [6]. The major drawback of such an approach is that

the excessive focus on a small number of local components fails to provide information

about the overall system-level voltage stability. Voltage instability leads to a progressive

(or periodic) fall (or rise) in voltage of the system. As mentioned earlier, this loss of voltage
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stability stems from the inability of the system to supply the reactive power needed by one

or more independent entities. A voltage decay/fall in the system is usually caused by an in-

crease in loading or change in system conditions at one or more entities thereby causing an

excessive increase in reactive power demand which the system is unable to meet. Thus the

loading pattern of the individual components affects the system-level voltage stability. This

emphasizes the importance of enforcing voltage stability constraints at the subsystem level

in order to ensure proper functioning of the overall system and eliminate the possibility of

voltage collapse in the system.

One vision of the future of the electric smart grid is an environment where an en-

ergy internet manages energy assets on a peer-to-peer basis, allowing for local and mobile

use of renewables. The technology to support this vision is being pursued both in aca-

demic research [7] and in industry [8, 9, 10]. Rather than being generated and managed

centrally, power will be generated, consumed, and its energy stored locally. Current power

generation, management, and consumption are well understood and supported by a hun-

dred years of analysis, experience, and practice. Power generation is carefully managed

so that the voltage and frequency of the electric power system remain within strict limits.

The current smart grid is an incremental effort, initially involving remote meter reading

and remote management of home appliances. The next generation smart-grid in this paper,

as illustrated in Fig. 1.1 [7], is not a closed system, but instead allows for electric power

generation from a multitude of largely unregulated sources. The potential for system in-

stability is staggering: uncoordinated power generation from intermittent sources such as

wind and solar can cause the power grid to collapse, resulting in extended blackouts and

potential equipment damage with significant impact on society.

A microgrid is a particular category under the smart grid umbrella, in which inter-

connected loads and distributed energy resources can operate with or without connection to

the main power transmission system. A smart-grid forms a microgrid of distributed energy

storage devices (DESDs) distributed renewable energy resources (DRERs), and LOADs
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Figure 1.1. Power Management Archictecture [7].

(programmable and non-programmable loads) to share power for the good of the entire

system. Intelligent flow controllers (Nodes) contain physical actuators such as solid state

transformers (SSTs) that control power flow to and from a shared electrical bus, under di-

rection of cooperating Distributed Grid Intelligence (DGI) Processes. This paper begins

with the derivation of an invariant that may be used to monitor and enforce voltage sta-

bility. As used in the present work, an invariant is a logical statement whose truth value

indicates the correctness of a system [1]. The concept is well-established in computational

system analysis, and the present work further extends the concept in a cyber-physical sys-

tem. The National Institute for Standards and Technology defines cyber-physical systems

as “co-engineered interacting networks of physical and computational components” [12].

After deriving an invariant that indicates voltage stability, a method for integrating it with

a cyber controller is derived. The invariant is used as a guard, that is, actions that would

invalidate the invariant are prevented. Simulations, including hardware-in-the-loop (HIL)

simulations with actual distributed cyber controllers, validate the approach.
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1.2. INVARIANT TO MONITOR VOLTAGE COLLAPSE

One of the key indicators of a healthy power distribution system is steady voltage

levels at all of its buses. The system is planned to operate in such a way that whenever there

is an increased demand in load at one or more entities, the generators in the system cater to

that increased load by regulating the reactive resources in the system. This remedial con-

trol action that restores system voltage levels in the event of change in loading conditions

may include automatic response of the generator excitation systems, automatic or manual

excitation of transformer taps and the switching of STATCOMs in the circuit.

However, under extreme conditions of loading, the remedial action which earlier

restored the voltage stability might now very well reduce an already low voltage to abnor-

mally low levels, or may be too slow. Such low voltage levels are not acceptable and might

interrupt the continuity of electricity supply. This chain of events leading to a voltage col-

lapse takes place in a matter of seconds and causes the entire system to shut down. This

poses a serious threat to power systems and poses a challenge to power system engineers to

identify conditions or vulnerable areas in the system that might lead to a voltage collapse

at one or more entities and thus shut the entire system down.

Voltage collapse is caused by insufficient reactive power, either a lack of enough

reactive power in the system to deliver the active power or too much consumption of re-

active power within the system itself. This happens in stressed power systems. A system

may enter the state of voltage collapse when an increase in load demand at one or more

buses or change in system conditions causes an unrecoverable decrease in one or both bus

voltages. Once the voltage at one or more entities (buses) starts to fall, recovery to normal

operation is difficult. Various system elements will begin to respond to the low voltage, ei-

ther accelerating the collapse, tripping individual loads, or creating local blackouts. Thus,

identifying the proximity of the system to the voltage collapse point is of crucial impor-

tance. The voltage collapse proximity indicator L [6] is a quantitative measure to predict



14

how far the current state of the system is from the voltage collapse point. The value of L

ranges between 0 (no load) and 1 (voltage collapse). This means as L approaches 1, the

system approaches the brink of voltage collapse. The voltage collapse proximity indicator (

L j ) for any bus is mainly influenced by the load at that bus itself, with additional influence

from other system entities. For any load bus j, L j can be given as [14] the set of equations

described in (1.1) and (1.2) where N is the total number of load buses, S j and Si are the

complex power consumption at buses j and i, Vj and Vi are the voltages at buses j and i,

Yj j is the j jth element of the bus admittance matrix and Z∗j j and Z∗ji are the conjugate of the

j jth and jith elements of the bus impedance matrix of the system.

L j =
S′j

V 2
j Y j j

(1.1)

S′j = S j +Σ
N
i=1,i6= j

Z∗jiSi

Z∗j jVi
Vj (1.2)

The maximum value of the indicator for all the independent entities is called the

“System Indicator” as denoted in equation (1.3). The System Indicator indicates the overall

health of the system.

LSystem = Maxi∈{1···N}L j (1.3)

The indicator for voltage collapse proximity at a load bus is mainly influenced by

the load at bus j itself and partially influenced by loads at other buses. The value of LSystem

indicates the proximity to voltage collapse of the entire system.

When the load is increased by a certain entity, the indicator at the corresponding

bus and at other buses starts to increase. To avoid voltage collapse, the per-unit voltage at

any bus should always be greater than the indicator for any bus. There comes a point where

the indicator for one bus intersects the per-unit voltage of a certain bus, either its own or
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another bus in the system. This point is called the “online monitored voltage collapse indi-

cation point” where LSystem approaches unity thereby indicating that the voltage collapse is

imminent. Ideally, the “online monitored voltage collapse indication point” should precede

the voltage collapse point, or even the point where the voltage at one or more buses drops

below 5% of the nominal level as per ANSI standards [1]. Thus the invariant to preserve

system level voltage stability can be formulated in words as: The maximum indicator for

all the independent entities must be always less than the minimum per-unit voltage for all

the independent entities in the smart grid. Or mathematically

{IV : LSystem <Vi ∀ i} (1.4)

The physical system invariant described (1.4) above can be adapted for distributed

computation in the DGI system using the distributed energy management algorithm out-

lined in [13]. Thus it is possible to perform an online check as long as the system is

running to monitor the system health in terms of voltage stability and be forewarned should

the invariant indicate an impending voltage collapse. This DGI integrated invariant based

method not only predicts an imminent voltage collapse but can also prevent such an event

by regulating the smart grid accordingly.

