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ABSTRACT

This dissertation explores two topics pertinent to electromagnetic compatibility
research: maximum crosstalk estimation in weakly coupled transmission lines and
modeling of electromagnetic radiation resulting from printed circuit board/high-density
connector interfaces. Despite an ample supply of literature devoted to the study of
crosstalk, little research has been performed to formulate maximum crosstalk estimates
when signal lines are electrically long. Paper one illustrates a new maximum crosstalk
estimate that is based on a mathematically rigorous, integral formulation, where the
transmission lines can be lossy and in an inhomogeneous media. Paper two provides a
thorough comparison and analysis of the newly derived maximum crosstalk estimates
with an estimate derived by another author. In paper two the newly derived estimates in
paper one are shown to be more robust because they can estimate the maximum crosstalk
with fewer and less restrictive assumptions.

One current industry challenge is the lack of robust printed circuit board
connector models and methods to quantify radiation from these connectors. To address
this challenge, a method is presented in paper three to quantify electromagnetic radiation
using network parameters and power conservation, assuming the only losses at a printed
circuit board/connector interface are due to radiation. Some of the radiating structures are
identified and the radiation physics explored for the studied connector in paper three.
Paper four expands upon the radiation modeling concepts in paper three by extending
radiation characterization when material losses and multiple signals may be present at the
printed circuit board/connector interface. The resulting radiated power characterization
method enables robust deterministic and statistical analyses of the radiated power from
printed circuit board connectors. Paper five shows the development of a statistical
radiated power estimate based on the radiation characterization method presented in
paper four. Maximum radiated power estimates are shown using the Markov and
Chebyshev inequalities to predict a radiated power limit. A few maximum radiated power
limits are proposed that depend on the amount of known information about the radiation
characteristics of a printed circuit board connector.
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1. INTRODUCTION

Crosstalk is an increasing problem in electronic designs due to circuit
miniaturization and increasing design density. This problem is often studied using
numerical simulations, however, the resulting information from these studies often do not
provide the necessary insight into the exact causes or solution strategies to mitigate
crosstalk. Analytical formulations can provide much needed insight to solve crosstalk
problems and are often used for this purpose. Crosstalk is well-studied in the literature
and has been analyzed from many different viewpoints. Most literature has focused on
exact crosstalk formulations that capture every peak and valley in the crosstalk over
frequency. While these exact formulations are necessary, design decisions are often better
formulated from a maximum, worst case crosstalk envelope rather than an exact response
because the transmission line parameters are never fully known. Little information in
literature is available to formulate maximum crosstalk estimates when signal lines are
electrically long.

Paper one and paper two in this dissertation are designed to supplement existing
crosstalk literature with newly derived maximum crosstalk estimates. Paper one
introduces maximum crosstalk estimates in the frequency domain where signal lines are
weakly coupled and the characteristic impedances are assumed to be approximately the
same inside and outside a designated coupling region. The maximum crosstalk estimates
in paper one are shown to be a significant improvement from the estimates derived by
another author since the new formulation is not limited to lossless and homogeneous
media. Measurements and simulations are presented that illustrate the maximum crosstalk
estimates can predict the maximum crosstalk envelope within a few decibels. A thorough
analysis and comparison of the newly derived maximum crosstalk estimates with the
previously derived estimates by another author are presented in paper two. The purpose
of this analysis is to validate the mathematical basis for the previously derived estimate
and to show limitations of the previous estimate that were not apparent in the original
paper. The analysis in paper two provides additional validation to the previously

published maximum crosstalk estimate and the estimates presented in paper one.



Design methods for creating intentional electromagnetic radiators, namely
antennas, are widely available in literature. Despite the abundance of engineering
knowledge to create intentional antenna structures, the knowledge of radiation physics in
general is still lacking. In the area of unintentional radiators there is even less
understanding of how these structures radiate, and there is a strong need to understand the
radiation physics of these structures. Such knowledge could be used to make
unintentional antennas less effective as radiators and prevent electromagnetic interference
problems. Unintentional radiators of commercial interest include board-to-board and
cable-to-enclosure interfaces. The focus of the research in this dissertation is on board-to-
board interfaces with high-density printed circuit board connectors.

To better understand the radiation physics in high-density printed circuit board
connectors, a method is presented in paper three and paper four to quantify the radiation
in these structures. In paper three, the radiation physics for a simplified connector model
is analyzed and characterized using network parameters. The material losses are
neglected and the basic radiating antenna structures are identified in paper three. Paper
four expands upon the radiation modeling concepts in paper three by extending radiation
characterization when material losses and multiple signals may be present at the printed
circuit board/connector interface. The presented radiated power loss characterization
methodology in paper four allows deterministic and stochastic analysis on the
electromagnetic interference properties of connectors that were not previously available
in the literature. Measurements and simulations are shown in paper four that validate the
radiated power loss characterization method and illustrate the analysis can apply to both
measurements and simulations. Paper five expands upon the theory presented in paper
four with the development of statistical radiated power estimates. Challenges related to
predicting a maximum radiated power are addressed in paper five with incomplete
radiation characteristics knowledge of a printed circuit board connector with the
statistical estimates. Maximum radiated power estimates are proposed that depend on the
amount of known information about the radiation characteristics of a printed circuit board
connector. Simulations and measurements are also shown with impulse and pseudo-

random bit sequences to validate the statistical, maximum radiated power estimates.



PAPER

I.  Maximum Crosstalk Estimation in Weakly Coupled Transmission Lines

Matthew S. Halligan and Daryl G. Beetner, Senior Member, IEEE

Abstract—Eliminating crosstalk problems in a complex system requires methods
that quickly predict where problems may occur and that give intuitive feedback on how
best to solve these problems. Solutions for the maximum crosstalk are often used for this
purpose. Limit lines for maximum crosstalk in the frequency domain are available in the
literature when signal lines are electrically small and weak coupling is assumed;
however, little research has been performed for the case where signal lines are electrically
large. This paper provides derivations for maximum crosstalk in the frequency domain
when signal lines are electrically large and weak coupling applies. The coupling
mechanisms are represented by distributed voltage and current sources. These sources
result from aggressor circuit voltages and currents as well as mutual terms in the
transmission line per-unit-length parameters. The maximum crosstalk expressions for the
victim loads are represented by piecewise expressions dependent on the total electrical
length of the aggressor circuit and the electrical length of the coupling region.
Measurements and simulations are presented which show the maximum crosstalk

estimates can predict the maximum envelope of crosstalk within a few decibels.

Index Terms—Analytical models, coupling circuits, crosstalk, electromagnetic

coupling, estimation, prediction algorithms, transmission lines.

I. INTRODUCTION

One of the biggest challenges facing electronics designers in high-density, high-
data-rate systems is crosstalk. Fundamentally, crosstalk is undesirable because it can
degrade system performance by worsening signal integrity and creating logic errors.
Although one of the simplest methods to reduce crosstalk is to increase the spacing
between signal lines, this solution may not always be possible due to system size

requirements. In such cases, design engineers must resort to other methods such as



modifying termination impedances and coupling lengths to reduce the impacts of
crosstalk. Numerical electromagnetic tools are often used to better understand crosstalk
issues. Although these tools can be used to quantify crosstalk for a given system, the
results do not provide much insight into the major contributing factors for crosstalk.
Analytical expressions can provide this much needed insight and are used for this
purpose.

Crosstalk has been extensively studied in literature in both the time and frequency
domains [1]-[26]. Early work developed models for inductive and capacitive coupling in
electrically small systems and their impacts on near-end and far-end crosstalk waveforms
[1], [2]. Paul [3] expanded on these initial concepts by solving for the near-end and far-
end crosstalk analytically using matrix equations in the frequency domain. In subsequent
work, Paul [4]-[6] and Olsen [7] were able to derive the crosstalk response for circuits at
low frequencies as a summation of inductive, capacitive, and common impedance
coupling mechanisms. Initially much of the crosstalk analysis was limited to two
transmission line systems; however, Paul [8], [9] was also able to expand crosstalk
analysis to systems containing more than two transmission lines. Some recent work
expands upon initial formulations presented in [1]-[9] with crosstalk analysis in the time
domain [10]-[14], in non-uniform transmission lines [15], [16], and in systems with
signal lines that are not parallel [17], [18]. Statistical characterization of crosstalk in
multiconductor transmission lines has also been explored [19]-[21]. While [10]-[21]
represent some recent advances in crosstalk analysis in additional domains and in more
generalized transmission line structures, these exact formulations do not provide insight
into worst case crosstalk performance over frequency.

Although exact formulations for crosstalk are beneficial, the most useful tool for
many designers is the maximum, worst case crosstalk over frequency [22]-[24].
Designers are often interested in a worst case performance limit because passing this
limit obviates the need for further design analysis and modifications. This type of
analysis is also preferred over exact crosstalk calculations in many cases because the
system parameters are not perfectly known. Small shifts in resonant frequencies in this

case can significantly change a crosstalk estimate. If the maximum crosstalk is found



using a closed-form estimate, this technique may also give a better understanding of what
causes crosstalk problems and how these problems might be solved.

A maximum crosstalk curve can be defined in two separate frequency regions
dependent upon the electrical length of the signal lines. When the signal lines are
electrically small, the maximum crosstalk can be found using the exact, analytical
equations given in [4]-[6]. The exact equations also represent the maximum possible
crosstalk because there are no resonances in the crosstalk response for most practical
terminations. When the signal lines are electrically large, resonances in the crosstalk
response occur due to the electrical length of the signal lines and, in many cases, due to
load impedance resonances.

Presently, there is little information in the literature about predicting the
maximum crosstalk when signal lines are electrically large. This is not to say that there
are no exact formulations when transmission lines are electrically large as there is an
ample supply of literature devoted to this subject [3], [6], [8], [9]; rather, little
information is available in literature to estimate the maximum crosstalk. An effort was
made in [24] to predict maximum crosstalk at “high frequencies”, where the signal lines
were electrically large and weak coupling was assumed. Although the results in [24] were
shown to predict the crosstalk well, the maximum crosstalk formulations lacked the
inclusion of transmission line loss and mathematical rigor. One critical assumption in
[24] was that the coupling mechanisms could be represented by a single, lumped source
based on infinite transmission line voltages or currents. Although this assumption
simplifies the crosstalk analysis, the resulting maximum crosstalk expression mixes
boundary conditions between infinite and finite transmission lines which is not strictly
mathematically correct. In addition, [24] defined crosstalk as a ratio of maximum
voltages or currents in the victim and aggressor circuits. This definition of crosstalk can
suffer from over-prediction and under-prediction problems at the near-end and far-end
victim loads. The purpose of this paper is to develop a mathematically rigorous, worst-
case, high-frequency crosstalk estimate that includes transmission line losses. Results are
validated by demonstrating the newly derived crosstalk formulation reduces analytically
to a well-known crosstalk formulation and by demonstrating performance through

multiple simulations and measurements.



Il. MAXIMUM CROSSTALK FORMULATION

The maximum crosstalk formulation is derived in the following sections. First, the
transmission line circuit and the transmission line equations are presented. Next, the
solutions to the transmission line wave equations are presented for a distributed voltage
and a distributed current source. The total victim transmission line voltage solution is
then shown as a superposition of the responses due to the distributed sources when the
coupling region is electrically small and electrically large. Lastly, modifications to the
exact, total victim transmission line voltage solutions are given that estimate the

maximum crosstalk at the victim near-end and far-end loads.

A. Transmission Line Circuit and Transmission Line Equations

The three-conductor transmission line system in Fig. 1 was used as a reference to
develop maximum crosstalk expressions at frequencies where the signal lines were
electrically long. This system consists of an aggressor circuit and a victim circuit. The
primary quantity of interest is the voltage at the near-end and far-end loads of the victim
circuit. Coupling is assumed to occur within a region where the cross-sectional geometry
and electrical characteristics are uniform along its length. Outside of the coupling region,
the aggressor and victim circuits are assumed to have the same cross section (i.e., the
signal and returns have the same size and orientation) as in the coupling region, but the
circuits are now uncoupled. This transmission line system is loosely based on a typical
modular system where connections among different modules are established using cable
bundles, and coupling occurs when the aggressor and victim share the same harness. This
crosstalk formulation allows for different aggressor and victim circuit lengths,
independent of the coupling region size, which many other crosstalk formulations do not
permit. Weak coupling is assumed, and the characteristic impedance is assumed to be
approximately the same over the entire lengths of the aggressor and victim circuits. The
weak coupling conditions are typically well satisfied in cable bundles where the
conductor separation is at least three to five times the conductor height from a reference

structure.
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Fig. 1. Coupled three-conductor transmission line system used to formulate an estimate
of maximum crosstalk.

The transmission line equations for the system in Fig. 1 are given by [9]

%Vl(x) = =Ryl (X) = Rip 1, () = jeofLy1 13 () + Lo (X)] (1a)
%VZ(X) = —Rpy 13 (X) = Ryp 1, () — jao Ly 1y (%) + Lop 1 (x)] (1b)
21300 = =G (0= iV, (X) = §olCuVa () + CoaV ()] (1c)
% 15(X) = =GypMy (%) = GV, () — Jo[CpiVi (X)+ CypVo (X)) (1d)

where the aggressor circuit is denoted as signal line one, and the victim circuit is denoted
as signal line two, V and | are the voltage and current along each transmission line as a
function of length, x, and R, L, G, and C are per-unit-length parameters for resistance,
inductance, conductance, and capacitance. The per-unit-length parameters contained in
(1) are defined as [9],



G:{911+912 — 01 }:{Gn G12:|
—0On o1+ 92 Gy Gy

o |:C11 +Co  —Cp } _ {Cn C12:| ] (2)

—Cx Cy1 +Cp Cu Cyp

The per-unit-length parameter matrices are symmetric for the system in Fig. 1 due
to reciprocity. Under the weak coupling assumption, the transmission line equations
become [6], [9],

%Vl(x) = =Ry 13 (%) = joolys 15 (x) (32)
250 = Rea1 (0~ Rz ()= JolLaats () L1 ()] (3)
% 1,(x) = =G1V4 () — jarCi,V4 (%) (3¢)
% 15(X) = =G V4 (X) = GV, (%) — j[CopV (%) + CoV5 (X)) (3d)

Two critical insights can be found from the weak coupling transmission line equations.
The first insight is that the voltage and current of the culprit circuit can be solved using
traditional methods for a single transmission line problem. This result implies that the
voltage and current in the culprit circuit is not impacted by the voltage and current in the
victim circuit, as expected for the weak coupling case. The second insight is that the
coupling terms in the victim circuit can be represented by a distributed voltage and a
distributed current source. The differential equations describing wave propagation in the

victim circuit can be rewritten using distributed voltage and distributed current sources as

%VZ (%) =—[Ryy + jeolyp J1,(x)+ v(x) (42)
Z1,00= 62 + JCa Vo (x)+i(x) (40)

where the distributed voltage and distributed current sources are given by,



L =
i —[Gy + jaCy Mi(X) —x, <x<—x
I(X) ) { 0 else ' (5b)

Analytically, the transmission line system in Fig. 1 can then be reduced to a single
transmission line system with distributed sources as in Fig. 2.

An integral formulation was used to solve for the voltage and current in the victim
circuit in Fig. 2. Since the circuit was linear, superposition was used to find the total
circuit response. The total response includes the response due to a distributed voltage
source (related to inductive and common impedance coupling) and the response due to a
distributed current source (related to capacitive and common impedance coupling). The
responses from these sources were found separately. To minimize complexity, the
propagation constant, y, was assumed to be the same for both the aggressor and victim

circuits.

. v(x) +

Fig. 2. Victim circuit with distributed voltage and current sources due to coupling from
the aggressor circuit under the weak coupling assumption.
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B. General Solution to the Transmission Line Equations for a Distributed Voltage

Source

The differential equations representing the response due to the distributed voltage
source can be found from (4), where the distributed current source is set equal to zero. A
wave equation for the current on the victim transmission line and the near-end and far-

end boundary conditions can then be written as,

2

0= 71, 0) =~ (x) (62)
10 B 6b
Jax 1) a2 =0 (6b)
351w+ 12,(0)2¢e =0 (60)
where

Z=Ry, + joly, (78)
y =G, + jaCypy (7b)
yi=yz (7¢)
Loy = L z. (7d)

The subscript v in the current terms in (6) denotes the functional response due to the
distributed voltage source. An equivalent Green’s function problem can be formulated
using the wave equation and boundary equations as written in (6). The Green’s function

problem is graphically represented by the circuit in Fig. 3.
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Fig. 3. Circuit representing the Green’s function problem for a distributed voltage source
in the victim circuit.

The wave equation for the Green’s function problem and the near-end and far-end

boundary conditions can then be written as,

90778, (=0 for (x=2) (8a)
%%gi,v(_lz)_gi,v(_lz)ZNE =0 (8b)
%% iv (O)"‘ Giv (O)Z re = 0. (80)

The general solution for the Green’s function is given as,

_[o<(x&)_[AeT 1 Be” x<¢ (9)
g(x'é)_{g>(X,é‘) {Ce"’XJrDe”X X>&

where the unknown constants A, B, C, and D must be found through four independent
equations. Two of these equations are given in the near-end and far-end boundary
conditions of (8b) and (8c). Another two equations can be found by using the continuity

condition and the jump condition at the voltage source as given in (10).
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ale)=ols) (10a)
do| _dg| __, (10b)
dx et dx &

The Green’s function for the victim circuit current response due to a distributed voltage

source was found to be [25],

(FFEG%E _e—J’f XFNEe—J’(X+2|2) _ei“) X<&

giv(xﬂf):i : 285 -
2y 1-TNnelEge™ A2 (FFEe;/X _ef}O(XFNEe_J’(éZ-FZlZ)_e?’g) x>¢<
where
I =2 —Zo (12a)
Zne +Zo2
I = Zre 2o, (12b)
Zeg + 2o,

The Green’s function in (11) is symmetric as expected because the Green’s function
problem is self-adjoint. The general solution to the differential equation (6a) can be found

from,

L, (%)= w(&)a;, (x, EWE- (13)

The particular solution for the current can be written in a piecewise manner as,

—xq
Y J<iv(xEME)E X< —Xp
x2 —X1
|2,v(x): y Ig>i,v(xv§)v(§)d§+ y Ig<i,v(xv§)\/(§)d§ - X < X< =X
2 8
y [9siy (X EME)E X=—xq
—x2
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123(X)= o :
v 2202 l—FNEFFEe_ZJAZ
J. (FFEeW; —e_y‘fXFNEe_y(HZIZ)—e”‘)/(f:)dg X< —Xo
X2 (14)
X
f(rFEe”( —E_WXFNEGW(&ZIZ) —e’t )/(g)dg

+ (F,:Eey‘f—e_7§XFNEe_7’(X+2|2)—e”x)/(ff)dé -Xp < X< —Xg
X

—Xx
jl (FFEe”‘ —e_”(XFNEe_V(‘;“LZ'Z)—e7§)/(§)d§. X>-xq
“xp

Re-arranging (4b), the voltage on the transmission line can be found from (13)-(14) as,

1 0
V,, (x) = Ty ox 15, (x)

1 1
V ==
20() 21-Tyelege 272
_[ (FFEey‘f —e_7‘f XFNEG_}/(X_'_ZIZ) +e”‘)\/(§)d§ X< —X2

)f(— (rFEe”( +e XFNEGW(&ZIZ) —e* )’(g)df
Xy

+ (F,:Eey‘f—e_7‘§XFNEe_7’(X+2|2)+e7x)/(§)d§ -Xp < X< =X
X

I —(FFEGJ/X +e_}/x XFNEe_7(‘§+2I2) —eyg )\/(é:)dé: X = —X1
—X2

C. General Solution to the Transmission Line Equations for a Distributed Current

Source

The differential equations representing the response due to the distributed current
source can be found from (4), where the distributed voltage source is set equal to zero.
Using (7) in (4), the wave equation for the voltage on the victim transmission line and the

near-end and far-end boundary conditions can then be written as,

V0=, 0= 2i(x) (162)
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§V2|( | )ZNE szi(—|2)=0 (le)
! aaxvz i(0)Zee +V,;(0)=0 (16¢)

where, the subscript i in the voltage terms denotes the functional response due to the
distributed current source. An equivalent Green’s function problem can be formulated
using the wave equation and boundary equations as written in (16). The Green’s function

problem is graphically represented by the circuit in Fig. 4.

—O o—
Zng g CT 5(x—¢) § Zpg
—o o—
| —>
-1 § 0

Fig. 4. Circuit representing the Green’s function problem for a distributed current source
in the victim circuit.

The wave equation for the Green’s function problem is the same as (8a) and the near-end

and far-end boundary conditions can then be written as,

220,12 ~9,,(-1,)=0 (173)
1-86XQV|(0)Z E+QV|(O) 0- (17b)

The general solution for the Green’s function is given in (9). The unknown constants may
be found with the near-end and far-end boundary conditions as given in (17) and the

continuity condition and jump condition at the current sources as given in (10). The
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Green’s function for the victim circuit voltage response due to a distributed current

source was found to be [25],

. L (F,:Ee7’§ +e_7§XFNEe_7(X+2'2)+e”‘) X< &

(18)
X
27 1- FNEFFE e_27’|2

gv,i(xaé):
(r‘FEe?X —+ e—}’X XFNEe77(§+2|2) + e?ﬁf) X > 5

The Green’s function in (18) is symmetric as expected because the Green’s function
problem is self-adjoint. The general solution to the differential equation (16a) can then be

found from,
Vai (X): I Zi(é)gv,i (X’ é:hég- (19)

The particular solution for the voltage can be written in a piecewise manner as,

—x1
z J.g<v,i(x1§)i(§)d§ X=—Xp

—Xx2

X —X1
Vo i(X)=12z [9oyi(XENEME+2 [goyi(X ENEME -xo <x<—X
—X2 X

T
z [goy,i(x,&Ni(E)ds X > %

—X2

Zo2 1
VoilX)=
2.I( ) 2 1—FNEFFEG_27I2
—X1
J. (1—‘|:E(?.‘}/(:'5 +e_7§ XFNEe_V()H'ZIZ) +e}/x)(§)dé: X< —X2
x5 (20)

T(FFEG}/X+e_yXXFNEe_7(§+2|2)+ey§)(éj)d§
—X2

-x1
+ j (FFEEW: + 677/§ XFNEe_}/(X+2I2) +e}/x)(§)d§ - X < X< —=X1
X

-x1
J. (FFEeyX +e_}’XXFNEe_7(§+2|2) +e}/§)(é:)dé: X = —X1
—Xx2
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Re-arranging (4a), the current on the transmission line can be found with,

2 (x)= _%gvz,i (x)

1i(x)=1 !
“! 21-Iyglege 212
—X
jl (F,:Eey‘f +e 7 XFNEe_}’(“Z'Z) —e”()(e:)dr: X < =Xy
—X2 (21)
X
I(—FFEEW+e_ﬂXrNEe_7(§+2|2)+ey§)(§)d§
X2

+ (F,:Eey‘f +e_7‘§XFNEe_7(X+2|2)—e”x)(g)dg -Xp < X< =X
X

| (—F,:Ee”( +e_7XX1“NEe’7(§+2'2)+e7‘§)(§)d§ X>-x

D. Total Solution to the Transmission Line Equations for an Electrically Small Coupling

Region

By the superposition principle, the total solution for the victim voltage response is
given by the sum of the responses from the distributed voltage and distributed current

sources,
V,(x) =V, (X)+Vz,i (x)- (22)

The voltage response in the victim circuit is directly related to the voltages and currents
in the aggressor circuit in addition to the mutual coupling parameters seen in (4) and (5).
The aggressor circuit voltages and currents when the aggressor is electrically long are

given by,

V, (X) = Vs Zoy e (702 4 1 ert) (23a)
! 201 + Zs 1—1",_1"3672’41 -

1 e M

Zoy+Zs1-T Tge M (eiy(Hl) B rLey(Xia)) (230)

11(x)=Vs
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where,

lL=a+b (24a)

r, = ZL Ly (24b)
Z +2y

r, =Zs 2o, (24c)
Zg+2Zy

When the coupling region is electrically small, the distributed voltage and current sources
given in (5) can be approximately lumped into single lumped sources. In this case, (5)
can be rewritten as,

V(%) =Riz + jeolao [l (x)x2 — % Jo(x + x0) (25a)
i(x) =—[Gyp + jeCio My (X)x2 — X1 J6(x+ X0) (25b)
where,

o =222 (26)

The victim voltage due to the voltage source in (25a) can be found from (11), (13), and
(15) as,

1 e M 1 (e}/(xo+a) _ rLe*V(Xwa))
Zoy+Zs1-T Tse M 2  1-T\ Tpee 2 (27)
— (1_ Cepe 270 Xl 4 FNEe_zy(“'Z))ey(”XO) X < —Xq
* {(1+ e Xl _ FNEe’27('2’X°))a’7(X+XO) X > —X,

Vo (X)= _(Rlz + joly, )(Xz - X )‘/s
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The victim voltage due to the current source in (25b) can be found from (18)-(19) as,

—h y(xg+a) —-r(xg+a)
. e Zy, \e +T e
V2,i(X)=_(Glz + jaCyy NXo — X Vs Z Z o 52( > 2, )
o1t 1-— FLF e 1-— FNE FFEe (28)
(1 +Tpge 270 Xl + Ty 27 2) )ey(”xO) X < —Xg
X
(l+ | X1+ FNEe’zy('Z’XO))e’y(X“‘O) X > —X,

The total victim voltage can then be written from (22) and (27)-(28) as,

(x)=Y (xy — %) g7t

\ =S = (x,-x

? 2 Zy +Zs V1o rge M 1-T oo 272
x {(R12 + joly, )(e”xo*a) —1",_e’7<x0+a)xl_ rFEe*Mo) (29a)

~Z201Z02(Gy, + joCyy )(ey(XO*a) + T e 7bora) X1+ [Cpee 270 )} X <-Xg

(1+ FNEe’27(X*'2))

e M g~ 7(x+x0) )
1+ e

2 Z01 ( 2 )1—rLrSe‘2}‘l 1-T\eCeee 22 b+ ree?)

«{Rup + joolss )(ey(xwa) Cre b0 Yoy e 2z 0)) (29b)

+Z0Z05(Gyp + jaCyp )(ey(xo*a) + FLe’V(XO*a)X1+ FNEe’ZV('Z’XO))} X > X,

V,(x)=—

An alternative form to (27)-(29) may also be written when the coupling region is
electrically small and the distributed voltage and current sources in (5) have a uniform
distribution. The culprit and voltages and currents then only need to be evaluated at a
point —Xo in the coupling region. The victim voltage due to the distributed voltage source

in (5a) can then be written as,

) 1 e M 1 (e700+a) _ 1 g-7(x0+a)
Vay (x)=—(Ry, + jaoLy, Vs o0 5o ( - o )
ZOl+ZS 1—FLFSe 1 27 1_FNEFFEe 2
(1+ FNEe*27(X*'2)I(1+ Cpee 2 )em - (1+ [Cpee 272 )9”2 }e”‘ X< —X,

(30)

(1+ FNEe—Z}/(X+|2)X1+ e M }37(X+X1)

- (1+ Teee?” X1+ FNEe*ZV('Z’XZ))e’y(X”Z) — X, <X<—X

(1 +Tppe?” l(l + Ty e*27(|2*><1))3*7><1 _ (1 + Ty e~2r(12-x2) k*ﬂz }_}—}'X X > —X,
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The victim voltage due to the distributed current source in (5b) can then be written as,

Zos e M Zo (e;'(X0+a) +rLefr(Xo+a))
Zyy+Zs1-T Tge ™™™ 2y  1-T\eTeee 22
(1+ FNEe‘27(X*'2)X— (1— | )e”‘l + (1— [Cpee 272 )e”(z ]ny X < —X,

Vi (X) = _(Glz + jaCy, )‘/s

31)

(- Tece % J1+ Dy 2012) pr0en) 4 ol -1y e 22 )

- (1— | e‘zy('Z‘XZ)Xl +Tpee®” )e‘V(X+X2) — X, <X<—X

(1 +Tppe?” X(l . e—27(|2—><1))3—;/x1 _ (1 - e—27(|2—><2))_:.—}0<2 }97% X > —X,
The total victim voltage outside the coupling region can then be written from (22) as,

v 1 e M o i
V(X :_73 1+ -€ 2y(x+|2)
2(%) 2y Ly +Zg 1_1"Lr56727|1 1_1—NE1—FEe72;42 ( NE )
x {(R12 + joly, )(ey(x‘”a) — 1",_6_”("0“‘)1(1+ [Cpee 27 )e”‘l _ (1+ [pee 272 )3;«2 ]
+Z0Z02 (G + jaCyy )(ey("‘)*a) n rLe—V(Xo+a))

x [— (1— Cpee 27 )e”l + (1— [Cpee 272 )e”z ]} X < -X,

(32a)

Vs 1 e/t g
27 Loy +Zs 1_1~L1—Se—2y|1 1_FNEFFEe72ﬂ2
x {(Rl2 + joly, )(97(xo+a) _ I—«Le—y(xma))
x [(l+ FNEe_zy(lz_Xl))E_m — (1+ e 9‘27('2—X2))3—;o<2 ]
+ZyuZos (G12 + jaCy, )(87(><0+a) + FLefy(XO*a))
x [(1_ 1—‘NE e—27(|2—x1))5—7x1 - (1— FNEe_ZVUZ—XZ))e—}/Xz ]} X > X,

V,(x)= (1+ rFEeM)

(32b)

E. Total Solution to the Transmission Line Equations for an Electrically Large Coupling

Region

The total solution for the victim voltage response is given by the superposition
principle in (22). The voltage response in the victim circuit is directly related to the
voltages and currents in the aggressor circuit in addition to the mutual coupling
parameters seen in (4) and (5). The aggressor voltages and currents when the culprit is
electrically long can be found in (23). The victim voltage due to distributed voltage
sources in (5a) when the coupling region is electrically large can be found from (11),
(13), and (15) as,
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. \Y 1 e M e’
V,,(X)=—(Ry, + jolL, )=
2,v( ) ( 12 12) 2 201+Zs 1_1_,L1_,se_2},{1 1—FNEFFE9_27|2

{(x2 - X )(FFE +T e 2R )+ ZL (1 + FLFFEe‘ZV(X1+X2+a)Xe27"1 —e?2 )}
v

x(FNEe’Z”Ze‘V‘ +e}") X< —X,

{(x2 + x)(1+ FLFNEe*27(a*'2))+ zi(rLeZV(X*XZ’a) + e 22 Xe‘zyx — e )}
Ve

x(e”“+FFEeyX)

+ {— (x+x, )(FFE +T e 2R )+ Zi (1 + FLFFEe27(X‘X1‘a)Xe g2 )}
7

x(FNEe‘Z“Ze*V‘ +e7") - Xy, < X< =X

{(x2 — X, )(1 +T, T\ g 2rla+l )) 33)

1 _ _ .
o (1",_e 2rbatxara) L e 22 Xez’“l —e?2 )}(e ™ FFEeV‘) X > —X,

The victim voltage due to distributed current sources in (5b) can be found from (18)-(19)

as,

Zo e Zoo e’
Zy+Zs1-T Tge™® 2 1T\ Tpee 22

Vi (X) = _(Glz + jaCy, )‘/s

{(x2 - X )(FFE +T e 2? )+ ZL (1 + FLFFEe‘ZV(Xl”Z"a)Xe 2 _ g )}
Ve

x(FNEe’Z”Ze‘V‘ +e”‘) X< —X,

{(Xz + X)(l +I I\ e 2r(a+2) )+ 27];/ (FLezy(Xfxzfa) + e 22 Xe 22 _ gm2X )}
x (e’”‘ + FFEe’“)
" {_ O+ % )(rFE +Ie )+ Zi (l + rLrFEezy(X_Xl_a) Xefzﬂ —e?m )}

V4

x(FNEe‘Z“Ze*”‘ +e7") - Xy < X< =X,

{(x2 — X )(1 +T, T\ g 2rla+l )) (34)

1 _ - .
+ 2—(1",_e 2rbarxata) @ 22 Xez”‘z —e?M )}(e ” 4 I"FEe”‘) X > —X,
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The total voltage in the victim circuit outside the coupling region can be written from
(22) and (33)-(34) as,

V 1 e*}’l]_ ey(a+x) _
V, (X =S 1+ Iy 27(I2+x)
2()=7 Zoy +2Zs 1-T Tge 2M 1- Ty Tpee 272 berie )
x {_ [R21 + joly +Z0Zg(Gyy + jaCyy )] [(Xz — X )(rFE +T e )] (352)
+[Ryy + joolgy — ZyZp (Gyy + chzl){zl (l+ FLFFEe_Z}/(X1+X2+a)Xe27X2 —eM )}}
V4
for x <-x,
Vv 1 e M e 7(x-a)
V, (X :75 1+T ez}'x
2 (%)= Zo+Zs 1-T Tge M 1T [ppe 2772 b+ rree®)
x{=[Ray + jolgy +Z01Z65(G + jCo )][(Xz X )(1+ FLl—‘NEe_Zy(MIZ))] (35b)

+ [R21 +joly —ZyZy (Gz1 + ja)CZl)]

< {2];/ (FL6727(><1+><2 +a) | e 272 Xe 2m2 _ g2m )}

for x > -x;.

Although the mathematics for finding the voltage in the victim circuit was based
on the presumption that the signal lines were electrically long, the integral formulation is
also applicable when the signal lines are electrically small. When the aggressor circuit is
electrically small, the voltage and current in the aggressor circuit is approximately the
same along the length of the line. Evaluation of the integral formulation remains the
same. The final result for the victim voltage, however, is more compact when the lines
are electrically small due to a greater simplicity in the voltage and current expressions for

the aggressor circuit.

F. Maximum Crosstalk Estimation

The crosstalk between the aggressor and victim circuits at the near-end and far-
end loads can be evaluated using (35), though the resulting expression does not provide
the worst case crosstalk at all frequencies. The maximum crosstalk can be found through
mathematical manipulations that find a maximum envelope for crosstalk given in (35).
These manipulations vary with the electrical length of the aggressor circuit and the

coupling region. When the aggressor is electrically small, the maximum victim voltages
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can be extracted from the magnitude of (35). When the aggressor circuit is electrically
large, modifications to (35) are required. Equation (35) is written in a product of sums
format. Thus, the maximum envelope for (35) can be approximated as the multiplication
of the maximum envelopes for each of the individual products. Maximum values are
approximated by modifying addition and subtraction operations to maximize the value of
numerators and minimize the value of denominators, within the bounds of parameter
values. Many of the terms in (35) are of the form 1+ re*”. At maximum or minimum, the
exponential quantity becomes real and is then of the form 1+ re*.

The mathematical manipulations required to find the maximum crosstalk can be
illustrated with an example. One term in the far-end crosstalk expression derived from

(35b) is ((1+ T )/l—T\eTece 22 )72 The denominator of this term is minimized when
the product r,.r.ce "2 is a positive, real number. The numerator maximum can be
found without significant overprediction by taking the magnitude of 1+r.. and using
‘e""‘:e“""- The maximum envelope of this example term can then be defined as
(1+ e )/~ Ty [Tre e 22 )= . Similarly, the maximum voltages at the victim loads can

be found as a function of the aggressor electrical length and the coupling region electrical

length with the piecewise expressions shown as follows:

Ve ~ st = (Xz - Xl) e D ey(XOAZ)
M2 Zo + Zs 1-T e M 1T\ Tpee 272
« ‘(Rlz + joly, )(er(Xo +a) _ rLe*V(XO +3)X1_ FFEe*Z}“O ) (363.)

—Znlo (Glz + jaCyp )(ey(x0+a) + rl_eiy(xwa)xl‘* Tpge 270 1
fora+b< i
10
@ 1 e L+ Dyl oe(a-i2)
2 |Zgy +Zs| 1|1 |Tsle ™ 1— Mg |Tre o242
x ﬂRlz + Jolyp +ZgZg, (G12 + ja)Clz][(Xz - Xl)QFFE‘ + ‘FL‘efzaa)] (36b)
+ ‘R12 + joly, —ZgZo, (Glz + ja)ClZX

x [1 (1 +|0 [ Cee \e*za(xl*xz*a)]ez”‘z - e”‘l}
2y

VNE,max ~

fora+b>i and X, — X, <—
10
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ﬁ 1 e ™ L+ Tyel ala-tp)
2 |Zoy+Zs| 1|0 |Tsle ™ 1— Mg [Tre |22

x {‘Rlz + jolyy + 20126, (Gyp + ja’Clz][(Xz - XI)QFFE‘ + ‘rl_‘e_zaa )] (36¢)
+ ‘RlZ + jol, —ZgZg, (Glz + ja’C12X

% l:zj;/ (1 + ‘FL HFFE ‘e—Za(x1+x2+a))32ax1 (enzla 2, l):l }

forxz—xlz%andxz—xlzi

VNE,max ~

~

VFE,max ~

Ve 1 (%, — %) e 14Tee o
27 2k 2
2 Zo +Zs 1-T Tge M 1T Teee

% ‘(Rlz + joly, )(e7(><o+a) _ F,_e”’(x"*a)Xl T 9727(I2*X0)) (373)

+ ZOlZOZ (GIZ =+ ja)clz )(ey(xo+a) + I—‘Lefy(xo*'a)Xl_‘_ FNE 9727027)(0))

fora+bsi
10

v Vst e L+ | o
FEMBCT 2 [Zgy + Zg| 1 -1 [T o ™2™ 1 [Ty [Te o722

x ﬂRlz + joly, +Z0,Z0(Gy, + jaﬁlzj[(xz - Xl)(1+ I Ce ‘eiza(aHZ))] (37b)
+ ‘RlZ + joly, — Z01202(612 + ja)ClZX

x I:ZJ;/ QI—L‘e72a(X1+X2 +a) + ‘FNE ‘e—Zalz 1e2}/x2 _ e2]/xl :|}
fora+b>% and x2—x1<%

V ~ Ms| 1 e L+ Fe| a
FE,max 2 ‘201"'28‘ 1_‘FLHFS ‘e—Zall 1_‘FNEHFFE ‘e—Zalz
x {Rn + joly, +Z2,Z0(Gy, + ja}ClZX[(XZ - Xl)(1+ I Ce ‘efza(aHZ))] (37¢)
+ ‘RlZ + joly, - Z01202(612 + ja)cu]
« I:zl (JFL‘E—Za(x1+x2 +a) 4 ‘FNE ‘e—Zalz )_)Zaxl (enﬂa /2 +1) :I}
'l

for x, — x —Mandx — X A
2 1 4 2 1—4

where

y=a+jp (38)



24

where A is the wavelength of the signal in the propagating medium and n is a positive,
odd integer. The subscripts NE and FE represent the near-end and far-end position of the
victim loads relative to the aggressor source.

Equation (36) and (37) confirm on a mathematical basis that the maximum
crosstalk can be minimized by: reducing the aggressor source voltage, minimizing the
coupling region length, using loads well matched to the transmission line characteristic
impedance in the aggressor and victim circuits, and decreasing capacitive, inductive, and
common impedance coupling mechanisms. The first piecewise expression for the near-
end and far-end maximum voltages, (36a) and (37a), were derived from a formulation
where the aggressor circuit was electrically small. This formulation was used instead of
the electrically large formulation presented in (35) to provide better insight into the
crosstalk response and to minimize the possibility of overpredicting the maximum
crosstalk. The remaining piecewise expressions were derived from the electrically large
aggressor circuit formulation in (35). The second piecewise expression in both equations,
(36b) and (37b), are given when the aggressor circuit is electrically large, but the
coupling region is less than one quarter wavelength. The last piecewise expression in
both equations, (36¢) and (37c), is evaluated when the coupling region is greater than one
quarter wavelength. To predict the maximum values of crosstalk, (36¢) and (37c) are
evaluated at discrete frequency points where the coupling region is odd, integer quarter
wavelengths long. This unique evaluation constraint removes undulations in the

maximum crosstalk response due to the electrical length of the coupling region.

I11. ANALYTIC VALIDATION

The validity of (35), from which (36) and (37) were derived, can be shown
indirectly by demonstrating that it can be reduced to simpler formulas found in the
literature under the correct conditions. For the case where circuits are electrically small,
(35) can be reduced to the well-known crosstalk equations found in [6], as shown below.
The voltage and current on the aggressor circuit can be written as (23a) and (23b). When
the aggressor circuit is electrically small, the voltage and current are approximately the

same along the length of the transmission line and satisfy v,(x)~V,(-x,) and
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I,(x)~ 1,(- x,)- The voltage at the near-end and far-end loads of the victim circuit due to
an equivalent lumped voltage source at a position —x, can be found from (13) and (15)
where v(&)=V,8(&+x,)- At the near-end x=—I,, and at the far-end x=0. Using these

relationships the voltages at the near-end and far-end of the victim circuit can be written

as,
v (L+ Tye = Tege 2% )
Vo e - UNNE NE FE o7 (= +x,)
v,NE 2 -2/
1-Tnel'ree 7 (39a)
Vy re _ VN,FE (@+Tgg )(1—1“,\,Ee‘27('2"‘o))e_;,x0
v.FE = )
2 1-Tyelgee " (39b)
where, v, . and v, . is the lumped voltage source in the victim transmission line that

creates the victim near-end and far-end responses, respectively. When the coupling

region is electrically large, v \ =V, and the analysis of the near-end and far-end

N,FE
responses are completed separately. Similarly, the voltage at the near-end and far-end
loads of the victim circuit due to an equivalent lumped current source at a position — X,

can be found from (19) where i(&)=1,5(¢ + x,)- At the near-end x=—I,, and at the far-

end x=0. Using these relationships the voltages at the near-end and far-end of the

victim circuit can be written as,

_ InoNEZo2 (L+The )‘§L+ Cpge 7% )ey(—lz +X,)
2 1-Tyelpee 2" (40a)

Vi NE

_InFEZ02 L+ Tee )(1+FNEe_2}/(|2_XO))e*7Xo

2 1-Tnelpge (40b)

Vi Fe

where, I and I . is the lumped current source in the victim transmission line that

creates the victim near-end and far-end responses, respectively. When the coupling

region is electrically large and the analysis of the near-end and far-end

v Inone # Incre

responses are completed separately. Although (35) was formulated based on distributed
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voltage and current sources in the victim circuit, (35) can be re-arranged as a
superposition of responses due to equivalent lumped sources. The near-end and far-end

voltages in the victim circuit can be evaluated from (41)-(42).

