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ABSTRACT 

This dissertation explores two topics pertinent to electromagnetic compatibility 

research: maximum crosstalk estimation in weakly coupled transmission lines and 

modeling of electromagnetic radiation resulting from printed circuit board/high-density 

connector interfaces. Despite an ample supply of literature devoted to the study of 

crosstalk, little research has been performed to formulate maximum crosstalk estimates 

when signal lines are electrically long. Paper one illustrates a new maximum crosstalk 

estimate that is based on a mathematically rigorous, integral formulation, where the 

transmission lines can be lossy and in an inhomogeneous media. Paper two provides a 

thorough comparison and analysis of the newly derived maximum crosstalk estimates 

with an estimate derived by another author. In paper two the newly derived estimates in 

paper one are shown to be more robust because they can estimate the maximum crosstalk 

with fewer and less restrictive assumptions. 

One current industry challenge is the lack of robust printed circuit board 

connector models and methods to quantify radiation from these connectors. To address 

this challenge, a method is presented in paper three to quantify electromagnetic radiation 

using network parameters and power conservation, assuming the only losses at a printed 

circuit board/connector interface are due to radiation. Some of the radiating structures are 

identified and the radiation physics explored for the studied connector in paper three. 

Paper four expands upon the radiation modeling concepts in paper three by extending 

radiation characterization when material losses and multiple signals may be present at the 

printed circuit board/connector interface. The resulting radiated power characterization 

method enables robust deterministic and statistical analyses of the radiated power from 

printed circuit board connectors. Paper five shows the development of a statistical 

radiated power estimate based on the radiation characterization method presented in 

paper four. Maximum radiated power estimates are shown using the Markov and 

Chebyshev inequalities to predict a radiated power limit. A few maximum radiated power 

limits are proposed that depend on the amount of known information about the radiation 

characteristics of a printed circuit board connector. 
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1. INTRODUCTION 

Crosstalk is an increasing problem in electronic designs due to circuit 

miniaturization and increasing design density. This problem is often studied using 

numerical simulations, however, the resulting information from these studies often do not 

provide the necessary insight into the exact causes or solution strategies to mitigate 

crosstalk. Analytical formulations can provide much needed insight to solve crosstalk 

problems and are often used for this purpose. Crosstalk is well-studied in the literature 

and has been analyzed from many different viewpoints. Most literature has focused on 

exact crosstalk formulations that capture every peak and valley in the crosstalk over 

frequency. While these exact formulations are necessary, design decisions are often better 

formulated from a maximum, worst case crosstalk envelope rather than an exact response 

because the transmission line parameters are never fully known. Little information in 

literature is available to formulate maximum crosstalk estimates when signal lines are 

electrically long.  

Paper one and paper two in this dissertation are designed to supplement existing 

crosstalk literature with newly derived maximum crosstalk estimates. Paper one 

introduces maximum crosstalk estimates in the frequency domain where signal lines are 

weakly coupled and the characteristic impedances are assumed to be approximately the 

same inside and outside a designated coupling region. The maximum crosstalk estimates 

in paper one are shown to be a significant improvement from the estimates derived by 

another author since the new formulation is not limited to lossless and homogeneous 

media. Measurements and simulations are presented that illustrate the maximum crosstalk 

estimates can predict the maximum crosstalk envelope within a few decibels. A thorough 

analysis and comparison of the newly derived maximum crosstalk estimates with the 

previously derived estimates by another author are presented in paper two. The purpose 

of this analysis is to validate the mathematical basis for the previously derived estimate 

and to show limitations of the previous estimate that were not apparent in the original 

paper. The analysis in paper two provides additional validation to the previously 

published maximum crosstalk estimate and the estimates presented in paper one. 
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Design methods for creating intentional electromagnetic radiators, namely 

antennas, are widely available in literature. Despite the abundance of engineering 

knowledge to create intentional antenna structures, the knowledge of radiation physics in 

general is still lacking. In the area of unintentional radiators there is even less 

understanding of how these structures radiate, and there is a strong need to understand the 

radiation physics of these structures. Such knowledge could be used to make 

unintentional antennas less effective as radiators and prevent electromagnetic interference 

problems. Unintentional radiators of commercial interest include board-to-board and 

cable-to-enclosure interfaces. The focus of the research in this dissertation is on board-to-

board interfaces with high-density printed circuit board connectors.  