1.3. VALIDATION OF THE PHYSICAL INVARIANT

Before integrating the invariant into the cyber controller, simulations were per-

formed to validate its accuracy and suitability. A preliminary version of these results was

presented in [16]. The model was simulated using RTDS®1 as shown in Fig. 1.2. The

feeder has seven lumped loads connected through seven average value model based load

SSTs. The feeder is rated at 12.47 kV and is an islanded, looped system. The loads are

served primarily by two diesel generators.

1RTDS® is a registered trademark of RTDS Technologies
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Figure 1.2. Single line diagram of the 7 bus system.

Although the feeder is looped, it could be operated in radial mode. The two diesel

generators are rated at 1.4 MVA each. One of them operates in droop mode (G2) while the

other operates in isochronous mode (G1). The feeder primary is made up of seven line sec-

tions. The impedance of each line section is identical. Each load SST is rated at 285 kVA.

On the secondary of each load SST, there is a lumped load, lumped distributed generation

(DG) and storage connected. The generators are rated at 1.4 MVA, 380VL−N . The trans-

formers are rated at 1.5 MVA, 0.38 kV: 12.47 kV. The transmission lines have a positive

sequence resistance of 0.77 Ω, positive sequence inductance of 1.967 mH, zero sequence

resistance of 2.31 Ω and a zero sequence inductance of 5.9 mH. The droop generator is

set to run at 400 kW at 5% droop. The voltage stability of the system can be analyzed

by monitoring the online voltage collapse proximity indicator, LSystem. The initial loading

at all the buses is maintained at 205 kW. The loading at bus 1 is increased in steps as the

simulation progresses while all the other busess are maintained at their initial loading level.
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The solid blue line indicates bus 4 per-unit voltage and solid red line is the indicator

for bus 4 (L4) in Fig. 1.3. The solid blue line indicates per unit voltage of bus 4 and the

solid green line is the indicator for bus 1 (L1) in Fig. 1.4.
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Figure 1.3. Change in V4 and L4 as loading at bus 1 increases.
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Figure 1.4. Change in V4 and L1 as loading at bus 1 increases.

It is seen that bus 4 collapses at 34.67 seconds when the system loading is 2.698

MW. L4 never intersects the per-unit voltage curve; L1 however intersects the per unit
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voltage at around 24 s when the system loading is 2.235 MW. This is the “online monitored

voltage collapse indication point” where the invariant is violated. If loading is continued

beyond this point, the voltage collapses shortly and eventually the system totally crashes

as depicted in Fig. 1.4. Although the indicator for bus 4 does not indicate voltage collapse

when approaching the voltage collapse point, the other indicator (L1) indicates an invariant

violation. This indicates the importance of using LSystem, that is, choosing the maximum

value of all indicators to determine the voltage collapse point of the overall system.

In the absence of the droop, the system collapses for a much lower load as demon-

strated in Fig. 1.5. In this case, the loading at bus 1 is increased from 205 kW but loads at

all other buses are maintained at 0. The droop generator is removed from the system. This

voltage collapse is because the second generator no longer supplies the deficit in reactive

power for the system. The only generator in the model supplying reactive power quickly

reaches its limit, causing a voltage collapse as shown in Fig. 1.6. The indicator for bus

1 intersects the voltage curve and indicates imminent collapse. The voltage collapses be-

cause of a deficit of reactive power because the reactive power needed to maintain the bus

voltages within acceptable levels increases with increased loading.

1.4. PHYSICAL INVARIANT INTEGRATION WITH DGI

The DGI system can compute the values of the physical invariant when the system

is operating. Seven DGI processes, one for each SST in the system, were run across five

Linux machines and made to communicate over UDP/IP sockets. Each process reads its

associated bus’s voltage and complex power from the simulation every 50 milliseconds.

Prior to that, all processes were initialized with knowledge of the physical system topology

that included the bus admittance and impedance matrices required to calculate the invariant.

Due to the distributed nature of the system, each process communicated with its peers

over TCP/IP to learn the current values of complex power and voltage at the other buses.
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Figure 1.5. Plot of V1 and L1 against time with increased loading at bus 1 for the system
with no droop generator.
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Figure 1.6. Plot of generator 1 reactive power against time with increased loading at bus 1.

With this set-up, each process can calculate the current value of the invariant during the

simulation. It is thus possible to have an online invariant based monitoring method to

analyze the voltage stability in the smart grid. In the HIL simulation, the RTDS simulation

is coupled with a DGI energy management algorithm [13] that attempts to co-ordinate
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increases in generation and load at two buses in the system. For the experiments conducted

in this study, the initial loadings at all the buses are maintained at 205 kW (through SSTs).

The loading at bus 1 is increased in steps by the corresponding SST as the simulation

progresses while all the other SSTs are maintained at their initial loading level. The total

system loading is the summation of the loading at each bus.

The loading conditions as described in the previous paragraph were established in

conjunction with DGI. For that, the process that corresponds to SST 1 was set to increase its

load during the course of the simulation. If the processes followed the energy management

algorithm in [13], then a second SST would have had to make corresponding increases to

generation and the isochronous generator would maintain a constant amount of generation.

To prevent this, the other six processes were modified to run a malicious version of the

energy management algorithm where the bus generation is never increased. This keeps the

generation and load at buses 2 through 7 constant, while loading at bus 1 increases over

time.

Since each process has enough information to calculate the invariant, the invariant

calculation integrates into the distributed energy algorithm. Each process calculates locally

the exact equation described in (1.1) and (1.2) using a combination of local values, the

system topology values for the bus matrices it was initialized with and the voltages and

complex powers it receives from TCP/IP communication with its peers. The load side

of the energy management algorithm resembles the simplified flowchart in Fig.1.7. The

virtual load corresponds to the script that controls the state of the energy resources at a bus

over time. For instance, the SST at bus 1 is configured to have increasing load over time.

So the process associated with SST 1 sees an increase in virtual load that it would then

enact in RTDS. The actual energy management algorithm is much more complicated than

this flowchart which only provides a skeleton of the code [13].

With the malicious DGI at the other nodes, the SST at bus 1 increases its load while

the other SSTs maintain constant load and generation. This imbalance leads to an increase
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Figure 1.7. Flowchart for energy management algorithm without the invariant guard.

in total system load over time. The increase is large enough to lead to an invariant violation

which will eventually drive the system to voltage collapse. Results are indicated in Fig.

1.8. The first plot shows the impact of the energy management algorithm on the overall

system loading without the invariant guard, as described by the flowchart in Fig. 1.7.