VNE =W,NE +Vi,NE (41a)
Vee =W, Fe +ViFe (41b)

g7(20) (Rlz + jolyg, )Il(_ Xo )
1—[ppe 270 e7(-x0-a) _ rLey(—Xo—a)

VN,NE =

x [1 (1+ I“LI“FEe‘27(>‘1+X2+a)Xez”‘2 —e?M )— (xy =%, )(FFE T - )}
24 (42a)

g’(@0) (Glz + jaCyy )‘/1 (_ Xo)
1+ Tppe 270 g7(073) | g7(0-2)

x {21 (1+ 1“,_1“FE(9’27(X1”2“‘)Xezy‘2 —e?™M )+ (%, — x4 )(FFE +I e ?? )}
v

IN,NE -

(42b)

A (Riz + jolap )l1(=xo)
1— I"NEe_27(|2_xo) e_y(_xo_a) — r‘Le}/(_Xo_a)

X |:21 (I"Le_zy(x1+x2+a) + FNEe_Z}'Iz Xe 27)(2 — e2}/X1 )— (X2 — Xl )(1+ FLFNEe_Zy(a+I2)):|
'

VN,FE =

(42c)

e 7(%-2) (Gip + jaCip M1(= %)
1+ FNEe_zy(IZ_XO) e_}/(_xo_a) + r‘Le}/(_Xo_a)

X |:21 (r‘Le_zy(Xﬁ'Xz"'a) + r‘NEe_z;’Iz Xe 27)(2 —_ ezﬂl )+ (X2 — Xl)(l+ FLFNE e—2}/(a+|2)):|
Y

INFE =—

(42d)

If the transmission lines are assumed to be lossless, where = j3 but Ry, is kept to
account for common impedance coupling, the transmission lines are also assumed to be
electrically small, and the operating frequency is sufficiently low that all of the
exponential terms are equal to one in (23) and (39)-(42), then the source equations

simplify to,

Vi NE =VN,Fe = (X2 =X (Ri2 + jola2 )11 (= Xo) (43a)
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Inne =Inee :_(Xz - Xl)(GlZ + jwclz)‘/l(_ Xo)- (43b)

The voltage and current in the aggressor circuit can be simplified from (23) as

Z
Vv, (— Xo ) ~ Z +LZ Vg (44a)
S L
1
S L

Then the near-end and far-end voltages, derived from (35), can be written as a summation

of inductive (M0 . ), capacitive (M 327 ), and common impedance (M Gt , =) coupling

mechanisms as in [6]. Thus, (35) is validated for the case where transmission lines are
approximately lossless, electrically small, and the operating frequency is sufficiently

small.

IVV. SIMULATIONS AND MEASUREMENTS

Equations (35)-(37) were validated through multiple simulations and
measurements. The exact formulation in (35) was validated by applying the finite
difference method to the weak coupling transmission line equations in (3)-(5). These low-
level simulations showed agreement between the simulated results and (35) to within
fractions of a dB over the entire simulation frequency range. Further details about these
simulations are provided in Appendix A and Appendix B. Hspice simulations with w-
element models that described the transmission line characteristics in the aggressor and
victim circuits were also performed, as will be illustrated later. In both the measurements
and the Hspice simulations the weak coupling condition was achieved through the design
of the aggressor and victim circuit per-unit-length parameter ratios. The weak coupling
condition allows the coupling from the victim back to the aggressor to be ignored and
implies the following relationships [6]:

R11|1(X)+ ja’l—u'l(x) >> R12|2(X)+ ja’l—lzlz(x) (453)

Gllvl(x) + 1] a)CnVl(X) >>Gy,V, (X) + jaCp,V, (X) : (45b)
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Assuming the voltages and currents are of the same magnitude in both the aggressor and
victim circuits, the real and imaginary parts of (45) show that the weak coupling

assumption is valid when 1/, >>1, |(cy +Cp)/—Cp|>>1, (n+ny)/r, >>1, and
(911 + 912 )/— 91| >>1. These per-unit-length parameter ratios defining weak coupling are

similar to conditions that have been derived by others [3], [6], [11], [26].

The measurement setup to validate (35)-(37) consisted of a printed circuit board
(PCB) with six sets of coupled traces as shown in Fig. 5. The use of a PCB rather than a
wiring harness or similar setup allowed precise specification of system geometry. The
two layer PCB was fabricated with a 59 mil thick Isola FR402 dielectric and consisted of
1 oz. copper traces that were 116 mils wide. Six cases were tested as shown in Table I.
Parameters for the test cases are defined in Fig. 1. The aggressor and victim traces were
separated by 120 mils for Case 1-3 and Case 5-6 to satisfy the weak coupling conditions
implied by (45) in the coupling region. Case 4 had a 20 mil separation distance in the
coupling region and did not satisfy the weak coupling conditions implied by (45). The
aggressor and victim traces were separated by 634 mils at the thru-hole SMA connectors.

Single-ended traces were placed at the bottom of the PCB to facilitate substrate
and connector parasitic characterization measurements. The SMA connector parasitic
model used was a shunt 1.1 pF capacitance with a series 0.8 nH inductance. The per-unit-
length parameters for the geometries on the PCB were extracted from a signal integrity

tool, Hyperlynx, for ¢, =4.7 and tand=0.015. These parameters were used in w-

element models in Hspice. An example simulation without connector parasitics for Case
1 and a modified form of Case 1 is shown in Fig. 6 and Fig. 7, respectively. Connector
parasitics were not included in the simulations to reduce simulation complexity. The
modified Case 1 simulation used all of the same layout parameters as Case 1 except for a
500 mil trace separation in the coupling region. The loads for both simulations were
defined as zg =30+ jw(100e—9), Z, =75+1/[jo(30e —12)], Z\= =45+ jo(10e—9), and
Zee =75+Y[jo(5e —12)].

Fig. 6 and Fig. 7 show that there is better agreement between the Hspice
simulations and the analytical results above 3 GHz when there is a greater separation of

the traces in the coupling region. This trend occurs because the weak coupling
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TABLE I. MEASUREMENT SETUP DIMENSIONS (MILS)

Trace
Case # b I, X2 X1 a Separation
Casel 14853 14640 11320 3320 213 120
Case 2 14853 14640 9320 5320 213 120
Case 3 14853 14640 12320 8320 213 120
Case4 14894 14640 11320 3320 254 20
Case5 12533 12320 8000 2000 2213 120
Case 6 14853 12320 10320 4320 -107 120
Case 1 ——
Case 2 ~—
Case 3 A
Case 4 ~—
Case 5 A
Case 6 :

Fig. 5. Coupled microstrip PCB used to validate the maximum crosstalk equations. The
total PCB size was 12” x 16”. Traces were made long to facilitate electrically long
crosstalk measurements at low frequencies.

assumption is better satisfied with increasing trace separation. A comparison of the per-
unit-length parameter ratios used to quantify weak coupling for these two simulations at 3
GHz is shown in Table Il. An additional weak coupling condition for inhomogeneous
media exists that cannot be deduced from (45). Reference [26] lists a condition in (15)
that illustrates frequency dependence in the weak coupling assumption for lossless,
inhomogeneous media. Rewriting this equation according to parameters given in Fig. 1
and (2), this condition is given by [26]
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\ [Casbyy + Loy Cy <l- (46)

)
2\ L41Cy + L Cyy

(X, — %

Neglecting the transmission line losses in the Case 1 and modified Case 1 simulations,
(46) was found to equal one at 4 and 19 GHz, respectively, which corresponds to the loss
of accuracy between (35) and the simulated response. A condition similar to (46) that
includes transmission line losses would fully explain the divergence in results in Fig. 6,
but this derivation is outside the scope of this paper.

Crosstalk measurements were taken for the coupled trace cases illustrated in Fig.
5 using a two port network analyzer. The top microstrip trace and bottom microstrip trace
for each coupled pair was considered as the aggressor circuit and victim circuit,
respectively. The SMA jacks on the left of the PCB were dedicated to aggressor source
and victim near-end load connections. The SMA jacks on the right of the PCB were

dedicated to aggressor load and victim far-end load connections. z, and z_.. were

varied to study the near-end crosstalk response as a function of load impedance.

Similarly, z, and z,. were varied to study the far-end crosstalk response. Three load

combinations were measured for each crosstalk response and included two matched
loads, two shorts, and two opens.

The measured crosstalk responses for Case 1 are illustrated in Fig. 8-Fig. 10. The
coupling length was approximately one wavelength long at 793 MHz. Thus, the coupling
length was electrically long for most of the measurement frequency range. Fig. 8-Fig. 10
show that the maximum crosstalk estimations given by (36) and (37) predict the crosstalk
envelope within a few decibels. Initial attempts to compare the maximum crosstalk
expressions in (36) and (37) with those in [24] with meaningful results were unsuccessful
for the measurement setup of Fig. 5. This is due in part to the inhomogeneous nature of
the test setup in Fig. 5. It can be shown that the equations in [24] can be derived from
(35) using a homogeneous medium relationship.

A divergence between the analytical modeling and the crosstalk measurement in
Fig. 8-Fig. 10 can be seen starting around 3 GHz. This discrepancy is due mostly to the
weak coupling assumption not being well satisfied from a frequency dependent condition

similar to (46). This assertion is supported by the data in Fig. 6 and Fig. 7. Some
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TABLE Il. WEAK COUPLING RATIOS FOR TWO CASE 1 SIMULATIONS AT 3 GHz

Simulation Case Iy, /1, (cyy +c32)/cry (r +11)/r0 (911 + 912)/ 912
Original 11 37 26 152
Modified 69 796 82 2337
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Fig. 6. Crosstalk example for the Case 1 configuration without SMA connector
parasitics. (a) Near-end crosstalk. (b) Far-end crosstalk. The separation between traces in
the coupling region was 120 mil. The analytical equation is given by (35a) and (35b) and
the maximum crosstalk estimate is given by (36) and (37) for (a) and (b), respectively.

-40 e
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Fig. 7. Crosstalk example for the modified Case 1 configuration without SMA connector
parasitics. (a) Near-end crosstalk. (b) Far-end crosstalk. The separation between traces in
the coupling region was 500 mil. The analytical equation is given by (35a) and (35b) and
the maximum crosstalk estimate is given by (36) and (37) for (a) and (b), respectively.
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Fig. 8. Crosstalk example for the Case 1 configuration with SMA connector parasitics.
(a) Near-end crosstalk. (b) Far-end crosstalk. Matched loads were used for the ports not
connected to the network analyzer on the PCB. The maximum crosstalk curves are
predicted from (36) and (37).
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Fig. 9. Crosstalk example for the Case 1 configuration with SMA connector parasitics.
(a) Near-end crosstalk. (b) Far-end crosstalk. The ports not connected to the network
analyzer on the PCB were left open. The maximum crosstalk curves are predicted from
(36) and (37).
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Fig. 10. Crosstalk example for the Case 1 configuration with SMA connector parasitics.
(@) Near-end crosstalk. (b) Far-end crosstalk. Shorts were used for the ports not
connected to the network analyzer on the PCB. The maximum crosstalk curves are
predicted from (36) and (37).

additional divergence in the results may also be caused by an inadequate SMA connector
parasitic model above 3 GHz and by higher order mode effects. Despite the difference in
measured and analytically predicted results above 3 GHz, the maximum crosstalk curves
still adequately predict the maximum crosstalk to relatively high frequency. The other
test cases on the PCB were tested with similar results. Although the maximum crosstalk
formulas were derived on the basis of weak coupling, these formulas may still give
reasonable results in cases where the weak coupling assumption is not strictly met. The
measured crosstalk responses for Case 4, which does not satisfy the weak coupling

conditions implied by (45), are shown in Fig. 11-Fig. 13.
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Fig. 11. Crosstalk example for the Case 4 configuration with SMA connector parasitics.
(a) Near-end crosstalk. (b) Far-end crosstalk. Matched loads were used for the ports not
connected to the network analyzer on the PCB. The maximum crosstalk curves are

predicted from (36) and (37).
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Fig. 12. Crosstalk example for the Case 4 configuration with SMA connector parasitics.
(a) Near-end crosstalk. (b) Far-end crosstalk. The ports not connected to the network
analyzer on the PCB were left open. The maximum crosstalk curves are predicted from

(36) and (37).
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Fig. 13. Crosstalk example for the Case 4 configuration with SMA connector parasitics.
(@) Near-end crosstalk. (b) Far-end crosstalk. Shorts were used for the ports not
connected to the network analyzer on the PCB. The maximum crosstalk curves are
predicted from (36) and (37).

V. CONCLUSION

Equations for estimating the maximum crosstalk in a three-conductor
transmission line have been presented and validated against a well-known crosstalk
formulation and validated against simulated and measured data. These formulas are based
on the weak coupling assumption where the transmission line system has a single
coupling region with a uniform cross section. These equations may be expanded to
systems with more than three conductors through the application of the superposition
principle. If weak coupling is assumed among all conductors in such a system, a first-
order approach to find the maximum crosstalk estimate would be to formulate a three-
conductor transmission line problem as in Fig. 1 for each aggressor. The maximum
crosstalk could then be formulated as the summation of (36) at the near-end, and (37) at
the far-end for all of the three-conductor transmission line problems. This approach
would neglect higher order coupling effects where a signal could propagate and couple
among multiple aggressor lines before coupling to a victim line. Transmission line losses
and resistive transmission line terminations in many cases could make these higher order

coupling effects negligible. This superposition approach could also be used for systems
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that have more than one coupling region. Caution should be used, however, as the
resulting maximum crosstalk expression may suffer from over prediction problems.

The newly presented formulas can model the maximum crosstalk for transmission
lines in lossy, inhomogeneous media where the transmission lines may have unique and
arbitrary lengths. Measurements and simulations show that the maximum crosstalk
formulas capture the envelope of the near-end and far-end victim voltages well, often
within a few decibels. Future work may include estimation of maximum crosstalk for
transmission lines without the weak coupling assumption, for transmission lines with
non-uniform cross sections, and for systems containing more than two transmission lines.
These equations are also well suited for evaluation of signal integrity in systems where
transmission line parameters are not well known and crosstalk sensitivity analysis is

needed.
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Il.  Maximum Crosstalk Estimation in Lossless and Homogeneous Transmission

Lines

Matthew S. Halligan and Daryl G. Beetner, Senior Member, IEEE

Abstract—In earlier papers, analytical formulas were derived to estimate the
maximum crosstalk in the frequency domain for systems with electrically long signal
lines. These formulas were developed to give designers intuitive feedback as to the
causes for crosstalk problems and methods for maximum crosstalk reduction. In one of
these papers the maximum crosstalk estimates are based on intuitive relationships for
infinitely long transmission lines. While the resulting model is quite simple and easy to
understand, its limitations are poorly understood. In another paper the maximum
crosstalk estimates are based on a mathematically rigorous, integral formulation, but the
resulting model is relatively complex. This rigorous model is derived assuming the signal
lines are weakly coupled and the transmission line characteristic impedances are
approximately the same over the entire lengths of the aggressor and victim circuits. The
following paper illustrates how the less rigorously developed estimates, based on
infinitely long transmission lines, may be derived from the mathematically rigorous
maximum crosstalk estimates for lossless and homogeneous transmission lines in the
frequency domain. The resulting derivation provides insight into the limitations and
mathematical validity of the less rigorous estimates that are not available in the original
paper. The mathematically rigorous maximum crosstalk estimates are shown to have
fewer and less restrictive assumptions than the estimates based on infinitely long
transmission lines. Measurements and simulations are presented that validate results and

illustrate maximum crosstalk estimate limitations.

Index Terms—Cabling and transmission systems, crosstalk, frequency domain

techniques, modeling techniques, transmission line theory
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I. INTRODUCTION

Present design trends in commercial electronics are toward designs that are
smaller, weigh less, and consume less power than designs of the past. One major
implication of this trend is increased problems with crosstalk. Crosstalk is often evaluated
through a combination of numerical simulations and rules of thumb and has been
extensively studied in literature. Some crosstalk modeling approaches have included
SPICE modeling methods for multiconductor transmission lines as in [1] and alternative
modeling methods for multiconductor transmission lines with many conductors and non-
uniform cross-sections as in [2]. Crosstalk reduction strategies have also been explored
[3]-[4]. In [3], on-wafer measurements were performed and showed transmission line
differential mode excitations had smaller crosstalk than transmission line common mode
excitations and single-ended excitations. Conductor routing was investigated in [4] to
reduce nearest neighbor crosstalk. Crosstalk has also been analyzed while considering
“continuous-spectrum” currents and bound mode currents in a coupled, two microstrip
line structure [5].

While most literature has focused on exact crosstalk formulations that capture
every peak and valley in the crosstalk over frequency, design decisions are often better
formulated from a maximum, worst case envelope perspective since the physical
parameters for any transmission line system are never fully known. When the circuit
becomes electrically large, in particular, small variations in transmission line parameters
can cause large changes in the crosstalk at a given frequency, possibly making the
difference between a system which passes or fails crosstalk requirements. Basing design
decisions on a maximum crosstalk envelope rather than an exact model could lead to
better design decisions since the maximum crosstalk envelope is generally less sensitive
to transmission line parameter variations than an exact formulation. This bounding
approach to design is also of interest to designers because passing this worst case
performance limit eliminates the need for further design analysis and modifications.
Worst case formulations are also often simpler than exact formulations, giving the
designer a better opportunity to understand why crosstalk problems occur and how to fix

them.
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Several recent efforts have focused on the estimation of maximum crosstalk [6]-
[10]. An effort was made in [8]-[9] to predict maximum crosstalk at “high frequencies”,
where the signal lines were electrically large, in a homogeneous medium, and weak
coupling was assumed. Although the results in [8] were shown to predict the crosstalk
well, the maximum crosstalk formulations did not account for transmission line loss and
lacked mathematical rigor. Mathematical derivations for new maximum crosstalk
formulas were presented in [10] that addressed many of the shortcomings of [8]. The
estimates in [10] were based on a mathematically rigorous, integral formulation where
the transmission lines could be lossy and in an inhomogeneous medium. The estimates in
[10] were formulated in the frequency domain where the signal lines were assumed to be
weakly coupled, and the transmission line characteristic impedances were approximately
the same over the entire lengths of the aggressor and victim circuits.

One objective of this paper is to show how the general maximum crosstalk
estimates in [10] can be simplified for the specific case of lossless transmission lines and
a homogeneous medium assumption. Another objective is to illustrate the limitations and
mathematical validity of the estimates in [8] which are not available in the original paper.
It is shown that the maximum crosstalk estimates in [8] can be derived from the formulas
in [10] under the correct conditions. This paper provides rigorous derivations for the
maximum crosstalk estimates in [8] which were originally formulated from an intuitive
basis. It is shown that the mathematically rigorous crosstalk estimates in [10] provide a
more general solution for the estimate of maximum crosstalk.

Derivations for the maximum crosstalk estimates based on the integral
formulation in [10] for lossless and homogeneous transmission lines are first presented in
Section II. Section Ill introduces an estimate based on lossless, homogeneous, and
infinitely long transmission lines. Mathematical derivations for this estimate are also
presented that are not available in [8]. An analytical comparison, and a measurement and
simulation validation of the two maximum crosstalk estimates is presented in Section IV.

Conclusions are given in Section V.
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Il. MAXIMUM CROSSTALK ESTIMATES FROM AN INTEGRAL FORMULATION

A detailed derivation of formulas for the maximum crosstalk estimates in weakly
coupled transmission lines, including transmission line losses, can be found in [10]. The
three conductor transmission line system in Fig. 1 was used as part of this derivation to
develop maximum crosstalk expressions at frequencies where the signal lines were
electrically long. This system consists of an aggressor circuit and a victim circuit, where
the aggressor circuit is denoted as signal line one, and the victim circuit is denoted as
signal line two. The primary quantity of interest is the voltage at the near-end and far-end

loads of the victim circuit.

Zg
Aggressor

Fig. 1. Coupled three conductor transmission line system used to formulate an estimate
of maximum crosstalk [10].

An integral formulation was used to solve for the voltage and current in the victim
circuit in Fig. 1. Since the circuit is linear, superposition was used to find the total circuit
response. The total circuit response consists of the response due to a distributed voltage
source (related to inductive and common impedance coupling) and the response due to a
distributed current source (related to capacitive and common impedance coupling). The
responses from these sources were found separately. To minimize complexity, the
propagation constant, vy, is assumed to be the same for both the aggressor and victim
circuits. Weak coupling is also assumed where the voltages and currents in the aggressor
circuit are not influenced by the voltages and currents in the victim circuit. The

characteristic impedances, Zo; and Zoy,, are assumed to be approximately the same over
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the entire lengths of the aggressor and victim circuits, respectively. The exact expressions

for the victim near-end voltage and far-end voltage are [10]

v _\/7S (1+ FNE) e*?‘l 67(342)
N2 (2o +Zs) - Tse Pt ) L- T Tree 272) (1a)
x {_ [Rlz +joly, +ZgZy, (GlZ + jaCyy )][(Xz —X )(FFE +I e )]
+[Ryp + jolyy —Z,Z5(Gy, + jCyp )] [21 (1+ FLFFEe_Zy(X1+X2+a)Xe27X2 —e?m™ ):|}
4
vo. Vs 1+T) e M e’
e 2 (Zg+Zs) -1 Tge 71 ) LTy Tree 272
x {_ [Rlz +joly, + 252, (Glz + jaCy, )][(Xz —X )(1+ I I\e efz;/(a+|2))] (1b)
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Z -7
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Z, +2y
ry = Zs %o (2d)
Zs+2Zy
Mg = Zne —Zog (2e)
Zye +Zop
e = Zeg —Zoy (2f)
Zeg + 2Ly

and Rj1, Ly, Go1, and Cy; represent the transmission line per-unit-length coupling
parameters in the coupling region. The subscripts NE and FE represent the near-end and

far-end position of the victim loads relative to the aggressor source in Fig. 1.
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If the transmission line system is lossless and homogeneous, (1) reduces to

st'& Zos g iBla-tz-h) (1+ FNE)
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FE

where the per-unit-length parameters for inductance and capacitance in the coupling

region are defined as [11]

{ Yo } (4)

L_[ln |12} c
[PYRI P —Cx Cy +Cp

The per-unit-length parameter matrices are symmetric for the system in Fig. 1 due to

reciprocity. Equation (3) was derived using the relationship [12]

ln_ Cn | ()

which is valid in a homogeneous medium. Equation (3) can thus be alternatively written
with a ratio of per-unit-length parameter capacitances rather than inductances.

The crosstalk between the aggressor and victim circuits at the near-end and far-
end loads can be evaluated using (3), though the resulting expression does not provide the
worst case crosstalk at all frequencies. The maximum crosstalk can be found through
mathematical manipulations that find a maximum envelope for crosstalk given in (3).
These manipulations vary with the electrical length of the aggressor circuit and the
coupling region. When the aggressor is electrically small, the maximum voltages at the
victim loads can be extracted from the magnitude of (3). When the aggressor circuit is
electrically large, modifications to (3) are required. Equation (3) is written in a product of

sums format. Thus, the maximum envelope for (3) can be approximated as the
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multiplication of the maximum envelopes for each of the individual products. Maximum
values are approximated by modifying addition and subtraction operations to maximize

the value of numerators and minimize the value of denominators, within the bounds of

parameter values. Many of the terms in (3) are of the form 1+Te™# . At maximum or
minimum, the exponential quantity becomes real and the term is then of the form 1+T".
The mathematical manipulations required to find the maximum crosstalk is illustrated in
[10] with an example. The maximum voltages at the victim loads can be found as a
function of the aggressor electrical length and the coupling region electrical lengths with

the piecewise expressions as given in (6)-(7).
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where,

Xo _atX, (8)

and A is the wavelength of the signal in the propagating medium.

The first piecewise expressions for the near-end and far-end maximum voltages,
(6a) and (7a), were derived from a formulation where the aggressor circuit was
electrically small. This formulation was used instead of the electrically large formulation
presented in (3) to provide better insight into the crosstalk response and to minimize the
possibility of over-predicting the maximum crosstalk. The remaining piecewise
expressions were derived from the electrically large aggressor circuit formulation in (3).
The second piecewise expressions in (6b) and (7b) are given when the aggressor circuit is
electrically large, but the coupling region is less than one quarter wavelength. The last
piecewise expressions in (6¢) and (7c) are evaluated when the coupling region is greater
than or equal to one quarter wavelength and is a modification to (6b) and (7b). When the

coupling region length is equal to or larger than one quarter wavelength, the worst case

value of ‘ejZﬂXZ —ejz/”"l‘ is two. This worst case condition occurs when the coupling

region length is an odd multiple of one quarter wavelength. It should be noted that (6)
and (7) apply to transmission lines that are lossless and in a homogeneous medium.
Application of these equations to media that are not homogeneous, where (5) is not
approximately satisfied, can result in significant errors. For inhomogeneous or lossy

media the reader should refer to the equations in [10].

. MAXIMUM CROSSTALK ESTIMATES FROM INFINITELY LONG TRANSMISSION LINES
A. Introduction

A similar estimate of the maximum crosstalk based on lossless, infinitely long
transmission lines was developed in [8]. To simplify the derivation, [8] defines crosstalk
as a ratio of maximum voltages or currents in the victim and aggressor transmission lines,

rather than at the loads as is typically done [12]. The crosstalk formulation in [8] assumes
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a majority of coupling occurs over a portion of the victim circuit length where coupling is
greatest. The theory in [8] further assumes:

1. The geometry is uniform where coupling occurs.

2. The medium is homogeneous.

3. The transmission lines are weakly coupled.

4. The transmission lines are lossless.
A single, lumped voltage source or current source in the victim circuit is suggested in [8]
to describe the coupling from the aggressor circuit. This representation reduces the
transmission line system in Fig. 1 to a single transmission line system with a lumped

source as in Fig. 2.

Vx
o @ o—
VAN g § Ly
Zoz V2

o o—

| | | N

I I — 7 X
-1, -X 0

Fig. 2. Equivalent circuit model of weak inductive coupling to the victim circuit at a
single location [8].

The ratio of the maximum voltage along the length of the victim transmission line
to the maximum voltage in the aggressor transmission line was estimated in [8] by
Vi max/Vimax = lo1/li1 O intuitive grounds, based on the magnetic flux wrapping the
aggressor and victim circuits. The worst case voltage induced at a specific location in the
victim transmission line (assuming an infinite transmission line) would then be given by

Vi | = Vymaxlla1/111), where V... denotes the maximum voltage along an infinitely long

aggressor transmission line [8]. Using transmission line theory for the finite length
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transmission line in Fig. 2, the maximum voltage in the victim circuit can then be found

as

Vo] @ M ML+ [Tre ) 9)

2 (1_‘FNE HFFE‘)

VZ,max ~

N
2

Application of Ny| =V paelloy/ly) and the homogeneous medium relationship in (5)

allows the maximum voltage in the victim circuit to then be represented by

Iy @+ e [Ja+[Cee ) (10)

Ill 2(1_‘FNE HFFE‘)

V2,max zVl,max

B. Mathematical Derivations

The ratio of the maximum voltages along the infinite transmission lines and the
lumped voltage source V,, were developed in [8] from an intuitive basis. These quantities
can be derived rigorously to show the validity and to better understand the limitations of
the work in [8]. Consider two lossless, coupled transmission lines in a homogeneous
medium, as shown in Fig. 1. The transmission lines are assumed to be infinite in length

with a finite length coupling region. The voltage on the aggressor circuit can be written as

Z e*}’ll
vV —V 01 —r(x-a) 1 gr(x-a)). (11)
() S(zm+zs)(1—11rse2}‘1)(e )

From (11), the maximum voltage along the aggressor circuit is

1
Vl,max = ENS‘ (12)

where all of the reflection coefficients are set equal to zero to satisfy the infinite

transmission line length condition and where » = j£ in the lossless case. The maximum

voltage in the victim circuit is found as
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V3, max = mMax {\/Z,mLHS Vo msr ’V2,mRHS} (13)

where, V, .15 is the maximum voltage in the victim circuit for x <—x,, V, s Is the
maximum voltage in the victim circuit for —x, <x<-x;, and V, qys is the maximum
voltage in the victim circuit for X >—x;. V, s and V, oys are obtained from [10, eq.

(18)] by taking the magnitude of the expression, applying the infinite transmission line

condition, and applying the lossless transmission line condition. Similarly, V, ¢ is

based on the total voltage response in the coupling region, which is found with the
application of equations in [10, eq. (8), (10), (11), and (13)-(16)]. V, sz is found by

taking the magnitude of the expression for the total voltage response, applying the infinite
transmission line condition, and applying the lossless transmission line condition. The

maximum voltage in the victim circuit is thus found to be

Vs e iB(a+x—lp) w®

VamiHs :4(2 L7 )E(|21+201202021)(ejzﬁx2 _ejzﬂxli (14a)
o1t 4s
RY; e—jﬁ(—a+x+ll)
Vyrsr = 158 oy~ Z,Z
2,mSR J 5 (201+ZS)CO( 21— Z01Z62C21 Xz +X) (14b)
\V} ejﬁ(a+x—ll) ® . .
+fmg('21+201202021)(9 120 gl
o1 t4s

VA e*iﬂ(*a+><+|1)

Vo mrHs =|— J7mw(lzl _201202021)()(2 _Xl] ' (140)

To satisfy I's =0, Zg=Zy in (14). The coupling region length must follow the
relationship x, =X +n(4/4), where n is a positive, odd integer for V, .. to be

maximum. Similarly, a location in the coupling region must be possible to satisfy

x =—x —n(4/4), where n is a positive, odd integer for V, msr 10 be maximum. Using the

property where the propagation constant, y; =y, =y, the phase velocity V, in the victim

or aggressor circuit can be written as V, =1/(l,5(Cy +C,,)). The characteristic
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impedances can be defined as Zy =1,,V, and Zy, =1,,V,. Assuming the transmission

lines are in a homogeneous medium, (14) can be written as

11
Vv AN == (15a)
2,mLHS 2| Ns‘ 2C21+C22NS‘
l |
Vz,mSR :Vz,mLHs = 21 NS‘ 2 Coy +022 NS‘ (15b)
Va,mrrs =0 (15c)

where (5) was utilized for a homogeneous medium. Thus the maximum voltage in the

victim circuit is

11
V2,max 2L ’VS‘ =5 S‘ (16)

2 I, 2 Cyy + c22

and the ratio of the maximum voltages is

Vomax |21 Co (17)

Vimax  h1 Ca+Cp

as was found in [8] in an intuitive manner for coupled, infinite length, homogeneous, and
lossless transmission lines.

The lumped voltage source Vy, was also derived on intuitive grounds. This source
was defined in [8] for finite length transmission lines using the relationship given in (17)
and assuming infinitely long transmission lines (so that there would be a location at
which this maximum coupling would occur). This voltage source can be derived more
rigorously from the formulas presented in this paper and from [10] as follows. The victim

circuit voltage for a lumped voltage source at a position —x, as in Fig. 2 for x <—x, and
X >—%, is found from [10, eq. (10)-(11)] with v(&)=V,S(£+X,). The voltages to the

left and the right of the source can be written as,



o1

vV (x)= ~ Vniiks (1+ e e (2 +X)X1_ e ) (18a)
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where, V\ 15 and Vy rys are the lumped voltage sources in the victim transmission line
that creates the victim responses in the x<—x, and x> —X, regions, respectively. The
subscripts LHS and RHS indicate the position ranges x <—x, and x >—X, over which a

variable is defined. The victim circuit voltage for a lumped current source at a position

-X, for x<-X, and Xx>-X, can be found from [10, eq. (14)] where

i(&)=1,8(& + %,). The voltages to the left and the right of the source can be written as,

Vi () s Z (L Do 2 e rce ) (19%)
L 2 (1_ [ leee 22 )9—7(X+Xo)

v (x)= I'n,rHsZ02 (1+ rr\uzefzy(lz7)(0)X1+FFEezﬂ) (19b)
i,RHS\") = 2 (l_FNEFFEe—z;AZ )ey(x+xo)

where, Iy s and Iy gys is the lumped current source in the victim transmission line

that creates the victim responses in the x<-X, and X>—x, regions, respectively.

Comparing (18) and (19), an equivalent total lumped voltage source can be defined for

each region as

In tHsZo2 (1+FFEe_2}/XO) (20a)
1-Tpe 270

Vi Jtotal :LHS =Vy JLHS —

IN,RHSZOZ(1+FNEeizy(QiXO)) (20b)
1— I"NEe_Z”('Z_XO)

Vi total :RHS =VN,RH5

where the total circuit voltage can be obtained by inserting (20a) for Vy s in (18a) and
(20b) for Vy gys in (18b). Mathematically equivalent lumped voltage and current sources

can be found for an electrically large coupling region by equating equation forms. Vy s
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and Vy rys are determined by equating Vz,v(X) in [10, eq. (11)] with (18). Similarly,
Inus and Iy gys are determined by equating V,;(x) in [10, eq. (14)] with (19). If the

transmission lines are lossless, the coupling region is n(/1/4) in length where n is positive

and odd in the worst case, and the transmission lines are in a homogeneous medium, then

the magnitude of the maximum noise voltage can be determined from (20) as

’V ‘: N IA ZO:L (l+ FLrFEe’jzﬂ(xl+X2+a)_) ej,b’(afxo—ll+2xl) (21a)
N maxts ° by (Zor +2Zs) (1—r|:Ee_J2ﬁxO Xl—l",_l"se’ﬂﬂl)

’\/ ‘ —l_ov |271 ZOl (FLe_jZ.ﬂ(X”XZJ'a) +FNEe_j2ﬁ|2) e-jﬁ(—a—xo+ll—2xl) ) (21b)
N,maxRHS S I (201 +Zs ) (l— rNEe—jZﬁ(lz—xo)Xl_rLrSe—jZ,Bll)

If the transmission lines are considered to be infinite in length, which forces the reflection

coefficients to zero, then (21) reduces to

|
NN,maxLHS ‘ = NS ‘|271 (228')
11

My maxrs| =0 (22b)

Equation (22a) shows that V| = 2V (o /li;) Where V, .. is given by (12) rather than

1,max
Vil zVLmaX(Iﬂ/Ill) as suggested in [8]. The result of (22a) is, however, consistent with

the defined lumped voltage source given in [9].

IV. MAXIMUM CROSSTALK ESTIMATE COMPARISON AND VALIDATION

The previous derivations show that while the equations in [8] can be found
rigorously, these equations mix boundary conditions between infinite and finite
transmission lines in the sense that (22a) is applied to finite length transmission lines
when an infinite transmission line length assumption was used. This mix of boundary
conditions is not strictly mathematically correct, however, it can be shown that the
maximum crosstalk estimate in [8] does provide some useful results under the right

conditions. Crosstalk measurements were performed in [8] at the victim circuit loads
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where at some frequencies it was assumed that the maximum victim voltage may occur at
one of the loads. Using (22a) in (9) the maximum voltage along the length of the victim

circuit is given by

I11 (l_ ‘FNE HrFE D

V2,max ~

Vs| 1oy @+ [Tne J2+ [Cee ) (23)
2

where the measurements in [8] were used to validate (23). In all of these measurements

|1"S|z0 and |FL|z1. Under these conditions the mathematically rigorous maximum

crosstalk estimates based on an integral formulation can be reduced to a similar form as

(23). Since [8] assumes the coupling region length is maximally resonant in the worst

case, a direct comparison may only be made among (6c), (7c), and (23). For |1“S| =0 and

IC.|=1, (6¢) and (7c) reduce to

Vi z@'zil‘lJrrNE‘(lﬂrFED (24a)
2y, (l_‘rNEHrFED
Vs | 1y @O [+ D | (24b)

The choice of L+Tg| in (6¢) and [L+Tg| in (7c) rather than 1+|[ye| and

1+|Teg| was made to reduce the error in the estimates when the near-end and far-end

reflection coefficients are largely negative and real (e.g., a short termination). For small
reflection coefficients, real and positive reflection coefficients, and complex reflection
coefficients that are largely positive and real (e.g., matched terminations and large

resistive terminations relative to the transmission line characteristic impedance),

[1+T]~1+|T]. Case 1 — Case 6 in [8] have terminations that satisfy [1+I\e|~1+T\g| or

1+ Teg|~1+|Tg| where at least one of the equations in (24) can be reduced to (23). This

reduction provides additional validation for the maximum crosstalk estimates presented

in [8] and [10] because the estimates are equivalent under the right assumptions.
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A series of measurements and simulations were performed to evaluate the
effectiveness of (6)-(7) and (23) in estimating the maximum crosstalk. The estimates
were first evaluated for a two wire cable bundle simulation where per-unit-length
parameters were extracted from a numerical cross-sectional analysis tool [13]. In this
case the cable bundle was modeled above an infinitely large return plane where the signal
wires were solid conductors 1.016 mm (40 mils) in diameter, were placed 14.986 mm
(590 mils) above the return plane, and were separated by 59.944 mm (2360 mils). The
wires and return plane were modeled as perfect electric conductors in a vacuum. The
signal wires were weakly coupled and had a single-ended characteristic impedance of 250
Q. Per-unit-length  parameters from this cross-sectional analysis  were:
l,; =1,, =831.5nH, |, =1,,=250nH, c,;=c, =129pF, ¢, =c,; =04pF. The
cable bundle was modeled with the following dimensions (see Fig. 1): b=8.75m,

I, =75m, x, =5.625m, x =1.875m, a=1.25m. A variety of loads were simulated in

the aggressor and victim circuits. Some of these test cases are given in Table I.

TABLE |. CABLE BUNDLE SIMULATION LOADING CONDITIONS

Case # Zs Z ZNE Zre
Casel  250Q 1 MQ (open) 250 750 Q
Case 2 250 Q 0 Q (short) 750 Q 250 Q
Case3 2500 250 Q 250 Q 0 Q (short)
Case4 2500 250 Q 250 Q 1 MQ (open)
Case5 0 Q (short) 5 kQ 250 Q 250 Q
Case6 2000 00 750 Q|47 pF 100 Q + 1uH

The exact victim circuit load voltages were compared with the maximum
crosstalk estimates proposed in (6)-(7) and (23). The victim circuit voltages were
generated over frequency with a simulation that applied the finite difference method to
the weak coupling transmission line equations. The results for the Case 1 — Case 6
simulations in Table | are shown in Fig. 3 — Fig. 7. In Fig. 3 — Fig. 5, the maximum

crosstalk estimates (6c¢), (7c), and (23) were plotted along with the victim load voltages.
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Fig. 3 shows the Case 1 and Case 2 near-end maximum crosstalk estimates where (6c),

(7c), and (23) are equivalent because [I's|=0 and | |=1. Both methods predicted the

maximum crosstalk well. Fig. 4 — Fig. 5 illustrate how moderate to severe errors in the

maximum crosstalk estimation may occur when both the conditions, [I's|=0 and | |=1,

are not satisfied as in the Case 3 — Case 5 simulations. A near-end maximum crosstalk
estimate is shown in Fig. 4 and a far-end maximum crosstalk estimate is shown in Fig. 5.
The difference between maximum crosstalk estimates in Fig. 4 and Fig. 5 are 6 dB and 26
dB, respectively. Fig. 6 — Fig. 7 show the near-end and far-end maximum crosstalk
estimates using (6) and (7) for simulation Case 6. It can be seen that the maximum
crosstalk estimate in both (6) and (7) perform better than (23) for the general case.
Measurements were also performed on an eight layer printed circuit board (PCB)
with two coupled stripline traces in layer five of the PCB reported in [14]-[16] to validate
the proposed estimates. A picture of the measurement setup is shown in Fig. 8. The PCB

was fabricated from Nelco N4000-6 FR4 substrates with ¢, =4.1 and tand =0.017. The

measured symmetric stripline structure had a total dielectric height of 914.40 um

'30 T T T

ViVl (dB)

Case 1 Simulation |
Case 2 Simulation |}
----- Equation (6¢)

: : mr Equation (23)
-50 H : 1 1 —F=1 :
0 50 100 150 200

Frequency (MHz)

Fig. 3. Cable bundle crosstalk example for the Case 1 and Case 2 loading conditions in
Table I. The near-end maximum crosstalk estimates (6¢) and (23) are equivalent under
these loading conditions.
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Fig. 4. Cable bundle crosstalk example for the Case 3 and Case 4 loading conditions.
The near-end maximum crosstalk estimates (6¢) and (23) differ by 6 dB under these
loading conditions.
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Fig. 5. Cable bundle crosstalk example for the Case 5 loading conditions in Table I. The
far-end maximum crosstalk estimates (7¢) and (23) differ by 26 dB under these loading
conditions.
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Fig. 6. Cable bundle crosstalk example for the Case 6 loading conditions. The near-end
maximum crosstalk estimates are predicted from the full piecewise expression in (6) and

(23).
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Fig. 7. Cable bundle crosstalk example for the Case 6 loading conditions in Table I. The
far-end maximum crosstalk estimates are predicted from the full piecewise expression in

(7) and (23).
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Fig. 8. Coupled stripline measurement setup used to validate the maximum crosstalk
equations.

(36 mils) between the reference planes and a 30.48 um (1.2 mil) copper thickness for the
signal traces and reference planes. The trace widths were 347.98 um (13.7 mils), and the
traces were separated by 419.10 pm (16.5 mils) in the coupling region. The circuit

dimensions were as follows (see Fig. 1): b=241.51mm(9508.3mils),
|, =241.51mm (9508.3mils), x, =234.19 mm (9220.1mils), x, =7.32 mm (288.3mils),
and a=0mm (Omils). Per-unit-length parameters for the measurement were extracted

from the signal integrity tool Hyperlynx based on the PCB stack-up information. These
parameters were then used in w-element simulation models in Synopsys Hspice to
simulate the crosstalk.