To better understand the radiation physics in high-density printed circuit board 

connectors, a method is presented in paper three and paper four to quantify the radiation 

in these structures. In paper three, the radiation physics for a simplified connector model 

is analyzed and characterized using network parameters. The material losses are 

neglected and the basic radiating antenna structures are identified in paper three. Paper 

four expands upon the radiation modeling concepts in paper three by extending radiation 

characterization when material losses and multiple signals may be present at the printed 

circuit board/connector interface. The presented radiated power loss characterization 

methodology in paper four allows deterministic and stochastic analysis on the 

electromagnetic interference properties of connectors that were not previously available 

in the literature. Measurements and simulations are shown in paper four that validate the 

radiated power loss characterization method and illustrate the analysis can apply to both 

measurements and simulations. Paper five expands upon the theory presented in paper 

four with the development of statistical radiated power estimates. Challenges related to 

predicting a maximum radiated power are addressed in paper five with incomplete 

radiation characteristics knowledge of a printed circuit board connector with the 

statistical estimates. Maximum radiated power estimates are proposed that depend on the 

amount of known information about the radiation characteristics of a printed circuit board 

connector. Simulations and measurements are also shown with impulse and pseudo-

random bit sequences to validate the statistical, maximum radiated power estimates. 

 



 

 

3 

PAPER 

I. Maximum Crosstalk Estimation in Weakly Coupled Transmission Lines 

Matthew S. Halligan and Daryl G. Beetner, Senior Member, IEEE 

 

Abstract—Eliminating crosstalk problems in a complex system requires methods 

that quickly predict where problems may occur and that give intuitive feedback on how 

best to solve these problems. Solutions for the maximum crosstalk are often used for this 

purpose. Limit lines for maximum crosstalk in the frequency domain are available in the 

literature when signal lines are electrically small and weak coupling is assumed; 

however, little research has been performed for the case where signal lines are electrically 

large. This paper provides derivations for maximum crosstalk in the frequency domain 

when signal lines are electrically large and weak coupling applies. The coupling 

mechanisms are represented by distributed voltage and current sources. These sources 

result from aggressor circuit voltages and currents as well as mutual terms in the 

transmission line per-unit-length parameters. The maximum crosstalk expressions for the 

victim loads are represented by piecewise expressions dependent on the total electrical 

length of the aggressor circuit and the electrical length of the coupling region. 

Measurements and simulations are presented which show the maximum crosstalk 

estimates can predict the maximum envelope of crosstalk within a few decibels. 

 

Index Terms—Analytical models, coupling circuits, crosstalk, electromagnetic 

coupling, estimation, prediction algorithms, transmission lines. 

 

I. INTRODUCTION 

One of the biggest challenges facing electronics designers in high-density, high-

data-rate systems is crosstalk. Fundamentally, crosstalk is undesirable because it can 

degrade system performance by worsening signal integrity and creating logic errors. 

Although one of the simplest methods to reduce crosstalk is to increase the spacing 

between signal lines, this solution may not always be possible due to system size 

requirements. In such cases, design engineers must resort to other methods such as 
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modifying termination impedances and coupling lengths to reduce the impacts of 

crosstalk. Numerical electromagnetic tools are often used to better understand crosstalk 

issues. Although these tools can be used to quantify crosstalk for a given system, the 

results do not provide much insight into the major contributing factors for crosstalk. 

Analytical expressions can provide this much needed insight and are used for this 

purpose. 