During the earlier part of the simulation, the invariant is satisfied, as shown in the

third plot in Fig. 1.8. A truth value of 1 indicates that the invariant has been satisfied
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while a value of 0 indicates invariant has been violated. As the system loading continues

to increase, the invariant gets violated at a certain point in the simulation. This happens

around 48s when the system loading is around 2.24 MW. An invariant violation does not
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Figure 1.8. Simulated microgrid performance in response to energy management algorithm
without invariant guard, indicating voltage instability due to excessive power migration, as
predicted by the invariant ahead of time.
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correspond to an immediate voltage collapse, but instead indicates an impending collapse.

If the system loading continues to increase, the system voltage does go on to collapse as

shown in the second plot in Fig. 1.8.

The energy management algorithm described in Fig. 1.7 does not use the invariant

calculation. As a result, the process corresponding to SST 1 continues to increase its load

throughout the entire simulation runtime despite the invariant violation. If the process had

reacted to the invariant violation, it might have been possible to avert an impending voltage

collapse. This corrective action has been implemented in the next section.

1.4.1. Invariant guard against offending migrations. The result of the invariant

calculation can be added as an extra condition in the energy management algorithm as

shown in Fig. 1.9. Fig. 1.10 shows the result of this change on the RTDS simulation.

This change prevents the process from changing the value of an SST’s commanded

power when the invariant has been violated. So even though SST 1 is configured to have

an increasing load over time, its associated DGI process will cease to increase the load in

RTDS if the invariant is false. In an actual power system, this would be similar to an act of

load shedding, in that a bus disconnects some of its load to prevent an increase that would

compromise voltage stability. It is therefore possible to use the results of the invariant

calculation to stop a power migration that has the potential to drive the system to voltage

instability.

At 48s when the invariant has been violated, the system loading stops increasing

as shown in the first plot in Fig. 1.10. This is because the process associated with SST

1, in response to an invariant violation, stops sending increased load commands to the

simulation. Unlike in Fig. 1.8, the second plot in Fig. 1.10. shows that there is no voltage

collapse when the energy management algorithm is extended to use the invariant result to

stop an offending migration.

In the event that the invariant has been violated, a DGI-interfaced invariant based

method is able to exert corrective action so as to suspend all future power transactions
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and prevent the system voltage from collapsing. The invariant not only signals when the

system is on the brink of a voltage collapse but also acts as a guard to prevent the system

into entering such an undesirable state. Thus in a transaction based [17] power system, each

and every customer’s obligation can be determined using the DGI interfaced invariant.
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Is there an increase 

in the virtual load?

Request excess generation from 

another DGI process
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YES

Is the invariant 

satisifed?

Set the simulation sub-system 

load to the current virtual load

YES

NO

Figure 1.9. Flowchart for energy management algorithm with the invariant guard.
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Figure 1.10. Simulated microgrid performance in response to energy management algo-
rithm where the invariant guards the migration, preventing voltage instability.

1.5. CONCLUSION AND FUTURE WORK

An invariant which predicts the proximity of voltage collapse in a smart grid type

setting has been presented. This invariant is based on a real time online monitoring of
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system parameters. The invariant has been integrated with distributed grid intelligence to

check the status of the system in terms of voltage stability. The invariant can be suitably

modified to provide insight about the system voltage stability in the absence of current/live

system values. The efficacy of the invariant in predicting voltage collapse has been verified

with experimental simulations. Should loading be continued any further, the system does

go on to collapse. The invariant thus is useful in locating the vulnerable locations in the

system. The integration of the invariant with DGI not only helps to identify the proximity

of voltage collapse in the smart grid, but also takes affirmative actions to mitigate such a

collapse.

This method is the next step towards building a robust, self- checking, distributed

cyber-physical system. Integrating invariants into control algorithms will ensure that the

system is operating correctly, even in the presence of intruders, corrupted data, software

coding errors, etc.
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ABSTRACT— With the ever increasing size and complexities of smart grids, sys-

tem operations are moving towards a decentralized structure. In a decentralized smart grid,

there are multiple independent entities (buyers and sellers) involved in bilateral or multi-

lateral power transactions over the smart grid transmission network. During such power

transactions, it is important that no line in the transmission line network becomes over-

loaded. Among other restrictions, system correctness requires that no lines be overloaded.

Line overloading is an undesirable phenomenon, as it might cause one/more lines to go out

of service, thereby interrupting the continuity of power supply. Invariants can be used as a

guard to prevent transactions that would overload a line. An invariant is a logical predicate

that must remain true throughout system execution [1]. This paper investigates the use of

line flow invariant to find the maximum allowable power transaction between two or more

transacting entities without overloading any line in the system. The invariant has been

adapted for distributed computation in a Distributed Grid Intelligence (DGI) system. The

DGI-enabled invariant not only checks the legitimacy of a power transaction between two

sub-systems, but also prevents lines in the system from being overloaded. The suitability of

the invariant has been tested on a seven node system with simulations performed in RTDS.
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Index Terms— Available transfer capability, invariants, power transfer distribution

factor, smart grid, transaction.

2.1. INTRODUCTION

With the deregulation of the power markets, there has been an increase in opportu-

nities for decentralized control of power flow [2]. Whereas a central controller can enforce

line limits directly, a decentralized control architecture needs extra information to ensure

that power transactions are appropriate [3]. The concept of Available Transfer Capabil-

ity (ATC) has been used in the past in this regard [4]. ATC calculations give an effective

estimation of the capability of the interconnected system to stay in service while being sub-

jected to bilateral or multilateral power transactions between several generation and load

entities as has been highlighted in [5]. This property of the ATC can be exploited to de-

termine if inter area power exchanges between potential transacting entities compromise

the system security. In a transaction based system, any two subsystems are involved in

power transactions. These transactions cause a change in power flow in the lines in the

system. The concept of ATC can be used to develop line flow invariants which will prevent

a transaction that can overload transmission lines in the system.

An invariant, as the term is used in the present work and in [1], is a logical predicate

that must remain true throughout system execution. This use of the term derives from

computer science concepts and allows for automatic verification that the system is operating

correctly. The present goal, as in [1], is to derive an invariant that could be used by a cyber

controller in the smart grid to ensure that a certain transaction does not cause any of the

lines in the network to go out of service due to overloading.

The first step in developing such invariants is to exploit the relationship between a

certain transaction and the consequent change in line flow. This is accomplished by em-

ploying the concept of Power Transfer Distribution Factors (PTDFs) [6]. The capacity to
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apportion power flows on transmission lines in a power system is the basis of North Ameri-

can Electric Reliability Corporation’s (NERC) “flow based” transmission allocation system

[7]. In such a system, the power flows allotted to each transmission line in the network are

a certain fraction of the actual power transaction between any transacting entities. The

linear DC Power Transfer Distribution Factors (DCPTDFs), based on the assumption of a

dc power flow method [8], are used to allocate power flows on the transmission lines for

a certain transaction in the system. DCPTDFs are used to compute ATC, which is used to

formulate the line flow invariants.