Crosstalk measurements were performed using a two port network analyzer. End-
launch SMA connectors were used to interface with the stripline traces to mitigate
connector parasitic effects. Notches were cut into the PCB at the board edges to facilitate
the end-launch SMA connections. The loads at the two free ports in the measurements
were varied to study the impacts on the near-end and far-end crosstalk as a function of
load impedance. Port terminations tested included matched loads (50 Q), shorts (8.8 nH),
and opens (2.5 pF). A series 275 pH inductance was used as the SMA connector parasitic

model. Some of the test cases evaluated are given in Table II.

TABLE Il. PCB MEASUREMENT LOADING CONDITIONS

Case#  Zs Z ZNE Zre
Casel 50Q 8.8nH (short) 50Q 8.8 nH (short)
Case2 50Q 25pF (open) 2.5 pF (open) 50Q
Case3 50Q 50Q 50Q 8.8 nH (short)

Cased 50Q 50Q 8.8 nH (short) 50Q
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Comparisons of the estimates proposed in (6)-(7), (23), and (19)-(20) in [10] for
the test cases in Table Il, are shown in Fig. 9 — Fig. 12. The simulated and measured
crosstalk was plotted in addition to the maximum crosstalk estimates. The near-end
crosstalk was measured in Case 1 and Case 3, whereas the far-end crosstalk was

measured in Case 2 and Case 4. Fig. 9 — Fig. 10 show cases where the maximum

crosstalk estimates in (6¢), (7c), and (23) are equivalent because |Is|=0 and |} |=1.

Fig. 11 — Fig. 12 show that errors in the maximum crosstalk estimation in (23) may occur

when both conditions, |I's|=0 and |[_| =1, are not satisfied. As Fig. 4 — Fig. 7 and Fig.

11 — Fig. 12 show, an underestimation or overestimation of the maximum crosstalk by

(23) is possible when [I5|#0 and | |=1. Above a few GHz, the lossless estimates in

(6¢) and (7c) significantly over-predict the maximum crosstalk. This is mostly caused by
transmission line losses which are only accounted in (19¢) and (20c) in [10] and are
prevalent in the PCB above a few GHz. A divergence between the simulated and
measured results above a few GHz is also seen in Fig. 9 — Fig. 12. This divergence is
likely due to inadequate connector parasitic and per-unit-length parameter models.
Despite the simulated and measured results divergence, these figures illustrate maximum
crosstalk estimates can be reasonably formulated to relatively high frequencies when
transmission line characteristics are not perfectly known.

Although (23) has been validated in [8] and in this paper through analysis,
measurements, and simulations, the estimates in (6)-(7) have several features which make
them more attractive for lossless and homogeneous transmission lines. Equation (23) is
less general than (6)-(7), where assumptions are made for the reflection coefficients of
the aggressor circuit that may not occur in practice. Assumptions are also made for the
victim circuit terminations when measuring the maximum crosstalk at the victim loads.
Equation (23) is based on the crosstalk definition where crosstalk is defined either as a
ratio of maximum voltages or currents in the victim and aggressor circuits. A crosstalk
definition using the source voltage of the aggressor and victim load voltages as in (6)-(7)
is believed to be more useful in general. Another limitation of (23) is it greatly over-
predicts the maximum crosstalk when the coupling region length in Fig. 1 is much less

than one quarter wavelength as shown in Fig. 6 — Fig. 7 and Fig. 11 — Fig. 12. Equations
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Fig. 9. Coupled stripline crosstalk example for the Case 1 loading conditions in Table II.
The near-end maximum crosstalk estimates (6¢) and (23) are equivalent under these
loading conditions.
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Fig. 10. Coupled stripline crosstalk example for the Case 2 loading conditions in Table
Il. The far-end maximum crosstalk estimates (7c) and (23) are equivalent under these

loading conditions.
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Fig. 11. Coupled stripline crosstalk example for the Case 3 loading conditions in Table
Il. The near-end maximum crosstalk estimates are predicted from the full piecewise
expression in (6) and (23). The near-end maximum crosstalk estimates (6¢) and (23)
differ by 6 dB under these loading conditions.
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Fig. 12. Coupled stripline crosstalk example for the Case 4 loading conditions in Table
Il. The far-end maximum crosstalk estimates are predicted from the full piecewise
expression in (7) and (23). The far-end maximum crosstalk estimates (7c) and (23) differ
by 6 dB under these loading conditions.
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(6)-(7) extend the maximum crosstalk estimates as a function of the aggressor circuit and
coupling region lengths to facilitate less maximum crosstalk estimate over-prediction. If
information is not available about the coupling region length, which, could be the case in
a practical measurement, (6¢) and (7c) may be used to estimate the maximum crosstalk
over all frequencies. The main advantage of (23) is its simplicity, which may aid

understanding and analysis.

V. CONCLUSION

Equations for estimating the maximum crosstalk in the frequency domain and in a
three conductor, lossless, and homogeneous transmission line have been presented based
on an integral formulation. These formulas are based on the weak coupling assumption
where the transmission line system has a single coupling region with a uniform cross-
section. The newly presented formulas can model the maximum crosstalk where the
transmission lines may have unique and arbitrary lengths. Derivations on another
maximum crosstalk estimate for finite length transmission lines based on a relationship
for infinitely long transmission lines were also presented. These derivations illustrate that
the previously published estimate, though relatively simple to understand and shown to
predict the maximum crosstalk well, mixes boundary conditions between infinite and
finite transmission lines which is not strictly mathematically correct. Despite the mixing
of boundary conditions, the previous maximum crosstalk estimate is demonstrated to be
equivalent to the integral formulation based estimate under some restrictive conditions.
These conditions may not occur in a practical setup making the previous formulation
more prone to errors. The integral formulation based maximum crosstalk estimates were
shown to be more robust because they can estimate the maximum crosstalk with fewer
and less restrictive assumptions. Future work may include estimation of maximum
crosstalk for transmission lines without the weak coupling assumption, for transmission
lines with non-uniform cross-sections, and for systems containing more than two

transmission lines.
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1.  Electromagnetic Radiation Resulting From PCB/High-Density Connector

Interfaces

Bruce Archambeault, Fellow, IEEE, Sam Connor, Senior Member, IEEE, Matthew S.
Halligan, James L. Drewniak, Fellow, IEEE, and Albert E. Ruehli, Life Fellow, IEEE

Abstract—Professor Clayton Paul made many contributions to the field of
electromagnetic compatibility as a researcher, teacher, and mentor. Among these
contributions, he provided a seminal push in characterizing, understanding, and
quantifying the coupling and radiation physics of electromagnetic interference (EMI). An
overview of these original contributions that were driven by industry problems and needs
is given here. His work emphasized physics and formulation in order to provide
quantitative solutions and design directions. These ideas are applied to a current industry
challenge in understanding and quantifying EMI that results at the interface between

high-speed, high-density connectors and printed circuit boards.

Index Terms—Antenna mode, common mode, electromagnetic radiation, printed

circuit board (PCB) connectors.

I. INTRODUCTION

Unintentional radiation is of concern in the design of electronics to avoid
interference with other equipment and to meet regulatory requirements. The quote on the
dedication page of Professor Clayton Paul’s well-known book Introduction to
Electromagnetic Compatibility, “For every difficult problem there is always a simple
answer and most of them are wrong,” is a suitable reflection on the challenges in
understanding and quantifying electromagnetic interference (EMI) from high-speed
digital electronics [1]. Radiated EMI can be broken down into a noise source, radiating
structure, and a coupling path. The noise source and radiating structure, i.e., cables or
seams, penetrations and openings in enclosures are straightforward to identify in any
given product application. However, the coupling path will often be subtle and complex,

and comprises the parasitic path in the layout — IC, package, printed circuit board (PCB),



66

enclosure, cabling, for coupling currents and fields to unintentional radiators. The physics
of the EMI coupling path when the coupling region is electrically small is based on
current continuity and conservation of charge. Ott noted that “...a signal ground is a low-
impedance (hopefully) path for current to return to the source...” [2]. (To allow for
magnetic-field coupling to a loop with no source, a corollary is that current must flow in
a loop.) For the EMI coupling path, the currents are unintentional, but current continuity
and conservation of charge still apply, and these currents must flow in a loop as well. The
unintentional current paths are comprised of both conduction currents, which are carried
by electrons, and, displacement currents, which are carried by a time-changing electric-
flux density.

A well-developed knowledge of unintentional radiation was incomplete into the
1980s. The powerful numerical electromagnetic (EM) modeling capabilities as well as
easy-to-use network and spectrum analyzers that are available today for discovering and
identifying the EMI coupling path through modeling, or two-port transfer function
methods did not exist. Diagramming an EMI problem was typically a combination of one
or more “liver-shape” objects, a line to represent the cable and a (+) and (—) across
somewhere identified as the “common-mode” source. These sketches can look more like
the beginning of a Far Side cartoon than a discussion of physics and engineering. The
current on the cable was referred to as “common-mode” current, and there may be no
indication of a complete current path or the current return for these “common-mode”
currents.

Professor Paul’s formal graduate education was in the controls area, and in the
late 1980s, he brought the habits of the area for mathematical formulation, rigor, and
logic, together with his knowledge of electromagnetic physics, to provide a seminal push
for developing a better understanding and quantifying unintentional radiation in
electronics. He had already made significant contributions to crosstalk in cable
assemblies and was an IEEE Fellow (1987) “for contributions to the understanding and
solution of crosstalk problems in cable assemblies.” Professor Paul’s contributions
toward understanding and quantifying EMI are overviewed here. Only the work and ideas
with colleagues and students relevant to the EMI area are articulated. A comprehensive

history or literature review of the subject is not intended.
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Early 8-bit microprocessors produced in 1974 and 1975 that provided the spark
for the PC conflagration had nominal clock rates of 1-2 MHz. At these frequencies,
unintentional radiation was dominated by cables exiting from the electronics [3], and
these were ineffective radiators, since they were electrically very short. At low-megahertz
clock rates, managing unintentional radiation was often a matter of shielding and filtering
at the connector/cable interface. The details of the electromagnetic physics of the
coupling between the noise source in the electrical/electronic design and the radiating
cable were not important as long as the specifications could be met with straightforward
mitigation approaches of “grounding,” shielding, and filtering. In the mid-1980s though,
the pressure for integrating electromagnetic compatibility (EMC) into the product design
from the beginning began to increase as design cycles decreased, and cost pressures and
design densities increased. EMI solutions implemented at the end of the design cycle
resulted in product delays, as well as added cost. The need for eliminating the trial-and-
error process of EMC retrofits to meet EMI compliance was growing. However,
knowledge of the EMI coupling physics that could be related directly and quantitatively
to the circuit layout was in general lacking.

Professor Paul’s published work in EMI focused on both efforts to make
quantitative calculations as well as to understand and demonstrate the underlying physics
experimentally. He observed in an early paper that “...given two printed circuit boards
which have identical function and components but different land patterns, the board
having the lower levels of ground drop will also have lower levels of radiated emissions”
[4]. He proceeded in this paper to develop a lumped element model to quantify the EMI
coupling path resulting from nonzero impedance of the current return using Ruehli’s
concept of partial inductance [5]. A sketch, reproduced in Fig. 1 from a subsequent paper
clearly identifies the physics associated with this coupling path as resulting from two
parallel current paths, one for the intended return current and the other for the radiating
current on the cable [6]. Professor Paul cites, “...the “return path” for these common-
mode currents is via displacement current ...” and represents the displacement current
that is due to a time-changing electric flux density as a capacitor in his sketch [6], [7].

The Lyong is calculated from partial inductance concepts in [4], and in the PCB layout is

the inductance of the conductor comprising the intended return path for the intentional
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Fig. 1. Original sketch from [6] identifying the physics associated with illumination and
EMI from cables as a result of nonzero impedance (inductance) in a signal return
conductor.

signal current 15, . For this coupling path, the unintentional currents on the cable result
from a low impedance electrical connection between the signal-return conductors of the
intended circuit, and extended conductors in the cable connected to the traces or area fills
on the PCB. In those days of single- and double-sided PCBs, the signal current return
path would have been routed on traces or irregular area fills and denoted as “GND” or
ground on the circuit schematic. The currents going off the PCB in a cable, power and
signal currents, would have a current return in the cable that would be attached to the
“GND” of the PCB. This extended conductor comprised the antenna for the unintentional

radiation. In Fig. 1, the intended signal return current is also labeled as 1, , but
enforcing Kirchhoff’s current law (KCL) at the node connecting R, , the cable signal

return conductor, and the circuit signal return conductor on the PCB GND is actually

Iom — leanie - PAUI Notes in another paper that KCL applies, and, hence, includes the

radiating current on the cable [7]. In that paper, it was demonstrated that 15,, >> |

cable
and the current on the reference structure shown in Fig. 1 is approximated as I, . Fig. 1
and [6] from which it is extracted also reflect Paul’s close collaborations with industry
and habit to work toward applying research outcomes to practical design. In [6], where
the conductor for the signal return current is electrically small, the voltage

Vground = J@Lgrouna Iom €aN be calculated and used as a source in a dipole antenna model
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for approximate EMI calculations, and L, used directly for comparison between

design layouts for the PCB signal return.

Paul demonstrated “that predictions of radiated emissions based solely on
differential-mode (DM) [transmission-line (TL)] currents will generally bear no
resemblance to measured levels of radiated emissions...” rather that the “...common-
mode (antenna) currents can be the dominant radiation mechanism from lands on
PCB’s...” though the common-mode antenna currents can be orders of magnitude
smaller than the signal DM TL currents [7]. In these statements, he uses language
common to EMI engineers denoting the radiating currents as “common-mode” and the
signal currents as “differential mode,” but was also careful to identify the physics that
evokes an analytical model of a folded dipole antenna [8], both in language and in the
diagram in [7, Fig. 1] by identifying the signal currents as (non-radiating) TL currents
and the radiating currents as antenna currents.

A series of papers by Professor Paul, colleagues, and students in the early 1990s
focused on the relationship between asymmetry and imbalance in the geometry of a PCB
layout, as well as interconnect cables and radiated emissions [9]-[13]. The work was a
careful theoretical assessment addressing imbalances in the source and load locations, as
well as in the layout geometry itself [9]-[12]. The source, load, and layout geometry were
divided into a symmetric portion, a symmetric mode model (SMM), and a remaining
portion, an asymmetric mode model (AMM) that included all the asymmetries and
imbalances, which when put together using superposition would produce the same
electromagnetic field. Hardin and Paul [10] observed from the particular geometry
reproduced in Fig. 2 that they considered experimentally and numerically over the
frequency range 30-200 MHz “...that the AMM is the dominant cause of emissions
above 80 MHz (by as much as 20 dB)...” and “that common-mode or asymmetrical
currents on transmission line structures are often the dominant contributors to the total
radiated emissions of a structure. The symmetric or differential-mode currents on these
transmission line structures are often not the dominant contributor to the total radiated
emissions of the structure....” The layout and routing of the asymmetric structure will
include portions or all of the intended signal path but will also include unintentional

current on extended reference conductors as discussed above, or conductors in proximity,



70

1.4% (.035m) — fee— ﬁ

!1 — I
Wire Radiys /

.313" (7.9%mm)
E *:ﬁ ( b — :%&Y @
Asymmetric S~ Wire Radius
Extension .358" (9.09mm)
[ ¥
—J<~ - ’—J E
- 22.2" (.564m) 5
11.7" (.298m) -
>
~

Fig. 2. Geometry used in [10] for numerical and experimental demonstration of the
decomposition of a signal path with extended reference structures into symmetric and
asymmetric components and quantifying and comparing the EMI associated with each.

e.g., coupling from a signal trace that runs adjacent to a heatsink and capacitively couples
to the heatsink. This study was also among the early efforts on EMI modeling using
numerical methods, in this case an integral equation formulation with method of
moments discretization that used the MININEC code [14]. Jerse and Paul continued to
expand this idea further to include a hybrid multiconductor TL (MTL)/radiation
formulation using MTL theory and the partial element equivalent circuit (PEEC) method
[15]. This approach had the advantage that while PEEC is a full-wave EM formulation
that includes radiation, a SPICE-compatible model is extracted that requires no matrix
solution of the integral equation formulation as necessary when discretizing the integral
equation with the method of moments.

In this paper, a method to analyze the radiation properties of a PCB/connector
structure is presented based on network parameters. A discussion of current modes in
differential system designs is first presented in Section Il. Section Il highlights mode
conversion mechanisms and their quantification in mixed-mode S-parameters. A

PCB/connector geometry under study is presented in Section IV. Section V outlines the
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mathematical details to perform radiated power analysis with network parameters. The
radiation properties of the PCB/connector structure presented in Section IV are shown in
Section VI. Section VII contains an example calculation of radiated power for digital
signals and illustrates individual radiated power contributions.

Il. TRANSMISSION LINE AND ANTENNA CURRENTS AT PCB/CONNECTOR INTERFACES

As data rates increase there is a trend to move from single-ended signals to
differential signals in order to maintain high signal fidelity. Furthermore, well-balanced
currents in a TL differential signal pair can potentially be a better design for reducing
unintended radiated emissions or EMI. These are currents with the signal current and
signal-return current on a symmetric, balanced pair with a net zero return current on a
reference structure (so-called “ground”). At data rates and frequencies where the signal
routing is no longer electrically short, these are the odd-mode TL currents for a three-
conductor set comprising two signal conductors and one reference conductor. In the EMC

literature, this is typically denoted the DM, though there is a factor of 1/+/2 between

these definitions. An illustration of these TL-DM currents is shown in Fig. 3 and can be
found in [16].

The TL common-mode (TL-CM) currents on a balanced differential signal pair
are similar to single-ended signal currents; in that, they can result in a coupling path
leading to significant EMI. These currents are those signal currents that have a signal
return current that uses a common reference structure. These are the even-mode TL
currents for a three-conductor set and will be denoted herein as the TL common-mode
currents. An illustration of these TL-CM currents is shown in Fig. 3 can be found in [16].

The reference structure in a printed circuit layout with plug-in modules or
attached cables will be of significant electrical extent, and typically extend beyond the
footprint of the signal conductor as depicted in the drawing of Fig. 1. The unintentional
current on the extended reference conductor leads to unintended radiation. The extended
reference structures comprise the effective antenna and the unintentional current on these
conductors that result in radiation or contribute to EMI are referred to herein as common-

mode antenna currents. The CM antenna currents wind up on external data cables
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Fig. 3. (a) Odd-mode or differential-mode currents in a coupled, microstrip printed
circuit board. (b) Even-mode or common-mode currents in a coupled, microstrip printed
circuit board.

(shielded or unshielded), heatsinks, and extended ground-reference planes on PCBs
connected by connectors, among many other possibilities.

It is necessary to understand the radiation physics for high-density PCB
connectors and to be able to quantify the radiated emissions performance in order to
provide design direction at the silicon and board levels, as well as to determine potential
EMI mitigation approaches. Present connector design specifications are dominated by
signal integrity. Furthermore, the EMI coupling physics at the PCB/connector interface
are not well quantified for providing design approaches for the connector or on the PCB.
As data rates have increased, significant challenges result in real-world designs where
products can fail radiated emissions requirements due to inadequate understanding of the
EMI coupling physics and design approaches for mitigating the radiation either in the
connector or on the board, or both. A methodology is proposed here for comparing
connector radiated emissions performance so that EMI performance can be balanced
along with signal integrity and cost in identifying a suitable high-speed connector for a

system design.
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I1l.  SCATTERING AT THE PCB/CONNECTOR INTERFACE IN DIFFERENTIAL-MODE
SIGNALING

Differential signals in high-speed digital printed circuits are most often routed
edge-coupled. In order to achieve a 100 Q TL DM characteristic impedance with a

typical material dielectric constant 3.3<¢&, <4.5, the signal pair on the PCB is weakly
coupled [17]. The modal TL DM voltage V,, and the CM voltage V., are defined in

terms of the single-ended voltages V, and V, as

Vow =V, =V, (1)

==V, +V,). @)

A nonzero TL common-mode signal can arise in a differential signaling system
through signal asymmetries in the time-domain waveforms of V, and V,, geometry
asymmetries in the routing, or material asymmetries. Waveform asymmetries include
amplitude mismatches between V, and V,, rise- and fall-time mismatches, or time
offsets between the transitions of the two single-ended signals (skew). Geometry
asymmetries include any non-mirror image routing of the V, and V, traces such as one
trace over a reference plane while the companion trace is not, one is closer to a reference
plane edge, pairs routed through connectors with asymmetric ground reference structures,
and asymmetric placement of vias connected to the ground reference in PCBs that are
near the signal traces or signal vias. At every point along the propagation path where the
translational invariance of the differential pair and reference cross-section as shown in
Fig. 3 is disrupted by a geometry asymmetry, there will be scattering between the TL
differential- and common-modes. Geometry asymmetries also include electrical length
differences between the V; and V, signal propagation paths, such as pairs routed through
right-angle connector pins with different lengths, e.g., backplane connectors. Material
asymmetries, e.g., one trace over a glass fiber bundle, while the companion trace is not,

the so-called "glass weave effect,” will also contribute to the TL common-mode signal.
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The TL-DM and TL-CM voltages are uncoupled over a propagation length where
the cross-sectional geometry is translationally invariant. If a pure TL-DM voltage, with
no TL-CM voltage, is incident on the PCB/connector interface, where the translational
invariance of the TL geometry set on the PCB is interrupted, scattering results. The
incident TL-DM voltage is scattered into transmitted (onto the connector) and reflected
(from the connector) TL-DM voltages. Because of the geometry asymmetry in the right-
angle connectors considered here, scattering of the incident TL-DM into a reflected TL-
CM and transmitted TL-CM also occurs at the PCB/connector interface to match the
continuity of current and continuity of voltage boundary conditions at the PCB/connector
interface.

The mixed-mode S-parameter matrix that characterizes the scattering due to the
discontinuity in the geometry from the PCB to the connector is [18]

Sgarr  Sddiz  Sdar  Sdei2
[§ MM ]: Saaar Sadzz Sacar Sde2 3)
Scdll Scdlz Sccll Scclz

Scd21 Scd22 Schl S0022

For an incident TL-DM, S,,, is the reflected TL-DM at mixed-mode Port 1 and S, is

the transmitted TL-DM to mixed-mode Port 2. The parameters for the TL-CM are
analogous. The scattering between the modes is characterized by the S, and S_g;
terms. For example, S 4, characterizes the reflected TL-CM wave that results from an
incident TL-DM wave and S_,,, is the transmitted TL-CM wave to mixed-mode Port 2

that results from the incident TL-DM wave. Further, because the geometry of the
differential pair within the connector is not translationally invariant, it is expected that
there will be coupling between the TL-DM and the TL-CM as the wave propagates
through the connector.

The mixed-mode S-parameters are network parameters and characterize the
voltage waves at the ports on either side of the connector. However, since the geometry
of the differential signal pair is imbalanced, radiation also occurs as the wave propagates

through the connector [10]. Currently, the detailed physics and a quantitative model for
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the radiation in terms of the coupling of the TL-DM and TL-CM to antenna currents on
the connector are unknown. However, as a first step for providing design guidance it is
sufficient to quantify this radiation using network parameters and power conservation.

The radiation as a function of the incident waveform can then be quantified.

IV. PCB/CONNECTOR GEOMETRY

The paper presented here for modeling the radiation for a PCB/connector
interface focused on a connector design in which the differential pair signal conductors
had wide reference conductor blades on three sides, as shown in Fig. 4. The connector
geometry in the study was loosely based on commercially available 100 Q differential
characteristic impedance designs. This signal/reference layout strategy is one approach
used in commercial connector designs, though the geometry shown is simplified for EM
modeling purposes and is not intended to match any specific commercial product. The
connector design under study consisted of two wafer layers that contained signal blades
and signal reference blades whose cross-sectional layout is given in Fig. 4(b). Only two
wafers were modeled to minimize the complexity of the problem. A full-wave EM
modeling tool (CST Microwave Studio) was used to simulate the connector geometry.
This style of high-speed connector is typically a press-fit connector with through-hole
vias on the PCB into which the connector pins are pressed. However, in the simplified
model, no through-hole vias were included and only the strip transition from a microstrip
differential pair to the connector was modeled.

The radiation from a PCB/connector structure is dependent upon both the
connector PCB return plane dimensions and the connector dimensions. Two different
structures were simulated to determine the dominant geometry features in the connector
radiated power response, as shown in Fig. 4(a). Thirteen magnetic field circulation
integrals were placed around the connector structure as shown in Fig. 4(a) to calculate the
CM antenna currents. The left structure in Fig. 4(a) is denoted as the “connector only”
case and was simulated to determine the radiation due to the connector itself. A small
PCB area around the connector footprint was modeled with the connector geometry so

that the PCB to connector transitions and the associated scattering remained in the
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Fig. 4. (a) Left PCB/connector structure is the simulated “connector only” case. The
right PCB/connector structure is the simulated “large PCB plane” case. These simulations
were formulated without conductor and dielectric losses. The connector consisted of two
differential signaling pairs. (b) Wafer cross-sectional layout for the connector of (a). The
connector in (a) consisted of two wafer layers. (c) Front connector wafer signal blades
layout for the connector in (a).
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problem. The PCB area footprint for the connector only case as shown in Fig. 4(a) was
101 mils x 390 mils, and the transition was from a 99 Q differential characteristic
impedance microstrip line to the 102 Q differential characteristic impedance connector.
The signal reference conductors in the connector were modeled to electrically connect to
the signal return reference for the microstrip lines in the small PCB area footprint. The
right structure in Fig. 4(a) is denoted as the “large PCB plane” case and was simulated to
determine radiation due to larger PCB return planes. The sources and geometry of the
transition from the PCB to the connector remained the same as the previous connector
only case, and only the reference planes for the PCB microstrip geometry were extended
as shown in Fig. 4(a). The radiation due to illumination of the large PCB reference planes
was identified by the difference in radiation responses in these two cases. The connector
was placed in the middle of the PCB edges as shown in Fig. 4(a).

The structures in Fig. 4 have many features that are the same. Additional physical
layout details for the simulated structures in Fig. 4(a) that are the same are given in Fig.
4(b) and (c). The microstrip traces were 42 mils long and were on a substrate with 4.3
relative permittivity and 14.45 mils thickness. The substrate completely covered the PCB
return planes and did not extend beyond the return plane dimensions. The PCB signal
conductors had a 0.7 mil thickness. Fig. 4(b) illustrates the cross-sectional layout of the
connector wafers and Fig. 4(c) depicts the layout of the signal blades in the front
connector wafer. In Fig. 4(c), only unique connector dimensions are denoted; all other
dimensions may be found by structure symmetry.

The objective of modeling the PCB/connector geometry was to identify the
geometry features that contributed to the radiation as well as quantify the radiation from
the network parameters. The signal traces for both simulations shown in Fig. 4(a) were
fed with discrete face ports on the PCB microstrip traces, and the PCB/connector
structure was modeled in air with PML absorbing boundary conditions. The discrete face
port impedances were set to 50 Q. Time-domain simulations were performed and the S-
parameters of the PCB/connector geometry were extracted in CST Microwave Studio

from the time-domain signals.
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V. RADIATED POWER CALCULATIONS USING NETWORK PARAMETERS

The radiated power resulting from signals through the connector can be calculated
either from the fields or with conservation of power using network parameters. The
electric and magnetic fields over a surface enclosing the PCB/connector geometry are
calculated in the full-wave simulations and can be used to calculate the radiated power. In
general, this calculation method is unsuitable for design because it can be computer
memory intensive and the computations can be time consuming. Further, the spatial
variation of the fields are unneeded for typical design choices related to connector
performance and to provide guidance on the differential signal time-waveform balance
that might impact EMI. An alternative approach to the calculation is to use S-parameters
generated from full-wave simulations to calculate the radiated power. This radiated
power calculation from network parameters at ports has the advantage of a much faster
simulation time than the radiated power calculations using the electric and magnetic
fields. However, the time-domain simulations must be run sufficiently long that the
radiation aspects of the problem are captured from the network S-parameters.
Terminating the simulations too early in the time history may provide sufficient S-
parameter results for signal integrity purposes, but insufficient for radiation calculations.

Design discovery for radiation attributes is readily facilitated using the network
parameter and power conservation approach. The important attributes are those geometry
features that impact the S-parameters including the transition from the PCB to the
connector and the specifics of the connector geometry itself. Also, quantifying the
radiation with the differential signal time-waveform imbalance is readily done using the
network parameters.

Radiated power can be calculated using incident port voltages and single-ended S-

parameters as [16]

Prad o = (Y/(2Z4 ))M ]‘ ([r]_ [§ * ]‘ [§ * D[\7+ ] (4)
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where, Z, is the port characteristic impedance, [V*] is the incident voltage vector, t

denotes the complex conjugate transpose, [f] is the identity matrix, and [S~SE} is the

single-ended S-parameter matrix at ports on the PCBs. The ports on the PCBs must have
a well-defined voltage and current, and so must be sufficiently removed from the

transition of the signal on the PCB to the connector so that a transverse electromagnetic

(TEM) mode exists. The location can be quantified such that |E,,|/|E | <<1,

transverse

where E_,, is the field along the propagation direction and E is the transverse

transverse
field, which is the only component for a TEM mode. The total radiated power can also be
represented in a modal form using mixed-mode S-parameters [18].

The total radiated power from the PCB/connector geometry can be written in the
modal domain as the superposition of radiated power from an incident wave that is purely

a TL DM and an incident wave that is purely a TL CM, in addition to a term with the
product of Vg, Vpy - The total radiated power using modal quantities can then be written

as

P, =P +P + P, : (5)
rad total + + rad, product
rad 'VDM rad ’VCM p

The notation is not meant to suggest that there is radiation from a TL DM signal or a TL
CM signal, but rather identifies the radiation resulting from the modal TL incident wave.
A single pair of signal conductors in a PCB/connector geometry with single-

ended and mixed-mode port assignments is shown in Fig. 5. From (1) and (2), writing the

incident voltage at single-ended Port 1 as V,* =V, —(1/2Vgy and the incident voltage

at single-ended Port 3 as V;" =Vgy, + (/23 , it follows that the incident voltage vector

[\71 is given by

1 [y L. AR N
B/ ]: Vem _EVDM 0 | Vom +EVDM 0 (6)
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Fig. 5. Single-ended and mixed-mode port assignments for a single signal pair in a
connector.

where T is the transpose. The radiated power from (4) can then be written as

Prsom = (1(22,)/[8] [B]8]+ €] [B]c]+ B [B]c )+ 1 [B]8) ¢
Bl=[-@2vsu) o (@2vey) of (82)
Cl=Maw 0 vg f (8b)
[B]-[]-[s*¢ 5]
o _ _ (8c)
=[(-[a][s*Jls* ]
1 0 -1 0
~1 1101 0 -1
[M]:_zl 01 of (8d)
01 0 1
The radiated power due to the DM incident waves is given by
P_ .. =W(z,)[8][0]8]
DM (9)

2
b [Seors]” ~[Saoanl” ~[Seatel? ~Sesanl?)

= Z, |25
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where —[Sgq,| in decibels is the TL-DM return loss, —[Sy,,| in decibels is the TL-DM
insertion loss, —|S4,,| in decibels is the TL-DM to TL-CM return loss (incident TL-DM

that gets reflected into the TL-CM), and —|S_,,| in decibels is the TL-DM to TL-CM

insertion loss (incident TL-DM that gets scattered into a transmitted TL-CM). The

radiated power due to the TL-CM incident waves is given by

P, = W(220)[C][BIC]

2 2 2 2 2 (10)
— 7o Ve | - el ~[Seemal” ~[Sucul” - Secal?)

where —|S | in decibels is the TL-CM return loss, —|S_.,| in decibels is the TL-CM

insertion loss, —|Sy.;,| in decibels is the TL-CM to TL-DM return loss, and —|[Sy.,;| in

decibels is the TL-CM to TL-DM insertion loss. The radiated power in the product term

ViuVowm is given by

(2,)(8}[BJc]+[c1{b]E)
1/(220 ))‘/SM VSK) (Sccllszdll + Scczls:cm + Sdcns;dll + SchIS;d 21) (11)
+ (]/(ZZO)NSMVSI\; (dellsgcll +Sgq 21Sgc21 + Scdlls:cll + Scd21S;c21)

Y

I:)rad, product — (
=

and is real as is necessary.

The modal radiated power expressions (5)-(11) assume that the TL coupling
between signal pairs in multiple pair connectors is negligible, since the formulas were
derived for a single signal pair. For cases where the coupling among signal pairs is
nonnegligible, (4) still holds. If desired, a portion of the S-parameter matrix may be used
in (4) rather than the full matrix representing the entire PCB/connector geometry with
multiple signal pairs. A reduced S-parameter matrix must retain data for the ports that are

fed and ports that have significant coupling to the feed ports.
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VI. RADIATION FROM THE PCB/CONNECTOR ASSEMBLY

The radiated power calculated from the mixed-mode S-parameters when the
outermost and innermost signal pairs were excited as shown in Fig. 4 are illustrated in
Fig. 6 and Fig. 7, respectively. The outermost signal pair is denoted as “Pair 1” and the
innermost signal pair as “Pair 2” in Fig. 6 and Fig. 7. The calculated radiated powers are
shown when the incident waves were a TL CM excitation and a TL DM excitation. The
modal excitations were created from 1 V single-ended incident port voltages. The
radiated power resonances below 3 GHz only occurred for the TL common-mode
excitation with the large PCB plane case of Fig. 4(a), as seen in Fig. 6(a) and Fig. 7(a).
For the TL common-mode excitation, the dominant antenna structure was related to the
PCB reference plane dimensions below 3 GHz, whereas above 3 GHz the dominant
antenna structure was the connector geometry itself, as described later.

There were two primary resonant geometry features in the TL common-mode
response below 3 GHz. The first resonance frequency at 0.49 GHz was created by the
length of the PCB return perimeter and a path length through the connector as shown by
the dashed-dotted line in the right structure of Fig. 4(a). The second resonance frequency
at 1.14 GHz was influenced by the placement of the connector along the length of the
PCB-PCB gap, where the resonance was dictated by the length of the gap as shown by
the dashed line in the right structure of Fig. 4(a). The gap width was 350 mils, and though
the E-field across the gap was not highly varying, attempts at modeling it as a narrow gap
with constant fields fed at a well-defined port for frequencies well into the gigahertz
range were unsuccessful. The 1.14 GHz resonance was minimally influenced by the gap
width and remained fixed in frequency so long as a gap existed. When the gap between
PCBs was eliminated with a continuous plane, the 0.49 and 1.14 GHz resonances were
eliminated from the radiated power response.

Both resonances below 3 GHz occurred when the indicated resonant lengths in the
right structure of Fig. 4(a) were approximately A/2 in length. For the right geometry in
Fig. 4(a), the indicated lengths were approximately 13367 mils and 5367 mils. Using the
free-space wave velocity, the predicted resonances were 0.44 and 1.10 GHz. Some of the
discrepancies between the predicted resonances and the actual resonances at 0.49 and

1.14 GHz can be attributed to length assignments for the CM antenna current flow paths
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Fig. 6. Radiated power when the outermost signal pair, Pair 1, was fed and all other ports
were matched for the PCB/connector structures of Fig. 4(a). Incident single-ended port
voltages were 1 V. (a) TL CM excitation. (b) TL DM excitation.
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Fig. 7. Radiated power when the innermost signal pair, Pair 2, was fed and all other ports
were matched for the PCB/connector structures of Fig. 4(a). Incident single-ended port

voltages were 1 V. (a) TL CM excitation. (b) TL DM excitation.
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Fig. 8. Surface current density plot at 0.49 GHz when Pair 1 was fed with a TL CM
excitation and all other ports were matched.
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Fig. 9. Surface current density plot at 1.14 GHz when Pair 1 was fed with a TL CM
excitation and all other ports were matched.

in the connector geometry and the low quality factor of the resonances. The surface
current density in the PCB/connector structure at the 0.49 GHz and 1.14 GHz resonant
frequencies are given in Fig. 8 and Fig. 9, respectively. These plots illustrate the CM
antenna currents on the PCB return planes that contribute significantly to the
connector/PCB radiated power.

A series of simulations were performed to study the proposed dominant geometry
features in the radiated power response. The basic structure on the right in Fig. 4(a) was

used and the simulations were run when individual return planes had widths of W =
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2000, 3000, and 4000 mils. The results from this series of simulations are shown in Fig.
10, where Pair 2 was fed and all other ports were matched. The first low-frequency
resonance near 0.5 GHz increased in frequency as the width of the PCB return plane
decreased. The second low frequency resonance near 1.2 GHz remained relatively fixed
in frequency as expected since the length of the PCB-PCB gap and the connector position
were unchanged. The radiated power remained relatively unchanged above 3 GHz,
independent of the plane width geometry variation, because the response was dominated
by the connector structure only.

The resonances in the radiated power above 3 GHz as seen in Fig. 6 and Fig. 7 are
due to CM antenna currents on the connector blades, independent of the modal excitation.
These resonances are due to the electrical lengths of particular geometry feature(s) in the
connector design and groupings of these resonances can be easily referenced to signal
pairs that drive TL currents on the associated resonant reference blades. The first set of
resonances for Pair 1 was at 3.30 and 3.89 GHz and for Pair 2 was at 4.63 and 5.83 GHz.

Magnetic field circulation integrals were placed about contours that encircle the
connector structure as shown in Fig. 4(a) to find the CM antenna current as a function of
connector angular position. The circulation integrals were arranged about the connector
relative to the innermost reference blade. The integrals were placed at the midpoints and
ends of each straight conductor in the innermost reference blade. The CM antenna
currents were calculated at both Pair 1 half wavelength resonances (3.30 and 3.89 GHz)
and at a high-order resonance (7.17 GHz) as shown in Fig. 11. The CM antenna currents
form approximately a A/2 and A distribution along the connector arc at the half
wavelength resonances and at the high-order resonance, respectively.

The radiated power resonances can be approximately predicted from the edge
lengths of the reference blades that are closest to the resonant signal pair in question and
on the same layer as the signal pair. The inner edge of the left return blade and the outer
edge of the right return blade for Pair 1 are 1745 and 1483 mils. The A/2 resonant
frequencies for these lengths are 3.38 and 3.98 GHz, respectively, which are close to the
actual 3.30 and 3.89 GHz resonances. The inner edge of the left return blade and the

outer edge of the right return blade for Pair 2 are 1257 and 996 mils. The A/2 resonant
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frequencies for these lengths are 4.70 and 5.93 GHz, respectively, which are near the 4.63

and 5.83 GHz resonances.
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Fig. 10. Connector TL common-mode radiated power response for varying return plane
width when Pair 2 was fed. Incident single-ended port voltages were 1 V and all non-
source ports were matched.
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Fig. 11. Connector CM antenna currents at 3.30, 3.89, and 7.17 GHz resonances when
Pair 1 was fed with a TL common-mode excitation. Incident single-ended port voltages

were 1 V. (a) Right connector structure of Fig. 4(a). (b) Left connector structure of Fig.
4(a).
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VIl. RADIATION CALCULATIONS WITH A DIGITAL SIGNAL

An analysis is given in this section to illustrate the level of the radiated emissions

with the right PCB/connector structure in Fig. 4(a). Single-ended time-domain incident
voltage waveforms v;* and V," with amplitudes of 500 mV and with rise- and fall-times
of 52.5 ps are used in this example. The incident voltage waveforms are shown in Fig. 12.
An offset skew of 50 ps was added to V;", which is 10% of the unit interval. The incident

TL differential- and common-mode voltages have peak amplitudes of 1 V and 383 mV,
respectively. The time-domain signals were converted to the frequency-domain using a
fast Fourier transform, and the modal radiated powers were calculated using (9)-(11). The

contributions for the individual terms P P ,and P are shown in

+ + rad, product
rad Vi rad Vdy P

Fig. 13(a) where Pair 1 in the PCB/connector structure was fed. The radiated power for
incident TL-CM voltages is 10-20 dB greater than the radiated power for incident TL-
DM voltages over most of the simulated frequency range.

It is useful to convert radiated power into an electric field quantity so comparisons
may be made to the Federal Communications Commission (FCC) Class B Limit and to
provide a reference on the radiation level. Typical high-speed designs using the type of
connector in Fig. 4 are often contained within a shielded enclosure and contain many
wafers with a wide variety of signals. Thus, the following calculations serve only as a
reference and not a prediction of the actual EMI in an application. In the far-field, the

electric field in free space can be calculated as [1]

E(r,0,9) = (12)

\ 60 Dm axPrad
r

where D,,,, is the maximum directivity of the antenna structure, P, is the radiated

max
power, and r is the distance from the radiator. The electric field for the present example
was calculated from (12) and is compared to the FCC Class B Limit at three meters in

Fig. 13(b), using a factor of one for the maximum directivity.



Voltage (V)

Fig. 12. Time-domain incident port voltages in the single-ended and modal domains
applied to Port 1 and Port 3 of the right PCB/connector structure in Fig. 4(a).
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(@) Connector frequency-domain modal radiated power. The solid trace

represents the radiated power due to the DM incident voltages. The dashed trace
represents the radiated power due to the CM incident voltages. The dashed-dotted trace
represents the radiated power due to the CM and DM incident voltage product. (b)
Connector radiated electric field comparison with FCC Class B Limit at three meters.
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VIIl. CONCLUSION

Clayton Paul, working together with industry colleagues, provided a seminal push
toward developing a better understanding of EMI coupling paths and radiation physics.
Aspects of these core ideas are being used in the present study to understand and quantify
the EMI physics in PCB/connector interfaces for high-speed digital applications. Three
distinct radiation modes were found. The first mode consists of a radiating structure
comprised of PCB reference planes driven by signals through the connector. This mode
produces half-wavelength dipole type current on the PCB reference planes. The radiation
is significant with a TL common-mode excitation, even with ground references on three
sides of the signal pair in the connector. Another radiation mode is associated with the
gap between the PCBs that the connector spans. At the resonance frequency of 1.14 GHz,
the 350 mil gap is electrically small, and the radiation physics corresponded to those of a
slot antenna that include the ground reference path through the connector. Finally, at
frequencies where the connector signal path lengths are not electrically short, resonances
associated with integer half-wavelength antenna-mode current distributions result in
significant radiation. The coupling of TL modes to a radiating antenna mode is unknown
at present.