The future of the electrical smart grid is an environment where the energy internet

manages an advanced smart grid on a peer-to-peer basis, allowing for local or mobile use

of renewables [3]. Instead of having central generation or management, the smart grid now

has local generation and consumption of power and local energy storage. The current power

generation, management and consumption are well understood and supported by a hundred

years of analysis, practice and experience. Adequate care is taken to manage the power

so that the voltage, line flows and frequency of the electrical power system stay within

prescribed limits. The current smart grid is an incremental effort that initially depended

on remote meter reading and remote management of home appliances. There are ways to

make the grid “smarter”. As has been elaborated in [3], an energy internet which is not a

closed system will allow electric power generation from a multitude of largely unregulated

sources. However there is a grim possibility of system instability: uncoordinated power

generation from the intermittent sources such as wind or solar can cause the smart grid

to collapse. This will have catastrophic effects such as prolonged blackouts and potential

damage to equipments which in turn has a tremendous adverse social impact.

Consider the architecture of a future generation smart grid system shown in Fig.

2.1 [3]. A smart grid forms a microgrid of distributed energy storage devices (DESD)

distributed renewable energy resources (DRER), and LOADs (programmable and non-

programmable loads) to share power for the good of the entire system. Intelligent flow
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controllers (Nodes) contain physical actuators such as solid state transformers (SSTs) that

control power flow to and from a shared electrical bus, under direction of cooperating Dis-

tributed Grid Intelligence Processes (DGI).
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Figure 2.1. Power Management Archictecture [3].

2.2. PTDF ESTIMATION IN A TRANSACTION BASED SYSTEM

In a smart grid with several independent sub systems, a transaction can be defined

as injection of a certain amount of power at one bus by a generator and its absorption at

another bus by a load. The Power Transfer Distribution Factor (PTDF) can be described as

incremental distribution factors associated with power transaction between any two entities.

These values provide a linearized approximation of how the flow on the transmission lines

changes in response to a transaction between a buyer and a seller. PTDFs can also be called

sensitivity factors as they represent the relationship between one kind of change (change in

transaction quantity between two entities) to another kind of change (change in power flow

in any line connecting any two entities in the system). PTDFs are defined as the fraction

of the amount of power transaction between transacting entities m and n that flows in the
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transmission lines connecting entities i and j. The relation between change in line flow

(∆PNew
i j ) due to a power transaction (∆PNew

mn ) between entities m and n is given by (2.1).

PT DFi j,mn =
∆PNew

i j

∆PNew
mn

(2.1)

In this work, DC load flow model is used to estimate PTDFs. The DC load flow

model [10] is a reasonable first approximation for a realistic power system model. A DC

load flow model is fast and computationally less intensive to work with. The DCPTDF’s

are calculated using direct current power flow equations [11]. These distribution factors

represent a change in line flow connecting entities i and j due to a change in transaction

between components m and n. The PTDFs are be used to compute the change in line flow

connecting entities i and j due to a change in transaction between components m and n.

The theory behind calculating PTDFs is to compute the reactance matrix, based on DC

power flow. One node of the impedance matrix is considered to be the reference node

(usually the slack bus node) by making its angle zero and deleting the corresponding row

and column [12]. The inverse of this matrix now gives the reactance matrix. If there is

a power transaction between sub-systems m and n, then the relative change in line flow

connecting buses i and j is denoted as PT DFi j,mn. It can be mathematically represented

as (2.2) where Xim=(i,m)th element, X jm=( j,m)th element, Xin=(i,n)th element, X jn=( j,n)th

element and xi j is the reactance of the transmission lines connecting i and j [12].

PT DFi j,mn =
Xim−X jm−Xin−X jn

xi j
(2.2)

2.3. ATC BASED LINE INVARIANTS

The Available Transfer Capability (ATC) is evaluated by realizing the new flow on

the line connecting entities i and j due to a transaction between buses m and n. The new
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flow on the line connecting entities i and j is the sum of the original base flow of the line

and the change due to the new transaction between entities m and n. This can be written as:

PNew
i j = P0

i j +∆PNew
i j (2.3)

Substituing (2.1) in (2.3), (2.3) can be rewritten as:

PNew
i j = P0

i j +PT DFi j,mnPNew
mn (2.4)

The maximum power that can be transferred between any two transacting entities

(PNew
mn ) without overloading a certain transmission line i j can be found by rewriting (2.4)

as:

PNew
mn = PMax

i j,mn =
PMax

i j −P0
i j

PT DFi j,mn
;PT DFi j,mn > 0 (2.5)

PNew
mn = ∞;PT DFi j,mn = 0 (2.6)

PNew
mn = PMax

i j,mn =
−PMax

i j −P0
i j

PT DFi j,mn
;PT DFi j,mn < 0 (2.7)

Thus, the maximum power that can be transferred between any two transacting

entities m and n for any combination of i j in the system can be evaluated. The minimum

of these values gives the maximum allowable transaction between any two sub-systems

without overloading a line. This can be mathematically represented as:

{ATCmn = Min(PMax
i j,mn) ∀ i} (2.8)

The ATC evaluated in (2.8) is valid only when there is one pair of transacting en-

tities. When more than two parties are in transaction mode simultaneously, the base line
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flows change. If there are l transactions between entities m1 and n1; m2 and n2; . . . . ,ml

and nl of magnitudes x1,x2. . . .xl, then the base line flows on all lines can be expressed as in

(2.9). P0
i j is a single column matrix that denotes the base line flow of all lines in the system

where each row represents a transmission line. Thus the number of rows in this matrix is

equal to the number of lines in the system. PT DFi j,mn is also a single column matrix. Each

row entry in this matrix is the relative change in line flow connecting buses i and j when

there is a transaction between sub-systems m1 and n1. Thus the number of rows of this

matrix is also determined by the number of lines in the system. The same explanation can

be extended for the other entries in the first matrix on the right of (2.9).

[P0
i j] = [PT DFi j,m1n1,PT DFi j,m2n2 · · · ,PT DFi j,m2n2][x1,x2 · · · ,xl]

′ (2.9)

The ATC for all the transacting entities can now be evaluated. The ATCs can act

as line flow invariants to monitor the system correctness. Among other restrictions, system

correctness requires that no lines be overloaded. If none of the transmission lines in the

system are overloaded, system correctness is preserved. If a transaction between two or

more entities result in one or more lines being overloaded, system correctness is no longer

maintained. This invariant can be used to check if any proposed transaction between any

two independent entities in the system maintains system correctness. The invariant can

be formulated as: The proposed transaction is less than the ATC for the two transacting

parties. The ATC for every pair of entities can be computed ahead of time, and then used

real time as guard against transactions.

The physical invariant described in (2.8) can be adapted for distributed computation

in the DGI system using the distributed energy management algorithm described in [13].

When two sub-systems are transacting, the DGI enabled invariant based method not only

checks for a good or bad transaction, but can also stop a bad transaction, thereby preventing

line overloading.
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2.4. VALIDATION OF THE LINE INVARIANT

The model was simulated using RTDS® as shown in Fig. 2.2. The feeder has seven

lumped loads connected through seven average value model based load SSTs. The feeder

is rated at 12.47 kV and is an islanded, looped system. The loads are served primarily by

two diesel generators. Although the feeder is looped, it could be operated in radial mode.