The radiation was calculated using S-parameters, and expressions were developed
using mixed-mode S-parameters to quantify the radiation in terms of the TL DM and TL
CM incident voltages. The formulation facilitates calculations for determining signal
balance for minimizing the radiation. These calculations were also used to provide a
simple example of the level of the radiation. In particular, for a single signal pair, the
radiation was within a few decibels of the FCC Class B Limit, and can well exceed the
limit at the antenna-mode resonance frequencies of the PCB geometry.

Extensive work remains to characterize and quantify the radiation physics for a
propagating signal along a connector. Additional research is needed to develop a better
understanding of coupling from TL modes to a radiation mode, e.g. [19], and to relate
coupling to a radiation mode with the geometry in more than the rudimentary manner
provided at present. A suitable formulation of the physics is needed to better engineer
high-speed connectors for determining tradeoffs between signal integrity and EMI across

the connector. Further work is also needed to understand and quantify the effects of many
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simultaneous signals, and numerous wafers (10-50 is common) in the connector
geometry, so that expectations of shielding performance for the product enclosure can be
specified.

Professor Paul made many contributions to the field of EMC. The second quote

on the acknowledgement page of his EMC book [1]

“When you can measure what you are speaking about and express it in numbers
you know something about it; but when you cannot measure it, when you cannot express
it in numbers your knowledge is of meagre and unsatisfactory kind; it may be the
beginning of knowledge but you have scarcely progressed in your thoughts to the stage of

science whatever the matter may be.” — Lord Kelvin

is a fitting summary of the approach he adapted for his scientific work.
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Abstract—A method is presented to quantify the radiated power in a high-density
connector. This method is based on network parameters and the principle of conservation
of power. Unlike previous work, which assumed only radiated losses were present, the
proposed method is able to characterize the radiated power in environments that contain
material losses and when there are multiple signals at the printed circuit board
(PCB)/connector interface. The power losses are quantified through the definition of
power loss constant matrices that can be used to find the power losses for arbitrary input
excitations when the matrices are entirely known. The power loss constant matrices can
be calculated through multiple single port and two port excitations for an N-port
connector. The formulation of these excitations is dictated by the non-linear properties of
the power loss calculation. Simulations and measurements are presented that validate the
proposed power loss calculation methodology, and practical simulation problems related

to finding the full power loss constant matrices are discussed.

Index Terms—Connectors, electromagnetic radiation, printed circuit board

connectors, radiated power, scattering parameters

I. INTRODUCTION

Connector design has become an increasingly complex, engineering challenge for
printed circuit board (PCB) applications due to ever increasing data rates and the
miniaturization of circuit designs. The connectors implemented in today’s multi-PCB
systems often require a tremendous amount of signal line density while also requiring
minimal signal degradation through crosstalk and material losses. Connector design
requirements of the past were often dominated by signal integrity and mechanical

requirements with little regard to electromagnetic interference (EMI). Slower data rates



97

allowed these connectors to be ineffective radiators due to their small size relative to even
the smallest operating wavelength. Thus, EMI from the connectors themselves could
often be ignored with little consequence. The electrically small connectors were often
part of a much larger and more efficient dipole-like radiating structure consisting of
attached PCBs, cables, or enclosures [1]-[4]. The radiation resulting from these dipole-
like structures, however, could not be ignored. A common design approach to minimize
radiation facilitated by the electrically small connectors was to reduce the return
inductance of these connectors so the feed voltage of the dipole-like structure was
reduced [3], [4].

The radiation physics of connectors today are different from the past due to
increasing data rates, presently on the order of several Gbps or more [5]. Many
connectors are now electrically large and have been shown to radiate effectively [6]-[9].
The connectors themselves can now comprise the majority of the radiating antenna
structure due to significant, high-frequency spectral content in data signals. These
electrically large connectors require more innovative solutions to mitigate EMI, and more
robust methods to quantify radiation from connectors than provided in the literature at
present. Much research on electromagnetic radiation due to connectors is based on the
current and voltage driven models presented in [2]. Many studies have explored radiation
effects through experimental methods with finite-difference time-domain simulations,
common mode current measurements, and EM fields measurements [10]-[15]. Radiation
performance was evaluated indirectly through transfer impedance measurements as in
[16]-[19], and through connector inductance measurements and calculations [20]-[22].
Analytical formulations for connector inductances were also used in [20]-[22] to estimate
the radiated electric field from a few common PCB/connector structures directly.

Full-wave electromagnetic simulations are an important tool for discovering the
radiation physics from connectors as radiation physics discovery is often limited in
measurements. One significant challenge in industry is the lack of robust connector
simulation models and simulation methods to quantify the radiation from high-density
connectors (connectors containing 10’s or even 100’s of signal lines) where input signals
can be easily modified. Much of the literature focuses on computationally small problems

with significant geometry simplifications from a realistic product to ease the
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computational and geometry creation burden [23]-[27]. While simplified structures can
provide some insight into the general radiation physics, subtle but important details in the
actual geometry of high-density connectors has been shown to significantly alter the
radiation properties of PCB/connector structures [7]-[9]. Many simulation methods at
present have limited flexibility for evaluating electromagnetic radiation changes with
different signaling conditions. Changes to signal pin assignments, signal pin terminations,
or input signal characteristics often require many additional simulations with significant
computation times.

The purpose of this paper is to develop a simulation method to quantify radiation
from practical, high-density PCB/connector structures that enables flexibility in the
evaluation of radiation mitigation solutions. The proposed method is based on power loss
calculations with network parameters and field data in full-wave simulations. Unlike
previous simulation studies, the proposed method is formulated to predict connector
radiation in typical, lossy environments where signals on multiple signal lines can be
present at a PCB/connector interface. The mathematical basis for and experimental
validations of the radiated power loss calculation are shown in Section Il. Practical
simulation issues for the proposed radiated power calculation are discussed in Section I11.

Conclusions are given in Section IV.

Il. POWER L0OSS CALCULATIONS FROM NETWORK PARAMETERS

Radiation from PCB/connector interfaces was investigated in [6] using network
parameters. In this simulation study, the radiated power was calculated from network
parameters assuming the only loss mechanism was due to electromagnetic radiation.
Material loss, or power loss in conductors and dielectrics, was not included in the
simulations, and the radiated power was obtained using conservation of power. While the
proposed method in [6] is useful for low loss PCB/connector interfaces, many practical
interfaces have material loss that cannot be neglected and that can actually reduce the
total radiated power from these interfaces. Application of the radiated power formula in
[6] with non-negligible material loss can result in a large overestimation of the true
radiated power as shown in [7], [8]. Modifications to the theory in [6] can be applied,

however, to correctly predict the radiated power as will be shown. This work expands
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upon the connector radiation modeling concepts presented in [6] by also quantifying the
radiation in the presence of multiple signals at a PCB/connector interface.

The practical connector model used to guide this study is shown in Fig. 1. This
full-wave connector model was designed in CST Microwave Studio and is based on a
commercial connector designed for differential signaling. Details on the connector model
generation are provided in [7]-[8]. The modeled connector consists of three identical
wafers placed next to one another where each wafer consists of a slice A and a slice B.
The signal conductors and return conductors in each slice are alternated for properly
designed signal referencing and to minimize crosstalk within the connector. Small six
layer PCBs were included in the connector model to enable 125 mil long, 50 Q single-
ended stripline feed structures for each signal line in the connector. The stripline feeds
are asymmetric with a 48.3 mil total dielectric thickness between the return planes and a
7.95 mil separation distance from the signal traces to the nearest return plane. Layers two
and five are signal layers in the PCB. The PCB dimensions are 505 mils x 715 mils x 111
mils, where all the signal layers and return layers have 1.35 mil conductor thicknesses.
All conductors were modeled as perfected electric conductors and the modeled dielectrics
in the PCB and connector were modeled with losses. The relative permittivity and the
loss tangent of the connector plastic was modeled as & =3.1 and tano =0.02,
respectively. The PCB FR4 substrates were modeled with a relative permittivity of

g, =4.3 and a loss tangent of tand =0.025. A total of 96 signal ports were defined, and

discrete face ports were defined at the end of each stripline trace with 50 Q reference
impedances. The PCB/connector structure was modeled in air with PML absorbing
boundary conditions. Additional details about a similar connector model, the actual

connector geometry, and the simulation details are given in [7]-[8].

A. Power Loss as a Function of Loss Constant Matrices

The total power loss at a PCB/connector interface can be written as a summation

of radiated power loss and material power loss as

Ploss,total = Frad total T I:>mat,total ) (1)
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Fig. 1. Full-wave connector model used to formulate methods to quantify PCB/connector
interface radiation.

where, P o 1S the total power loss, P4 IS the total radiated power, and P, o

is the total material loss. From [6], scattering parameters can be used to calculate the total

power loss as
Prss o = 1/2)a]"([T]-[8]" [S])fa] @)

where [a] is an incident power wave vector with units of ~Watt and is based on
generalized scattering parameters [28], H denotes the complex conjugate transpose, [T] IS

the identity matrix, and [§ ] is the single-ended S-parameter matrix at ports with well-

defined voltages and currents that define transverse electromagnetic wave propagation.
The total radiated power and the total material loss in (1) cannot be separated from the
total power loss without additional external information. In full-wave simulations, field
monitors can separate these two loss mechanisms using the calculated fields. In
measurements, the radiated power can be measured directly.

The total power loss in (1) is dependent on PCB/connector geometry (which
dictates the PCB/connector S-parameters) and the incident waves at the connector ports

as shown in (2). Although the expressions for Pq o and Pyaow @S @ function of

geometry and incident waves are not specified in (1), it is postulated that they take a
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similar form to that of B o - FOr convenience, a general power loss equation that can

represent any of the power losses is defined as

Ress = (1/2)[a]" [a]- (/2)[a]" [Pions Ja]. @)

where, [ ] is a frequency dependent power loss constant matrix and is defined by

Pconst

lpconstJ:
P1,1 F)1,2 e Pl,n I:)1,1 P1,2 e Pl,n (4)
P2,l PZ,Z PZ,n _ I:?I.,Z I:)2,2 PZ,n
Pn 1 F)n,2 I:>n n Plfn Pz*,n T |:>n, n

The matrix, [|5const], is termed as a “power loss constant matrix” with reference that the

matrix is used to quantify power loss in (3). Physically this matrix quantifies the total
power received from all ports. The total power loss, the total radiated power, and the total

material loss can be written in the same form as (3) as shown in (5)-(7).

Pross o = 1/ 2)a]" [@]— @/ 2)a]" [Foss.cone 2] (5)
Prad o = @/ 2)[a]" [a]- @/ 2)@]" [Prag const JE] (6)
Pmat,total = (1/ 2)[5]H [E]_ (1/ 2)[5]H [ISmat,const Iﬁ] (7)

Comparing (2) and (5) the total power loss constant matrix is defined as

[Bossconst )= ST [S ] (8)

whereas, the radiated power constant matrix, [5 |, and the material loss constant

ad ,const

matrix, [5m ] are unknown in general. The power loss constant matrices fully

at,const
characterize the power loss in any system with ports. Once the power loss constant

matrices are known, radiation and signal integrity performance may be evaluated with
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customizable input signaling and port termination conditions. The radiated power
constant matrix and the material loss constant matrix can be found in full-wave

simulations with the right port excitations and field monitors as will be illustrated.

B. Properties of the Power Loss Calculation and Port Excitation Solutions for the Power

Loss Constants

In general, the power losses in (5)-(7) can be written as a summation of power
losses for all possible two port combinations in an N-port connector. To illustrate this
point, consider a three port network where all three ports are fed with incident power

waves ay, ay, a; where,

Q

X

(8l |a, |-

1ol o
y +la, [+]| 0 |= [K]+[§]+[€]' (©)
0 a

z

o O

z

The general power loss equation in (3) can then be written as

Pos =W/ 2)[AL+[B]+[E]" (A]+ [B]+[€]D- @/ 2X(A]+ [B]+ €] [ MIA]+[B]+ €]

e
(Al Peors JA] [A]" [Prans [B] [A]" [Peons JC[ || (20)
[ ]H CO”S'E A] [B]H ~const ] [B]H ~C0nSt C]

I Peons JA] [C]" [P JB] [CT" [Prans I ]

| 2>|

=(1/2 \ax\z +‘ay‘2 +\az\2 —sum

o[

where, the sum function is the summation of all elements in the 3x3 matrix in this
example. It can be seen that (10) contains the power losses for all possible two port
| and [

excitations in a three port network. Thus, the values in [ﬁ can be

rad ,const mat const ]

found by solving for the power loss constants for all possible two port combinations.
The types of excitations to find the power loss constants for a two port
combination are greatly influenced by the non-linearity of the power loss calculation. In

the case of (10), if a, =0, a, =0, and a, =0, then the power loss for this two port

excitation is given by
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Poss pay = /2| [y ~[A]" [Prone JAL- [B]" [Prons JB]-[A]" [Prons JE]- [B]" [Pror JAL}

(11)
In contrast, when port x and port y are fed independently, the power losses are given by

Pos.px = 1/ 2)a | —[A]" [Brons IA]} (123)

Ploss,Py = (1/ 2){ay‘2 - [§]H [5const Ig]} (12b)

#P which indicates that the

It can be seen from (11) and (12) that Pog o + R \oss, pxpy

loss, py
power loss calculation is not linear. To further illustrate the non-linearity of the power
loss calculation, a series of simulations were performed with the connector in Fig. 1. The
longest differential pair in slice A of the middle wafer was excited with a common-mode
excitation with 1 W total input power, and all other ports were terminated in matched
loads. The radiated power was then calculated in the full-wave simulation. Next, the
signal lines in the excited differential pair were fed independently with 0.5 W, and the
calculated radiated powers were added. A comparison of these two radiated power
calculations is shown in Fig. 2. It can be seen that radiated power for the simultaneous
port excitation is not equal to a linear superposition of the individual excitations. Thus,
calculating the radiated power loss and the material power loss for a simultaneous, multi-
port excitation requires single port and well-designed two port excitations to find the full

] and [ ] matrices.

[Prad ,const Pmat,const

The excitations required to solve the unknown power loss constants can be found
by investigating the power loss for a general two port excitation. Since the power losses
for an N-port network can be written based on two port excitations, relationships obtained
for a two port excitation can be used to determine parameters for an N-port network.

When feeding a port x and a port y, where X=# Yy, the incident power wave vector and a

general power loss constant matrix can be written as
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Fig. 2. A radiated power calculation example illustrating the non-linear property of the
power loss calculations for the connector in Fig. 1.

-] | (132)

Pconst =

[ r P”} - (13b)

The general power loss in (3) can then be written as

Poss. oy = 1/ 2)a|* + @/ 2)a,|” ~ @/ 2)a, (P, )-@/2)a,|* (P, ) (14)
—(@/2)aza, (PX’y )— (1/2)aa; (Py'X )

where, * denotes the complex conjugate. Elements on the diagonal of the power loss
constant matrix in (4) and (13b) are solved from single port excitations and are purely
real. These diagonal elements can be found when ports are excited one at a time as would
be the case in a traditional S-parameter simulation or a measurement. The diagonal

elements in the power loss constant matrix in (13b) can be found from
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2R
 x =1—7":72Xpy for a, =0,a, =0 (152)
X

—1_ 2|:)Ioss,gxpy

vy for a, =0,a, #0- (15b)

‘ay‘

Off-diagonal elements in the power loss constant matrix in (4) and (13b) are
solved from two port excitations and are complex valued. For the power loss to be purely

real, the power loss constant matrix must satisfy reciprocity with a complex conjugate
transpose, or, [5const]= [ﬁconst]H . This property can be illustrated from the two port power

loss expression in (14) as follows. Consider the last two terms in (14) with the minus sign

factored out as shown in (16).
Pterms, pxpy — (1/ 2)a::ay (Px,y )+ (1/ z)ax a; (Py,X) (16)

If a,=a+jb, a,=c+jd, P, =e+jf ,andP, , =g+ jh, then (16) reduces to

I:)terms, pXpy — (1/ 2)(3— jb)(C + jd )(e+ Jf )+ (1/ 2)(a+ jb)(C - jd )(g + Jh)
=(1/2){(ac+bd e+ g)+(bc—ad ) f —h)} (17)
+ j@/2){(ad —bc)e—g)+(ac+bd ) f +h)}.

For (17)tobereal, P, , = P;y so g =e and h=—f . Equation (17) then reduces to

Perms, ppy = €(@c +bd )+ f(bc—ad) (18)

or, more generally,

Perms.ppy = RE1P.y (Refa, JRefa, j+Imfa, jImia, f) 19
+ Im{nyy}(Im{ax}Re{ay }— Re{ax}lm{ay }) (19)
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It is also observed that the total power loss constant matrix follows [, . ]=[P

SINCE, [Pss const )= [S 1 [5] AN [Bios conec)” :([g]'* [§DH —[s]"[5] as is expected.

The real and imaginary parts of the complex power loss constant P, , in (14) can

const ]

be found from two linearly independent excitations after the real power loss constants,

. and P

,y» have been evaluated from (15). Both the real and imaginary parts of P, ,

satisfy the equation,

[An A, }[ elPry }} :[Bl} (20)
Ay Ay Im{nyy} B,
where,
=Refa, |, 4 {ay o Imia g Im{ay }exd (21a)
= Im{ excl e{ay }exd - Re{a excl m{ay }exd (Zlb)
=Re{ay }, o Re{ay }excz +Imia, },, Im{ay }W (21c)
Im{ exc2 {ay exc2 - Re exc2 Im{ay }exc2 (21d)
1 1 1 1
By = —Ploss. pxpy.exa 5 ‘aX‘ixd 5 ‘ay‘zxd 5 ‘ax‘zxd(PX,x)_E ‘ayEXd(Py,y) (22a)
1 1
BZ _Ploss,pxpy,excz +E‘ax‘623x02 +§‘ y‘excg _E‘ax‘:ch(PX’X)_E‘ayEch(Py’y) (22b)

and excl and exc2 denote two different excitation cases. Two excitations that solve for

the real and imaginary parts of P, directly in frequency-domain simulations are a

common-mode excitation (ay.q =1, ayeq =1) and a phase shifted excitation

(8xexcz = I+ yexee =1)- Using these excitations (20) reduces to

Re{Px,y }: 1- |:’Ioss, pxpy,excl % (Px,x )_%(Py,y ) (233.)
Irn{l:’x,y }: 1- I:’Ioss, pxpy,exc2 E(F’x X )_ 1 (Py,y ) (23b)

2" " 2
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It should be noted that a common-mode excitation (a, =1, a, =1) and a differential-
mode excitation (a, =1, a, =-1) were not chosen to solve for P, in (20) because

these two excitations are not linearly independent in reference to (20). Assuming prior
single port excitations were performed, a common-mode excitation and a differential-
mode excitation will only yield the real part of a complex power loss constant.

Although the preceding analysis is in the frequency-domain, time-domain
simulations may also be used to quantify the power losses at a PCB/connector interface.
In time-domain simulations, only port incident wave magnitudes and time shifts are

defined directly. The phase of an input signal is only defined through the Fourier
transform properties x(t)<> X(f) and x(t—t,)<> X(f )e™/#™ where a phase shift is
defined by 6€=-27ft, [29]. A common-mode excitation can be specified for a time-
domain, two-port excitation when there is no time shift for both excitations. A phase
shifted excitation where the two port excitations are out of phase by 90° cannot be
defined for all frequencies in a time-domain solver, but the only requirement to solve for

P,y Is that the two, two port excitations be linearly independent in (20). An example

choice of two excitation sets for a time-domain simulation is given in (24). Suppose that

excitation one and excitation two are given by

(24a)

8y exa = ‘ax,exd 1 8y exa = ‘ay,excl‘

) 8y excz =8y excz|(COS O+ jsin 6) (24b)

Ay exc2 = ‘ax,excz

where, the phase in a, ., is created from a time delay t,. Applying (24) to (20), the

determinant of [A] in (20) is given by,

det[A] = _‘ax,exclHay,exc‘l.Hax,echHay,ex(;z‘ sin@ (25)

and is zero when @ =-nz where n is a positive integer. It then follows that P, , cannot

be solved in general from the excitations in (24) at discrete frequencies given by
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f =n/(2t0). Thus, the time delay that defined the phase in (24b) must be carefully
chosen so the calculation of P, , can be performed over any frequency band of interest.
For some broadband simulations a third, two-port excitation with a different time delay
than in (24b) may be necessary to calculate P, , at frequencies that are inappropriate for

the excitations in (24).

C. Power Loss Relationships for Total Power Loss, Radiated Power Loss, and Material

Power Loss

RelationShipS among [ﬁoss,const]’ [ls

rad ,const

| and [B

mat,const] in (5)_(7) can also be
derived from a general two port excitation. If a port x and a port y are fed where x =y

and the incident power wave vector is given by (13a), then the matrices for the power

loss constants can be written as,

= Pux Py,
[Ploss ,const ] = PI)XT ; Pliz :| (26a)
~ P P
[Prad ,const ] = PE); Pzz :| (26b)
— P P
[Pmat,const ] = PTX’X me,y j| ' (26C)
L mxy my.y

From (1), (5)-(7), and (26), the diagonal elements in the power loss constant matrices
follow
=1 (273)

- |:)Ix,x + I:>rx,x + me,x

—Pyy +Pyy +Payy =1 (27b)

where a, #0 and a, =0 was applied to find (27a) and a, =0 and a, =0 was applied to

find (27b). Similarly, the real and imaginary parts of the complex power loss constants

are related by
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Re{Py., |+ Re{Pu, j=RelPy, | (28a)

IM{Pry }+ IM{Pryy = IMPy | (28b)
which can be condensed to

P ., +P, (28c)

X,y xy = Pixy-

A common-mode excitation (a, =1, a, =1) was applied to find (28a) and a phase
shifted excitation (a, = j, a, =1) was applied to find (28b). Combining (27) and (28),

the power loss constant matrices are related generally for an N-port connector by

I:Igloss ,const ] = [Israd ,const ]+ [Ismat,const ]_ [r] (29)

D. A Multi-signal Power Loss Quantification Example

A series of full-wave time-domain simulations were performed with the connector
shown in Fig. 1. The simulations were designed so the power losses may be characterized
when the two longest pairs in slice A of the second wafer were fed and all other ports
were matched. A far-field monitor was defined in CST Microwave Studio so the radiated
power could be calculated from the fields on the bounding box of the calculation domain.
An S-parameter simulation was first performed to characterize the total power loss, and a
full S-parameter matrix containing information about all 96 ports in the connector was
obtained. In addition, the single port excitation radiated powers were calculated and
recorded during the S-parameter simulation. Next, custom simulations were performed
where two port combinations of the feed ports for the differential pairs under study were
excited. Common-mode and time-delay excitations as indicated in (24a) and (24b),
respectively, were performed to facilitate the calculation of the real and imaginary parts
of the complex radiated power loss constants. The time-delay excitation used a 45 ps

delay to optimize the calculation of the complex radiated power loss constants over 1
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GHz — 10 GHz. The S-parameters and the radiated power data for all the excitations were
post-processed using (15), (20), and (29) to calculate the total power loss constant matrix,
the radiated power loss constant matrix, and the material power loss constant matrix.

To validate the proposed power loss calculation method, the radiated power loss
and the material power loss were evaluated for a random excitation where both signal
pairs were fed. A full-wave simulation was performed to calculate the radiated power
directly from the fields on the bounding box of the calculation domain. The non-zero port

excitations are given by

a, | [1.672—24f (18e—12)

43 0.44/ —27f (3e —12) |, (30)

(B ]= au | | 0.512 — 24 (34e —12)

a4 | |1.112 —24f (23e -12)

where, f is frequency in Hz, port 41 and port 43 are the feed ports for the shorter
differential pair, and port 45 and port 47 are the feed ports for the longer differential pair.
In this example the shortest signal conductor was excited by port 41 and the longest
signal conductor was excited by port 47. The phases of the input excitations in (30) are
defined according to the signal time delays indicated in parentheses. It should be noted
that a partial incident wave vector is defined in (30). All other incident power waves not
listed in (30) were zero since all other ports were matched. A comparison of the radiated
power loss, the material power loss, and the total power loss for the excitation in (30) are
shown in Fig. 3 using (5)-(7). It can be seen that the total power loss is dominated by the
material losses as has been previously reported in [7], [8]. The radiated power calculated
directly from the fields for the excitation in (30) is also shown in Fig. 3. The maximum
deviation between the radiated power calculated from (6) and the direct calculation of the
fields is 0.05 dB. An additional simulation was also performed with the excitation in (30)
where power loss monitors were defined so the material power losses could be calculated
directly from the fields in the lossy media. A comparison of the material power loss using
the total power loss and the radiated power loss in (29) and the direct calculation is
shown in Fig. 4. In the worst case the material power loss calculation differs by 0.2 dB or
3.8 %.
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Fig. 3. Comparison of the total power loss, material power loss, and the radiated power
loss for the random excitation in (30).
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Fig. 4. Comparison of the material power loss calculations for the random excitation in
(30).
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E. Radiated Power Characterization with Reverberation Chamber Measurements

Although the focus of this paper is to develop a simulation method for power loss
characterization at PCB/connector interfaces using full-wave simulations, the presented
theory also applies to measurements. A series of reverberation chamber measurements
were performed on the connector shown in Fig. 6(a) of [7] and Fig. 6 of [8]. The radiated
power was characterized for the 3rd differential pair (from shortest to longest) in slice A
of the middle wafer. The ports on the other end of the fed differential pair were
terminated in matched loads and all other ports were left open. Five continuous wave
radiated power measurements were performed in the reverberation chamber to quantify
the radiated power loss constants. The characterization measurements consisted of two
single-ended excitations, a common-mode excitation using a resistive power splitter with
two connecting cables approximately the same length, and two phase shifted excitations
that used a resistive power splitter and phase shifters. The phase shifted excitations
utilized phase shifters to make the phase difference between the incident power wave
excitations 90° near 6 GHz and 13 GHz in the two measurements. Two phase shifted
measurements were required to quantify the complex power loss constant due to the large
frequency range of the measurement (1-18 GHz). A 20 dB attenuator was connected to
each excited port in all of the measurements to minimize multiple wave reflections in the
measurements. The insertion loss and the phase progression of the cabling, power splitter,
phase shifters, and attenuator chains were measured to facilitate proper calculation of the
incident power waves at the PCB/connector ports. The data from the five radiated power
measurements was used to calculate the radiated power loss constants when incident
power waves were present at the fed differential pair. To validate the radiated power
constant matrix calculation, a 6th radiated power measurement was performed. This
additional measurement consisted of a two port excitation generated from a resistive
power splitter and two unequal length cables. The difference in incident wave unwrapped
phases varied from 31° to 541° over the measured frequency range. The radiated power
was calculated using the radiated power loss constants and compared to the measurement
with 0 dBm input power to the power splitter as shown in Fig. 5. The measured and
calculated results agree to within fractions of a decibel over most of the frequency range

and within a few decibels in the worst case near 2.5 GHz.
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Fig. 5. Comparison of a measured and calculated radiated power loss for a continuous
wave common-mode excitation with unequal cable lengths.

I1l. PRACTICAL ISSUES ARISING FROM SOLVING FOR THE POWER L0OSS CONSTANT

MATRICES

A. Computational Considerations in Solving for the Material and Radiated Power

Losses

Power losses in a connector with known incident power waves can be evaluated
once the power loss constant matrices are calculated from the methods presented in
Section II. The total power loss constants can be calculated from S-parameters obtained
through a traditional S-parameter simulation as in (8). The radiated power constants and
the material power loss constants can be calculated with output data from full-wave
simulations when appropriate field monitors are defined and the correct port excitations
applied. Radiated power can be calculated using the fields at the PML boundaries
enclosing a PCB/connector structure with data post-processing. Material power losses
can also be calculated from the fields inside the lossy materials. In general, it is more
desirable to solve for the total power loss constant matrix and only one of the remaining
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power loss constant matrices directly. Solving for all of the power loss constants directly
with field information is potentially computationally intensive as well as computer
memory intensive. Equation (29) can be used to find unknown power loss constants when
two of the three power loss constant matrices are known.

Choosing to solve for either the radiated power loss constant matrix or the
material power loss constant matrix directly from the fields is critical for large scale
models. Finding the material power loss constants directly has the advantage that only
single port excitation simulations are needed. The complex material loss constants can be
evaluated from common-mode and phase shifted excitations defined with post-processing
steps. One disadvantage of using (29) to calculate the radiated power loss constants is
that the radiated power is only evaluated at relatively few frequency points as defined by
the number of material power loss monitors in the simulation. In addition, each single
port excitation requires a tremendous amount of hard drive space for practical connector
models since the fields are saved everywhere in the computational domain.

An alternate simulation strategy is to solve for the radiated power loss constants
directly with field information. This method has the advantage that the radiated power,
which is often the desired quantity of interest, is found directly and can be defined with
many frequency points. A moderate amount of hard drive space is required for practical
connector models when compared to simulations calculating the material loss constants
directly. Only field information on the bounding box of the computational domain must
be saved for the radiated power calculation. Additional radiated powers for common-
mode and phase shifted excitations can be calculated as post-processing steps from the
single port simulations. Solving for the radiated power loss constants directly in many
cases is the only practical choice to find the power loss constants due to hard drive space

limitations and is preferred.

B. Computational Reduction Methods with Known Input Signaling and Worst Case

Analysis

Although relatively little can be done to reduce computational model size to
achieve accurate power loss characterization, the total number of simulations required to

characterize power losses can be reduced with some input signaling assumptions and
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using worst case analysis. If the input signaling and terminations at a PCB/connector
interface are known a priori to quantifying the power losses, then it is feasible that full
power loss constant matrices are not needed to fully quantify the power losses. More
specifically, power loss constants involving ports that do not have incident power waves
do not need to be calculated since there are no power loss contributions from these port
excitations. The total number of excitations required to fill the entire power loss constant

matrices, assuming only two excitations are needed to solve for each unique complex loss

constant, is N2. If the entire power loss constant matrices are known, then the power
losses may be quantified where incident power waves are present at all ports.
Realistically, incident power waves may not be present at all ports since simultaneous,
bidirectional transmission is not used with link protocols at present. In the worst case
only half of a PCB/connector interface contains incident power waves due to signaling
sources. It is possible for designated receive ports to have non-zero incident power waves
caused by port termination mismatches; however, if all the receive ports are terminated

with matched loads, then the minimum total number of excitations to fully characterize

the power losses is reduced to N?—2N. Further simulation reductions may also be
realized if some of the signal lines are not used and if fixed transmit and receive port
assignments are also implemented.

Worst case analysis can also reduce the total number of simulations required to
characterize power losses and is useful when input signaling and termination information
does not sufficiently reduce the total number of simulations. This type of analysis is an
inexact method to characterize power losses within a connector and is less preferred over
using input signaling and termination information to reduce the total number of
simulations. In the worst case it is assumed that the incident power waves are configured
for maximum total power loss, and the total power loss is solely due to radiated power
loss. The radiated power loss in (6) can be modified to include worst case analysis and is

written as,

I:)rad Jtotal = (1/ 2)[§]H [5]_ (1/ 2)[5]H [ﬁgzjo,ccjonst Ia]_ (1/ Z)HE‘]T [5rad,const,wc ]]é‘] (31)
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where, T is a non-conjugate transpose, [gmed | is the modified radiated power loss

constant matrix, and [, .. v | iS the worst case power loss constant matrix. [gmed | is

rad ,const

equivalent in form to (4) except zeroes are in place of the off-diagonal elements chosen

for worst case analysis. The diagonal of [ contains zeroes, and only the port

rad const, WC]
combinations chosen for worst case analysis are non-zero. If, for example, all port
combinations are chosen for worst case analysis, the modified radiated power loss

constant matrix and the worst case power loss constant matrix are

Pu O - 0
Bzt |- ? ::' ? (2
rwclz Prwcl,n
Bras cone J=| | " Fruczn (33)
Prcin Puczn O
Pacrz = —(Re{P. ) +[1m{Py, ) (34a)
Prcin = —(RetPiu, | +[1Im{Ry, ) (34b)
Pocon = —(Re{Pion |+ 1m0 ) (34c)

where, the B values in (34) are total power loss constants defined in (8).

The worst case radiated power constants in (33) are derived from the fundamental
two port example given in (14). The last two terms in (14), which are expanded in (19),
are the only terms that can cause variations in the power loss due to signal phase. In the
worst case, it is assumed that these terms constructively add. If the incident power waves

and the complex power loss constant are written in rectangular format where,

a, =|a,|cos 6, + jla,|sin &, (35a)
a, = ‘ay‘cos o, + j‘ay‘sin 0, (35b)

Py =RelP., f+ iIm{P,, |, (35¢)
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then (19) becomes

P

erms, pxpy

EM Re{PX'y }(cos 0, cos O, +sin 6, sin O, )+\aX \ ay‘ Im{PX'y }(sin 0, cos 6, —cos 0, sin Hy)

ay

Pterms, pxpy — (36)

la,| ay‘[Re{nyy }cos(@x —Hy)+ Im{PX'y }:sin(é?X -0, )1

In the worst case (36) becomes
min {Pterms, pxpy } ~ —|a, Hay WRe{Px,y }{ + ‘Im{PX'y H) (37)

and, (14) reduces to

Puoss,may = (17 2)a,|* + 1/ 2)a,|* - @/ 2)a, [* (P, ) (38)

—@2)a,| (P, )+ lafay (R, | +1m{P,, })

Equation (31) is derived from (38) for the N-port case.

Port combinations must be carefully chosen for worst case analysis so the radiated
power is not largely over-predicted. The port combinations suitable for worst case
analysis are those where the total power loss contribution by signal phase, in the worst
case, is negligible compared to the radiated power loss contributions from single port
excitations. Some details of the worst case analysis are readily illustrated with a
fundamental two port example. Assume the full total power loss constant matrix is known
and only the diagonal elements in the radiated power loss constant matrix are known. In

the worst case, the radiated power loss can be written from (38) as,

Prad wo.pepy ~ (17 2)a > + (11 2jay\2 — 2{\ax\2(Prx’X)+‘ay‘2(Pry’y)j[l—terml] (39a)

_2a,a,[[RefPy |+ ImiPry }) (39)

terml
‘aX‘Z (Prx,x )+ ‘ay‘z(Pry,y)
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where the incident power waves are assumed to be non-zero. Since the complex radiated

power loss constant, P, is unknown, in the worst case the complex total power loss

rx,y

constant can be used where

Prad e prpy = (1 2) 2| +(1/2]ay\2 —(1/2{\ax\2(PrX’X)+‘ay‘z(P,yyy))[l—term 2] (40a)

_ 2la, [ay|(RefRy., |+ [1mfR,., ]) (40b)
\aX\Z(PrX'X )+ ‘ay‘z(Pry'y)

term?2

as indicated in (31). If |ax| z‘ay‘, then (40) reduces to

Prad. proy = [2x|° =1/ 2)a,|* (P x + Py, J1—term 2] (41a)
term2 = ZQRE{EX’V }‘:le{P'x’y }‘) (41b)
X, X ry,y

If term2~0 in (41b), this also implies that term1~0 under the same assumptions since
term2>terml. The condition term2~0 indicates that the two port combination is
relatively uncoupled and suitable for worst case analysis since the coupling between ports
is negligible even in the worst case. If term2=0, then the worst case analysis could
significantly over-predict the radiated power. In this case it is advisable to perform the
additional simulations to find the complex radiated power loss constant for the two port
combination.

A similar analysis as the fundamental two port example may also be applied to an
N-port PCB/connector structure to find suitable port combinations for worst case
analysis. If all two port combinations are chosen for worst case analysis and the radiated

power loss constant matrix is fully known, (31) can be alternatively written as

Prad we ~ (1/ 2)[§]H [5]_ (1/ Z)é‘ak ‘2 F)rk,k + ':Z? gk:‘lak Ham ‘QRe{Prk,m }‘ + ‘ Im{F)rk,m }‘) (42)

=1m=k+
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and represents a deterministic, maximum radiated power estimate independent of input
signal phase. If the full total power loss constant matrix and the diagonal elements in the
radiated power loss constant matrix are only known, as would be the case after a
traditional S-parameter simulation, (42) can be rewritten with the complex total power

loss constants as suggested in (31) as

N N-1 N
I:)rad,wc ~ (1/ 2)[§]H [5]_(1/ Z)Ig:l‘ak‘z F)rk,k + E %‘?k“ammRe{Hk,mH+‘Im{Plk,m }D (43)
If |ay|~|a,|~---~|ay|, as could be the case with traditional data traffic in a connector

with the same logic levels, then (43) can be written as

Prag e ~ (N/2)ay] —(1/2}a12[§: Pk )[1—term 3] (44a)
k=1
N-1 N
2 Re{p, Im{p,
term3= kzzlmzzkﬂQ ei Ik’mH—F‘ m{ tom }D (44b)
Zprk,k
k=1

In the unlikely event that term3~0 in (44b), all two port combinations are suitable for
worst case analysis since the coupling between ports is negligible even in the worst case.
Otherwise, additional data analysis is needed with the numerator terms in (44b) to find
select two port combinations suitable for worst case analysis. A matrix can be formulated

from the values in (44b) by

ZQRG{Plk,mH“L“m{Plk,m }D (45)

term 3matrix(k’ m): N
Z Prh,h
h=1

where k =m, and the indices k and m only take on values in the upper triangular part of
an NxN matrix. The upper triangular values in (45) can be concatenated into a vector

named term3,,., of length 0.5N(N —1). The values in term3,,,, should be sorted from
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smallest to largest while keeping track of the port excitation combinations. The

contributions of successive worst case analyses can then be defined by

WCont (K) = itermSV%t(m) 1<k <0.5N(N —1)- (46)

m=1

The port combinations eligible for worst case analysis can be found by using a search
function with (46) to find the first index where the worst case analysis contribution is
greater than a user specified limit. All port combinations associated with the power losses

prior to the search result index can be used for worst case analysis.

IV. CONCLUSION

A method is proposed to quantify the power losses at a high-density
PCB/connector interface. This method is based on network parameters and the
conservation of power and can quantify power losses when material losses and multiple
signals are present. The power losses are characterized through the definition of power
loss constant matrices which are derived from well-designed single port and two port
excitations for an N-port connector. Once found, the power loss constant matrices enable
the evaluation of the radiated power loss, the material power loss, and the total power
loss in a system with variable input signaling. This power loss characterization method
allows designers to evaluate connector performance from EMI and signal integrity
perspectives, as well as answer common design questions. The proposed method enables
the evaluation of connector design modifications such as shielding, absorbing materials,
and signal pin assignments and their relative effects on connector radiation. It also allows
the direct evaluation of power losses in the frequency-domain which is not readily
available when using a time-domain solver. Although the focus of this paper is the
characterization of radiated power using simulations, the presented theory also applies to
measurements as was shown in a reverberation chamber validation example. Despite
using known input signaling information and worst case analysis, significant challenges
remain to find full power loss constant matrices for large connectors with measurements

due to the large number of measurements required. Future work includes the
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development of a statistical radiated power limit for high-density PCB/connector

interfaces using the power loss constant matrices.
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Abstract—A method to statistically estimate radiated emissions from high-density
connectors is presented in this paper. The statistical formulations are based on the
radiated power quantification method using power loss constant matrices and statistical
bounding methods. Statistical limits for the maximum radiated power are proposed based
on the Markov and Chebyshev inequalities where only low probability events are
expected to exceed the limits in the worst case. The magnitude power spectra of the input
signals to the connector are assumed to be known. The phases of the input signals are
assumed to be independent uniformly distributed random variables. Incident power
waves at the connector ports are defined as a function of the input power waves from the
sources through a port connectivity matrix. Maximum radiated power limits are proposed
that depend on the level of known information in the radiated power loss constant matrix.
Simulations and measurements are presented that validate the proposed statistical

maximum radiated power estimates.

Index Terms—Connectors, electromagnetic radiation, estimation, printed circuit

board connectors, radiated power, scattering parameters, statistical analysis

I. INTRODUCTION

Electromagnetic radiation from printed circuit board (PCB) connectors is
becoming a significant concern for industry as data rates increase. In the past, connectors
alone were ineffective radiators since they were electrically small. These PCB connectors
were often a part of a much larger unintentionally radiating structure consisting of PCBs,
cables, or enclosures [1]-[4]. The connectors often facilitated the voltage difference
between the two larger metallic structures through an inductive mechanism. With

increasing data rates, however, PCB connectors have become electrically large and the
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connectors themselves have been shown to radiate effectively and, in some cases, to be
the dominant radiators [5]-[9].

Radiation from connectors has been extensively studied in literature, though a
majority of the literature focuses on cases where the connectors are electrically small.
Many of the radiation studies are based on the current and voltage driven models in [2].
Additional efforts to quantify radiation from connectors have included finite-difference
time-domain simulations [10]-[13], common mode current measurements [10]-[11], [13],
electromagnetic fields measurements [13]-[14], transfer impedance measurements [15]-
[16], and connector inductance measurements and calculations [17]-[18]. More recent
efforts have focused on modeling connector radiation when connectors are electrically
large [5]-[9].

In [9], a method was presented to quantify the radiated power from a high-density
PCB/connector structure with material losses and multiple input signals. The method
predicts PCB connector radiated power when input signals are known. Although
deterministic evaluation is beneficial, in many cases the input signal characteristics are
not known precisely and can be modeled as random variables. A statistical analysis can
address this issue and can be formulated from the theory presented in [9]. The purpose of
this paper is to expand on the foundations of [9] by developing statistical estimates of the
maximum radiated power to quantify connector radiation performance. A review of the
power loss calculations using power loss constant matrices is presented in Section Il. The
constraints for the defined statistical problem and bounding methods for power loss are
discussed in Section Ill. Simulation and measurement results are provided in Section IV
to validate the radiated power loss bounds defined in Section Ill. Conclusions are given
in Section V.

Il. POWER L0sS CALCULATIONS

A method to characterize power losses at a PCB/connector interface was
presented in [9] using power loss constant matrices. This method is based on network
parameters and the conservation of power and can be used to characterize any of the
power losses (radiation, material, or total power loss). The general power loss equation is
defined as [9]
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Ploss,gen = (1/ 2)[§]H [E]_(]'/ 2)[§]H [ﬁconst IE] (1)

where [5] represents the inputs to the connector as an incident power wave vector with

units of +/Watt and is based on generalized scattering parameters [19], H denotes the

complex conjugate transpose, and [|5C ] is a frequency dependent power loss constant

onst

matrix defined by

I_PconstJ:
Pl,l P1,2 oo F)ZI., n Pl,l P1,2 Tt Pl, n (2)
P2,l P2,2 P2,n _ Pl,Z P2,2 P2,n
Pn,l Pn,z Pn,n Pl*n szn Pn,n

From (1), the total power 10ss, P o » the total radiated power, P, and the total

material 10ss, Py (o » CaN be written as [9]

F)Ioss,total = (1/ 2)[5]H [ﬁ]—(l/ 2)[§]H [lsloss,const Iﬁ] (3)
Prad total = (1/ 2)[§]H [é]_(ll 2)[5]H [lsrad ,const IE] (4)
Pratgoan = 1/ 2)a]" [a]- @/ 2)a]" [Prascons Ja 1 5)

The total power loss constant matrix can be found from single-ended network parameters

using

[Possconst )= [S1[5 ] (6)

whereas, the radiated power constant matrix, [p,

ad ,const

], and the material loss constant

matrix, [|5'

mat,const

], must be found from single- and two-port excitations. The diagonal
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elementsin [5, ...] and [, ... | @re found from the single port excitations and the off-

diagonal elements are found from the two-port common-mode and phase shifted

excitations. [P, ... ] and ] can be found through simulations or measurements as

ad ,const [Pmat,const

shown in [9].

I1l. DERIVATIONS ON A STATISTICAL RADIATED POWER ESTIMATE

One of the many benefits of the power loss characterization in (3)-(5) is the ability
to quantify power losses in a PCB/connector structure when the incident power waves
(the inputs) to the structure are known. Radiated power can be used to quantify PCB
connector electromagnetic interference (EMI) performance. The radiated power
formulation in (4) can be used to evaluate the radiated power deterministically or
statistically. A statistical analysis of connector radiated power is of interest in this paper
for a few reasons. First, the input excitations may not be fully known. In many cases the
magnitude spectrum of the input signals will be known, but the phase spectrum will not.
Uncertainties in the transmission line lengths from the sources to the PCB/connector
structure interface as well as unknown relative timing characteristics of the sources can
lead to an unknown phase spectrum. Another practical issue is that the radiated power
loss constant matrix will often be incomplete for large connectors. Large connectors can
contain as many as 10’s or 100’s of signal lines and the number of simulations or
measurements required to find the entire radiated power loss constant matrix may not be
feasible. For example, the total number of excitations required to fill the entire power loss

constant matrix, assuming only two excitations are needed to solve for each unique

complex loss constant, is n?

, Where n is the number of ports defined at the
PCB/connector interface. A worst case analysis can reduce the required number of
excitations, however, these reductions alone are often not enough to make the calculation
practical. A statistical evaluation of the radiated power can address these issues by
utilizing limited radiated power loss constant information to predict a statistical estimate
for the maximum radiated power in a systematic manner.

A statistical radiated power estimate can be derived from the general power loss

equation in (1) with some slight modifications as will be shown. Because all of the power
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losses can be written in the same general form, the resulting formulas can be easily
modified to describe the statistics for any of the power loss mechanisms. In the proposed
statistical problem, the magnitude spectrum of all the incident power waves from the
sources is assumed to be known and deterministic. The path lengths from the sources
driving the PCB connector and the start-times of each incident signal from the sources are
assumed to be unknown so that the phase of the incident signals are random variables
(RVs) that are independent and uniformly distributed on [-r,~) assuming phase
wrapping. In an actual PCB connector, the incident power waves at the connector ports
may not be independent from one another. For instance, a differential connector driven
with differential transmitters will have incident wave dependencies on the positive and
negative nets for each differential pair. Ideally, the positive and negative nets contain the
same signal but with a phase difference of z radians. In addition, incident power wave
dependencies may also exist when port terminations are not perfectly matched. Thus, a
distinction must be made between incident waves at the connector ports and incident
waves from independent sources. Known incident wave dependencies at the connector
ports can be addressed in the proposed statistical problem by defining a port connectivity
matrix that correlates the independent incident waves at the sources to the incident waves

at the connector ports. The port connectivity matrix is defined by
a]=[CJal (7)

where, [GJ is the port connectivity matrix, [z,] is the independent incident power wave
vector from the sources, and [z, ] is the incident power wave vector at the connector. The
length of [a,] is greater than [z,] when differential signals are present, and [C] can be

built so that differential signals will have equal magnitude and opposite phase. The

general power loss equation in (1) can be rewritten using (7) as

Pl gen = 11 203 1" 8]~ @/ 2)a. " [Poons 2. ] @®)

—@2)a 'l Elal-w2al €] Pos Cla]
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The incident power wave vector used for the statistical problem can then be

written as
[ﬁi]=ﬂa1\4®1 ‘az‘é(az ‘anM@n]T (9)

where T is the non-conjugate transpose and ®, is the phase RV for the nth incident

wave. The probability density function (pdf) for the uniform RV ®, is given by [20]

0 else.

1
f@)n(gn):{Zﬂ' TEEb <7 (10)

Since all of the incident wave phases are statistically independent, the joint pdf is a
multiplication of the individual RV pdfs [20]. The joint pdf is given by

1 n
f®1v®2:"'y®n(91'02"“'9n): (2”) _ﬂ§61’921”'19n <7 (11)
0 else.

The power loss in (8) is a function of n phase RVs. The cumulative distribution
function (cdf) of the power loss can be found from (8) and (11) through integration, but
the calculation is difficult due to the multi-dimensional nature of the statistical problem.
Rather than evaluate the cdf of the power loss directly, statistical bounding methods can
be used to formulate a maximum bound for the radiated power. Two common statistical
bounding methods use the Markov inequality and the Chebyshev inequality, shown in
(12) and (13) respectively [20]:

P[X > ,]< X (12)
¥

2
P[—7+uxSX£y+ux]21—%' (13)
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Both inequalities apply to non-negative RVs (X), regardless of their distribution. The

expected value or mean of the RV is denoted by u, , and the variance of the RV is

denoted by af(. The scalar y defines the statistical bound. In general, the Chebyshev
inequality provides a tighter bound for RVs than the Markov inequality since the
Chebyshev inequality uses the variance of the RV in addition to the mean. One possible

bound for the Markov inequality is where y»=10x, . For this bound, the Markov

inequality states the probability the RV X will be larger than or equal to 10z is less
than or equal to 10%. Another bound can be defined from the Chebyshev inequality
where y =30 . The Chebyshev inequality states the probability the RV is within three
standard deviations about the mean is greater than or equal to 89%. In the worst case, the
remaining 11% could occur above the u, +3oy limit curve.

Evaluating statistical bounds for the power loss based on (12)-(13) requires
knowledge about the mean and variance of the power loss. The power loss mean and
variance can be derived from the general power loss equation in (8) and with the
constraints defined for the statistical problem. It can be shown that the power loss mean

and variance are given by

/uloss,gen = %[ai ]H [éprod,diag Iai ]_ % [ﬁi ]H [édiag Iai ] (14)
O-I%Jss,gen = %néi ‘2 ]T ([éprod ,offdiag Zjl + |:60ﬂdiag 2:| (15)

- 2[-Cyprod Joffdiag ]O [éoﬁdiag ]r )ﬂai ‘2]
[éprod ]: [G]H [6]: [éprod ,diag ]+ [éprod,offdiag ] (16)

[QI=[CT [Pront IC]= [Quieg [+ [Qoterng | (17)

The subscript diag and offdiag indicate matrices that contain nonzero diagonal elements
only or nonzero off-diagonal elements only, respectively. The symbol o denotes the
Hadamard product or matrix element-wise multiplication operator. Equations (14)-(15)
can be used to evaluate the mean and variance for any of the power losses (radiation,

material, or total) when using the correct power loss constant matrix. A few important



132

observations can be made about the mean and variance in (14)-(15). First, the mean of the
power loss is a function of diagonal elements in the power loss constant matrix only
when the connectivity matrix is an identity matrix. In many practical cases the diagonal
power loss constants will be known, since these values are relatively easy to calculate
through single-port simulations or measurements, and the mean can be calculated.
Second, the power loss variance is a function of the off-diagonal elements of the power
loss constant matrix, which can only be determined through a series of two-port
excitations. If the two port excitations are not performed, the variance of the radiated
power loss and the material power loss cannot be found.

A worst case estimate for the maximum variance of radiated power loss can be
formulated, however, from relationships between the power loss means and variances.
The total power loss at a PCB/connector interface can be written as a summation of

radiated power loss and material power loss as

(18)

Ploss,total = F)rad total Tt Pmat,total '

From (14), (15), and (18), the mean and the variances for the power losses are related as

Hioss = HMrad T Hmat (19)

O-I?)ss = O-rzad + Gr%at + %([gi ]H [ﬁrad ,diag Igi ]X[ai ]H [ﬁmat,diag Iai ]) (20)
+ % hgi ‘2 ]T ([ﬁrad,offdiag ]O [ﬁmat,offdiag ]r ]héi ‘2 ]_ 2/lrad Hmat

[ﬁ]: léprod J_ léj: [ﬁdiag ]+ [ﬁoﬁdiag ] (21)

where, the radiated power mean and material power loss mean are given by g4 and

Umat » TESpectively. The radiated power and material power loss variance are represented

by o2, and o2, respectively. From (20):



133

O-rzad = GI%SS - Gr%at + 2/—lrad Hmat — E ([7i rad ,diag Ia ]X[a mat dlag ]) (22)

_ % ngi ‘2 ]T ([ﬁ,ad Joffdiag ]° [ﬁmat,oﬁdiag ]r )nai ‘2]

Assuming (1/2)ﬂa\ H[ " oﬂdlag] [Rmatoffdlag )ﬁgi‘z] is non-negative, a worst case estimate

of the radiated power variance is

Grzad,wc = GI%)SS + 2/urad Hmar — ([a rad ,diag Ia ]X[a ] [Rmat diag Ia ) (23)

This estimate can be used when only the diagonal elements in the radiated power loss

constant matrix are known, and the port connectivity matrix is an identity matrix.

IV. VALIDATION

The connector model shown in Fig. 1 of [9] and shown in Fig. 1 of this paper was
used to validate the derived statistics on the power losses. This full-wave connector
model was created in CST Microwave Studio for a commercially available connector
designed for differential signaling. Additional details about the connector model and the
generation process are given in [7]-[9]. A series of full-wave time-domain simulations
were performed to characterize the power losses for all the pairs in slice A of the second
wafer. The radiated power loss constant matrix was calculated so that the radiated power
can be found when feeding any of the pairs in slice A of the second wafer. A full S-
parameter matrix containing information about all 96 ports in the connector was also
obtained. To verify the radiated power loss constant matrix was calculated correctly, the
radiated power loss was evaluated for a random excitation of all pairs in slice A of the
second wafer and the radiated power loss found using (4) was compared to the value

found through a full-wave simulation. The nonzero port excitations were given by
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Fig. 1. Full-wave connector model used to validate statistical estimates for maximum
radiated power. Radiated powers for all the differential pairs in Slice A of the middle
wafer as shown were characterized in the simulation model.

ag | [1.90/ —24f (7e—-12)
ags 0.46£ —2f (6e —12)
ag; 1.21/ —24f (8e —12)
A, ]- ag | _|0.972 24 (11e-12)
i a, | [1.782—24f (15e —12)
a3 1.52/ -2 (2e -12)
A | |0.912 24 (17 -12)
as;; | |0.344 24 (11e—-12)|

(24)

where, f is frequency in Hz, and the port numbers are indicated by the subscripts in the
partial incident power wave vector. The shortest signal conductor was excited by port 33,
and the longest signal conductor was excited by port 47. The phases of the input
excitations in (24) are defined according to the signal time delays indicated in
parentheses. It should be noted that (24) does not represent the full incident power wave
vector. All other incident power waves were zero since all other ports were matched. A
comparison of the radiated power loss, the material power loss, and the total power loss
for the excitation in (24) are shown in Fig. 2 using (3)-(5). The maximum deviation
between the radiated power calculated from (4) and the direct calculation of the fields is
0.03 dB. Fig. 2 shows that the radiated power calculated from the radiated power loss

constant matrix is equivalent to the direct fields calculation.
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Fig. 2. Comparison of the total power loss, material power loss, and the radiated power
loss for the random excitation in (24).

A. Simulation with Impulse Excitations

Statistical simulations were performed with the characterized connector model in
Fig. 1 to validate (14)-(15), (19)-(20), and (23). A series of 1,000 statistical trials per
frequency were performed and the radiated power calculated with the general power loss
equation in (8). All odd ports between ports 33-47 were fed with 0.5 W over the entire
frequency range (an impulse excitation) where the excitation phases were independently
generated with a uniform distribution on [- 7, ). In the first set of simulations, the port
connectivity matrix was assigned to be an identity matrix, which corresponds to
independent, single-ended (SE) signaling. The mean and the variance of the radiated
power were calculated from the statistical trials and compared to the mean and variance
calculated from (14)-(15). The maximum difference between the means and the standard
deviations were 0.12 dB and 0.36 dB, respectively. A worst case radiated power variance
was also calculated from (23). Fig. 3 shows the mean and standard deviations derived
from (14)-(15) and (23). The average difference between the radiated power standard

deviation from (15) and the worst case standard deviation from (23) is 6.18 dB. The term
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in (22) containing [ﬁrad offdiag ] and [ﬁmatvoﬁdiag] was confirmed to be positive as assumed

in the worst case radiated power variance formulation. The mean and standard deviation
of the radiated power were also calculated with randomly generated connectivity matrices
with similar agreement.

Maximum radiated power bounds were generated with the Markov and
Chebyshev inequalities in (12)-(13) using the radiated power mean and variances from
(14)-(15), and (23). The maximum radiated power limit curve derived from the Markov

inequality was defined as P nax =104, . TWo limit curves were defined using the

Chebyshev inequality. The first Chebyshev radiated power limit curve was defined as

P

vad max = Mrag +305q - The second limit curve, denoted as the worst case Chebyshev

limit, was defined as P, = Hyaq +30 0 we - 1he Markov, Chebyshev, and worst case

ad,max
Chebyshev limit curves were evaluated using the impulse excitation conditions defined
previously. Fig. 4 provides a comparison of all these radiated power limit curves with
respect to a radiated power limit curve derived from statistical trials. A limit curve where
the radiated power was below the curve 89% of the time was found from the statistical
trials. Both the Markov and Chebyshev limit curves overpredict the 89% trial curve
because the Markov and Chebyshev inequalities predict RV bounds for any distribution
of a non-negative RV [20]. It can be seen that the Chebyshev limit curve differs from the
statistical trial 89% curve by only a couple decibels over most of the frequency range.
When the Chebyshev limit cannot be calculated, a limit curve can be defined on a
frequency by frequency basis by taking the minimum of the Markov and worst case
Chebyshev limits. In Fig. 4, the worst-case limit would be defined by the Markov limit
below 3 GHz and by the worst case Chebyshev limit above 3 GHz.

Another set of 1,000 statistical trials per frequency were performed to understand
how the radiated power limit curves perform when the port connectivity matrix defines
independent, differential-mode (DM) signaling. The port connectivity matrix was defined
so that each differential pair shared a single independent incident wave source for all odd
ports between ports 33-47. The positive and negative nets were defined to be out of phase
by 7 radians in the connectivity matrix. Each port was fed with 0.5 W over the entire

frequency range, and the independent, incident wave excitation phases were generated
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Fig. 3. Comparison of the radiated power mean, standard deviation, and worst case
standard deviation for an impulse excitation and a single-ended signaling port
connectivity matrix.
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Fig. 4. Comparison of the maximum radiated power limit curves for an impulse
excitation and single-ended signaling port connectivity matrix.
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with a uniform distribution on [~ z, z). The layout of the port connectivity matrix can be

illustrated with an example. For a four port network where ports 1 and 3 and ports 2 and
4 share the same independent incident power wave sources, the connectivity matrix

would be defined as

1 0
o 1]l (25)
-7,

0o -1

The mean and the variance of the radiated power were calculated from the statistical trials
and compared to the mean and variance calculated from (14)-(15). The maximum
difference between the means and the standard deviations were 0.08 dB and 0.15 dB,
respectively. A worst case radiated power variance was also calculated from (23). The
Markov, Chebyshev, and worst case Chebyshev limit curves were evaluated using the
impulse excitation conditions defined previously. Fig. 5 shows a comparison of all these
radiated power limit curves with respect to a radiated power limit curve derived from
statistical trials. In general, the worst case Chebyshev limit is smaller than the Markov
limit over most of the frequency range in Fig. 5. The radiated power limit curves are
smaller for the DM signaling case than the SE signaling case as seen when comparing
Fig. 4 with Fig. 5.

Additional radiated power limit curves were formulated from the minimum of the
Markov and worst case Chebyshev limits for the SE and DM signaling cases. These limit
curves are compared to two unique trial excitations in Fig. 6. A SE trial excitation was
formulated where the ports were fed with 0.5 W, and all the incident power waves had a
zero degree phase. A DM trial excitation was generated where the ports were fed with 0.5
W, and the incident power waves were out of phase by 7z radians for each differential
pair. All excited differential pairs were fed with the same differential excitation with no
phase difference between the pairs. The SE excitation differs from the SE limit curve
from 1.10 dB to 10.03 dB, and the DM excitation differs from the DM limit curve from
1.64 dB to 9.34 dB as seen in Fig. 6. One important point about the formulation of the

DM limit curve is that the DM signaling connectivity matrix requires some off-diagonal
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Comparison of the maximum radiated power limit curves for an impulse
excitation and a differential-mode signaling port connectivity matrix.
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Fig. 6. Comparison of the spliced Markov and worst case Chebyshev limit curves using a
single-ended signaling port connectivity matrix and a differential-mode signaling port
connectivity matrix for impulse excitations. The SE and DM excitations represent cases
where the independent incident waves are in phase with one another.
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elements in the radiated power loss constant matrix to be known (i.e. for the differential
pairs), to calculate the mean radiated power as in (14) and (17). If the necessary off-
diagonal elements are unknown when DM signaling is employed, a question remains as
to how to formulate a maximum radiated power limit from the known power loss
information. One option is to use the SE radiated power limit curve. Another option is to

construct a DM limit curve from the Markov and Chebyshev limits with the total power

loss mean, g, and standard deviation, o . Fig. 7 shows a comparison of these two

types of limit curves to the DM limit curve found using the full radiated power loss
constant matrix. This figure shows that using the total power loss to estimate the
statistical limit for radiated DM power substantially overestimates the radiated power.
The DM radiation limit estimated in this way is even higher than the limit predicted for

SE signals.
E
/g 15
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= 10t
[=]
(=T
5 L
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Ir' —— DM Total Loss Limit Curve
0 ,r' ----- SE Radiation Limit Curve |
/ —— DM Radiation Limit Curve
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Fig. 7. Total power loss and radiated power loss limit curve comparison for differential-
mode and single-ended signaling port connectivity matrices for an impulse excitation.

B. Simulation with Pseudo-Random Bit Sequences

Radiated power limit curves were also evaluated using pseudo-random bit

sequences (PRBSs). These types of signals are of interest since they are often used to
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evaluate EMI performance of systems. A PRBS7 signal was designed with a 2 V total
voltage maximum and a 0 V total voltage minimum at a matched load connected to the
source. The PRBS7 signal was modeled as a series of trapezoidal pulses where the rise
and fall time was 28 ps. The data rate of the bit stream was 4 Gbps. The PRBS7 signal
was generated with shift registers where taps were placed at register six and register
seven. The outputs of register six and register seven were fed into an exclusive-or gate,
and the resulting output was fed into the first register of the shift register. All registers
were initialized to the logic high state and the output of register seven was used as the
source of the PRBS7 signal. A fast Fourier transform (FFT) was used to find the double-
sided spectrum of the PRBS7 signal, and the total voltage spectrum was converted to a
single-sided, incident power wave spectrum. All of the frequency-domain plots in this
section show the envelope of the power spectrum rather than stem plots to improve figure
clarity.

The connector model shown in Fig. 1 was used to validate the statistical formulas
in Section 111 where all odd ports between ports 33-47 were fed with the PRBS7 signal,
and all other ports were terminated with matched loads. A series of 1,000 statistical trials
per frequency were performed and the radiated power was calculated with the general
power loss equation in (8). In the first simulation study a SE signaling port connectivity
matrix was used. The phases of the independent incident wave excitations were generated

over frequency with a uniform distribution on [-z, ). The mean and the variance of the

radiated power were calculated from the statistical trials and compared to the mean and
variance calculated from (14)-(15). The maximum difference between the means and the
standard deviations were 0.17 dB and 0.35 dB, respectively. A worst case radiated power
variance was also calculated from (23). Fig. 8 shows the mean and standard deviations
derived from (14)-(15) and (23). The average difference between the radiated power

standard deviation from (15) and the worst case standard deviation from (23) is 6.18 dB.
The term in (22) containing [ﬁrad’oﬂdiag] and [I-:{‘matyoﬁdiag] was confirmed to be positive as

assumed in the worst case radiated power variance formulation. The Markov, Chebyshev,
and the worst case Chebyshev limit curves were evaluated using the PRBS7 SE signaling
conditions. Fig. 9 provides a comparison of all these radiated power limit curves with

respect to a radiated power limit curve derived from statistical trials. Although the
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Fig. 8. Comparison of the radiated power mean, standard deviation, and worst case
standard deviation for a PRBS7 excitation and a single-ended signaling port connectivity

matrix.
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Fig. 9. Comparison of the maximum radiated power limit curves for a PRBS7 excitation
and single-ended signaling port connectivity matrix.
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Chebyshev limit curve differs from the statistical trial 89% curve by only a couple
decibels over most of the frequency range, a limit curve consisting of the Markov and
worst case Chebyshev limits may be found with incomplete radiated power loss constant
matrices as discussed earlier.

Another set of 1,000 statistical trials per frequency were performed to show how
the radiated power limit curves perform when the port connectivity matrix was defined
for DM signaling. The port connectivity matrix was defined so that each differential pair
shared a single independent incident wave source for all odd ports between ports 33-47.
The positive and negative nets were defined to be out of phase by =z radians in the
connectivity matrix. Each port was fed with the PRBS7 signal, and the phases of the
independent incident power waves were generated with a uniform distribution on

[-z,z). The mean and the variance of the radiated power were calculated from the

statistical trials and compared to the mean and variance calculated from (14)-(15). The
maximum difference between the means and the standard deviations were 0.11 dB and
0.22 dB, respectively. A worst case radiated power variance was also calculated from
(23). The Markov, Chebyshev, and worst case Chebyshev limit curves were evaluated
using the PRBS7 excitation conditions defined previously. Fig. 10 shows a comparison of
all these radiated power limit curves with respect to a radiated power limit curve derived
from the statistical trials. In general, the worst case Chebyshev limit is smaller than the
Markov limit over most of the frequency range in Fig. 10. The radiated power limit
curves are smaller for the DM signaling case than the SE signaling case as seen when
comparing Fig. 9 with Fig. 10.

Additional radiated power limit curves were formulated from the minimum of the
Markov and worst case Chebyshev limits for the SE and DM signaling cases. These limit
curves are compared to two unique trial excitations in Fig. 11. A SE trial excitation was
formulated where the ports were fed with the PRBS7 signal, and all the incident power
waves had the same phase derived from the FFT of the time-domain PRBS7 signal. A
DM trial excitation was generated where the ports were fed with the PRBS7 signal and
the incident power waves were out of phase by 7 radians for each differential pair. All
excited differential pairs were fed with the same differential excitation with no phase

difference between the pairs. The SE excitation differs from the SE limit curve from 1.10
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dB to 10.03 dB, and the DM excitation differs from the DM limit curve from 1.64 dB to
9.34 dB, the same as the impulse excitations as seen in Fig. 11.

A comparison of three radiated power limit curves is given in Fig. 12 to determine
the best limit curve that approaches the DM signaling limit curve when only diagonal
elements in the radiated power loss constant matrix are known. The motivation for Fig.
12 is the same as Fig. 7 with the impulse excitations. As before, the limit predicted for a
DM signal using the total power loss, rather than diagonal elements in the power loss

constant matrix, is even higher than the limit predicted for SE signals.

El
=
=
5
2 .
E . .
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70} - ' Limi |
Chebyshev Limit (u_, +35_ )
--------- Statistical Trials 89% Curve
-30 1 I 1 1 1 L = :
1 2 3 4 5 6 7 8 9 10
Frequency (GHz)

Fig. 10. Comparison of the maximum radiated power limit curves for a PRBS7
excitation and a differential-mode signaling port connectivity matrix.
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Fig. 11. Comparison of the spliced Markov and worst case Chebyshev limit curves using
a single-ended signaling port connectivity matrix and a differential-mode signaling port
connectivity matrix for PRBS7 excitations. The SE and DM excitations represent cases

where the independent incident waves are in phase with one another.
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Fig. 12. Total power loss and radiated power loss limit curve comparison for differential-
mode and single-ended signaling port connectivity matrices for a PRBS7 excitation.
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C. Measurement with Pseudo-Random Bit Sequences

A series of reverberation chamber measurements were performed on the
connector shown in Fig. 6(a) of [7], Fig. 6 of [8], and in Fig. 13 to characterize the
radiated power for a single differential pair. The radiated power loss constants were
found for the 3rd differential pair (from shortest to longest) in slice A of the middle
wafer. The ports on the “receiving” end of the fed differential pair were terminated in
matched loads and all other ports were left open. Continuous wave radiated power
measurements were used to find the radiated power loss constants as described in [9]. A
Tektronix BSAL175C pattern generator with differential outputs was used in a
reverberation chamber measurement to feed the differential pair with a PRBS7 signal.
The pattern generator was configured with a 2 V total voltage maximum and a 0 V total
voltage minimum output at a connected matched load. The data rate of the bit stream was
10.3125 Gbps. According to the pattern generator data sheet the typical rise time (10-
90%) of the PRBS signal was 23 ps.

A spectrum analyzer was used to measure the radiated power and was configured
with the following settings: 30 kHz resolution bandwidth, 1 GHz start frequency, 20 GHz
stop frequency, 10 second sweep time, and 40 sweep averages. The sweep time was made
sufficiently long so that multiple periods of the PRBS would be captured during the
length of time the resolution bandwidth filter swept over any frequency. This setting
ensured that the amplitude spectrum of the PRBS7 signal would be deterministic and
would not vary with every frequency sweep.

The radiated power was predicted from the radiated power loss constant matrix
where the PRBS7 signals for the positive and negative nets were modeled as a bit stream
of trapezoidal pulses. The rise and fall times of the trapezoidal pulses were extrapolated
from the data sheet typical value where the rise time was set to 28 ps and the fall time
was set to 38 ps. An FFT was used to find the double-sided spectra of the PRBS7 signals
for the positive and negative nets, and the total voltage spectra were converted to single-
sided, incident power wave spectra. Equation (8) was used to find the radiated power
where the port connectivity matrix was an identity matrix. A comparison of the measured
radiated power and the radiated power envelope predicted using the deterministic PRBS

signal is shown in Fig. 14. Above 12 GHz the calculated envelope overestimates the
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radiated power likely because the actual PRBS is not trapezoidal and damping in the
actual waveform reduces the higher frequency spectral content.

Radiated power limit curves were calculated from the radiated power loss
constant matrix and the simulated PRBS7 signal. A comparison of the SE signaling
Markov limit, the SE signaling Chebyshev limit, and the DM calculated envelope from
Fig. 14 is shown in Fig. 15. The SE signaling limit curves provide a bound for the
radiated power assuming the radiation measurement were performed again with lossless
and variable cable lengths. These curves also show the maximum radiated power limit is

higher for SE signaling compared to DM signaling.

Fig. 13. PCB/connector pair used to measure radiated power. The PCBs were shorted
with copper tape in the actual reverberation chamber measurement so that the radiated
power from the connector was measured.
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Fig. 14. Calculated radiated power envelope and measured radiated power for a
differential pair fed with a differential PRBS7 signal.
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Fig. 15. Comparison of the singled-ended signaling radiated power limit curves with the
deterministically calculated envelope for a differential PRBS7 signal.



149

V. CONCLUSION

Statistical estimates for maximum radiated power from a high-density connector
are presented. These estimates are based on a power loss characterization technique using
power loss constant matrices. Formulations are shown to provide practical, maximum
radiated power estimates for large connectors where the entire radiated power loss
constant matrix and the relative phase progression of the incident power wave signals
may not be known. The statistical estimates are based on statistical bounding methods
using the Markov and Chebyshev inequalities where the statistical problem assumes: a)
known and deterministic magnitude spectra for the incident power waves at the
PCB/connector interface, b) the incident power waves at the PCB/connector interface can
be written as a linear function of independent incident power waves, and c) the

independent incident power wave phases are uniformly distributed on [- 7, 7). Maximum

radiated power bounds are based on the radiated power mean and standard deviation
which may require known diagonal and off-diagonal elements in the radiated power loss
constant matrix. In many practical cases a radiated power limit can be defined as the
minimum of a Markov and a worst case Chebyshev limit where the port connectivity
matrix is an identity matrix. This limit can be used when the S-parameters of the PCB
connector and only the diagonal elements in the radiated power loss constant matrix are
known, as it assumes that all ports are driven SE (i.e. there are no DM signals). A tighter
radiated power loss bound can be formulated with more complete radiated power loss
constant matrices as is shown when comparing the traditional Chebyshev limit and the
worst case Chebyshev limit. In most cases, a tighter radiated power limit can be
formulated by performing additional two-port excitations to find off-diagonal elements in
the radiated power loss constant matrix. Reductions in the number of independent
incident power waves by defining incident power wave dependencies in the port
connectivity matrix can also provide a tighter bound. Simulations and measurements are
shown with impulse and PRBS signals to validate the statistical radiated power estimates.
The maximum radiated power limit is illustrated to be higher for a port connectivity
matrix representing SE signaling than for a port connectivity matrix representing DM

signaling.
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There are a few benefits to using a statistical approach for predicting a maximum
radiated power limit over a worst-case deterministic approach. The first benefit is that
this statistical approach has less severe over-prediction problems than a deterministic
approach that uses worst case analysis to modify the radiated power equations. Another
benefit is the modular nature of the presented statistical formulation. Additional
information such as radiated power loss constant values or incident power wave
dependencies can be incorporated into the radiated power limit calculation to provide an
improved estimate should additional information be found. It is important to note that as
the independent incident power waves are made dependent through definitions in the port
connectivity matrix, the radiated power mean approaches the deterministic radiated
power calculation result and the resulting radiated power variance approaches zero. An
added benefit of the maximum radiated power limit estimation is that the presented
formulation can be readily used to compare radiation performance from multiple PCB

connectors, regardless of how they are driven.
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SECTION
2. CONCLUSION

In the first paper of this dissertation, equations for estimating the maximum
crosstalk in a three conductor transmission line are presented and validated against a
well-known crosstalk formulation and validated against simulated and measured data.
These formulas are based on the weak coupling assumption where the transmission line
system has a single coupling region with a uniform cross section and are based in the
frequency domain. These equations may be expanded to systems with more than three
conductors through the application of the superposition principle. The newly presented
formulas can model the maximum crosstalk for transmission lines in lossy,
inhomogeneous media where the transmission lines may have unique and arbitrary
lengths. Measurements and simulations show that the maximum crosstalk formulas
capture the envelope of the near-end and far-end victim voltages well, often within a few
decibels. The present equations are well suited for evaluation of signal integrity in
systems where transmission line parameters are not well known and crosstalk sensitivity
analysis is needed.

In the second paper, equations for estimating the maximum crosstalk in the
frequency domain and in a three conductor, lossless, and homogeneous transmission line
have been presented. The presented formulas are a simplified form of the equations in
paper one that are based on an integral formulation. Derivations on another maximum
crosstalk estimate for finite length transmission lines based on a relationship for infinitely
long transmission lines are also presented. These derivations illustrate that the previously
published estimate, though relatively simple to understand and shown to predict the
maximum crosstalk well, mixes boundary conditions between infinite and finite
transmission lines which is not strictly mathematically correct. Despite the mixing of
boundary conditions, the previous maximum crosstalk estimate is demonstrated to be
equivalent to the integral formulation based estimate under some restrictive conditions.
These conditions may not occur in a practical setup making the previous formulation

more prone to errors. The integral formulation based maximum crosstalk estimates are
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shown to be more robust because they can estimate the maximum crosstalk with fewer
and less restrictive assumptions.

In the third paper, the radiation from a printed circuit board/connector interface
was quantified using S-parameters without the presence of conductor and dielectric
losses. The concept of using network parameters to calculate radiation from a printed
circuit board/connector interface in the third paper served as a basis for the radiation
calculations presented in the fourth and fifth papers of this dissertation. Three distinct
radiation modes were found for the printed circuit board connector analyzed in the third
paper. The first mode consists of a radiating structure comprised of printed circuit board
reference planes driven by signals through the connector. This mode produces half-
wavelength dipole type current on the printed circuit board reference planes. The
radiation is significant with a transmission line common-mode excitation, even with
ground references on three sides of the signal pair in a connector wafer. Another radiation
mode is associated with the gap between the printed circuit boards that the connector
spans. The radiation physics corresponded to those of a slot antenna that include the
ground reference path through the connector. Lastly, at frequencies where the connector
signal path lengths are not electrically short, resonances associated with integer half-
wavelength antenna-mode current distributions result in significant radiation. Extensive
work remains to develop a better understanding of coupling from transmission line modes
to a radiation mode and to relate coupling to a radiation mode with the geometry in more
than the rudimentary manner provided at present. A suitable formulation of the physics is
needed to better engineer high-speed connectors for determining tradeoffs between signal
integrity and electromagnetic interference across the connector.

In the fourth paper, a method is proposed to quantify the power losses at a high-
density printed circuit board/connector interface. This method is based on network
parameters and the conservation of power and can quantify power losses when material
losses and multiple signals are present. The power losses are characterized through the
definition of power loss constant matrices which are derived from well-designed single
port and two port excitations for an N-port connector. Once found, the power loss
constant matrices enable the evaluation of the radiated power loss, the material power

loss, and the total power loss in a system with variable input signaling. This power loss
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characterization method allows designers to evaluate connector performance from EMI
and signal integrity perspectives, as well as answer common design questions. The
proposed method enables the evaluation of connector design modifications such as
shielding, absorbing materials, and signal pin assignments and their relative effects on
connector radiation. It also allows the direct evaluation of power losses in the frequency-
domain which is not readily available when using a time-domain solver. Although the
focus of this paper is the characterization of radiated power using simulations, the
presented theory also applies to measurements as was shown in a reverberation chamber
validation example. Despite using known input signaling information and worst case
analysis, significant challenges remain to find full power loss constant matrices for large
connectors with measurements due to the large number of measurements required.

In the fifth paper, statistical estimates for maximum radiated power from a high-
density connector are presented. These estimates are based on a power loss
characterization technique using power loss constant matrices. Formulations are shown to
provide practical, maximum radiated power estimates for large connectors where the
entire radiated power loss constant matrix and the relative phase progression of the
incident power wave signals may not be known. The statistical estimates are based on
statistical bounding methods using the Markov and Chebyshev inequalities where the
statistical problem assumes: a) known and deterministic magnitude spectra for the
incident power waves at the PCB/connector interface, b) the incident power waves at the
PCB/connector interface can be written as a linear function of independent incident
power waves, and c) the independent incident power wave phases are uniformly

distributed on [~ , z). Maximum radiated power bounds are based on the radiated power

mean and standard deviation which may require known diagonal and off-diagonal
elements in the radiated power loss constant matrix. In many practical cases a radiated
power limit can be defined as the minimum of a Markov and a worst case Chebyshev
limit where the port connectivity matrix is an identity matrix. This limit can be used when
the S-parameters of the PCB connector and only the diagonal elements in the radiated
power loss constant matrix are known, as it assumes that all ports are driven SE (i.e. there
are no DM signals). A tighter radiated power loss bound can be formulated with more

complete radiated power loss constant matrices as is shown when comparing the
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traditional Chebyshev limit and the worst case Chebyshev limit. In most cases, a tighter
radiated power limit can be formulated by performing additional two-port excitations to
find off-diagonal elements in the radiated power loss constant matrix. Reductions in the
number of independent incident power waves by defining incident power wave
dependencies in the port connectivity matrix can also provide a tighter bound.
Simulations and measurements are shown with impulse and PRBS signals to validate the
statistical radiated power estimates. The maximum radiated power limit is illustrated to
be higher for a port connectivity matrix representing SE signaling than for a port
connectivity matrix representing DM signaling.

There are a few benefits to using a statistical approach for predicting a maximum
radiated power limit over a worst-case deterministic approach. The first benefit is that
this statistical approach has less severe over-prediction problems than a deterministic
approach that uses worst case analysis to modify the radiated power equations. Another
benefit is the modular nature of the presented statistical formulation. Additional
information such as radiated power loss constant values or incident power wave
dependencies can be incorporated into the radiated power limit calculation to provide an
improved estimate should additional information be found. It is important to note that as
the independent incident power waves are made dependent through definitions in the port
connectivity matrix, the radiated power mean approaches the deterministic radiated
power calculation result and the resulting radiated power variance approaches zero. An
added benefit of the maximum radiated power limit estimation is that the presented
formulation can be readily used to compare radiation performance from multiple PCB

connectors, regardless of how they are driven.
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I. PER-UNIT-LENGTH MODELS

Many of the analytical crosstalk expressions were validated by custom finite
difference simulations. The finite difference simulation codes consisted mostly of solving
the KVL and KCL equations formed by cascaded, electrically small transmission line
circuits in the victim circuit. Instead of using the standard per-unit-length transmission
line model found in most reference texts, a T-model was used as shown in Fig. 1. The T-
model was used in the simulations due to its balanced structure since simulation accuracy
was desired to be the same at both the near-end and far-end loads.

jwL R R jwL
1(x) 5 Ax EAX —Z—Ax > Ax I(x + Ax)
o—rwv\_/\N\,’ /\N\,_rwv\—o’
4 +
V( GA J— ! V(x + Ax)
%) X T jwCAx abhes
o ]

Fig. 1. Per-unit-length transmission line T-model.

The differential equations for the voltages and currents in the T-model are the same as
those for the traditional per-unit-length transmission line model when the length of the
per-unit-length section approaches zero. The derivations of the differential equations are
given below. The two KVL equations from Fig. 1 can be written as,

V(X)+ |(x)[R+Tj‘0L}Ax+ 1) 1(x+ Ax)]m 0 (1a)
[1(x + AX) - I(X)]er I(x+Ax){R+Tij}Ax +V(x+Ax)=0, (1b)

Inserting (1b) in (1a) reveals,
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~V(x)+ I(x){R +2ij}Ax +1(x+ AX{R +2ja)L}Ax +V(x+Ax)=0

V(x+Ax)—V(X):_R+Ja)L[I(X+AX)+I(X)]. )
AX
If a limit is taken where the per-unit-length section length approaches zero, then (2)

reduces to,

lim  V(x+Ax)-V(x) lim _R+ja’L[|(x+Ax)+l(X)]

AX—0 AX T AX—0 2
d\;)((x) = —RI(X)— joLl(x). 3)

The KCL equation from Fig. 1 can be written as,

(G + jaC)Ax

1+ (G + jcoc)( R +ZJCUL](AX)2

—1(x)+ 1(x + Ax) + V(x)=0. (4)

If a limit is taken where the per-unit length section length approaches zero then (4)

reduces to,
i 1(x+ Ax)—1(x)_ lim ~(G+ jeC) V(%)
AX -0 AX AX_)01+(G+ja)C{R+2ja)Lj(AX)2
A 6v(0)- jocv (). ©)

When a distributed voltage source is present in the victim circuit, voltage sources must be

added to the T-model as shown in Fig. 2.
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Fig. 2. Per-unit-length transmission line T-model with a distributed voltage source.

It can be shown that the differential equations for the voltages and currents in Fig. 2 when

the length of the per-unit-length section approaches zero are,

d\gix> _ RI(X) jel1(x)+v(x) (62)
d:j—(xx)z—GV(x)— jaoV (x). (6b)

When a distributed current source is present in the victim circuit, a current source must be

added to the T-model as shown in Fig. 3.
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Fig. 3. Per-unit-length transmission line T-model with a distributed current source.

It can be shown that the differential equations for the voltages and currents in Fig. 3 when

the length of the per-unit-length section approaches zero are,
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d\é)((x) = —RI(x)— joLI(x) (72)
d:j_(xx) __GV(x)- jacV (x)+i(x). (7b)

Il. MATRIX EQUATIONS FOR DISTRIBUTED VOLTAGE SOURCES

The victim circuit was split into three distinct regions in the crosstalk analysis: a
left hand side (LHS), a source region (SR), and a right hand side (RHS). These regions

are indicated for the victim circuit in Fig. 4.

Left Hand Source Right Hand
7 § Side Region Side 7
NE Transmission Transmission Transmission FE
Line Line Line

Fig. 4. Finite difference simulation victim circuit layout.

When considering distributed voltage sources in the source region, a series of KVL
equation can be formulated in the victim circuit. These equations can be written using
mesh currents and solved from a matrix of KVL equations. If a left hand side
transmission line, source region transmission line, and right hand side transmission line
exist, there are a total of seven unique equations that form the KVVL matrix. The circuit at

the victim near-end is shown in Fig. 5.