The two diesel generators are rated at 1.4 MVA each. One of them operates in droop mode

(G2) while the other operates in isochronous mode (G1). The feeder primary is made up

of seven line sections. The impedance of each line section is identical. Each load SST

is rated at 285 kVA. On the secondary of each load SST, there is a lumped load, lumped

distributed generation (DG) and storage connected. The generators are rated at 1.4 MVA,

380VL−N . The transformers are rated at 1.5 MVA, 0.38 kV: 12.47 kV. The transmission

lines have a positive sequence resistance of 0.77 Ω, positive sequence inductance of 1.967

mH, zero sequence resistance of 2.31 Ω and a zero sequence inductance of 5.9 mH. The

droop generator is set to run at 400 kW at 5% droop.

Two pairs of entities were chosen for simulation purposes. The ATC for every pair

of entities were computed ahead of time. The transacting parties were made to undergo

transactions in RTDS, both greater than and less than the amount that would violate the

line flow invariants. Table 2.1 summarizes the nature of the cases that were considered and

the results obtained.

The transactions described in Table 2.1 are not DGI enabled. These simulations

were performed to test the accuracy of the line invariants before integrating them into the

cyber controller. The table shows the invariant was successful in predicting transmission

line overloading. The next step is to integrate the line flow invariant with DGI and perform

an invariant check at every power migration level.
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Figure 2.2. Single line diagram of the 7 bus system.

Table 2.1. Experimental table expressing the type of simulations performed.

Transacting Transaction ATC calculated Overload Overload
Pairs amount ahead from from

considered (MW) of time (MW) simulation invariant prediction
4 and 6 0.10 0.126 NO NO
4 and 6 0.15 0.126 YES YES
3 and 7 0.15 0.2 NO NO
3 and 7 0.225 0.2 YES YES

4 and 6; 3 and 7 0.10; 0.175 0.79; 0.141 YES YES

2.5. LINE INVARIANT INTEGRATION WITH DGI

The RSCAD simulation was integrated with a simple distributed energy manage-

ment algorithm that coordinates increases in generation and load at two buses in the system

[13]. Seven processes, one for each bus in the simulation, were run across six Linux ma-

chines and made to communicate over UDP/IP sockets. Each process read its associated

bus’ real power injection from the simulation every 50 milliseconds. Negative real power

injection values correspond to supply buses with excess generation, while positive power
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injection values correspond to demand buses with excess load. The processes were also

initialized with knowledge of the physical system topology which includes the location,

initial real power flow, and maximum capacity of each transmission line.

The distributed energy management algorithm will pair a supply process with a

demand process to perform a power transaction in the system. Unlike cases where the

transactions can been defined in advance, it is impossible to control which transactions

will occur when using the energy management algorithm. Therefore, PTDF values were

computed for all possible pairs of one supply and one demand node in the system, and these

values were stored at each of the seven processes used in the experiments. Modifications

were then made to the algorithm to incorporate the invariant calculation as shown in Fig.

2.3.

Due to the distributed nature of the algorithm, there is no central controller which

dictates which transactions should occur in the system. Therefore, the matrix calculation

from (2.9) which was used to compute the ATC for all transacting entities by finding the

base line flows, cannot be used as it is not known ahead of time which transactions will

occur. Instead, an iterative approach was used in which transactions are considered to

occur in a sequence where each transaction can use (2.4) to compute its ATC value. After

each transaction, the base line flows, P0
i j are updated to reflect the line flow value after the

most recent iteration of the algorithm. This allows (2.9) to be computed one row at a time

as each iteration occurs in the distributed system.

The implementation of the invariant with the distributed energy management algo-

rithm has been described by the flowchart shown in Fig. 2.3. The process is initialized in

the second step shown on the flowchart, using a topology configuration file which includes

the location, initial real power flow, and maximum capacity of each transmission line. The

third step then updates the value of P0
i j for current iteration of the algorithm based on the

transaction(s) that occurred in the previous iteration. After this step, the power management

algorithm is unchanged from [13] until the seventh and eighth step where the invariant is
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Figure 2.3. Flowchart showing distributed energy management algorithm with the invariant
guard.
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implemented. Step 7 uses (2.4) to compute the new line power flows that would result from

the transaction selected in step 6. In effect, this predicts the effect the transaction would

have on the system if it were to occur. Step 8 then compares each of these line flows to their

associated maximum capacities. If any line were to exceed its capacity after the transac-

tion, then the invariant is false and the transaction is aborted. Otherwise, the transaction is

deemed safe and the energy management algorithm is allowed to continue. The last modi-

fication is at step 10, where successful transactions are broadcast to all the processes in the

system to compute the line flows in the next iteration. Fig. 2.4 describes a flowchart when

the invariant check is not implemented in the power management algorithm.

2.6. SIMULATION AND RESULTS

The seven node RSCAD model in Fig. 2.2 has been used to execute DGI migrations

to verify the suitability of the DGI integrated line flow invariant method as described above.

The seven processes were started with the RTDS simulation as described in the previous

section. In the first simulation, there is a seller at sub-system 4 and a buyer at sub-system 6.

For this case, the invariant check from step 8 was disabled so that processes would perform

transactions regardless of the line capacities in the system. This has been illustrated in the

flowchart shown in Fig. 2.4. Bus 4 was set to have 0.2 MW of maximum generation and

bus 6 was set to have 0.2 MW of maximum load to allow for a potential transaction between

buses 4 and 6. The ATC based line limit is 0.126 MW, calculated ahead of time, (as shown

in Table 2.1) for a transaction between sub-systems 4 and 6.

The top graph in Fig. 2.5 shows the distributed energy algorithm at work, with bus

4 increasing its generation and bus 6 increasing its load in coordination with each other.

Neither of these buses reach their maximum generation or load due to the design of the

distributed energy management algorithm and not due to the influence of the invariant. The

algorithm will only transfer fixed 0.2 MW of power. However as the DGI power migrations
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Figure 2.4. Flowchart showing the distributed energy management algorithm without the
invariant guard.
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increase in size, lines in the system reach their loading limits. In the absence of the invariant

guard, bad transactions are permitted, resulting in consequent line overloading as shown in

the middle graph of Fig. 2.5. The line flows were observed as percentage loading of

their limits. The lower bottom graph in Fig. 2.5 shows the real power flow through the

transmission line connecting sub-systems 5 and 6 as a percentage of its maximum loading

limit. As shown, the transaction between sub-systems 4 and 6 caused this particular line to

be overloaded to 1.5 times its maximum limit.
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Figure 2.5. Simulated microgrid performance in response to energy management algorithm
without invariant guard, indicating line overloading.
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This case was then run a second time with the invariant check from step 8 in place,

as described in Fig. 2.4. Fig. 2.6 shows the effect of the invariant guard on the grid

behavior.