JoLiys  Ryys  Ruys  J®liws  j®Liws  Ryys  Ryws  J®Liws

Fig. 5. Near-end victim finite difference circuit with mesh currents.
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The near-end KVL equation is given by (8), and the general left hand side circuit KVL
equation is given by (9). The circuit parameter definitions are defined to allow for

different lengths for the per-unit-length transmission line sections.

(ZNE . Russ +2ja>LLHs N ZCG,LHSji1 +(~Zeg s Ji = O ®)
(_ VACCHITS )il + (RLHS + jobys +2Z¢6 11s )i2 + (— ZeG LHs )i3 =0 9)
Rips = RAX s (10a)
Lins = LAX s (10b)
Zc iHs = ! (10c)

JOCAX s + GAX s

The circuits at the LHS transition between the LHS and the SR circuits are shown in Fig.
6.

JoLiys  Rpys  Riws  J@Lpws U(X)Ax jwLgg Rsp Rsg joLsg  v(x)

Fig. 6. LHS transition circuits with mesh currents.

The LHS transition KVL equation is given by (11), and the general source region circuit

KVL equation is given by (12). There are k-1 per-unit-length transmission line sections in
the left hand side transmission line region.

. R e + jolL Rer + jol .
(_ Zeg Lhs )lkfl J{ tHS 2] LHS Zegps t+ % + ZCG,SR)'k
(11)

i v(x
+ (_ Zes R )'k+1 = %AXSR

(_ ZoG SR )ik + (RSR + jobsg +2Zg sr )ik+1 + (— Zco R )ik+2 = V(X)AXSR (12)
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Lsr = LAXgg (13b)
1
Zegsr = (13c)

JCAXgg + GAXgg

The circuits at the RHS transition between the SR and the RHS circuits are shown in Fig.

U(X)Ax JjwLsg Rsg Rsg jwLsg  v(x) JwLrus  Rpuys  Rgus  J®@Lgus

Fig. 7. RHS transition circuits with mesh currents.

The RHS transition KVL equation is given by (14). There are m-k per-unit-length

transmission line sections in the source region transmission line region.

! R + jolL Rrus + JolL .
(_ZCG,SR)|m—1+(M+ZCG,SR+ RHS 5 RHS"‘ZCG,RHSJ'

p (14)

+ (_ ZcG RHs )im+1 = %X)AXSR
Rrns = RAXgpps (15a)
Lrns = LAXgps (15b)
Zeg RHs = ! (15¢)

JOCAXgys + GAXpps

The circuit at the victim far-end is shown in Fig. 8.
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JwLrys  Rgpuys  Reruys  J®WLrus  jWLpuys  Rgys  Rgrus  J®WLgus

2 2 2 2 2 2 2 2

%

ln—1

Fig. 8. Far-end victim finite difference circuit with mesh currents.

The general right hand side circuit KVL equation is given by (16) and the far-end KVL
equation is given by (17). There are n-m per-unit-length transmission line sections in the
right hand side transmission line region. In the overall victim circuit, there are n-1 per-

unit-length transmission line sections.

(_ ZCG,RHs)in—z + (RRHS + jolgys + ZZCG,RHs)in—l + (_ Zes RHs )n =0 (16)

Rrus + Jolgys

(_ ZCG,RHs)in—l + (ZFE + + ZCG,RHSjin =0 (17)

The KVL matrix for the victim circuit can be written as shown in (18) and (19).

[kvL z]i]=[v] (18)
[KVL Z]=
i A ~ 2¢G,LHs 0 0 0 0 0 0 0 0 W
= Zc6 LHs B ~ Zco LHs 0 0 0 ° ’ ’ ’
0 0 0 0 0 0 0
0 0 - ZCG,LHS B - ZCG,LHS 0 0 0 0 0 0
0 0 0 - ZCG‘LHS C - ZCG‘SR 0 0 0 0 0
0 0 0 0 - ZCG,SR D - ZCG,SR 0 0 0 0
- 0 0 0 0
0 0 0 0 0 0 2065k D ~ ZcesR 0 0 0
0 0 0 0 0 0 0 -~ Zegsr E = Zce RHS 0 0
0 0 0 0 0 0 0 0 = Zco RHS F 206 RHS 0
: . 0
0 0 0 0 0 0 0 0 0 0 206 ,RHS F = Zco RHS
L 0 0 0 0 0 0 0 0 0 0 0 = Zce RHS et
(19a)

]

['1 2 13 k=2 %1 % kst k+2 " 'm-2 'm1 'm 'mdl 'me2 0 -2 4 'n] (19b)
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[v]:[o 0 -0 ﬂzﬁAx V(X)Ax

SR

T
: v(x)Ax MAX 0 -0 0} (19¢)

SR

Rips + Jolys

A =Ly + +ZcG,1Hs (19d)
B =Ruys + jolins +2Z¢q 11 (19)
C= Russ +2j s +Zcg, LHs +—RSR + ks +ZcG R (19f)
D=Rg + jolsg +2Zcc (199)
E= RSRJF—ijLSR"‘ Zegsrt Revs + Jokss +Zcg rHs (19h)
F =Rgps + Jolpps +2Zc6 grus (19i)
Gy =Zpe + Revs + Jokrs +Zcg rHs (19j)

If a source region transmission line and right hand side transmission line only
exist, there are a total of five unique equations that form the KVL matrix. The KVL
matrix for this case is similar to the KVL matrix where the LHS, SR, and RHS
transmission line regions exist. The main difference resides in the KVVL equation with the
near-end load and the source region circuits. The circuit at the victim near-end is shown

in Fig. 9, and the associated KVL matrix is shown in (20).

v(x) JoLsg  Rgp Rsg  Jjwlsg  v(x)
—Ax — —Ax

2 2 2 2 2 2

Fig. 9. Distributed voltage sources at the near-end.
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[KVL Z]=
[ A —zegsm O 0 0 0 o |
“ZcesR D ~Zcesr 0 0 0 0
: ' 0 0 0 0
0 0 ~ZcesRr D ~ZcG SR 0 0 0 (20a)
0 0 0 ~Zcosr E ~ZCG,RHS 0 0
0 0 0 0 ~ZcGRHS F ~ZCG,RHS 0
: . .
0 0 0 0 0 0 ~ZCG,RHS F ~2CG,RHS
o 0 0 0 0 0 0 ~Zg RS 6 |
1= [il L TR S P ) L T T B L inP- (20b)
v(x) v(x) T
V]= [T Mgg  V(X)AXgp v(x)Axgp 5 Mgp 0 0 0} (20c)
Rgr + jol
Ay =Zye + IR 4 70 (200)

If the LHS, SR, and RHS transmission line regions exist, but the LHS
transmission line region has only one per-unit-length section as shown below in Fig. 10,
the KVVL matrix must be modified to (21).

JoLiys  Ryys Riys  JwLliys U(X)Ax jwLgg Rsg Rsg jwLsg V(X)Ax
2 2 2 2 2 2 2 2 2 2

Fig. 10. Distributed voltage source close to the near-end.
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[KVL Z]=
i A - Zoo s 0 0 0 0 0 o |
~Z¢G,LHs ¢ ~Zco,5R 0 0 0 0 0
0 ~Zoo R D ~Zoo R 0 0 0 0
: 0 0 0 0
0 0 0 - Zoo R D ~Zeo R 0 0 0 (213-)
0 0 0 0 ~ZcG, R E ~ZcG RHS 0 0
0 0 0 0 0 ~ZcG,RHS F ~ZcG,RHS 0
: : 0
0 0 0 0 0 0 0 ~Zc6,RHS F ~ZcG,RHS
| o 0 0 0 0 0 0 0 -~ 206 Ris & |

im—2 im—1 im im+1 im+2 in—2 in—1 inP— (21b)

T
[\7]:[0 @Ax V(X)AXgp v(x)Axgp V—(ZX)AXSR 0 - 0 O} (21c)

If the LHS, SR, and RHS transmission line regions exist, but the SR transmission
line region has only one per-unit-length section as shown below in Fig. 11, the KVL
matrix must be modified to (22).

JwLpys Rius  J@lpus JwLsg JwLrus  Rguys  Rrus  J®Lrus

Rins

v(x) Ax

[KVL Z]=
A = 2¢G,LHs
= 2¢6,LHs B
0 0
0 0
0 0
0 0
0 0
0 0

Fig. 11. Distributed voltage source single section.

= Z¢G,LHS

= Z¢G,LHS
0

- Z2¢G,LHs

= Z2¢G,LHS

~Z¢6,5R
0

~Z2¢6,5R
E

- Z¢G,RHS

0 0
0 0
0 0
0 0
0 0
= Z¢G,RHS 0
F - Z¢G,RHS
0 - Z¢G,RHS F
0 0

= Z¢G,RHS

- Z¢G,RHS

Gy

(22a)
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(=i 12 i3 - o W W fkan ke ks o i ing W] (220)
T
[v]:[o 0 - 0 @AXSR %X)AXSR 0 - 0 o} (22c)

If the LHS, SR, and RHS transmission line regions exist, but the RHS
transmission line region has only one per-unit-length section as shown in Fig. 12, the
KVL matrix must be modified to (23).

v(x) 5 jwLsg Rsr Rsr jwLsg V(X)Ax J®Lrus  Rpys  Rrus  J@Lrus
2 2 2 2 2 2 2 2 2 2

N I

[KVL Z]=
A -~ Zo6 s 0 0 0 0 0 0
~Z¢G,LHS B ~Z¢G,LHs 0 0 0 0 0
: g 0 0 0 0 0
0 0 = Z¢G,LHs B = Z¢G,LHs 0 0 0 0
0 0 0 ~Z¢G,LHs ¢ ~Z¢G,R 0 0 0 (233.)
0 0 0 0 ~Zeo R D ~Zeo R 0 0
: : 0 0
0 0 0 0 0 0 - Zeg R D - Zeo R 0
0 0 0 0 0 0 0 ~Zeo m E ~Zeo Ris
0 0 0 0 0 0 0 0 ~Zeg Ris G,
[1=ly iy i3 ip B ik iea Bz 0 ina ing ing in]  (230)

T
[v]:[o 0 - 0 ﬁzﬁAXSR v(x)Ax v(x)Axgp ﬁzﬁAXSR 0} (23c)

If a left hand side transmission line and a source region transmission line only
exist, there are a total of five unique equations that form the KVL matrix. The KVL
matrix for this case is similar to the KVL matrix where the LHS, SR, and RHS

transmission line regions exist. The main difference resides in the KVVL equation with the
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far-end load and the source region circuits. The circuit at the victim far-end is shown in

Fig. 13, and the associated KVL matrix is shown in (24).

v(x)Ax JjwLgsg Rsr Rsr JjwLgg v(x)Ax
2 2 2 2 2 2

[KVL Z]=
A ~Z¢G,LHS 0 0 0 0 o]
~ZCG,LHS B ~ZCG,LHS 0 0 0 0
: - 0 0 0 0
0 0 ~ZcG,LHs B ~ZcG,LHs 0 0 0 (24a)
0 0 0 ~ZCG,LHs ¢ ~ZCG,SR 0 0
0 0 0 0 ~ZCG,SR D ~Zcasr 0
: . : - 4 0
0 0 0 0 0 0 ~Z¢cG,5R D ~Z¢G SR
o 0 0 0 0 0 0 -Zegsr Gy
=l ip i3 iy i ik i a2 0 iz g in]' (24b)
v(x) v(x) !
[v]= [0 0 -~ 0 SHAxgn V(X)AXgn - V(X)AXgg TAXSR} (24c)
Reg + joob
Gy =Zpg +—0——¢ = Zes s (24d)

I1l. MATRIX EQUATIONS FOR DISTRIBUTED CURRENT SOURCES

When considering distributed current sources in the source region, a series of
KCL equations can be formulated in the victim circuit. These equations can be written
using node voltages and the node voltages can be solved from a matrix of these KCL
equations. If a left hand side transmission line, source region transmission line, and right
hand side transmission line exist, there are a total of 11 unique equations that form the

KCL matrix. The circuit at the victim near-end is shown in Fig. 14.
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JoLiys  Rpys Riys J®Lius  jwliws  Ryys Riys  J®Lpus

v12 2v22 2 2 21732 2

ZCG,LHS ZCG,LHS

Fig. 14. Near-end victim finite difference circuit with node voltages.

The near-end KCL equations are given by (25) and (26). The general left hand side
circuit KCL equation is given by (27). The circuit parameter definitions are defined to
allow for different lengths for the per-unit-length transmission line sections. Additional

parameter definitions are given in (10).

L 2_ jvl +( — 2 jvz =0 (25)
Zye  Ryps +Jolys Rins + Jol s
Rins + Jol s Rips +Jobins  Zegms Rins + Jol s

-1 2 1 -1
. V, + - + V; + - v, =0 (27)
Rips + Jaob s Rups + Jobiys  Zeg ihs Rips + Job s

The circuits at the LHS transition between the LHS and the SR circuits are shown in Fig.
15.

Jolips  Riys  Riys  J@Liys  jwLgg Rgp Rsr jwLsg

2 2 2 2 2 2 2 2
Vi Vk+1

Zc6,LHS

Fig. 15. LHS transition circuits with node voltages.
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The LHS transition KCL equations are given by (28) and (29). The general source region
circuit KCL equation is given by (30). There are k-1 per-unit-length transmission line
sections in the left hand side transmission line region. Additional parameter definitions
are given in (13).

-1 1 1 2
(—_ JV ) + - + + - - Vk
RLHs + ol Hs RLHs +JobHs  ZcG,LHS  RLHS * JobHs + RgR + jolgr (28)

-2
+ - - Vk+l =0
(RLHS + ol Hs +RsR + JCULSRJ

) 2 1 1
Vk + + + Vk+l
RiHs +iobiys +Rer + Jolgg RiHs +ioliys +Rer +jolsg  Zcg,sr Rsr +Jolsg 29)

-1
2 E— :'(X)AXSR

-1 2 1 -1 .
T s+ : + Viop +| = Vi3 =i(X)AXgg  (30)
(RSR + Jolgg ] o (RSR + Jolg ZCG,SRJ 2 [RSR + Ja)LSRJ o >

The circuits at the RHS transition between the SR and the RHS circuits are shown below
in Fig. 16.

jwLggp Rﬂ Rﬂ jwLgg JjoLgys Rpus Rrus JjwLgys
2 2 2 2 2 2 2 2

vl'!l v m+1

Zce,RHS

Fig. 16. RHS transition circuits with node voltages.

The RHS transition KCL equations are given by (31) and (32). There are m-k per-unit-
length transmission line sections in the source region transmission line region. Additional

parameter definitions are given in (15).
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-1 1 1 2
——— Vma * ) + + : : Vm
Rsr + Jolgr Rsr +Jobsr  Zcg,sR  Rsr +Jolsg +RRrys + Jolgys (31)

{ —2 Jvmﬂ ~i(x)axgg

Rgr + Jolgg +Rpys + jolrys

-2 2 1 1
- ] V., + ] ] + + ] Vm+1
Rsp + Jobsr + RpHs + Jelpys Rsr * Jobsp + Rpus + 1%hrus  ZcgRHS  RRHS + I@lRHs (32)
-1
RrHs + Jolpps
The circuit at the victim far-end is shown below in Fig. 17.

JwLrys  Rgys Rrus  J®Lrys  jwLlpus — Rgys Rrus  J®Lgys
2 2 2 2 2 2 2

Un

Un-1 Un+1

Fig. 17. Far-end victim finite difference circuit with node voltages.

The general right hand side circuit KCL equation is given by (33), and the far-end KCL
equations are given by (34) and (35). There are n-m per-unit-length transmission line
sections in the right hand side transmission line region. In the overall victim circuit, there

are n-1 per-unit-length transmission line sections.

-1 2 1 -1
- Vo + - + V1 T - v, =0 (33)
Rrps + Jolpys Rrus + Jobrpys  Zog rus Rrps + Jolpys
_EL jvn—l +( 3- + L ]Vn +( — 2 jvml =0 (34)
Rrus + Jolpys Rrus + Jobpys  Zco ris Rrus + Jolgps

__2 Jvn { 2_ T ]vm =0 (35)
Rrps + Jolgys Reps + Jobpps  Zee




The KCL matrix can then be written as shown in (36) and (37).
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[kvLy [v]=[i] (36)
[KVLY]=
A 28 0 .0 0 0 0 0000 - 0 0]
28 C B 00 0 0 00 00 - 0 0
O B DB --00 0 0 00 00 - 0 0
: S0 0 0 0 00 00 - 0 0
0O 0 0 BDBU OO0 O 00 00 - 0 0
0 0 00 BETF 0 0 00 00 - 0 0
0 0 00 0FGTH O 00 00 - 0 0
0 0 000 O0OHJIH -~ 00O0UO0UO0 - 0 0 (37a)
Sor ot ot i ... .. 0 0 0 0 - 0 0
0 0 00 0O0O0OMHTIJIHUOTUOTU O - 0 0
0 0 00 0O0O0O0OHTIKTLTUOT O 0 0
0 0 00 0O0O0O0O O O0OTLMNTO - 0 0
0 0 00 0O0OO0UO OO 0O ONTPN- 0 0
N N N N . N N N N t. . O O
0 0 00 0O0OO0OGOTU OGO OGO OUONTPN 0
0 0 00 0O0GO OO0 O 0N Q 2N
0 0 00000 0 O 0 0 2N R
[V]:[Vl V2 Y3 Va7 k-2 k-1 Yk Ykt Ykk2 k43 7 Yme2 Vmer Ym Ymer Vme2 Vmez OV, Voo Y ",Hl]T
(37h)
[u]:[o 0 0 - 0 0 i(ax i(x)axgy o i(X)axg i(xaxg, 00 -0 0 O]T (37¢)
1 2
A= + . (37d)
Zye  Rips + Jolyps
-1
S (37¢)
Rips + Job s
3 1
C= : + (371)
Rips +Jobins  Zeg ks
2 1
D= : + (379)
Rups + Jobys  Zegins
1 1 2
E= . + + - - (37h)
Rins 1% hs  Zee,ibs Rims t1%hLHs +Reg +lokber
-2 .
F= (371)

RLHs + JolLHs +Rgr + Jolgr
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2 1 1 i
G-= _ - + + - (37))
RLHs +Job Hs +Rogp +Jobsg  ZcgsR Rsr +Jolsg
I (37K)
Rsg + Joolgg
=2 1 (371)
Rep + Jobsr  Zeo R
o+ _ 2 _ (37m)
Ror +Jolsg  Zcg, SR Rsp +Jolsg + Rrys + Jolgppys
e (37n)
Rgr + Jolgr +Rrys + Jolgps
M = _ 2 _ + ! + 1_ (370)
Ror + Jolsgr +Rpys + Jolpys  ZcG,RHS  RRHS + J@LRHS
N = ! (37p)
RRHs + JolRHS
po_ 2 1 (370)
Rrps + J0lrus  Zco rHs
3 1
Q= - + (37r)
Rrus + JOLlrus  Zcg RHs
R 2 ! (375)

= : +
Reps + J0lpns  Zee

If a source region transmission line and right hand side transmission line only
exist, there are a total of eight unique equations that form the KCL matrix. The KCL
matrix for this case is similar to the KCL matrix where the LHS, SR, and RHS
transmission line regions exist. The main difference resides in the KCL equations with
the near-end load and the source region circuits. The circuit at the victim near-end is

shown in Fig. 18, and the associated KCL matrix is shown in (38).
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Fig. 18. Distributed current sources at the near-end.

[KVLY]=
A, 2H 0 O 0O 0 0 O 0 0]
2H C, H O 0 0 0 O 0 O
0 H J H 0O 0 0 O 0 O
: .. .0 0 0 O 0 O
0 0O 0 H J H O 0 O 0 O
0 0 0 0 H K L 0 0 0 O (38a)
0 0O 0 0 0L M N O 0 O
0 0O 0 0 0 0O N P N 0 O
. S T T
0 0O 0 0 0 0O 0O 0O NP N O
0 0O 0 0 O O O O O N Q 2N
| 0 0 0 0 0 0 0 O O 0 2N R |
[V]:[vl 2% Y4 7 o2 Ymor Y et Yme2 Ymes T o2 e th Vn+1]T (38b)
[f]=[0 i()Axgg  1(X)Axgp - i(X)Axgg i(X)Axgg 0 O -+ 0 0 O]r (38c)
A = 1 2_ (38d)
Zye R+ Jolg
C, 3 ! (38e)

Regp + Jobsr Lo sr

If the LHS, SR, and RHS transmission line regions exist, but the LHS
transmission line region has only one per-unit-length section as shown in Fig. 19, the
KCL matrix must be modified to (39).
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ja)LLHS RLHS RLHS ijLHS ijSR RSR RSR M

[KVLY]=
A 2B 0 0 O 0 0 0 O 0 0]
2B E F 0 O 0 0 0 O 0 0
0 F G H O 0 0 0 O 0 0
0 0 H J H 0O 0 0 O 0 0
: : .. .0 0 0 O 0 0
0 0 0 0 H J H O 0O 0 0
(39a)
0 0 0 0 0 H K L 00O 0 O
0 0 0 0 0 0O L M NUO 0 0
0 0 0 0 0 0 0ON P N 0 0
: T
o 0 0 0 000 OONU PN O
0o 0 0 0 0 OO OO O N Q 2N
0 0 0 0 0 0 0 0 0 0 0 2N R|
[V]:[vl 2% Y4 s me2 Ymo1 m Ymer ‘me2 ‘mes 7 Yno2 Ynot Th Vn+1]T
(39b)
[i]:[o 0 I(X)AXSR I(X)AXSR |(x)AxSR |(x)AxSR 00 00 OP (39¢)

If the LHS, SR, and RHS transmission line regions exist, but the SR transmission
line region has only one per-unit-length section as shown in Fig. 20, the KCL matrix
must be modified to (40).
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JoLliys  Rpys Riys Jolpys — jolgg Rsr Rsg jowLsg  jwlpys  Rpys  Rpus  J@Lgus

2 2 2 2 2 2
2 Vg g 2 Vies1 2 £ Vi+2 2

Z(.‘G,LHS Z(.‘(i,RH.S'

Fig. 20. Distributed current source single section.

[KVLY]=
A 2B 0 O 0 0 0 0 O 0 0]

2B C B 0 0 0 0 0 O 0 0

0 B D B 0 0 0 0 0 0 0

: .. .0 0 0 0 O 0 0

0 0 0B DB 0O 0 0O 0 0

0 0 0 0B EF 0 0O 0 0

(40a)

0 0 0 0 0 F K, L 00 0 0

0 0 0 00O L M N O 0 0

0 0 0000 0O N PN 0 0

: S S :o . . .0 0

0O 0 0 00O 0 0 ONW P N ©O0

0 0 0 00O 0 0O 0O O N Q 2N
0 0 0 0 0 0 0O 0 0 0 O 2N R
[‘7]=[V1 V2. V3 V4 o V2 Vk-1 Vk Vk+1 Vk+2 Vk+3 Vk+4 7 Vn-2 Vn-1 Vn Vn+1]T (40b)
[i‘]:[o 00 - 00 i(xxgg 0 0 - 0 0 o]r (40c)
K, 2 r . 2 (40d)

= +
RLHs +Job Hs *Rsgr +Iobsg  Zcg,sR Rsr + Jolgr + Rrys + Jolgpys

If the LHS, SR, and RHS transmission line regions exist, but the RHS
transmission line region has only one per-unit-length section as shown in Fig. 21, the
KCL matrix must be modified to (41).
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JjwLgg Rsr Rsg JjwLsg  jwlgus Rgys  Rruys  JWLgus

2 2 2 2 2 2 2
Un-1 Un

Un+1

Zee
Fig. 21. Distributed current source close to the far-end.
[KVLY]=
A 2B 0 O 0 0 0 O 0 0 0]
2B C B 0 0 0 0 O 0O 0 0O
0 B D B 0 0 0 O 0O 0 O
: S, .0 0 0 O 0O 0 0
0O 0 0 B DB 0 0 O 0O 0 0
0O 0 0 0 B EF 0 O 0O 0 0
(41a)
0O 0 0 0 0 F G H O 0O 0 0
0O 0 0 0 0 O H J H 0O 0 0
: oot oo o000
0O 0 0 0O0OOO0O OH J H 0 O
0O 0 0 0O 0OOOO 0 OHK L o0
0o 0 0 0 0OOO O O O L M, 2N
0 0 0 0 0 0 0 0 0 0 0 2N R|

[V]:[v V. V. V. eV % VooV v v eV v v v v :Ir(41b)
1 2 3 4 k-2 k-1 k k+1 k+2 k+3 n-3 n-2 n-1 n n+l1

[i]:[o 00 - 00 i(x)AxSR i(x)AxSR i(x)AxSR i(x)AxSR 0 OP (41c)

2 1 2

M (41d)

2= ; ) + + ;
Ror + Jolsg +Rpys + JolgrHs  ZcG,RHS  RRHS * J@LRHS

If a left hand side transmission line and a source region transmission line only
exist, there are a total of eight unique equations that form the KCL matrix. The KCL
matrix for this case is similar to the KCL matrix where the LHS, SR, and RHS

transmission line regions exist. The main difference resides in the KCL equation with the
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far-end load and the source region circuits. The circuit at the victim far-end is shown in

Fig. 22, and the associated KCL matrix is shown in (42).

jwLgg Rsp Rsr JwLgg jwLgg Rsp Rsr jwLgg
2 2 2 2
. Un-1 2 s Un - Un+1
Z¢G,sR I:] CT i(x)Ax ZcG,sR CT i(x)Ax Zyg

Fig. 22. Distributed current sources at the far-end.

[KVLY]=
A 2B 0 O 0 0 0 O 0 0 |
2B C B 0 0O 0 0 O 0 0
0 B D B 0O 0 0 O 0 0
: . . .0 0 0 O 0 0
0O 0 0 B D B O 0 O 0 0
0O 0 0 0B EF 0 0 0 0 (42a)
0O 0 0 0O 0O F G H O 0 0
0O 0 0 0 0 O H J H 0 0
S T
0O 0 O 0 O 0 0 H J H 0
0O 0 O 0 o 0 0 H Q 2H
(0 0 0 0 O 0 0 0 2H R,|
[V]‘[Vl 2% Y4 7 ke ke Y ke ke ke T Yho2 Yo n+1]T (42b)
[i‘]:[o 0 0 -+ 0 0 i(Axgg i()Axgg - i(X)Axgg i(X)AXgg o]r (42c)
Q=—1 ! (424)
Rz +Jolbsg  Zeg sr
R, 2 ! (42e)
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IV. MATRIX EQUATIONS FOR A LUMPED VOLTAGE SOURCE

The matrix equations for a victim circuit containing a single, lumped voltage
source are similar to the case with distributed voltage sources. The main difference is
with the KVL equations that interface with the source or source region. If a left hand side
transmission line and right hand side transmission line exist, there are a total of five
unique equations that form the KVL matrix. The KVL equations at the victim near-end
are given by (8)-(9). These equations were originally derived for the distributed voltage
sources case, however, these equations also apply to the lumped voltage source case. The
circuits that transition between the LHS, the lumped voltage source, and the RHS are

shown below in Fig. 23.

JoLiys  Ryps Riys  Jwliys - JoLpys  Rpys  Rpuys  JWLgys
2 2 2 2 2 2 2 2 2

Fig. 23. Lumped voltage source transition with mesh currents

The KVL equation that involves the lumped voltage source is given by (43). There are k-
1 per-unit-length transmission line sections in the left hand side transmission line region.
For the lumped voltage source case, m = k and thus there is said to be zero per-unit-
length transmission line sections in the source region transmission line region. Additional

parameter definitions are given in (10) and (15).

' Rips + jol Rops + jol .
(_ZCG,LHS)lk—l"'( LS > LS +Zcg ns RHS RHS+ZCG,RHSjlk

+ (_ ZcG rHs )‘k+1 =V

(43)

The KVL equations at the victim far-end are given by (16)-(17). These equations were

originally derived for the distributed voltage sources case, however, these equations also
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apply to the lumped voltage source case. The KVL matrix can be written as shown in

(44). Additional parameter definitions are given in (19).

A -z 0 0 0
1 CG, LHS
-z -z 0 0 0
CG, LHS CG, LHS
: - - 0 0 0
0 0 - B - 0 0
CG, LHS CG, LHS
0 0 0 - -
CG, LHS 2 CG, RHS
0 0 0 0 -z -z
CG, RHs CG, RHS
0 0 0 0 0 0 -z F
CG, RHS
0 0 0 0 0 0 0 -z
L CG, RHS

['r]:[il iy 13 O L O R P VO R P
[v]:[o 0 - 0 v, 0 -0 o]T

_ Rins + jolys Res + JOlpis

C, +Zcg s + +ZcG rHs

(44a)

i, i, i [T (@)

(44c)

(44d)

If the lumped voltage source is placed at the near-end such that there is no left

hand side transmission line region as shown in Fig. 24, the KVL matrix must be modified

to (45).

JoLlgys  Rgys  Rrus  J@WLgus

Vs

Fig. 24. Lumped voltage source at the near-end.



182

[KVL Z]=
A ~Z2CG,RHS 0 0
_7 F _7 0
CG, RHS | CG, RHS ; (452)
~ZCG,RHS F ~ZCG,RHS
I 0 ~2CG,RHS G
[i‘]:[i1 T N in]f (45h)
[v]:[vS 0 - 0 o]f (45¢)
R + jawlL
Ay =2\ + Riis | RHS+ZCG,RHS (45d)

If the lumped voltage source is placed at the near-end such that there is only one
per-unit-length section in the left hand side transmission line region as shown in Fig. 25,
the KVVL matrix must be modified to (46).

JoLiys  Ryys  Rpws  Jo@Lpus JjwLrys  Rpuys  Rgrus  J®Lgus

2 2 2 2 ° 2 2 2 2

A ~2¢G, LHs 0 0 0
B ZCG, LHS o) B ZCG, LHS 0 0
0 ~2¢G,RHS F ~2¢G,RHS 0 (462)
: 0
0 0 0 ~2¢G,RHS F ~2¢G,RHS
0 0 0 0 ~2CG,RHS S

(=l i is iy = i o iq i) (46b)
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(46¢)
If the lumped voltage source is placed at the far-end such that there is only one
per-unit-length section in the right hand side transmission line region as shown in Fig. 26,

the KVVL matrix must be modified to (47).

JoLiys  Ryys Ripys  Jwliys JwLrus  Rpys Rgys  JWLgns

2 2 2 2 Vs 2 2 2 2

Z G LHS Z¢G,RHS

Fig. 26. Lumped voltage source close to the far-end.

[KVL Z]=
A ~2CG,LHS 0 0 0
~2CG,LHS B ~2CG,LHS 0 0
z - 0 0 (47a)
0 0 ~2CG,LHS B ~2CG,LHS 0
0 0 0 ~2CG,LHS C, =266, RHS
o 0 0 0 ~Z¢6 RHs G |
[1=[y iy i3 = i g i o ing in) (47b)
[W]=fo 0 - 0 v, of (47¢)

If the lumped voltage source is placed at the far-end such that there is no right
hand side transmission line region as shown below in Fig. 27, the KVL matrix must be
modified to (48).
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Jolpys  Ryys  Ruys  J@lLins
2 2 2 2

Fig. 27. Lumped voltage source at the far-end.

[KVL Z]=

A =206, LHS 0 0
_7 B _7 0

CG, LHS : CG, LHS X 4a)

0 ~ZCG,LHS B ~ZCG,LHS

I 0 ~2¢G,LHS G3 |
(=l in ig  inp ing in] (48b)
Wl=o 0 - 0 vJ (48¢)
Gy=Zpe + Riys + Jobiys +Zeo s (48d)

V. MATRIX EQUATIONS FOR A LUMPED CURRENT SOURCE

The matrix equations for a victim circuit containing a single, lumped current
source are similar to the case with distributed current sources. Instead of implementing
KCL equations for the lumped current source case, it is possible to implement KVL
equations. If a left hand side transmission line and right hand side transmission line exist,
there are a total of six unique equations that form the KVVL matrix. The KVL equations at
the victim near-end are given by (8)-(9). These equations were originally derived for the
distributed voltage sources case, however, these equations also apply to the lumped
current source case. The circuits that transition between the LHS, the lumped current

source, and the RHS are shown below in Fig. 28.
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JoLliys  Ryys Riys  Jwliys J®Lrus  Rpuys  Rgus  J®WLgus

2 2 2 2 2 2 2 2

Fig. 28. Lumped current source transition with mesh currents.

The KVL equations that involve the lumped current source are given by (49) and (50).
There are k-1 per-unit-length transmission line sections in the left hand side transmission

line region. Additional parameter definitions are given in (10) and (15).

! R e + jolL . Roue + jol )
(_ZCG,LHS)Ik—1+( tHS 2] LHS+ZCG,LHSj|k+( RHS 2J RHS+ZCG,RHSjlk+l

+ (_ ZcG rHs )k+2 =0

(_1)ik +ii =l (50)

(49)

The KVL equations at the victim far-end are given by (16)-(17). These equations were
originally derived for the distributed voltage sources case, however, these equations also
apply to the lumped current source case. The KVL matrix can be written as shown in
(51). Additional parameter definitions are given in (19).

[KVL Z]=
i A - Zog s 0 0 0 0 0 o |
= ZcG,LHs B = Z¢G,LHs 0 0 0 0 0
: : 0 0 0 0 0
0 0 = Z2¢G,LHS B = 2¢G,LHs 0 0 0 0
' ' 1
0 0 0 = Z¢G,LHs C3 ) = Z2¢G,RHS 0 0 (5 a)
0 0 0 0 -1 1 0 0 0
0 0 0 0 0 - Z¢G,RHS F = Z¢G,RHS 0
: : : : : . 0
0 0 0 0 0 0 = ZcG,RHS F - ZcG,RHS
0 0 0 0 0 0 0 0 - 26 RHS G,
[']:['1 2% 7 k-2 k-1 % k+r k+2 k3 7 o2 'n}r (51b)
[v]:[o 0 - 00 i 0 -0 o]T (51c)
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C,= Runs + job s

+ 26 LHs (51d)

_ Reus + jobgus

E, +ZcG rHs (51e)

If the lumped current source is placed at the near-end such that there is no left
hand side transmission line region as shown in Fig. 29, the K\VVL matrix must be modified
to (52).

JwLpys  Rpys  Rpys  J@Lgus

Fig. 29. Lumped current source at the near-end.

[KVL Z]=
ZNE E, ~ZCG.RHS 0 0
1 1 0 0 0
0 —-ZcG RHS F ~ZCG.RHS 0 (52a)
: ' . 0
~ZCG.RHS F ~ZcG.RHS
I 0 ~Z2CG,RHS G |
=l iy g iy i, iy i (52b)
[v]:[o i 0 - 0 o]r (52¢)

If the lumped current source is placed at the near-end such that there is only one
per-unit-length section in the left hand side transmission line region as shown in Fig. 30,
the KVL matrix must be modified to (53).
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Joliys  Ryys  Riws  JWLliys jwlrys  Rpys  Rgus  J®Lgys

2 2 2 2 2 2 2 2

A _ZCG,LHS 0 0 0 0
_ZCG,LHS 3 E, _ZCG,RHS 0 0
L |G
" “CG,RHS " “CG,RHS
: s 0
0 0 0 0 _ZCG,RHS F Z2CG,RHS
I 0 0 0 0 0 _ZCG,RHS G, |
[i‘]=[i1 A L P T in]r (53b)
[W]=o 0 i, 0 - 0 of (53¢)

If the lumped current source is placed at the far-end such that there is only one
per-unit-length section in the right hand side transmission line region as shown in Fig. 31,
the KVVL matrix must be modified to (54).

JwLliys  Rpys Rius  JwLius JwLrus  Rgys Rgus  J@WLlgys

2 2 2 2 2 2 2 2

N 2 N D Nz A

ln-3 in—2 in—1 in

Fig. 31. Lumped current source close to the far-end.
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[KVL Z]=

A _ZCG,LHS 0 0 0 0
_ZCG,LHS B _ZCG,LHS 0 0 0

; N ; : . . |64

" “CG, LHS " “CG, LHS

0 0 0 _ZCG,LHS C3 Ez _ZCG,RHS

0 0 0 0 -1 1 0
I 0 0 0 0 0 _ZCG,RHS G, |
[i_]:[il L TR R - S P S | in]r (54b)
[v]:[o 0 - 0 0 i o]r (54c)

If the lumped current source is placed at the far-end such that there is no right
hand side transmission line region as shown in Fig. 32, the KVL matrix must be modified
to (55).

joliys  Ryys  Ryys  J®Lpys
2 2 2 2

i A, 7

in

[KVL Z]=
A ~2CG.LHS 0 0 0
~2CG. LHS B ~2CG.LHS 0 0
: 0 0 | (55a)
~2CG. LHS B ~Zcg LHs O
0 ~2CG.LHS Cs Zrg
I 0 0 1 1|
[i‘]:[i1 T O TP in]f (55b)

[v]:[o 0 - 00 iJ (55¢)
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It can be noted that for an electrically small coupling region (coupling region
length < A/10), the noise induced in the victim circuit can be represented by a lumped
element voltage and a lumped element current source rather than distributed sources. In
the corresponding finite difference simulations the total lumped source voltage and the
total lumped source current are found by multiplying the per-unit-length values by the
coupling region length. The magnitude of these noise sources are directly influenced by
the current and voltage present in the culprit circuit as can be seen in the lumped source
formulation. Because of the electrically small coupling region constraint, even if there are
standing waves in the culprit circuit, there should be minimal variation in the voltage and
current in the coupling region. The finite difference simulation samples the voltage and
current values in the middle of the coupling region for the culprit circuit (denoted as

— X,) to match the analytical solution.



APPENDIX B

FINITE DIFFERNCE CODES
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The finite difference equations presented in Appendix A were implemented in
Matlab to validate the analytical expressions for the near-end and far-end coupling in the
victim circuit. The weak coupling assumption was explicitly programmed into the finite
difference codes, where the voltages and currents in the culprit circuit were calculated
using traditional single-ended transmission line theory. The voltages and currents in the
culprit coupling region were applied as applicable to voltage and current source terms in
the victim circuit.

This appendix contains the Matlab programs used to validate the analytical

voltage expressions for the victim circuit. The names of the six programs contained in
this appendix are: Lossy TL Lumped V.m, Lossy TL Lumped_l.m,
Lossy_TL_Uniform_Distributed_V2.m, Lossy_TL_Uniform_Distributed 11.m,
Lossy_TL_Non_Uniform_Distributed_V2.m,
Lossy TL_Non_Uniform_Distributed_12.m. The first two files validate the lumped
voltage and lumped current source analytical formulations, respectively. The third and
fourth files validate the uniform distributed voltage sources and current sources analytical
formulations, respectively. The fifth and sixth files validate the non-uniform distributed
voltage sources and current sources analytical formulations, respectively. The analytical
voltage expressions along the victim transmission line were shown to be validated upon
the analytical voltage curves matching the finite difference simulation curves.

All six of the Matlab programs contained a similar code layout. An outline of the
code structure to simulate the presence of distributed noise sources in the victim is given

below.

e Victim Parameters
o Define per-unit-length parameters
o Define frequency range of simulation
o Define common transmission line parameters (y, a, B, Vp, Zo)
o Define geometry parameters (line length, relative noise source position,
and length)
o Define loads and reflection coefficients

e Culprit Parameters
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Define per-unit-length parameters

Define common transmission line parameters (y, Zo, Vs)

Define geometry parameters (line length, relative noise source position,
and length)

Define loads and reflection coefficients

e Per-unit-length Section Parameters

©)

o

o

o

o

o

o

Define target length for all per-unit-length sections

Calculate actual per-unit-length section length for the LHS

Calculate RLGC parameters for each per-unit-length section in the LHS
Calculate actual per-unit-length section length for the SR

Calculate RLGC parameters for each per-unit-length section in the SR
Calculate actual per-unit-length section length for the RHS

Calculate RLGC parameters for each per-unit-length section in the RHS

e Position Vectors

o

o

Define position vectors in the victim circuit

Define position vectors in the culprit circuit

e Calculate and fill the distributed voltage or distributed current source array
e Fill the KVL or KCL matrix
e Solve the KVL or KCL matrix

e Calculate the unknown node voltages or mesh currents

e Plot the simulation data and compare with the analytical expressions



Matlab File “Lossy TL Lumped V.m”

clear all;
close all;
clc;

%This simulation calculates the voltage and current on a transmission line
%where a lumped voltage source is placed anywhere along the line. The
%transmission line can be lossless or lossy.