The top graph of Fig. 2.6 shows the distributed energy algorithm at work, but this

time it stops far before its 0.2 MW limit. This is because of the effect of the bottom graph

in Fig. 2.6 which shows the result of the invariant calculation. The middle graph shows the

effect of the algorithm on the line connecting sub-systems 5 and 6.
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Figure 2.6. Simulated microgrid performance in response to energy management algorithm
where the invariant guards the migration, preventing line overloading.
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At around 4.2s, the algorithm determined that an additional transaction would lead

to a line overload in steps 7 - 8, and refused to perform another transaction. This leads

to both bus 4 and 6 stopping at real power injection values of +- 0.124 MW. Thus, the

DGI enabled line invariant is intuitive enough to know that the next transaction would

exceed the ATC limit (0.126 MW) for sub-systems 4 and 6. It therefore stops shortly

(0.124 MW) before executing the next transaction that will cause line overloading. Only

one line is loaded to its fullest extent; but not overloaded, as shown in the middle graph in

Fig. 2.6. Thus unlike the previous case, this time the line does not exceed its capacity. The

reason for this is because the invariant was used as a guard to protect the physical system.

When the distributed algorithm determined the invariant to be false, it stopped performing

transactions, and prevented the overload on this particular line.

The DGI interfaced line flow invariant was not only successful in guessing if the

next transaction would overload any line in the system, but could also stop such a transac-

tion. Thus in a transaction based, multi party system, the DGI based method can stop any

transaction that violates the line flow invariant to safeguard transmission line stability.

2.7. CONCLUSION AND FUTURE WORK

The PTDFs have been evaluated assuming a DC load flow approach. The DC load

flow method to find PTDFs is simple and less time consuming as it is a non-iterative ap-

proach. The PTDFs are used to compute the line flow invariant for any bilateral/multilateral

transactions. The line flow invariant has been integrated with DGI to perform an online

check on the system. If the amount prescribed by the line flow invariant is greater than the

proposed transaction; only then can that particular transaction be allowed. The DGI inter-

faced line invariant serves not only as an important tool to test the legitimacy of a proposed

transaction, but also thwart any such transaction that might cause any line to overload. This

reduces the need for setting up extra transmission lines for planning new projects.
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In this paper, the ATC has been computed using DCPTDFs. However ACPTDFs

can also be used to compute ATC. These ACPTDFs are derived at a base case load flow

result. They can be highly effective tools for computing change in any line for a change in

power transactions. The ACPTDFs have the capability to evaluate the change in line flows

more accurately than the DCPTDF method. Future work can be undertaken to calculate the

ATC from the ACPTDFs and compare the results obtained in this paper.

The DGI-interfaced invariant based method should be extended to cases where more

than one pair of sub-systems undergo transaction at the same time. The sequence of steps

needed for the implementation of the algorithm in this paper assumes that each iteration

performs only a single transaction. This is always the case with one pair of transacting

entities, but may not be true with multiple pairs of transactions as more than one trans-

action could occur in the same iteration. When this happens, the approximate line flows

calculated in step 3 do not account for the concurrent transactions, and thus the invariant

does not correctly predict the next state of the physical system. Had either transaction oc-

cured in isolation, the invariant would not be violated, and no line overloads would have

occured. However, the combination of two or more concurrent transactions may lead to a

line overload, not predicted by the invariant.

There are several potential methods to tackle this problem. The easiest approach

would be to allow the distributed energy management algorithm to undo its most recent

action. Then in the next iteration, the algorithm could see that it violated the invariant

through concurrent transactions, and each transaction from the previous iteration could

be undone to limit the amount of time the lines are overloaded. An alternative and more

intrusive approach would be to enforce the assumption that only a single transaction can

occur per iteration. However, both of these approaches require extensive changes to the

power management algorithm, and provides excellent scope for future work.
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ABSTRACT— Stability in power systems refers to the tendency of the system

to return to its equilibruim position after a disturbance. The stability issue in power sys-

tems can be divided into three main categories: transient-stability, steady state stability and

dynamic stability. Transient stability is the ability of the system to restore its stable con-

figuration, even after a large disturbance. These disturbances may not cause the system to

lose its synchronism, but can lead the system to a state of oscillations. If these oscillations

die out quickly, the system is said to be stable. But if the oscillations continue to increase in

amplitude and last for long periods of time, the system is no longer stable. Such behavior

poses a serious threat to system operation and reliability. This paper attempts to preserve

the transient stability of a smart grid type system with the help of invariants. An invariant

is a logical predicate on a system state that must remain true throughout system execution

[1]. The dynamics of a smart grid, subject to load perturbations, are modeled as a switched

system. The concept of this transient stability invariant is rooted in the notion of minimum

dwell time for switched systems. The invariant has been studied on a microgrid consist-

ing of two inverters working as distributed energy resources (DER), passive loads and a

distribution line. Simulation results on the microgrid have been performed to validate the

invariant results.

Index Terms— dwell time, transient stability, invariant, Lyapunov, microgrid.
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3.1. INTRODUCTION

Microgrids fall under a special umbrella of smart grids and are entrusted with the

responsibility of improving power quality and reliability to improve system efficiency and

allowing the system to operate in the absence of the grid. To quote the US Department of

Energy Microgrid Exchange Group (U.S. DOE MEG) [2], a microgrid can be defined as " a

group of interconneced loads and distributed energy resources with clearly defined electri-

cal boundaries that act as a single controllable entity with respect to the grid. A microgrid

can connect and disconnect from the grid to enable it to operate in both grid-connected

or island mode." A smart grid forms a microgrid of distributed energy storage devices

(DESDs) distributed renewable energy resources (DRERs), and LOADs (programmable

and non-programmable loads) to share power for the good of the entire system. Intelligent

flow controllers (Nodes) contain physical actuators such as solid state transformers (SSTs)

that control power flow to and from a shared electrical bus, under direction of cooperating

Distributed Grid Intelligence (DGI) Processes as shown in Fig. 3.1 [3].
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Figure 3.1. Power Management Archictecture [3].
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Microgrids can operate with or without connection to the main power transmission

system, i.e either islanded or grid connected. One important feature of microgrid operation

is easy transitioning between these two modes [4]-[5]. When the microgrid operates in an

islanded mode, its control and management becomes complex. Since in an islanded mode,

the microgrid operates with finite inertia [6] (unlike infinite inertia that a grid offers), it

is more prone to disturbances and stability issues. The potential for system instability

is staggering: mismatch in power generation from intermittent sources such as wind and

solar can cause the power grid to collapse resulting in large scale blackouts and significant

equipment damage with an adverse societal influence.

There have been several attempts to study power system stability. Routh Hurwitz

criterion [7], root locus techniques [8] and Nyquist method [8-11] are a few such classical

methods. However all the methods described above gives a prescribed measure of stability

in a given space. But this depends on the choosing the parameters of the stability zone,

such that transient responses for the system is satisfactory [12]. This does not delve into

the transient stability of power systems.

A microgrid, subject to load perturbations, can be modeled as a switched system.

The transient stability of the microgrid can be investigated by studying the stability of

switched systems.

3.2. DYNAMICS OF A SWITCHED SYSTEM

The fundamental dynamics of a switched system is that of a continuous-time system

where changes occur at discrete instants of time [13]. The dynamics of a switched linear

system can be given as (3.1) and (3.2) where Xσ is the steady state value at mode σ .

˙̃x = Aσ x̃ (3.1)
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x = x̃+Xσ (3.2)

When the mode is switched from i to j, the new dynamics are given by (3.3) where

∆ j=x j-xi. ˙̃x = Aσ x̃ is the linearization of Ẋ = fσ (X) around Xσ where Xσ is a stable point.

x(t+j ) = x̃(t j)+∆ j (3.3)

For such a system to be asymptotically stable, all the eigenvalues of the Aσ matrix

must have real negative parts [13]. The Lyapunov function for such a system can be found

by fixing an arbritary positive definite symmetric matrix Q and finding an unique positive

definite symmetric matrix P that satisfies the Lyapunov equation

AT P+PA =−Q (3.4)

Solving this equation , it is possible to obtain the Lyapunov function V (x̃)=x̃T Px̃

which gives a derivative of

˙̃V =−x̃T Qx̃ (3.5)

Thus, the system is asymptotically stable if and only if P and Q satisfy (3.4). How-

ever, when the system is switching, asymptotic stability of each node is not sufficent to

ensure the stability of the entire system.

3.3. INVARIANTS FOR TRANSIENT STABILITY IN POWER SYSTEMS

Lyapunov functions can be used to study complex systems such as the power grid

[1]. Lyapunov functions must be positive definite, radially unbounded and non increasing

for the system to be stable. This can be represented as the following set of equations.
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V (x)> 0 ∀ x 6= 0 (3.6)

V (0) = 0 (3.7)

dV
dt
≤ 0 (3.8)

If dV
dt is non-positive, the system is stable. If dV

dt is strictly negative, the system is

asymptotically stable [1].

For a switched system with different operating modes, multiple Lyapunov func-

tions can be considered. A system operating in two modes (say) can have two Lyapunov

functions, V1 and V2, describing the dynamics of each mode. Each of these modes can be

stable independently. However when the system is switched in between these modes, it

is possible to drive the system to instability by controlling the time in between switching.

This introduces us to the notion of dwell time will be explained later in this section. The

stability of such a switched system, having otherwise stable operating modes (described by

Lyapunov functions ) can be analyzed with the help of another set of functions known as

Lyapunov-like functions [14-16]. Lyapunov like functions should also be positive definite

and radially unbounded just like their Lyapunov counterparts. However, the derivative does

not need to be negative at all times. For such class of functions, the value of the function at

the switching instants is what matters.

A switched system operating in multiple modes, enumerated by i can be considered.

A Lyapunov like function can be composed for each operating mode. However if the system

is switching between various modes, the only values of Vi(xi) that are of relevance are the

values at the instants when switching occurs. If those values show a non increasing or

decreasing trend for all switching modes and all admissible values of i, then the switched
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Figure 3.2. Switched system stability using multiple Lyapunov functions (V1 and V2) [1].

system is stable. This concept had been shown in Fig. 3.2. Fig. 3.2(a) shows true Lyapunov

functions for both modes, and the times at which they switch follow a decreasing pattern

thereby indicating system stability. Fig. 3.2(b) shows at least one mode cannot be described

by a true Lyapunov function. However, the overall system is stable, because V1 and V2 have

a decreasing trend.

A switched system is stable if all the operating modes are stable and the switching

times are long enough to ensure that the transients of the previous mode had settled down

before the next mode is switched on. This again brings back the time concept in between

switching. For switched systems, a number τd can be assigned [13] such that switching

times in between the modes should always be greater than that number, to ensure system

stability. This number τd is called dwell time. This nomenclature may be attributed to the

fact that the switched system needs to "dwell" in each mode for at least τd amount of time

[13].

If the individual operating modes are asymptotically stable, the switched system is

also asymptotically stable if the switching time in between the modes are greater than the

dwell time. A lower bound on the dwell time can be derived from the exponential decay

bounds on the state transition matrices of the individual operating modes [13]. For a system

with stable operating modes, Lyapunov functions (Vi) for each mode satisfy (3.9) and (3.10)

for some positive values of ai, bi and ci [13].
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ai | x | 2 ≤Vi(x)≤ bi | x | 2 (3.9)

V̇ (x)≤−ci | x | 2 (3.10)

(3.9) and (3.10) can be combined to obtain (3.11) where ki= ci
2bi

.

V̇ (x)≤−2kiVi(x) (3.11)

A lower bound on the dwell time can be derived which ensures that the switched

system is asymptotically stable. For a system operating between two modes, a generalized

expression of this dwell time can be given by (3.12) [13].

τd =
1

2(k1 + k2)
log

b1b2

a1a2
(3.12)

The concept of dwell time can be used to formulate invariants for preserving the

transient stability of power systems. Power systems can be modeled as switched systems,

as load perturbations can act as different operating modes. For a power system operating

back and forth between different operating modes (change in load patterns), the notion of

dwell time can be extended to describe the stability of the system. The invariant to preserve

transient stability can be expressed as : The system is stable if the switching time in between

the operating modes is greater than the minimum dwell time derived for the system. It is

possible to even drive a system with stable operating modes to instability by violating the

minimum dwell time requirement for the system.
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3.4. SIMULATION AND RESULTS

The microgrid system adopted for this study has been shown in Fig. 3.3. The invert-

ers are connected to their respective buses by a filter. The variable passive loads connected

to these buses serve as local loads. The microgrid is operating in islanded mode. A small

signal model of this system was developed in PLECS®2. Details about the development of

the this small signal inverter dominated microgrid model has been described in [17].

BUS 

2

LOAD 1 LOAD 2

BUS 

1

DER 2DER 1

Figure 3.3. Microgrid model for stability studies [17].

Singular perturbation methods [18-19] have be used to reduce the full order model

to a reduced order model by removing the fast dynamic states without losing the physical

nature of the states [17]. A model order reduction algorithm has been used to reduce the

order of the islanded system. The reduced order system has only 15 differential equations

as compared to 36 differential equations in the full order system. The reduced order model

is then linearized around stable operating points. This is done by simulating an average

value model of the system described in the figure above in PLECS®.

The loads are connected to the inverter buses. The load resistances are in the order

of 25Ω. At the start of the simulation, load ’a’ is connected to bus 1 and bus 2. This is our
2PLECS® is a registered trademark of Plexim GmbH
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first operating mode. A set of operating points corresponding to this mode is given by X1.

After a certain amount of time tsw, load ’b’ (also 25Ω) is connected in parallel to the initial

load at bus 1 to mimic a change in loading condition. This gives a second set of operating

points for a second operating mode. The second set of operating points are given by X2.

The detailed value of the entries in the matrices X1 and X2 have been presented in [17].

The system state transition matrices for these two modes, A1 and A2 are obtained through

linearization around stable operating points given by X1 and X2.