%Simulation cases for lossy - distortionless line (R/L = G/C)
%Define PUL Parameters - Consider frequency dependence for improvements
C_pul = 100e-12; %F/m

L_pul = 250e-9; %H/m

R_pul = 100;%4; %0Ohm/m

G_pul = 2e-8;%2e-10; %S/m

%Define Propagation Parameters

f = (1e6:10e6:1e9)"; %Frequency range simulation (Hz)

w = 2*pi*f;

gamma = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul));
alpha = real(gamma); %Loss (Np/m) [interesting when = 1]
B = imag(gamma); %Beta

Vp = w./B; %Phase velocity (m/s)

Z0 = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm)

lambda_min = min(Vp./f); %Smallest wavelength (m)

J = sqrt(-1);

%Geometry Parameters

L =1; %Line Length (m)

X0 = 0.4; %Source Location (make this a positive number) (m)
I_length = L-x0; %TL length left of source (m)

r_length = x0; %TL length right of source (m)

%L oad Parameters

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm)
G_NE = (ZNE-Z0)./(ZNE+Z0); %Reflection coefficient at the near-end
G_FE = (ZFE-Z0)./(ZFE+Z0); %Reflection coefficient at the far-end

%Define Source Voltage
Vn = 1; %Noise Source Voltage

%Set up TL KVL Circuit Simulation

%For a good simulation, each PUL section must be no larger than lambda/20
%in length.

pul_length = lambda_min/40; %Target PUL section length

%Must have an integer number of TL sections, so the actual pul_length
%sections for the left and right hand sides of the TL problem may not be at
%the same spacing

%Determine LHS circuit properties
I_pul_secs = ceil(I_length/pul_length); %Number of pul sections LHS represents
if I_length ==
|_pul_length = 0;
else %Finite section length
|_pul_length = 1_length/l_pul_secs; %LHS pul section length
end;
C_LHS =C_pul*l_pul_length;
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L _LHS = L_pul*l_pul_length;
R_LHS =R_pul*l_pul_length;
G_LHS = G_pul*l_pul_length;

%Determine RHS circuit properties
r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents
if r_length ==
r_pul_length = 0;
else %Finite section length
r_pul_length =r_length/r_pul_secs; %RHS pul section length
end;
C_RHS = C_pul*r_pul_length;
L _RHS =L_pul*r_pul_length;
R_RHS =R _pul*r_pul_length;
G_RHS = G_pul*r_pul_length;

%Determine Source Loop

s_loop =1_pul_secs+1; %Source loop number

tot_loops = |_pul_secs+r_pul_secs+1; %Total number of KVVL loops to solve
Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix

%Setup KVL Matrix to solve

%Create voltage matrix

V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros
V_mat(s_loop) = Vn; %lnsert source voltage

%Create current matrix

I_mat = zeros(length(f),tot_loops); %Initialize current matrix to zeros

for i = 1:length(f)
%Fill Impedance Matrix for each frequency
for k = 1:tot_loops
switch k
case {1}
%ZNE loop
if |_length~=0
Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(*w(i)*C_LHS+G_LHS);
Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS);
else %Source at near-end
Z_mat(k,k) = ZNE(i)+(R_RHS+j*w(i)*L_RHS)/2+...
1/(j*w(i)*C_RHS+G_RHS);
Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS);
end;
case {tot_loops}
%ZFE loop
ifr_length~=0
Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+...
1/(j*w(i)*C_RHS+G_RHS);
Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS);
else %Source at far-end
Z_mat(k,k) = ZFE(i)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(*w(i)*C_LHS+G_LHS);
Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS);
end;
case {s_loop}
%Source loop
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Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS);
Z_mat(k,K) = 1/(*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2;
Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS);
otherwise
%Internal loops
if k<s_loop
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
else %k >s_loop
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
end;
Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp);
Z_mat(k,K) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp;
Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp);
end;
end;
%Solve for the currents
I_mat(i,;) =( Z_mat™(-1))*V_mat;
clear Ctemp Ltemp Rtemp Gtemp;
end;
%Create position vectors
if I_pul_length ~=0
X_KVL_LHS = -L+(0:1_pul_length:(I_pul_length*I_pul_secs));
else %Source at near-end
X_KVL_LHS=-L;
end;
if r_pul_length~=0
X_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs));
else %Source at far-end
x_KVL_RHS =0;
end;
if r_pul_length~=0
X_KVL_I = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS)));
else %Source at far-end
X_KVL_I =x_KVL_LHS;
end;
x_KVL_V = horzcat(x_KVL_LHS,x_KVL_RHS);
% clear x_KVL_LHS x_KVL_RHS;

%Find voltages
V_node_mat = zeros(length(f),tot_loops+1); %lnitialize voltage matrix to zeros
%Solve voltages at each node
for k = 1:tot_loops+1
switch k
case {1}
%ZNE node
V_node_mat(:,k) = -ZNE.*I_mat(:,k);
case {s_loop+1}
%Node to the right of the source
V_node_mat(:,k) = V_node_mat(:,k-1)+Vn;



case {tot_loops+1}
%ZFE node
V_node_mat(:,k) = ZFE.*I_mat(;,k-1);
otherwise

%Internal nodes

if k<=s_loop+1
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
V_node_mat(;,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(;,k-1)-...

(1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(;,k);

else %k > s_loop
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
%Since there is an extra voltage node in the source loop, there
%is another factor of -1 running around when calculating the
%voltages in the RHS of the circuit
V_node_mat(:,k) = (L./(j*w*Ctemp+Gtemp)).*1_mat(: k-2)-...

(1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*1_mat(:,k-1);
end;
end;
end;
clear Ctemp Ltemp Rtemp Gtemp;

%Define Analytical Expressions

XLHS = x_KVL_LHS; %Position vector for LHS of circuit (m)

XRHS = x_KVL_RHS; %Position vector for RHS of circuit (m)

VLHS = zeros(length(f),length(xLHS)); %lnitialize VLHS matrix to zeros

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros

%Find the Voltage on the TL for all positions

for i = 1:length(xRHS)

VRHS(:,i) = (Vn/2)*(1-G_NE.*exp(-2*gamma*(L-x0))).*(1+G_FE.*exp(2*gamma*xRHS(i))).*...

exp(-gamma*(xRHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L));

end;

for i = 1:length(xLHS)

VLHS(:,i) = (-Vn/2)*(1-G_FE.*exp(-2*gamma*x0)).*(1+G_NE.*exp(-2*gamma*(xLHS(i)+L))).*...

exp(gamma*(XLHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L));
end;
VTOT = horzcat(VLHS,VRHS);
XTOT = horzcat(XxLHS,xRHS);

%Compare the Analytical Results to the Simulation Results
figure;
plot(xTOT,abs(VTOT(1,:)),x_KVL_V,abs(V_node_mat(1,:)),'r");
xlabel('TL Position (m)");

ylabel('[V[);

title('Low Frequency Response");
legend(‘Analytical','Simulation','Location’,'Best");

figure;

plot(xTOT,abs(VTOT (floor(length(f)/2),)),...
x_KVL_V,abs(V_node_mat(floor(length(f)/2),:)),'r");

xlabel('TL Position (m)");
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ylabel([V]);
title('Middle Frequency Response’);
legend(‘Analytical','Simulation’,'Location’,'Best");

figure;

plot(xTOT,abs(VTOT (length(f),:)),x_KVL_V,abs(V_node_mat(length(f),:)),'r");
xlabel('TL Position (m)");

ylabel([V[);

title('High Frequency Response’);
legend(‘Analytical','Simulation’,'Location’,'Best");

%L ook at phase

% figure;

% plot(xTOT,angle(VTOT(1,:)),x_KVL_V,angle(V_node_mat(1,)),r");
% xlabel('TL Position (m)");

% ylabel(‘angle(V)");

% title('Low Frequency Response");

% legend(‘Analytical','Simulation’,'Location’,'Best’);

%

% figure;

% plot(xTOT,angle(VTOT (floor(length(f)/2),%)),...

% x_KVL_V,angle(V_node_mat(floor(length(f)/2),:)),r);
% xlabel('TL Position (m)");

% ylabel('angle(V)");

% title("Middle Frequency Response’);

% legend(‘Analytical’,'Simulation’,'Location’,'Best’);

%

% figure;

% plot(xTOT,angle(VTOT (length(f),:)),x_KVL_V,angle(V_node_mat(length(f),:)),'r);
% xlabel("TL Position (m)");

% ylabel(‘angle(V)");

% title('High Frequency Response');

% legend(‘Analytical','Simulation’,'Location’,'Best");

%Plot movie for comparing the Analytical Results to the Simulation Results
figure;
for k = 1:length(f)
plot(xTOT,abs(VTOT(K,:)),x_KVL_V,abs(V_node_mat(k,:)),r);
title(strcat([num2str(f(k)) ' Hz Frequency Response'));
xlabel('TL Position (m)");
ylabel('[V[);
legend('Analytical','Simulation’,'Location’,'Best");
pause(0.01);
end;



Matlab File “Lossy TL Lumped I.m”

clear all;
close all;
clc;

%This simulation calculates the voltage and current on a transmission line
%where a lumped current source is placed anywhere along the line. The
%transmission line can be lossless or lossy.

%Simulation cases for lossy - distortionless line (R/L = G/C)
%Define PUL Parameters - Consider frequency dependence for improvements
C_pul = 100e-12; %F/m

L_pul = 250e-9; %H/m

R_pul = 100;%4; %0Ohm/m

G_pul = 2e-8;%2e-10; %S/m

%Define Propagation Parameters

f = (1e6:10e6:1e9)"; %Frequency range simulation (Hz)

w = 2*pi*f;

gamma = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul));
alpha = real(gamma); %Loss (Np/m) [interesting when = 1]
B = imag(gamma); %Beta

Vp = w./B; %Phase velocity (m/s)

Z0 = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm)

lambda_min = min(Vp./f); %Smallest wavelength (m)

J = sqrt(-1);

%Geometry Parameters

L =1; %Line Length (m)

X0 = 0.2; %Source Location (make this a positive number) (m)
I_length = L-x0; %TL length left of source (m)

r_length = x0; %TL length right of source (m)

%L oad Parameters

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm)
G_NE = (ZNE-Z0)./(ZNE+Z0); %Reflection coefficient at the near-end
G_FE = (ZFE-Z0)./(ZFE+Z0); %Reflection coefficient at the far-end

%Define Source Voltage
In = 1; %Noise Source Voltage

%Set up TL KVL Circuit Simulation

%For a good simulation, each PUL section must be no larger than lambda/20
%in length.

pul_length = lambda_min/20; %Target PUL section length

%Must have an integer number of TL sections, so the actual pul_length
%sections for the left and right hand sides of the TL problem may not be at
%the same spacing

%Determine LHS circuit properties
I_pul_secs = ceil(I_length/pul_length); %Number of pul sections LHS represents
if I_length ==
|_pul_length = 0;
else %Finite section length
|_pul_length = 1_length/l_pul_secs; %LHS pul section length
end;
C_LHS =C_pul*l_pul_length;
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L _LHS = L_pul*l_pul_length;
R_LHS =R_pul*l_pul_length;
G_LHS = G_pul*l_pul_length;

%Determine RHS circuit properties
r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents
if r_length ==
r_pul_length = 0;
else %Finite section length
r_pul_length =r_length/r_pul_secs; %RHS pul section length
end;
C_RHS = C_pul*r_pul_length;
L _RHS =L_pul*r_pul_length;
R_RHS =R _pul*r_pul_length;
G_RHS = G_pul*r_pul_length;

%Determine Source Loop

s_loop =1_pul_secs+1; %Loop number left of source

tot_loops = |_pul_secs+r_pul_secs+2; %Total number of KL loops to solve
Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix

%Setup KVL Matrix to solve

%Create voltage matrix (most equations are voltage equations)
V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros
V_mat(s_loop+1) = In; %Insert source current

%Create current matrix

I_mat = zeros(length(f),tot_loops); %lnitialize current matrix to zeros

for i = 1:length(f)
%Fill Impedance Matrix for each frequency
for k = 1:tot_loops
switch k
case {1}
%ZNE loop
if |_length~=0
Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(*w(i)*C_LHS+G_LHS);
Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS);
else %Source at near-end
%Write supermesh equation
Z_mat(k,k) = ZNE(i);
Z_mat(k,k+1) = (R_RHS+j*w(i)*L_RHS)/2+1/(j*w(i)*C_RHS+G_RHS);
Z_mat(k,k+2) = -1/(j*w(i)*C_RHS+G_RHS);
end;
case {tot_loops}
%ZFE loop
ifr_length~=0
Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+...
1/(j*w(i)*C_RHS+G_RHS);
Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS);
else %Source at far-end
%Write source equation
Z_mat(k,k-1) = -1;
Z_mat(k,k) = 1;
end;
case {s_loop}



%Loop left of source -> Write supermesh equation
ifr_length~=0
Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS);
Z_mat(k,k) = 1/(j*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2;
Z_mat(k,k+1) = 1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2;
Z_mat(k,k+2) = -1/(j*w(i)*C_RHS+G_RHS);
else %Source at far-end -> Different supermesh equation
Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS);
Z_mat(k,k) = (R_LHS+j*w(i)*L_LHS)/2+...
1/(*w(i)*C_LHS+G_LHS);
Z_mat(k,k+1) = ZFE(i);
end;
case {s_loop+1}
%Loop right of source -> Write source equation
Z_mat(k,k-1) =-1;
Z_mat(k,K) = 1;
otherwise
%Internal loops
if k<s_loop
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
else %k >s_loop
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
end;
Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp);
Z_mat(k,K) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp;
Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp);
end;
end;
%Solve for the currents
I_mat(i,’) =( Z_mat"(-1))*V_mat;
clear Ctemp Ltemp Rtemp Gtemp;
end;
%Create position vectors
if I_pul_length ~=0
X_KVL_LHS = -L+(0:1_pul_length:(I_pul_length*l_pul_secs));
else %Source at near-end
X_KVL_LHS=-L;
end;
if r_pul_length~=0
X_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs));
else %Source at far-end
x_KVL_RHS =0;
end;
if r_pul_length ~=0
X_KVL_V = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS)));
else %Source at far-end
X_KVL_V =x_KVL_LHS;
end;
x_KVL_I = horzcat(x_KVL_LHS,x_KVL_RHS);
% clear x_KVL_LHS x_ KVL_RHS;
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%The current position vector will have 1 more point than the voltage
%position vector.

%Find voltages

V_node_mat = zeros(length(f),tot_loops-1); %Initialize voltage matrix to zeros

%Solve voltages at each node
for k = 1:tot_loops-1
switch k
case {1}
%ZNE node
V_node_mat(:,k) = -ZNE.*I_mat(;,k);
case {tot_loops-1}
%ZFE node
V_node_mat(:,k) = ZFE.*I_mat(:,k+1);
otherwise
%Internal nodes
if k <=s_loop
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;

V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(;,k-1)-...
(1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k);

else %k > s_loop
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
%Since there is one less voltage node than current, there
%is a factor of +1 running around when calculating the
%voltages in the RHS of the circuit

V_node_mat(:,k) = (L./(j*w*Ctemp+Gtemp)).*I_mat(:,k)-...
(1./(G*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*1_mat(:,k+1);

end;
end;
end;
clear Ctemp Ltemp Rtemp Gtemp;

%Define Analytical Expressions
XLHS = x_KVL_LHS; %Position vector for LHS of circuit (m)
XRHS = x_KVL_RHS; %Position vector for RHS of circuit (m)

VLHS = zeros(length(f),length(xLHS)); %lnitialize VLHS matrix to zeros
VRHS = zeros(length(f),length(xRHS)); %lnitialize VRHS matrix to zeros

%Find the Voltage on the TL for all positions
for i = 1:length(xRHS)
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VRHS(:,i) = (In*Z20/2).*(1+G_NE.*exp(-2*gamma*(L-x0))).*(1+G_FE.*exp(2*gamma*xRHS(i))).*...

exp(-gamma*(xRHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L));

end;
for i = 1:length(xLHS)

VLHS(:,i) = (In*Z20/2).*(1+G_FE.*exp(-2*gamma*x0)).*(1+G_NE.*exp(-2*gamma*(xLHS(i)+L))).*...

exp(gamma*(XLHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L));

end;
VTOT = horzcat(VLHS,VRHS);
XTOT = horzcat(xLHS,xRHS);

%Compare the Analytical Results to the Simulation Results
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figure;
plot(xTOT,abs(VTOT(1,:)),x_KVL_V,abs(V_node_mat(1,:)),r);
xlabel('TL Position (m)");

ylabel([V]);

title('Low Frequency Response');
legend('Analytical','Simulation','Location’,'Best");

figure;

plot(xTOT,abs(VTOT (floor(length(f)/2),)),...
X_KVL_V,abs(V_node_mat(floor(length(f)/2),:)),'r";

xlabel('TL Position (m)");

ylabel([V]);

title('Middle Frequency Response’);

legend(‘Analytical','Simulation’,'Location’,'Best");

figure;

plot(xTOT,abs(VTOT (length(f),:)),x_KVL_V,abs(V_node_mat(length(f),:)),'r");
xlabel('TL Position (m)");

ylabel([V[);

title("High Frequency Response");
legend('Analytical','Simulation','Location’,'Best");

%Look at phase

% figure;

% plot(xTOT,angle(VTOT(1,:)),x_KVL_V,angle(V_node_mat(1,:)),r);
% xlabel('TL Position (m)";

% ylabel(‘angle(V)");

% title('Low Frequency Response");

% legend(‘Analytical’,'Simulation’,'Location’,'Best’);

%

% figure;

% plot(xTOT,angle(VTOT (floor(length(f)/2),%)),...

% x_KVL_V,angle(V_node_mat(floor(length(f)/2),:)),'r");
% xlabel('TL Position (m)");

% ylabel('angle(V)");

% title('Middle Frequency Response’);

% legend(‘Analytical’,'Simulation’,'Location’,'Best");

%

% figure;

% plot(xTOT,angle(VTOT (length(f),:)),x_KVL_V,angle(V_node_mat(length(f),:)),r");
% xlabel("TL Position (m)");

% ylabel(‘angle(V)");

% title('High Frequency Response');

% legend(‘Analytical','Simulation’,'Location’,'Best');

%Plot movie for comparing the Analytical Results to the Simulation Results
figure;
for k = 1:length(f)
plot(xTOT,abs(VTOT(k,:)),x_KVL_V,abs(V_node_mat(k,:)),r);
title(strcat([num2str(f(k)) ' Hz Frequency Response']));
xlabel('TL Position (m)");
ylabel(V[);
legend('Analytical','Simulation’,'Location’,'Best");
pause(0.01);
end;



Matlab File “Lossy TL Uniform Distributed V2.m”

clear all;
close all;
clc;

%This simulation calculates the voltage and current on a victim
%transmission line where a uniform distributed voltage source is placed
%anyhwere along the line. The formulation of the code is taken from the
%case where a non-uniform source is analyzed. This simulation validates the
%non-uniform distributed voltage source simulation code with the simulation
%matching the analytical expressions.

%The transmission line can be lossless or lossy. The distributed voltage
%source is considered to be uniform. Analytical expressions for comparison
%purposes with the simulation are given for the uniform noise source case.

%Assumptions

%1. Weak Coupling

%2. Culprit and Victim propagation parameter gamma must be the same
%3. Characteristic impedance is approximately uniform in the victim

%Simulation cases for lossy - distortionless line (R/L = G/C)
%Define Victim PUL Parameters

C_pul = 100e-12; %F/m

L_pul = 250e-9; %H/m

R_pul = 100;%4; %Ohm/m

G_pul = 2e-8;%2e-10; %S/m

%Define Coupling PUL Parameters

L21 = 100e-9; %H/m

R21 = 1; %Ohm/m

%Define Propagation Parameters

f = (1e6:10e6:1€9)"; %Frequency range simulation (Hz)

w = 2*pi*f;

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul));
alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1]
B = imag(gamma_v); %Beta

Vp = w./B; %Phase velocity (m/s)

Z0v = sgrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm)

lambda_min = min(Vp./f); %Smallest wavelength (m)
j = sqrt(-1);

%Victim Geometry Parameters

Lv =1; %Line length (m)

X0L = -0.6; %Distributed source left boundary (make this a negative number) (m)
X0R = -0.3; %Distributed source right boundary (make this a negative number) (m)

|_length = xOL+Lv; %TL length left of source (m)
r_length = -x0R; %TL length right of source (m)
s_length = xOR-x0L; %Distributed source length (m)
%Victim Load Parameters

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm)
G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end
G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end

%Culprit Geometry Parameters
%Define Culprit PUL Parameters

203



204

C _pul_c=C_pul; %F/m

L_pul_c=L_pul; %H/m -(gamma_v."2)./((w.”2)*C_pul_c)

R_pul_c =R_pul;%4; %Ohm/m

G_pul_c = G_pul;%2e-10; %S/m

gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter

Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm)

Vs = 100; %Source voltage (V)

a =1.2; %RHS position variable (usually positive) (m)
b = 1.5; %LHS position variable (usually positive) (m)
Lc = a+b; %Culprit circuit length (m)

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm)
ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)
G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end
G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis
X_CP_ends = [xOL x0R]; %Same coordinate system as the victim

%Set up TL KVL Circuit Simulation

%For a good simulation, each PUL section must be no larger than lambda/20
%in length.

pul_length = lambda_min/40; %Target PUL section length

%Must have an integer number of TL sections, so the actual pul_length
%sections for the left hand side, distributed source region, and right hand
%sides of the TL problem may not be at the same spacing.

%Determine LHS circuit properties
I_pul_secs = ceil(I_length/pul_length); %Number of pul sections LHS represents
if I_length ==
|_pul_length = 0;
else %Finite section length
|_pul_length = 1_length/l_pul_secs; %LHS pul section length
end;
C_LHS = C_pul*1_pul_length;
L_LHS =L_pul*l_pul_length;
R_LHS = R_pul*l_pul_length;
G_LHS = G_pul*I_pul_length;

%Determine source region circuit properties
s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents
if s_length ==
s_pul_length = 0;
else %Finite section length
s_pul_length = s_length/s_pul_secs; %Source region pul section length
end;
C_SR = C_pul*s_pul_length;
L_SR =L_pul*s_pul_length;
R_SR =R _pul*s_pul_length;
G_SR =G_pul*s_pul_length;

%Determine RHS circuit properties
r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents
if r_length ==

r_pul_length = 0;



else %Finite section length
r_pul_length =r_length/r_pul_secs; %RHS pul section length
end;
C_RHS = C_pul*r_pul_length;
L_RHS = L_pul*r_pul_length;
R_RHS =R_pul*r_pul_length;
G_RHS = G_pul*r_pul_length;

%Create position vectors
if |_pul_length~=0
X_KVL_LHS = -Lv+(0:1_pul_length:(I_pul_length*l_pul_secs));
else %Source at near-end
X_KVL_LHS =-Lv;
end;
if s_pul_length~=0
X_KVL_SR =x_KVL_LHS(length(x_KVL_LHS))+...
(0:s_pul_length:(s_pul_length*s_pul_secs));
else %No source region
end;
if r_pul_length ~= 0
X_KVL_RHS =-r_length+(0:r_pul_length:(r_pul_length*r_pul_secs));
else %Source at far-end
x_KVL_RHS =0;
end;
if s_pul_length ~=0
Xx_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),...
Xx_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_SR x_KVL_RHS;
else %No source region
X_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_RHS;
end;

%Create culprit position vector

X_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2);

%The above position matrix is offset by a half cell and has one more
%position than desired. A position vector is desired in the middle of the
%cells since this is where the source value will be evaluated. Fixing the
Y%position matrix:

x_CP_source(length(x_CP_source)) = []; %Delete last value

x_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells
%Create equivlant position matrix in the victim circuit

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2);
%Formulate the noise voltage source

%Vn = -(R21+j*w*L21)*1(x) <- A function of frequency and space

Vn = zeros(length(f),length(x_CP_source));

%Fill noise voltage matrix in continuous domain (\V/m)

for i = 1:length(f)

Vn(i,:) = -(R21+j*w(i)*L21)*(Vs*exp(-gamma_c(i)*Lc)*...
(exp(-gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a))-...
G_ZL (i)*exp(gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a)))./...
((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i))*G_zS(i)*exp(-2*gamma_c(i)*Lc))));

end;
%Define Distributed Source Voltage in the Discrete Domain
V_SR =Vn*s_pul_length;
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%Determine Source Region Transition Loops

t loopl =1 _pul_secs+1; %First transition loop number

t loop2 =1 _pul_secs+s_pul_secs+1; %Second transition loop number

tot_loops = |_pul_secs+s_pul_secs+r_pul_secs+1; %Total number of KVL loops to solve
Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix

%Create voltage matrix
V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros

%Create current matrix
I_mat = zeros(length(f),tot_loops); %lnitialize current matrix to zeros

%Setup KVL Matrix to solve
for i = 1:length(f)
%Insert source voltages
if t_loopl ~=t_loop2
V_mat(t_loopl) = V_SR(i,1)/2; %Transition loop 1
V_mat(t_loop2) = V_SR(i,s_pul_secs)/2; %Transition loop 2
V_mat((t_loopl+1):(t_loop2-1)) = V_SR(i,1:(s_pul_secs-1))/2+...
V_SR(i,2:s_pul_secs)/2; %Source region loops
else
end;
%Fill Impedance Matrix for each frequency
for k = 1:tot_loops
switch k
case {1}
%ZNE loop
if I_length~=0
Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(*w(i)*C_LHS+G_LHS);
Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS);
else %Source at near-end
Z_mat(k,k) = ZNE(i)+(R_SR+j*w(i)*L_SR)/2+...
1/(j*w(i)*C_SR+G_SR);
Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR);
end;
case {tot_loops}
%ZFE loop
if r_length~=0
Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+...
1/(j*w(i)*C_RHS+G_RHS);
Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS);
else %Source at far-end
Z_mat(k,k) = ZFE(i)+(R_SR+j*w(i)*L_SR)/2+...
1/(j*w(i)*C_SR+G_SR);
Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR);
end;
case {t_loop1}
%LHS transition loop
Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS);
Z_mat(k,k) = 1/(j*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2;
Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR);
case {t_loop2}
%RHS transition loop
Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR);



Z_mat(k,K) = 1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2+...

1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2;
Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS);
otherwise
%Internal loops
if k<t loopl
%LHS loops
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
elseif k > t_loop2
%RHS loops
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
else
%Source region loops
Ctemp = C_SR;
Ltemp = L_SR;
Rtemp = R_SR;
Gtemp = G_SR,;
end;
Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp);
Z_mat(k,k) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp;
Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp);
end;
end;
%Solve for the currents
I_mat(i,:) =( Z_mat™(-1))*V_mat;
clear Ctemp Ltemp Rtemp Gtemp;

end;

%Find voltages

V_node_mat = zeros(length(f),tot_loops); %Initialize voltage matrix to zeros

%Solve voltages at each node
for k = 1:tot_loops

switch k
case {1}
%ZNE node
V_node_mat(:,k) = -ZNE.*I_mat(:,k);
case {tot_loops}
%ZFE node
V_node_mat(:,k) = ZFE.*I_mat(:,k);
otherwise
%Internal nodes
if k<=t_loopl
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
V_node_mat(:,k) = (L./(j*w*Ctemp+Gtemp)).*]_mat(:,k-1)-...
(1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k);
elseif k > t_loop2
Ctemp = C_RHS;
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Ltemp = L_RHS;

Rtemp = R_RHS;

Gtemp = G_RHS;

V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*1_mat(: k-1)-...
(1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*1_mat(:,K);

else %In source region

Ctemp = C_SR;

Ltemp = L_SR;

Rtemp = R_SR;

Gtemp = G_SR,;

V_node_mat(;,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(;,k-1)-...
(1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(;,k)+...
V_SR(;,(k-t_loopl))/2;

end;
end;
end;
clear Ctemp Ltemp Rtemp Gtemp;

%Define Analytical Expressions - Distributed Uniform Noise Source
XLHS = x_KVL_LHS; %Position vector for LHS of circuit (m)
XRHS = x_KVL_RHS; %Position vector for RHS of circuit (m)
XSR = x_KVL_SR; %Position vector for the SR of circuit (m)
VLHS = zeros(length(f),length(xLHS)); %lnitialize VLHS matrix to zeros
VRHS = zeros(length(f),length(xRHS)); %lnitialize VRHS matrix to zeros
VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros
%Define Equivalent Noise Voltage
%This quantity is defined in case the analytical expression for a uniform
%source is to be compared with a simulation where the sources are not
%uniform. The middle value or the equivalent middle value in the source
%region is used for the equivalent noise voltage.
if size(Vn,2)-(floor(size(Vn,2)/2)*2) == 1
%Position matrix is odd - take the middle value for all frequencies
Vn_eq = Vn(;,(floor(size(Vn,2)/2)+1));
else %Position matrix is even - find average equivalent middle value
Vn_eq = mean([Vn(:,floor(size(Vn,2)/2)) Vn(:,(floor(size(Vn,2)/2)+1))],2);
end;

%Find the Voltage on the TL outside the coupling region
for i = L:length(xRHS)

VRHS(:,i) = (Vn_eq./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*...

((1+G_NE.*exp(-2*gamma_v*(Lv-abs(x0R)))).*...
(1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0R)))-...
(1+G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*...
(1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0L))));
end;
for i = 1:length(xLHS)

VLHS(:,i) = (Vn_eq./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*...

((1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*...
(1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xLHS(i)+abs(x0R)))-...
(1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*...
(1+G_FE.*exp(-2*gamma_v*abs(x0L))).*exp(gamma_v*(xLHS(i)+abs(x0L))));

end,;

%Find the voltage on the TL inside the coupling region

for i = L:length(xSR)

VSR(:,i) = (Vn_eq./(2*gamma_V)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*...

((1+G_NE.*exp(-2*gamma_v*(Lv+xSR(i)))).*...
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(1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xSR(i)+abs(x0R)))-...

(1+G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*...

(1+G_FE.*exp(2*gamma_v*xSR(i))).*exp(-gamma_v*(xSR(i)+abs(x0L))));
end;

xAnal = horzcat(xXLHS,xSR(2:(length(xSR)-1)), xRHS);
VTOT = horzcat(VLHS,VSR(:,(2:(length(xSR)-1))),VRHS);

%Compare the Analytical Results to the Simulation Results
%Subplots may be useful here

% Top Plot - Coupling Voltage Waveform in the coupling region
% Bottom Plot - VVoltage along the victim TL

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(Vn(1,3))....
Xx_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(1)),-r";

title('Low Frequency Response - Noise Voltage Waveform');

ylabel([V]);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))1);

subplot(2,1,2);

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),r);

title('Low Frequency Response - Victim Voltage Waveform’);

xlabel('TL Position (m)");

ylabel(|VI);

legend('Analytical','Simulation','Location’,'Best");

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(\Vn(floor(length(f)/2),:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(floor(length(f)/2))),'-r");

title('Middle Frequency Response - Noise Voltage Waveform');

ylabel([V]);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best’);

xlim([xLHS(1) xRHS(length(xRHS))]);

subplot(2,1,2);

plot(xAnal,abs(VTOT (floor(length(f)/2),.)),...
x_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r");

title('Middle Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel([V]);

legend(‘Analytical','Simulation’,'Location’,'Best");

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(Vn(length(f),:)),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(length(f))),"-r");

title("High Frequency Response - Noise Voltage Waveform');

ylabel(|V[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))1);

subplot(2,1,2);

plot(xAnal,abs(VTOT (length(f),:)),x_KVL,abs(V_node_mat(length(f),:)),'r");

title("High Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");
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ylabel([V]);
legend(‘Analytical','Simulation’,'Location’,'Best");

%L ook at phase

% figure;

% plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),r");
% xlabel('TL Position (m)");

% ylabel(‘angle(V)");

% title('Low Frequency Response");

% legend(‘Analytical','Simulation’,'Location’,'Best');

%

% figure;

% plot(xAnal,angle(VTOT (floor(length(f)/2),:)),...

% x_KVL,angle(V_node_mat(floor(length(f)/2),:)),'r";
% xlabel('TL Position (m)");

% ylabel(‘angle(V)");

% title('Middle Frequency Response");

% legend(‘Analytical','Simulation’,'Location’,'Best’);

%

% figure;

% plot(xAnal,angle(VTOT (length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),'r");
% xlabel('TL Position (m)");

% ylabel('angle(V)");

% title("High Frequency Response’);

% legend(‘Analytical’,'Simulation’,'Location’,'Best’);

%Plot movie for comparing the Analytical Results to the Simulation Results
figure;
for k = 1:length(f)
subplot(2,1,1);
plot(x_KVL_SR_mid,abs(Vn(k,:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(k)),"-r";
title(strcat(['Noise Voltage Waveform @ ' num2str(f(k)) ' Hz));
ylabel([V[);
legend('Actual Noise Source','Approximated Noise Source','Location’,'Best’);
xlim([xLHS(1) xRHS(length(xRHS))1);
subplot(2,1,2);
plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),r");
title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz));
xlabel('TL Position (m)");
ylabel('[V[);
legend('Analytical','Simulation’,'Location’,'Best");
pause(0.01);
end;
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Matlab File “Lossy TL Uniform Distributed I1.m”

clear all;
close all;
clc;

%This simulation calculates the voltage and current on a victim
%transmission line where a uniform distributed current source is placed
%anyhwere along the line. The formulation of the code is taken from the
%case where a non-uniform source is analyzed. This simulation validates the
%non-uniform distributed current source simulation code with the simulation
%matching the analytical expressions.

%The transmission line can be lossless or lossy. The distributed

%current source is considered to be uniform. Analytical expressions for
%comparison purposes with the simulation are given for the uniform noise
%source case.

%Assumptions

%1. Weak Coupling

%2. Culprit and Victim propagation parameter gamma must be the same
%3. Characteristic impedance is approximately uniform in the victim

%Simulation cases for lossy - distortionless line (R/L = G/C)

%Define Victim PUL Parameters

C_pul = 100e-12; %F/m

L_pul = 250e-9; %H/m

R_pul = 100;%4; %Ohm/m

G_pul = 2e-8;%2e-10; %S/m

%Define Coupling PUL Parameters

C21 = 20e-9; %F/m 20e-12

G21 = 2e-12; %S/m

%Define Propagation Parameters

f = (1e6:10e6:1€9)"; %Frequency range simulation (Hz)

w = 2*pi*f;

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul));

alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1]

B = imag(gamma_v); %Beta

Vp = w./B; %Phase velocity (m/s)

Z0v = sgrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm)
lambda_min = min(Vp./f); %Smallest wavelength (m)

j = sqrt(-1);

%Victim Geometry Parameters

Lv =1; %Line length (m)

X0L = -0.6; %Distributed source left boundary (make this a negative number) (m)
X0R = -0.3; %Distributed source right boundary (make this a negative number) (m)
I_length = xOL+Lv; %TL length left of source (m)

r_length = -x0R; %TL length right of source (m)

s_length = xOR-x0L; %Distributed source length (m)

%Victim Load Parameters

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)
ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm)
G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end

%Culprit Geometry Parameters
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%Define Culprit PUL Parameters

C _pul_c =C_pul; %F/m

L_pul_c=L_pul; %H/m -(gamma_v."2)./((w."2)*C_pul_c)

R_pul_c =R_pul;%4; %Ohm/m

G_pul_c = G_pul;%2e-10; %S/m

gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter

Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm)

Vs = 100; %Source voltage (V)

a =1.2; %RHS position variable (usually positive) (m)
b = 1.5; %LHS position variable (usually positive) (m)
Lc = a+b; %Culprit circuit length (m)

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm)
ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)
G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end
G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis
X_CP_ends = [XOL x0R]; %Same coordinate system as the victim

%Set up TL KCL Circuit Simulation

%For a good simulation, each PUL section must be no larger than lambda/20
%in length.

pul_length = lambda_min/40; %Target PUL section length

%Must have an integer number of TL sections, so the actual pul_length
%sections for the left hand side, distributed source region, and right hand
%sides of the TL problem may not be at the same spacing.

%Determine LHS circuit properties
I_pul_secs = ceil(I_length/pul_length); %Number of pul sections LHS represents
if I_length ==
|_pul_length =0;
else %Finite section length
|_pul_length = 1_length/l_pul_secs; %LHS pul section length
end;
C_LHS = C_pul*1_pul_length;
L_LHS =L_pul*l_pul_length;
R_LHS = R_pul*l_pul_length;
G_LHS = G_pul*I_pul_length;

%Determine source region circuit properties
s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents
if s_length ==
s_pul_length = 0;
else %Finite section length
s_pul_length = s_length/s_pul_secs; %Source region pul section length
end;
C_SR = C_pul*s_pul_length;
L SR =L_pul*s_pul_length;
R_SR =R _pul*s_pul_length;
G_SR =G_pul*s_pul_length;

%Determine RHS circuit properties
r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents
if r_length ==



r_pul_length = 0;
else %Finite section length
r_pul_length =r_length/r_pul_secs; %RHS pul section length
end;
C_RHS = C_pul*r_pul_length;
L_RHS = L_pul*r_pul_length;
R_RHS =R_pul*r_pul_length;
G_RHS = G_pul*r_pul_length;

%Create position vectors (same as if KVL equations were used)
if |_pul_length~=0
X_KVL_LHS = -Lv+(0:1_pul_length:(I_pul_length*l_pul_secs));
else %Source at near-end
X_KVL_LHS =-Lv;
end;
if s_pul_length~=0
X_KVL_SR =x_KVL_LHS(length(x_KVL_LHS))+...
(0:s_pul_length:(s_pul_length*s_pul_secs));
else %No source region
end;
if r_pul_length ~= 0
X_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs));
else %Source at far-end
x_KVL_RHS =0;
end;
if s_pul_length~=0
X_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),...
Xx_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_SR x_KVL_RHS;
else %No source region
X_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_RHS;
end;

%Create culprit position vector

X_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2);

%The above position matrix is offset by a half cell and has one more
%position than desired. A position vector is desired in the middle of the
%cells since this is where the source value will be evaluated. Fixing the
Y%position matrix:

x_CP_source(length(x_CP_source)) = []; %Delete last value

x_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells
%Create equivlant position matrix in the victim circuit

X_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2);
%Formulate the noise current source

%In = -(G21+j*w*C21)*V(x) <- A function of frequency and space

In = zeros(length(f),length(x_CP_source));

%Fill noise current matrix in continuous domain (A/m)

for i = 1:length(f)

In(i,}) = -(G21+j*w(i)*C21)*(Vs*Z0c(i).*exp(-gamma_c(i)*Lc)*...
(exp(-gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a))+...
G_ZL (i)*exp(gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a)))./...
((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_zS(i)*exp(-2*gamma_c(i)*Lc))));

end;
%Define Distributed Source Current in the Discrete Domain
I_SR =In*s_pul_length;
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%Determine Source Region Transition Nodes

t nodel =1 _pul_secs+1; %First transition node equation (LHS)

t node2 =1_pul_secs+s_pul_secs+1; %Second transition node equation (RHS)

tot_nodes = 1_pul_secs+s_pul_secs+r_pul_secs+2; %Total number of KCL equations to solve
Y_mat = zeros(tot_nodes,tot_nodes); %lnitiailize impedance matrix

%Create current matrix (YV = 1)
I_mat = zeros(tot_nodes,1); %lnitialize current matrix to zeros

%Create voltage matrix
V_mat = zeros(length(f),tot_nodes); %lnitialize voltage matrix to zeros

%Setup KCL Matrix to solve (YV = 1)
for i = 1:length(f)
%Ilnsert source currents
if t nodel ~=t node2
I_mat((t_nodel+1):(t_node2)) = 1_SR(i,:); %Source region nodes
else
end;
%Fill Admitance Matrix for each frequency
for k = 1:tot_nodes
switch k
case {1}
%ZNE node
if |_length~=0
Y_mat(k,k) = 1/ZNE(i)+2/(R_LHS+j*w(i)*L_LHS);
Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS);
else %Source at near-end
Y_mat(k,k) = 1/ZNE(i)+2/(R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR);

end;
case {2}
if |_length~=0
if |_pul_secs ==

Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS);
Y_mat(k,k) = 2/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+...
2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
else %l_pul_secs > 1
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS);
Y_mat(k,K) = 3/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS);
Y_mat(k,k+1) = -1/(R_LHS+j*w(i)*L_LHS);
end;
else %Source at near-end
Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR);
Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR);
end;
case {tot_nodes-1}
if r_length~=0
if r_pul_secs ==
Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 2/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+...
2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS);
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else %r_pul_secs > 1
Y_mat(k,k-1) = -1/(R_RHS+j*w(i)*L_RHS);
Y_mat(k,k) = 3/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS);
Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS);
end;
else %Source at far-end
Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR);
Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR);
end;
case {tot_nodes}
%ZFE node
ifr_length~=0
Y_mat(k,K) = 1/ZFE(i)+2/(R_RHS+j*w(i)*L_RHS);
Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS);
else %Source at far-end
Y_mat(k,k) = 1/ZFE(i)+2/(R_SR+j*w(i)*L_SR);
Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR);
end;
case {t_nodel}
%L HS transition node 1
Y_mat(k,k-1) = -1/(R_LHS+j*w(i)*L_LHS);
Y_mat(k,k) = 1/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+...
2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
case {t_nodel+1}
%L HS transition node 2
if s_pul_secs ==
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR)+...
(j*w(i)*C_SR+G_SR)+...
2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS);
Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS);
else
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+...
2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR);
end;
case {t_node2}
%RHS transition node 2
Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+...
2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
case {t_node2+1}
%RHS transition node 1
Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = I/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+...
2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -1/(R_RHS+j*w(i)*L_RHS);
otherwise
%Internal loops
if k <t_nodel
%LHS loops
Ctemp = C_LHS;



Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
elseif k > t_node2
%RHS loops
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
else
%Source region loops
Ctemp = C_SR;
Ltemp = L_SR;
Rtemp = R_SR;
Gtemp = G_SR,;
end;
Y_mat(k,k-1) = -1/(Rtemp+j*w(i)*Ltemp);
Y_mat(k,K) = 2/(Rtemp+j*w(i)*Ltemp)+(j*w(i)*Ctemp+Gtemp);
Y_mat(k,k+1) = -1/(Rtemp+j*w(i)*Ltemp);
end;
end;
%Solve for the voltages
V_mat(i,:) =(Y_mat™(-1))*1_mat;
clear Ctemp Ltemp Rtemp Gtemp;
end;

%Most of the voltages are specified internal to the cells rather than end
%points. Need to calculate the cell edge voltages and currents. The number
%of internally solved cell voltages are given by the variables containing
%the number of LHS, SR, and RHS sections.