The two inverter model can thus be made to switch back and forth between two op-

erating modes by switching the load ’b’ at bus 1 ON and OFF and controlling the switching

times. If the modes are enumerated by i, and their respective Lyapunov-like functions as

Vk(xk), then the Lyapunov-like functions for modes 1 and 2 can be represented as V1(x1)

and V2(x2). The Lyapunov functions for the two modes can be expressed as :

V1(x1) = xT
1 P1x1 (3.13)

V2(x2) = xT
2 P2x2 (3.14)

The P matrices that satisfy (3.13) and (3.14) must be positive definite, for the

switched system to be stable. The dwell time can be calculated from (3.12). For a lin-

ear system, the upper and lower bounds on the Lyapunov function from (3.9) for a certain

mode are given by the maximum and minimum eigen values for the P matrix of that op-

erating mode. The upper bound in (3.10) is given by the maximum eigen value of the Q

matrix of that operating mode. Using the maximum and minimum eigen values for P1 and

P2, a1, b1, a2 and b2 were evaluated. The maximum eigen values for Q1 and Q2 yielded

values for c1 and c2. Using (3.11) and (3.12), the dwell time was computed to be 1.933s

for the model used in this paper. For the experiment reported in this paper, the dwell time

was chosen such that it is greater than 1.933s.
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The system is in its initial mode, Mode 1, for the first 1s when load ’b’ at bus 1 is

OFF. Load ’b’ is switched ON after 1s thereby transitioning from Mode 1 to Mode 2 . At

t = 3.0s, load ’b’ is switched OFF; thereby reverting back to Mode 1. At again t = 5.0s,

load ’b’ is switched ON and the system is back in Mode 2. Load ’b’ is again switched

OFF at t = 7.0s, thereby bringing the system back to Mode 1. The swtiching modes are

represented by the top graph in Fig. 3.4. where the switching mode values represent the

current operating mode of the system. For the operating points X1 and X2, corresponding

to Modes 1 and 2, the system state is described by the matrices A1 and A2. The dwell time

in this case is thus 2.0s, which does not violate the minimum dwell time based transient

stability invariant.

The multiple Lyapunov-like functions for this switched system can be plotted against

time as shown in the bottom graph in Fig. 3.4. The P matrices for each mode were found

to be positive definite.
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Figure 3.4. Switched sequence of the microgrid model showing Lyapunov-like stability, as
depicted by the non increasing trendlines at the switching instants.

The graph at the bottom of Fig. 3.4 plots the Lyapunov-like function for the given

system. Every time there is a mode change, the function increases. However, after the
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initial increase, the function peaks and then there is a strict monotonic decrease at the be-

ginning of each mode. This implies that the system is stable, and the steady-state behavior

can be studied at the end of switching. This behavior is depicted by circles on the trendlines

and correspond to changes in operating modes due to the ON/OFF action of load ’b’ at bus

1. There are two trendlines depicted in the graph, one red and one green. The red trendlines

denote the switching of the system from Mode 1 to Mode 2 and the green trendline denotes

the switching of the system from Mode 2 to Mode 1. Both these trendlines are non increas-

ing which satisfies the transient stability invariant. Fig. 3.5 shows the transient response of

the system in terms of active and reactive power, which iterates the system stability denoted

by the Lyapunov-like functions.

The Lyapunov-like stability of the system has been compared with simulation re-

sults as shown in Fig. 3.5. The load changes occur at 1s, 3s, 5s and 7s. The active and

reactive power of both the inverters have been plotted, using solid red lines for inverter 1

and dashed blue lines for inverter 2. Despite all the load changes, the transient response of

the system is shown to settle down. When the minimum dwell time invariant is satisfied,

the transient response of the system validated that system stability was maintained. Thus if

the dwell time is sufficiently high, the states can go back to their equilibrium position and

the overall system will be stable. However if the states are not given enough time to settle

down before the next mode is switched on, the system can go unstable. Thus switching

too soon, or "too much" switching action can reduce the dwell time needed for stability.

This reduced dwell time will interfere with the system dynamics. As a result, the system

function will cease to be Lyapunov-like and this should also be reflected in the transient re-

sponse of the system. Such an unstable case, generated by switching the system too quickly

can be achieved by violating the minimum dwell time based transient stability invariant.

Conceptually if the dwell times between the operating modes are reduced to less

than 1.933s, the system may be unstable. However, it has not been possible to simulate

such an unstable case for this model. This is due to the extremely loose bound on the
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Figure 3.5. Inverter active and reactive power outputs in response to microgrid switching.

minimum dwell time computed for this model. This loose bound can be explained by the

nature of the P matrices. In order for a tight lower bound on dwell time, the maximum and

minimum eigenvalues of the P matrices should be in a comparable range. However, for P1,

the maximum and minimum eigenvalues are 0.22291 and 7.042e-10; for P2, the maximum

and minimum eigenvalues are 0.22435 and 6.987e-10. This extreme difference in the range

of maximum and minimum eigenvalues contributes to the extremely loose bound on the

dwell time.
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3.5. CONCLUSION

This paper presents a transient stability invariant to monitor the transient stability in

smart grid type applications, subject to load perturbations. The load perturbations are anal-

ogous to switching actions. Switched system stability concepts have thus been extended

to study the transient stability of a microgrid. The stable Lyapunov-like behavior of the

two-inverter microgrid model, when subjected to load perturbations have been validated by

the transient response of the active and reactive powers of both the inverters. Similar power

system applications can be modeled as switched autonomous systems [17].

The maximum and minimum eigenvallues of the P matrices should be in a com-

parable range to obtain a stricter bound on the dwell time if the system is to be driven to

instability. The invariant presented in this paper is extremely loose and the system stability

is not at all perturbed when the invariant is violated. Better bounds should be found for the

minimum dwell time to observe an unstable case on violating the invariant. In addition to

this Lyapunov based method of stability, Markov Jump Linear Systems (MJLS) can also be

used to study power system dynamics. A MJLS is a dynamic system with continuous states

and a continuous time Markov process. There is a jump in the continuous state dynamics of

the system when the discrete state of the Markov process changes [20]. After investigating

the effects of deterministic switching, it can be possible to employ the concept of MJLS to

study random switching in the context of microgrids.
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SECTION

2. CONCLUSION AND FUTURE WORK

The focus of this research has been to combine the diverse environments of physical

systems, computer networks and communications in a common semantic. Unified Invari-

ants approach has been adopted to compose safe, stable cyber-physical systems. The key

has been to ensure non-interference of actions. Non-interference of actions suggest that

actions in a particular domain should not interfere with the functioning of another domain.

For instance, a cyber message or a network delay should not violate the physical invariant.

It has been established that invariants are a natural solution to tackle the CPS research prob-

lem. Unified invariants tie all the domains of a CPS and non interference is the glue that

holds them together. Various invariants have been developed in this dissertation to main-

tain system correctness. This correctness can be quantified in terms of voltage stability,

line loading or transient stability. These physical invariants have been validated on a smart

grid type system.

Future work will be to integrate these physical invariants with cyber invariants and

network invariants, so as come up with an overall system invariant. These integrated in-

variants will guard an adaptive real time environment to ensure that the system is operating

correctly even in the presence of adversities such as errors introduced by codes that are not

type safe, lack of information, decentralized and degraded operating conditions.
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