Z_mat_full = zeros(length(f),(tot_nodes-3));
Z_mat_half = zeros(length(f),(tot_nodes-3));

%Fill impedance matrices showing the impedance between solved internal
%voltage nodes
for k = 1:tot_nodes-3
if k<=1_pul_secs
if K~=1_pul_secs
%Node internal to a LHS section
Z_mat_full(:,k) = R_LHS+j*w*L_LHS;
Z mat_half(:,k) = (R_LHS+j*w*L_LHS)/2;
else
%Node between LHS and SR
Z_mat_full(;,k) = (R_LHS+j*w*L_LHS)/2+(R_SR+j*w*L_SR)/2;
Z_mat_half(:,k) = (R_LHS+j*w*L_LHS)/2;

end;
elseif k <= 1_pul_secs+s_pul_secs
if K~=1_pul_secs+s_pul_secs

%Node internal to a SR section
Z_mat_full(:,k) = R_SR+j*w*L_SR;
Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2;
else
%Node between SR and RHS
Z_mat_full(;,k) = (R_SR+j*w*L_SR)/2+(R_RHS+j*w*L_RHS)/2;
Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2;
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end;
else %Node internal to a RHS section
Z_mat_full(:,k) = R_RHS+j*w*L_RHS;
Z_mat_half(:,K) = (R_RHS+j*w*L_RHS)/2;
end;
end;
%Calculate the internal currents and load currents
I_node_mat = zeros(length(f),tot_nodes-1);
I_node_mat(:,2:(tot_nodes-2)) = ...
(V_mat(;,2:(tot_nodes-2))-V_mat(;,3:(tot_nodes-1)))./Z_mat_full;
|_node_mat(;,1) = -V_mat(;,1)./ZNE;
|_node_mat(;,tot_nodes-1) = V_mat(:,tot_nodes)./ZFE;
%Calculate the internal voltages and fill in load voltages
V_node_mat = zeros(length(f),tot_nodes-1);
V_node_mat(:,2:(tot_nodes-2)) = ...
V_mat(:,2:(tot_nodes-2))-1_node_mat(:;,2:(tot_nodes-2)).*Z_mat_half;
V_node_mat(:,1) = V_mat(:,1);
V_node_mat(:,tot_nodes-1) = V_mat(:,tot_nodes);

%Define Analytical Expressions - Distributed Uniform Noise Source
XLHS = x_KVL_LHS; %Position vector for LHS of circuit (m)
XRHS = x_KVL_RHS; %Position vector for RHS of circuit (m)
XSR = x_KVL_SR; %Position vector for the SR of circuit (m)
VLHS = zeros(length(f),length(XLHS)); %lnitialize VLHS matrix to zeros
VRHS = zeros(length(f),length(xRHS)); %lnitialize VRHS matrix to zeros
VSR = zeros(length(f),length(xSR)); %lnitialize VSR matrix to zeros
%Define Equivalent Noise Current
%This quantity is defined in case the analytical expression for a uniform
%source is to be compared with a simulation where the sources are not
%uniform. The middle value or the equivalent middle value in the source
%region is used for the equivalent noise current.
if size(In,2)-(floor(size(In,2)/2)*2) ==
%Position matrix is odd - take the middle value for all frequencies
In_eq = In(:,(floor(size(In,2)/2)+1));
else %Position matrix is even - find average equivalent middle value
In_eq = mean([In(:,floor(size(In,2)/2)) In(:,(floor(size(In,2)/2)+1))],2);
end;

%Find the Voltage on the TL outside the coupling region
for i = L:length(xRHS)

VRHS(:,i) = (In_eq.*Z0v./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*...

((1-G_NE.*exp(-2*gamma_v*(Lv-abs(x0R)))).*...

(1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0R)))-...

(1-G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*...

(1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0L))));

end;
for i = 1:length(xLHS)

VLHS(:,i) = (In_eq.*Z0v./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*...

((1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*...

(-1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xLHS(i)+abs(xOR)))-...

(1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*...

(-1+G_FE.*exp(-2*gamma_v*abs(x0L))).*exp(gamma_v*(xLHS(i)+abs(x0L))));

end;
%Find the voltage on the TL inside the coupling region
for i = 1:length(xSR)

VSR(:,i) = (In_eq.*Z0v./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*...
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((1+G_NE.*exp(-2*gamma_v*(Lv+xSR(i)))).*...
(-1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xSR(i)+abs(x0R)))-...
(1-G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*...
(1+G_FE.*exp(2*gamma_v*xSR(i))).*exp(-gamma_v*(xSR(i)+abs(x0L)))+...
2*(1-G_NE.*G_FE.*exp(-2*gamma_v*LV)));

end;

xAnal = horzcat(xXLHS,xSR(2:(length(xSR)-1)), xRHS);
VTOT = horzcat(VLHS,VSR(:,(2:(length(xSR)-1))),VRHS);

%Compare the Analytical Results to the Simulation Results
%Subplots may be useful here

% Top Plot - Coupling Voltage Waveform in the coupling region
% Bottom Plot - VVoltage along the victim TL

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(In(1,:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(1)),"-r";

title('Low Frequency Response - Noise Current Waveform');

ylabel(|I[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best’);

xlim([xLHS(1) xRHS(length(xRHS))]);

subplot(2,1,2);

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),r);

title('Low Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel([V]);

legend(‘Analytical','Simulation','Location’,'Best");

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(In(floor(length(f)/2),:)),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(floor(length(f)/2))),'-r);

title('Middle Frequency Response - Noise Current Waveform');

ylabel(|I[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best’);

xlim([xLHS(1) xRHS(length(xRHS))]);

subplot(2,1,2);

plot(xAnal,abs(VTOT (floor(length(f)/2),)),...
x_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r");

title('Middle Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel([V]);

legend('Analytical','Simulation','Location’,'Best’);

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(In(length(f),:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(length(f))),'-r");

title("High Frequency Response - Noise Current Waveform");

ylabel(|I[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))]);

subplot(2,1,2);

plot(xAnal,abs(VTOT (length(f),:)),x_KVL,abs(V_node_mat(length(f),:)),'r");
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title("High Frequency Response - Victim Voltage Waveform');
xlabel('TL Position (m)");

ylabel([V]);

legend('Analytical','Simulation','Location’,'Best");

%L ook at phase

% figure;

% plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),r");
% xlabel('TL Position (m)");

% ylabel(‘angle(V)";

% title('Low Frequency Response");

% legend(‘Analytical','Simulation’,'Location’,'Best');

%

% figure;

% plot(xAnal,angle(VTOT (floor(length(f)/2),:)),...

% x_KVL,angle(V_node_mat(floor(length(f)/2),:)),'r");
% xlabel('TL Position (m)");

% ylabel(‘angle(V)");

% title('Middle Frequency Response");

% legend(‘Analytical','Simulation’,'Location’,'Best’);

%

% figure;

% plot(xAnal,angle(VTOT (length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),r);
% xlabel('TL Position (m)";

% ylabel('angle(V)");

% title("High Frequency Response’);

% legend(‘Analytical','Simulation’,'Location’,'Best’);

%Plot movie for comparing the Analytical Results to the Simulation Results
figure;
for k = 1:length(f)
subplot(2,1,1);
plot(x_KVL_SR_mid,abs(In(k,:)),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(k)),-r";
title(strcat(['Noise Current Waveform @ ' num2str(f(k)) ' Hz'));
ylabel(|If’);
legend('Actual Noise Source','Approximated Noise Source','Location’,'Best’);
xlim([XLHS(1) xRHS(length(xRHS))]);
subplot(2,1,2);
plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),'r");
title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz));
xlabel('TL Position (m)");
ylabel(V[);
legend('Analytical','Simulation','Location’,'Best");
pause(0.01);
end;
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Matlab File “Lossy TL Non Uniform Distributed V2.m”

clear all;
close all;
clc;

%This simulation calculates the voltage and current on a transmission line
%where a non-uniform distributed voltage source is placed anywhere along the
%line. The transmission line can be lossless or lossy. The distributed

%voltage source is considered to be non-uniform. Analytical expressions for
%comparison purposes with the simulation are given for the non-uniform
%noise source case.

%Assumptions

%1. Weak Coupling

%2. Culprit and Victim propagation parameter gamma must be the same
%3. Characteristic impedance is approximately uniform in the victim

%Simulation cases for lossy - distortionless line (R/L = G/C)

%Define Victim PUL Parameters

C_pul =100e-12; %F/m

L_pul = 250e-9; %H/m

R_pul = 100;%4; %Ohm/m 100

G_pul = 2e-8;%2e-10; %S/m 2e-8

%Define Coupling PUL Parameters

L21 = 100e-9; %H/m

R21 =1; %Ohm/m

%Define Propagation Parameters

f = (1e6:10e6:1e9)"; %Frequency range simulation (Hz)

w = 2*pi*f;

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); %Propagation parameter
alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1]

B = imag(gamma_v); %Beta

Vp = w./B; %Phase velocity (m/s)

Z0v = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm)
lambda_min = min(Vp./f); %Smallest wavelength (m)

j =sart(-1);

%Victim Geometry Parameters

Lv =1; %Line length (m)

XOL = -0.6; %Distributed source left boundary (make this a negative number) (m)
XOR = -0.3; %Distributed source right boundary (make this a negative number) (m)
I_length = xOL+Lv; %TL length left of source (m)

r_length = -xOR; %TL length right of source (m)

s_length = xOR-x0L; %Distributed source length (m)

%Victim Load Parameters

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm)
G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end

%Culprit Geometry Parameters

%Define Culprit PUL Parameters

C _pul_c=C_pul; %F/m

L_pul_c = L_pul; %H/m -(gamma_v."2)./((w.”2)*C_pul_c)
R_pul_c =R_pul;%4; %Ohm/m

G_pul_c = G_pul;%2e-10; %S/m
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gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter
Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm)

Vs = 100; %Source voltage (V)

a = 1.2; %RHS position variable (usually positive) (m) 1.2
b = 1.5; %LHS position variable (usually positive) (m) 1.5
Lc = a+b; %Culprit circuit length (m)

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm)
ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)
G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end
G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis
X_CP_ends = [x0OL x0R]; %Same coordinate system as the victim

%Set up TL KVL Circuit Simulation

%For a good simulation, each PUL section must be no larger than lambda/20
%in length.

pul_length = lambda_min/40; %Target PUL section length

%Must have an integer number of TL sections, so the actual pul_length
%sections for the left hand side, distributed source region, and right hand
%sides of the TL problem may not be at the same spacing.

%Determine LHS victim circuit properties
|_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents
if I_length ==
|_pul_length = 0;
else %Finite section length
|_pul_length = 1_length/l_pul_secs; %LHS pul section length
end;
C_LHS = C_pul*I_pul_length;
L_LHS =L_pul*l_pul_length;
R_LHS = R_pul*l_pul_length;
G_LHS = G_pul*Il_pul_length;

%Determine source region victim circuit properties
s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents
if s_length ==
s_pul_length = 0;
else %Finite section length
s_pul_length = s_length/s_pul_secs; %Source region pul section length
end;
C_SR = C_pul*s_pul_length;
L_SR =L_pul*s_pul_length;
R_SR =R_pul*s_pul_length;
G_SR = G_pul*s_pul_length;

%Determine RHS victim circuit properties
r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents
if r_length ==
r_pul_length = 0;
else %Finite section length
r_pul_length =r_length/r_pul_secs; %RHS pul section length
end;
C_RHS = C_pul*r_pul_length;



L _RHS =L_pul*r_pul_length;
R_RHS =R _pul*r_pul_length;
G_RHS = G_pul*r_pul_length;

%Create victim position vectors
if I_pul_length ~=0
X_KVL_LHS = -Lv+(0:1_pul_length:(1_pul_length*l_pul_secs));
else %Source at near-end
X_KVL_LHS =-Lv;
end;
ifs_pul_length~=0
X_KVL_SR =x_KVL_LHS(length(x_KVL_LHS))+...
(0:s_pul_length:(s_pul_length*s_pul_secs));
else %No source region
end;
if r_pul_length ~= 0
X_KVL_RHS =-r_length+(0:r_pul_length:(r_pul_length*r_pul_secs));
else %Source at far-end
Xx_KVL_RHS =0;
end;
if s_pul_length~=0
Xx_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),...
x_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_SR x_KVL_RHS;
else %No source region
Xx_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_RHS;
end;

%Create culprit position vector

x_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2);

%The above position matrix is offset by a half cell and has one more
%position than desired. A position vector is desired in the middle of the
%cells since this is where the source value will be evaluated. Fixing the
%position matrix:

X_CP_source(length(x_CP_source)) = []; %Delete last value

X_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells
%Create equivlant position matrix in the victim circuit

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2);
%Formulate the noise voltage source

%Vn = -(R21+j*w*L21)*I(x) <- A function of frequency and space

Vn = zeros(length(f),length(x_CP_source));

%Fill noise voltage matrix in continuous domain (\V/m)

for i = 1:length(f)

Vn(i,:) = -(R21+j*w(i)*L21)*(Vs*exp(-gamma_c(i)*Lc)*...
(exp(-gamma_c(i)*(x_CP_source-a))-G_ZL (i)*exp(gamma_c(i)*(x_CP_source-a)))./...
((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_zS(i)*exp(-2*gamma_c(i)*Lc))));

end;
%Define Distributed Source Voltage in the Discrete Domain
V_SR =Vn*s_pul_length;

%Determine Source Region Transition Loops

t loopl =1_pul_secs+1; %First transition loop number

t loop2 =1 _pul_secs+s_pul_secs+1; %Second transition loop number

tot_loops = |_pul_secs+s_pul_secs+r_pul_secs+1; %Total number of KVL loops to solve
Z_mat = zeros(tot_loops,tot_loops); %lnitiailize impedance matrix
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%Create voltage matrix
V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros

%Create current matrix
I_mat = zeros(length(f),tot_loops); %Initialize current matrix to zeros

%Setup KVL Matrix to solve
for i = 1:length(f)
%Insert source voltages
if t_loopl ~=t_loop2
V_mat(t_loopl) =V_SR(i,1)/2; %Transition loop 1
V_mat(t_loop2) = V_SR(i,s_pul_secs)/2; %Transition loop 2
V_mat((t_loopl+1):(t_loop2-1)) = V_SR(i,1:(s_pul_secs-1))/2+...
V_SR(i,2:s_pul_secs)/2; %Source region loops
else
end;
%Fill Impedance Matrix for each frequency
for k = 1:tot_loops
switch k
case {1}
%ZNE loop
if |_length~=0
Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+...
1/(*w(i)*C_LHS+G_LHS);
Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS);
else %Source at near-end
Z_mat(k,k) = ZNE(i)+(R_SR+j*w(i)*L_SR)/2+...
1/(j*w(i)*C_SR+G_SR);
Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR);
end;
case {tot_loops}
%ZFE loop
ifr_length~=0
Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+...
1/(j*w(i)*C_RHS+G_RHS);
Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS);
else %Source at far-end
Z_mat(k,k) = ZFE(i)+(R_SR+j*w(i)*L_SR)/2+...
1/(j*w(i)*C_SR+G_SR);
Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR);
end;
case {t_loop1}
%LHS transition loop
Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS);
Z_mat(k,k) = 1/(G*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2+...
U(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2;
Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR);
case {t_loop2}
%RHS transition loop
Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR);
Z_mat(k,k) = 1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2+...
1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2;
Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS);
otherwise
%Internal loops



224

if k<t loopl
%LHS loops
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
elseif k > t_loop2
%RHS loops
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
else
%Source region loops
Ctemp = C_SR;
Ltemp = L_SR;
Rtemp = R_SR;
Gtemp = G_SR;
end;
Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp);
Z_mat(k,K) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp;
Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp);
end;
end;
%Solve for the currents
I_mat(i,;) =( Z_mat™(-1))*V_mat;
clear Ctemp Ltemp Rtemp Gtemp;
end;

%Find voltages
V_node_mat = zeros(length(f),tot_loops); %Initialize voltage matrix to zeros
%Solve voltages at each node
for k = 1:tot_loops
switch k
case {1}
%ZNE node
V_node_mat(:,k) = -ZNE.*I_mat(;,k);
case {tot_loops}
%ZFE node
V_node_mat(:,k) = ZFE.*I_mat(:,k);
otherwise
%Internal nodes
if k <=t_loopl
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*]_mat(:,k-1)-...
(1./(*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k);
elseif k > t_loop2
Ctemp = C_RHS;
Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
V_node_mat(;,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(;,k-1)-...
(1./(*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k);



else %In source region

Ctemp = C_SR;

Ltemp = L_SR,;

Rtemp = R_SR;

Gtemp = G_SR;

V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*1_mat(: k-1)-...
(1./(j*w*Ctemp+Gtemp)+(Rtemp-+j*w*Ltemp)/2).*1_mat(:,k)+...
V_SR(:,(k-t_loopl))/2;

end;
end;
end;
clear Ctemp Ltemp Rtemp Gtemp;

%Define Analytical Expressions - Distributed Non-Uniform Noise Source
XLHS = x_KVL_LHS; %Position vector for LHS of circuit (m)
XRHS = x_KVL_RHS; %Position vector for RHS of circuit (m)
XSR = x_KVL_SR; %Position vector for the SR of circuit (m)
VLHS = zeros(length(f),length(xLHS)); %lInitialize VLHS matrix to zeros
VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros
VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros
%Define Equivalent Noise Voltage
%This quantity is defined in case the analytical expression for a uniform
%source is to be compared with a simulation where the sources are not
%uniform. The middle value or the equivalent middle value in the source
%region is used for the equivalent noise voltage.
if size(Vn,2)-(floor(size(Vn,2)/2)*2) ==
%Position matrix is odd - take the middle value for all frequencies
Vn_eq = Vn(:,(floor(size(Vn,2)/2)+1));
else %Position matrix is even - find average equivalent middle value
Vn_eq = mean([Vn(:,floor(size(Vn,2)/2)) VVn(:,(floor(size(Vn,2)/2)+1))],2);
end;

%Find the Voltage on the TL outside the coupling region
%Non-uniform Analytical Equation
for i = 1:length(xRHS)

VRHS(:,i) = (-(R21+j*w*L21).*(Vs*exp(-gamma_c*Lc)./...
((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc))))*...
(1/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*...
(((abs(x0L)-abs(x0R))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(a+Lv)))+...
(1./(2*gamma_v)).*(G_ZL.*exp(-2*gamma_v*(abs(xOL)+abs(x0R)+a))+...

G_NE.*exp(-2*gamma_v*Lv)).*(exp(2*gamma_v*abs(x0R))-exp(2*gamma_v*abs(x0L)))).*...

exp(gamma_c*a).*(exp(-gamma_c*xRHS(i))+G_FE.*exp(gamma_c*xRHS(i))));
end;
%Non-uniform Analytical Equation
for i = 1:length(xLHS)

VLHS(:,i) = (-(R21+j*w*L21).*(Vs*exp(-gamma_c*Lc)./...
((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc))))*...
(1/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*...
(((abs(x0L)-abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+...
(1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(-2*gamma_v*(abs(xOL)+abs(x0R)+a))).*...
(exp(2*gamma_v*abs(xOR))-exp(2*gamma_v*abs(x0L)))).*...
exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xLHS(i)+2*Lv))+exp(gamma_c*xLHS(i))));

end,;

%Find the voltage on the TL inside the coupling region
%Non-uniform Analytical Equation

for i = 1:length(xSR)
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VSR(:,i) = (-(R21+j*w*L21).*(Vs*exp(-gamma_c*Lc)./...
((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc))))*...
(1/2).*%(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*(...
(((abs(xOL)+xSR(i))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(Lv+a)))+... %RHS portion
(1./(2*gamma_v)).*(G_ZL.*exp(2*gamma_v*(xSR(i)-abs(x0L)-a))+...
G_NE.*exp(-2*gamma_v*Lv)).*(exp(-2*gamma_v*xSR(i))-exp(2*gamma_v*abs(x0L)))).*...
exp(gamma_c*a).*(exp(-gamma_c*xSR(i))+G_FE.*exp(gamma_c*xSR(i))))+...
((-(xSR(i)+abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+... %LHS portion
(1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(2*gamma_v*(xSR(i)-abs(x0R)-a))).*...
(exp(2*gamma_v*abs(x0R))-exp(-2*gamma_v*xSR(i)))).*...
exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xSR(i)+2*Lv))+exp(gamma_c*xSR(i)))));

end;

xAnal = horzcat(xLHS,xSR(2:(length(xSR)-1)),xRHS);
VTOT = horzcat(VLHS,VSR(:,(2:(Iength(xSR)-1))),VRHS);

%Compare the Analytical Results to the Simulation Results
%Subplots may be useful here

% Top Plot - Coupling Voltage Waveform in the coupling region
% Bottom Plot - VVoltage along the victim TL

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(Vn(1,))),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(1)),-r);

title('Low Frequency Response - Noise Voltage Waveform’);

ylabel([V]);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))1);

subplot(2,1,2);

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),r");

title('Low Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)";

ylabel(|V[);

legend('Analytical’,'Simulation’,'Location’,'Best);

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(\Vn(floor(length()/2),:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(floor(length(f)/2))),'-r");

title('Middle Frequency Response - Noise VVoltage Waveform');

ylabel(|V[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))]);

subplot(2,1,2);

plot(xAnal,abs(VTOT (floor(length()/2),)),...
X_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r");

title('Middle Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel(|V[);

legend(‘Analytical','Simulation','Location’,'Best");

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(Vn(length(f),)),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(length(f))),"-r");



title("High Frequency Response - Noise Voltage Waveform');

ylabel(|V[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");
xlim([xLHS(1) xRHS(length(xRHS))1);

subplot(2,1,2);
plot(xAnal,abs(VTOT (length(f),:)), x_KVL,abs(V_node_mat(length(f),:)),'r);
title('High Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel(|V[);

legend(‘Analytical','Simulation’,'Location’,'Best");

%L ook at phase

% % % figure;

% % % plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),r");
% % % xlabel('TL Position (m)");

% % % ylabel(‘angle(V)";

% % % title('Low Frequency Response");

% % % legend('Analytical','Simulation’,'Location’,'Best');

% % %

% % % figure;

% % % plot(xAnal,angle(VTOT (floor(length(f)/2),)),...

% % % x_KVL,angle(V_node_mat(floor(length(f)/2),))),'r);
% % % xlabel('TL Position (m)");

% % % ylabel(‘angle(V)");

% % % title('Middle Frequency Response’);

% % % legend('Analytical’,'Simulation’,'Location’,'Best);

% % %

% % % figure;

% % % plot(xAnal,angle(VTOT (length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),r");
% % % xlabel('TL Position (m)");

% % % ylabel(‘angle(V)";

% % % title('High Frequency Response’);

% % % legend('Analytical','Simulation','Location’,'Best);

%Plot movie for comparing the Analytical Results to the Simulation Results
figure;
for k = 1:length(f)
subplot(2,1,1);
plot(x_KVL_SR_mid,abs(Vn(k,:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(Kk)),-r";
title(strcat(['Noise Voltage Waveform @ ' num2str(f(k)) ' Hz']));
ylabel(V[);
legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");
xlim([xLHS(1) xRHS(length(xRHS))]);
subplot(2,1,2);
plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),r";
title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz']));
xlabel('TL Position (m)");
ylabel('[V);
legend('Analytical','Simulation’,'Location’,'Best");
pause(0.01);
end;
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Matlab File “Lossy TL Non Uniform Distributed 12.m”

clear all;
close all;
clc;

%This simulation calculates the voltage and current on a transmission line
%where a non-uniform distributed current source is placed anywhere along the
%line. The transmission line can be lossless or lossy. The distributed

%current source is considered to be non-uniform. Analytical expressions for
%comparison purposes with the simulation are given for the non-uniform
%noise source case.

%Assumptions

%1. Weak Coupling

%2. Culprit and Victim propagation parameter gamma must be the same
%3. Characteristic impedance is approximately uniform in the victim

%Simulation cases for lossy - distortionless line (R/L = G/C)

%Define Victim PUL Parameters

C_pul =100e-12; %F/m

L_pul = 250e-9; %H/m

R_pul = 100;%4; %Ohm/m 100

G_pul = 2e-8;%2e-10; %S/m 2e-8

%Define Coupling PUL Parameters

C21 = 20e-9; %F/m

G21 = 2e-12; %S/m

%Define Propagation Parameters

f = (1e6:10e6:1e9)"; %Frequency range simulation (Hz)

w = 2*pi*f;

gamma_v = sgrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul));

alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1]

B = imag(gamma_v); %Beta

Vp = w./B; %Phase velocity (m/s)

Z0v = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm)
lambda_min = min(Vp./f); %Smallest wavelength (m)

j =sart(-1);

%Victim Geometry Parameters

Lv =1; %Line length (m)

XOL = -0.6; %Distributed source left boundary (make this a negative number) (m)
XOR = -0.3; %Distributed source right boundary (make this a negative number) (m)
I_length = xOL+Lv; %TL length left of source (m)

r_length = -xOR; %TL length right of source (m)

s_length = xOR-x0L; %Distributed source length (m)

%Victim Load Parameters

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)
ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm)
G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end

%Culprit Geometry Parameters

%Define Culprit PUL Parameters

C _pul_c=C_pul; %F/m

L_pul_c = L_pul; %H/m -(gamma_v."2)./((w.”2)*C_pul_c)
R_pul_c =R_pul;%4; %Ohm/m

G_pul_c = G_pul;%2e-10; %S/m
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gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter
Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm)

Vs = 100; %Source voltage (V)

a =1.2; %RHS position variable (usually positive) (m)
b =1.5; %LHS position variable (usually positive) (m)
Lc = a+b; %Culprit circuit length (m)

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm)
ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)
G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end
G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis
X_CP_ends = [x0OL x0R]; %Same coordinate system as the victim

%Set up TL KCL Circuit Simulation

%For a good simulation, each PUL section must be no larger than lambda/20
%in length.

pul_length = lambda_min/40; %Target PUL section length

%Must have an integer number of TL sections, so the actual pul_length
%sections for the left hand side, distributed source region, and right hand
%sides of the TL problem may not be at the same spacing.

%Determine LHS circuit properties
|_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents
if I_length ==
|_pul_length = 0;
else %Finite section length
|_pul_length = 1_length/l_pul_secs; %LHS pul section length
end;
C_LHS = C_pul*I_pul_length;
L_LHS =L_pul*l_pul_length;
R_LHS = R_pul*l_pul_length;
G_LHS = G_pul*Il_pul_length;

%Determine source region circuit properties
s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents
if s_length ==
s_pul_length = 0;
else %Finite section length
s_pul_length = s_length/s_pul_secs; %Source region pul section length
end;
C_SR = C_pul*s_pul_length;
L_SR =L_pul*s_pul_length;
R_SR =R_pul*s_pul_length;
G_SR = G_pul*s_pul_length;

%Determine RHS circuit properties
r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents
if r_length ==
r_pul_length = 0;
else %Finite section length
r_pul_length =r_length/r_pul_secs; %RHS pul section length
end;
C_RHS = C_pul*r_pul_length;



L _RHS =L_pul*r_pul_length;
R_RHS =R _pul*r_pul_length;
G_RHS = G_pul*r_pul_length;

%Create position vectors (same as if KVL equations were used)
if I_pul_length ~=0
X_KVL_LHS = -Lv+(0:1_pul_length:(I_pul_length*]_pul_secs));
else %Source at near-end
X_KVL_LHS =-Lv;
end;
ifs_pul_length~=0
X_KVL_SR =x_KVL_LHS(length(x_KVL_LHS))+...
(0:s_pul_length:(s_pul_length*s_pul_secs));
else %No source region
end;
if r_pul_length ~= 0
X_KVL_RHS =-r_length+(0:r_pul_length:(r_pul_length*r_pul_secs));
else %Source at far-end
Xx_KVL_RHS =0;
end;
if s_pul_length~=0
Xx_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),...
Xx_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_SR x_KVL_RHS;
else %No source region
Xx_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS)));
% clear x_KVL_LHS x_KVL_RHS;
end;

%Create culprit position vector

x_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2);

%The above position matrix is offset by a half cell and has one more
%position than desired. A position vector is desired in the middle of the
%cells since this is where the source value will be evaluated. Fixing the
%position matrix:

X_CP_source(length(x_CP_source)) = []; %Delete last value

X_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells
%Create equivlant position matrix in the victim circuit

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2);
%Formulate the noise current source

%In = -(G21+j*w*C21)*V(x) <- A function of frequency and space

In = zeros(length(f),length(x_CP_source));

%Fill noise current matrix in continuous domain (A/m)

for i = 1:length(f)

In(i,:) = -(G21+j*w(i)*C21)*(Vs*Z0c(i).*exp(-gamma_c(i)*Lc)*...
(exp(-gamma_c(i)*(x_CP_source-a))+G_ZL (i)*exp(gamma_c(i)*(x_CP_source-a)))./...
((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_zS(i)*exp(-2*gamma_c(i)*Lc))));

end;
%Define Distributed Source Current in the Discrete Domain
I_SR =In*s_pul_length;

%Determine Source Region Transition Nodes

t nodel =1 _pul_secs+1; %First transition node equation (LHS)

t node2 =1 _pul_secs+s_pul_secs+1; %Second transition node equation (RHS)

tot_nodes = |_pul_secs+s_pul_secs+r_pul_secs+2; %Total number of KCL equations to solve
Y_mat = zeros(tot_nodes,tot_nodes); %lnitiailize impedance matrix
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%Create current matrix (YV = 1)
I_mat = zeros(tot_nodes,1); %lInitialize current matrix to zeros

%Create voltage matrix
V_mat = zeros(length(f),tot_nodes); %Initialize voltage matrix to zeros

%Setup KCL Matrix to solve (YV =1)
for i = 1:length(f)
%Insert source currents
if t nodel ~=t node2
I_mat((t_nodel+1):(t_node2)) = 1_SR(i,:); %Source region nodes
else
end;
%Fill Admitance Matrix for each frequency
for k = 1:tot_nodes
switch k
case {1}
%ZNE node
if I_length~=0
Y_mat(k,k) = 1/ZNE(i)+2/(R_LHS+j*w(i)*L_LHS);
Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS);
else %Source at near-end
Y_mat(k,K) = 1/ZNE(i)+2/(R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR);
end;
case {2}
if I_length~=0
if |_pul_secs==1
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS);

Y_mat(k,k) = 2/(R_LHS+*W(i)*L_LHS)+(*W(i)*C_LHS+G_LHS)+...

2/(R_LHS+*w(i)*L_LHS+R_SR+j*w(i)*L_SR);

Y_mat(k k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR):

else %l_pul_secs > 1
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS);

Y_mat(k,k) = 3/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS);

Y_mat(k,k+1) = -1/(R_LHS+j*w(i)*L_LHS);

end;

else %Source at near-end
Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR);
Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR);

end;

case {tot_nodes-1}

ifr_length~=0

if r_pul_secs ==

Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 2/(R_RHS+*W(i)*L_RHS)+(j*W(i)*C_RHS+G_RHS)+...

2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS);
else %r_pul_secs > 1
Y_mat(k,k-1) = -1/(R_RHS+j*w(i)*L_RHS);

Y_mat(k,k) = 3/(R_RHS+/*W(i)*L_RHS)+(j*W(i)*C_RHS+G_RHS);

Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS);
end;
else %Source at far-end
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Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR);
Y_mat(k,K) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR);
Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR);
end;
case {tot_nodes}
%ZFE node
if r_length~=0
Y_mat(k,k) = 1/ZFE(i)+2/(R_RHS+j*w(i)*L_RHS);
Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS);
else %Source at far-end
Y_mat(k,K) = 1/ZFE(i)+2/(R_SR+j*w(i)*L_SR);
Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR);
end;
case {t_nodel}
%LHS transition node 1
Y_mat(k,k-1) = -1/(R_LHS+j*w(i)*L_LHS);
Y_mat(k,k) = 1/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+...
2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
case {t nodel+1}
%L HS transition node 2
ifs_pul_secs ==1
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,K) = 2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR)+...
(*w(i)*C_SR+G_SR)+...
2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS);
Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS);
else
Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+...
2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR);
end;
case {t_node2}
%RHS transition node 2
Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR);
Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+...
2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
case {t_node2+1}
%RHS transition node 1
Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k) = /(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+...
2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR);
Y_mat(k,k+1) = -1/(R_RHS+j*w(i)*L_RHS);
otherwise
%Internal loops
if k<t _nodel
%LHS loops
Ctemp = C_LHS;
Ltemp = L_LHS;
Rtemp = R_LHS;
Gtemp = G_LHS;
elseif k > t_node2
%RHS loops
Ctemp = C_RHS;
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Ltemp = L_RHS;
Rtemp = R_RHS;
Gtemp = G_RHS;
else
%Source region loops
Ctemp = C_SR;
Ltemp = L_SR;
Rtemp = R_SR;
Gtemp = G_SR;
end;
Y_mat(k,k-1) = -1/(Rtemp+j*w(i)*Ltemp);
Y_mat(k,k) = 2/(Rtemp+j*w(i)*Ltemp)+(j*w(i)*Ctemp+Gtemp);
Y_mat(k,k+1) = -1/(Rtemp+j*w(i)*Ltemp);
end;
end;
%Solve for the voltages
V_mat(i,:) =(Y_mat™(-1))*I_mat;
clear Ctemp Ltemp Rtemp Gtemp;
end;

%Most of the voltages are specified internal to the cells rather than end
%points. Need to calculate the cell edge voltages and currents. The number
%of internally solved cell voltages are given by the variables containing
%the number of LHS, SR, and RHS sections.

Z_mat_full = zeros(length(f),(tot_nodes-3));
Z_mat_half = zeros(length(f),(tot_nodes-3));

%Fill impedance matrices showing the impedance between solved internal
%voltage nodes
for k = 1:tot_nodes-3
if k <=1_pul_secs
if k~=1_pul_secs
%Node internal to a LHS section
Z_mat_full(;,k) = R_LHS+j*w*L_LHS;
Z_mat_half(;,k) = (R_LHS+j*w*L_LHS)/2;
else
%Node between LHS and SR
Z_mat_full(:,k) = (R_LHS+j*w*L_LHS)/2+(R_SR+j*w*L_SR)/2;
Z mat_half(:,k) = (R_LHS+j*w*L_LHS)/2;

end;
elseif k <=1_pul_secs+s_pul_secs
if kK ~=1_pul_secs+s_pul_secs

%Node internal to a SR section
Z_mat_full(:,k) = R_SR+j*w*L_SR;
Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2;
else
%Node between SR and RHS
Z_mat_full(;,k) = (R_SR+j*w*L_SR)/2+(R_RHS+j*w*L_RHS)/2;
Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2;
end;
else %Node internal to a RHS section
Z mat_full(:,k) = R_RHS+j*w*L_RHS;
Z_mat_half(:,k) = (R_RHS+j*w*L_RHS)/2;
end;
end;



%Calculate the internal currents and load currents

I_node_mat = zeros(length(f),tot_nodes-1);

|_node_mat(;,2:(tot_nodes-2)) = ...
(V_mat(:,2:(tot_nodes-2))-V_mat(:,3:(tot_nodes-1)))./Z_mat_full;

I_node_mat(:,1) = -V_mat(:,1)./ZNE;

|_node_mat(:,tot_nodes-1) = VV_mat(:,tot_nodes)./ZFE;

%Calculate the internal voltages and fill in load voltages

V_node_mat = zeros(length(f),tot_nodes-1);

V_node_mat(:,2:(tot_nodes-2)) = ...
V_mat(;,2:(tot_nodes-2))-1_node_mat(;,2:(tot_nodes-2)).*Z_mat_half;

V_node_mat(;,1) = V_mat(;,1);

V_node_mat(;,tot_nodes-1) = V_mat(;,tot_nodes);

%Define Analytical Expressions - Distributed Noise Source
XLHS = x_KVL_LHS; %Position vector for LHS of circuit (m)
XRHS = x_KVL_RHS; %Position vector for RHS of circuit (m)
XSR = x_KVL_SR; %Position vector for the SR of circuit (m)
VLHS = zeros(length(f),length(xLHS)); %lInitialize VLHS matrix to zeros
VRHS = zeros(length(f),length(xRHS)); %lnitialize VRHS matrix to zeros
VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros
%Define Equivalent Noise Current
%This quantity is defined in case the analytical expression for a uniform
%source is to be compared with a simulation where the sources are not
%uniform. The middle value or the equivalent middle value in the source
%region is used for the equivalent noise current.
if size(In,2)-(floor(size(In,2)/2)*2) ==
%Position matrix is odd - take the middle value for all frequencies
In_eq = In(:,(floor(size(In,2)/2)+1));
else %Position matrix is even - find average equivalent middle value
In_eq = mean([In(:,floor(size(In,2)/2)) In(:,(floor(size(In,2)/2)+1))],2);

end;

%Find the Voltage on the TL outside the coupling region
%Non-uniform Analytical Equation
for i = 1:length(xRHS)

VRHS(:,i) = (-(G21+j*w*C21).*(Vs*Z0c.*exp(-gamma_c*Lc)./...

end;

((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc)))).*...
(Z0v/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*...
(((abs(x0L)-abs(x0R))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(a+Lv)))+...
(1./(2*gamma_v)).*(G_ZL.*exp(-2*gamma_v*(abs(x0L)+abs(x0R)+a))+...

G_NE.*exp(-2*gamma_v*Lv)).*(exp(2*gamma_v*abs(x0L))-exp(2*gamma_v*abs(x0R)))).*...
exp(gamma_c*a).*(exp(-gamma_c*xRHS(i))+G_FE.*exp(gamma_c*xRHS(i))));

%Non-uniform Analytical Equation
for i = 1:length(xLHS)
VLHS(:,i) = (-(G21+j*w*C21).*(Vs*Z0c.*exp(-gamma_c*Lc)./...

end;

((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc)))).*...
(Z0v/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*...
(((abs(x0L)-abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+...

(1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(-2*gamma_v*(abs(x0L)+abs(x0R)+a))).*...

(exp(2*gamma_v*abs(x0L))-exp(2*gamma_v*abs(x0R)))).*...

exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(XLHS(i)+2*Lv))+exp(gamma_c*XLHS(i))));

%Find the voltage on the TL inside the coupling region
%Non-uniform Analytical Equation
for i = 1:length(xSR)
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VSR(:,i) = (-(G21+j*w*C21).*(Vs*Z0c.*exp(-gamma_c*Lc)./...
((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc)))).*...
(Z0v/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*LVv)))).*(...
(((abs(xOL)+xSR(i))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(Lv+a)))+... %RHS portion
(1./(2*gamma_v)).*(G_ZL.*exp(2*gamma_v*(xSR(i)-abs(x0L)-a))+...
G_NE.*exp(-2*gamma_v*Lv)).*(exp(2*gamma_v*abs(x0L))-exp(-2*gamma_v*xSR(i)))).*...
exp(gamma_c*a).*(exp(-gamma_c*xSR(i))+G_FE.*exp(gamma_c*xSR(i))))+...
((-(xSR(i)+abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+... %LHS portion
(1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(2*gamma_v*(xSR(i)-abs(x0R)-a))).*...
(exp(-2*gamma_v*xSR(i))-exp(2*gamma_v*abs(x0R)))).*...
exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xSR(i)+2*Lv))+exp(gamma_c*xSR(i)))));

end;

xAnal = horzcat(xLHS,xSR(2:(length(xSR)-1)),xRHS);
VTOT = horzcat(VLHS,VSR(:,(2:(Iength(xSR)-1))),VRHS);

%Compare the Analytical Results to the Simulation Results
%Subplots may be useful here

% Top Plot - Coupling Voltage Waveform in the coupling region
% Bottom Plot - VVoltage along the victim TL

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(In(1,:)),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(1)),-r");

title('Low Frequency Response - Noise Current Waveform');

ylabel(|I[);

legend(‘Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))1);

subplot(2,1,2);

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),'r");

title('Low Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)";

ylabel(|V[);

legend('Analytical’,'Simulation’,'Location’,'Best);

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(In(floor(length()/2),:)),...
Xx_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(floor(length(f)/2))),'-r");

title('Middle Frequency Response - Noise Current Waveform');

ylabel(|I[);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");

xlim([xLHS(1) xRHS(length(xRHS))]);

subplot(2,1,2);

plot(xAnal,abs(VTOT (floor(length()/2),)),...
X_KVL,abs(V_node_mat(floor(length(f)/2),:)),r");

title('Middle Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel(|V[);

legend(‘Analytical','Simulation','Location’,'Best");

figure;

subplot(2,1,1);

plot(x_KVL_SR_mid,abs(In(length(f),)),...
X_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(length(f))),-r";



title("High Frequency Response - Noise Current Waveform");

ylabel(|I]);

legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");
xlim([xLHS(1) xRHS(length(xRHS))1);

subplot(2,1,2);
plot(xAnal,abs(VTOT (length(f),:)), x_KVL,abs(V_node_mat(length(f),:)),'r);
title('High Frequency Response - Victim Voltage Waveform');

xlabel('TL Position (m)");

ylabel(|V[);

legend(‘Analytical','Simulation’,'Location’,'Best");

%L ook at phase

% % % figure;

% % % plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),r");
% % % xlabel('TL Position (m)");

% % % ylabel(‘angle(V)";

% % % title('Low Frequency Response");

% % % legend('Analytical','Simulation’,'Location’,'Best');

% % %

% % % figure;

% % % plot(xAnal,angle(VTOT (floor(length(f)/2),)),...

% % % x_KVL,angle(V_node_mat(floor(length(f)/2),))),'r);
% % % xlabel('TL Position (m)");

% % % ylabel(‘angle(V)");

% % % title('Middle Frequency Response’);

% % % legend('Analytical’,'Simulation’,'Location’,'Best);

% % %

% % % figure;

% % % plot(xAnal,angle(VTOT (length(f),:)), x_KVL,angle(V_node_mat(length(f),:)),'r";
% % % xlabel('TL Position (m)");

% % % ylabel(‘angle(V)";

% % % title('High Frequency Response’);

% % % legend('Analytical','Simulation','Location’,'Best);

%Plot movie for comparing the Analytical Results to the Simulation Results
figure;
for k = 1:length(f)
subplot(2,1,1);
plot(x_KVL_SR_mid,abs(In(k,:)),...
x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(k)),"-r");
title(strcat(['Noise Current Waveform @ ' num2str(f(k)) ' Hz));
ylabel(|I[");
legend('Actual Noise Source','Approximated Noise Source','Location’,'Best");
xlim([xLHS(1) xRHS(length(xRHS))]);
subplot(2,1,2);
plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),r";
title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz']));
xlabel('TL Position (m)");
ylabel('[V);
legend('Analytical','Simulation’,'Location’,'Best");
pause(0.01);
end;
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