Crosstalk has been extensively studied in literature in both the time and frequency 

domains [1]-[26]. Early work developed models for inductive and capacitive coupling in 

electrically small systems and their impacts on near-end and far-end crosstalk waveforms 

[1], [2]. Paul [3] expanded on these initial concepts by solving for the near-end and far-

end crosstalk analytically using matrix equations in the frequency domain. In subsequent 

work, Paul [4]-[6] and Olsen [7] were able to derive the crosstalk response for circuits at 

low frequencies as a summation of inductive, capacitive, and common impedance 

coupling mechanisms. Initially much of the crosstalk analysis was limited to two 

transmission line systems; however, Paul [8], [9] was also able to expand crosstalk 

analysis to systems containing more than two transmission lines. Some recent work 

expands upon initial formulations presented in [1]-[9] with crosstalk analysis in the time 

domain [10]-[14], in non-uniform transmission lines [15], [16], and in systems with 

signal lines that are not parallel [17], [18]. Statistical characterization of crosstalk in 

multiconductor transmission lines has also been explored [19]-[21]. While [10]-[21] 

represent some recent advances in crosstalk analysis in additional domains and in more 

generalized transmission line structures, these exact formulations do not provide insight 

into worst case crosstalk performance over frequency.  

Although exact formulations for crosstalk are beneficial, the most useful tool for 

many designers is the maximum, worst case crosstalk over frequency [22]-[24]. 

Designers are often interested in a worst case performance limit because passing this 

limit obviates the need for further design analysis and modifications. This type of 

analysis is also preferred over exact crosstalk calculations in many cases because the 

system parameters are not perfectly known. Small shifts in resonant frequencies in this 

case can significantly change a crosstalk estimate. If the maximum crosstalk is found  
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using a closed-form estimate, this technique may also give a better understanding of what 

causes crosstalk problems and how these problems might be solved. 

A maximum crosstalk curve can be defined in two separate frequency regions 

dependent upon the electrical length of the signal lines. When the signal lines are 

electrically small, the maximum crosstalk can be found using the exact, analytical 

equations given in [4]-[6]. The exact equations also represent the maximum possible 

crosstalk because there are no resonances in the crosstalk response for most practical 

terminations. When the signal lines are electrically large, resonances in the crosstalk 

response occur due to the electrical length of the signal lines and, in many cases, due to 

load impedance resonances.  

Presently, there is little information in the literature about predicting the 

maximum crosstalk when signal lines are electrically large. This is not to say that there 

are no exact formulations when transmission lines are electrically large as there is an 

ample supply of literature devoted to this subject [3], [6], [8], [9]; rather, little 

information is available in literature to estimate the maximum crosstalk. An effort was 

made in [24] to predict maximum crosstalk at “high frequencies”, where the signal lines 

were electrically large and weak coupling was assumed. Although the results in [24] were 

shown to predict the crosstalk well, the maximum crosstalk formulations lacked the 

inclusion of transmission line loss and mathematical rigor. One critical assumption in 

[24] was that the coupling mechanisms could be represented by a single, lumped source 

based on infinite transmission line voltages or currents. Although this assumption 

simplifies the crosstalk analysis, the resulting maximum crosstalk expression mixes 

boundary conditions between infinite and finite transmission lines which is not strictly 

mathematically correct. In addition, [24] defined crosstalk as a ratio of maximum 

voltages or currents in the victim and aggressor circuits. This definition of crosstalk can 

suffer from over-prediction and under-prediction problems at the near-end and far-end 

victim loads. The purpose of this paper is to develop a mathematically rigorous, worst-

case, high-frequency crosstalk estimate that includes transmission line losses. Results are 

validated by demonstrating the newly derived crosstalk formulation reduces analytically 

to a well-known crosstalk formulation and by demonstrating performance through 

multiple simulations and measurements. 
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II. MAXIMUM CROSSTALK FORMULATION 

The maximum crosstalk formulation is derived in the following sections. First, the 

transmission line circuit and the transmission line equations are presented. Next, the 

solutions to the transmission line wave equations are presented for a distributed voltage 

and a distributed current source. The total victim transmission line voltage solution is 

then shown as a superposition of the responses due to the distributed sources when the 

coupling region is electrically small and electrically large. Lastly, modifications to the 

exact, total victim transmission line voltage solutions are given that estimate the 

maximum crosstalk at the victim near-end and far-end loads. 

 

A. Transmission Line Circuit and Transmission Line Equations 

The three-conductor transmission line system in Fig. 1 was used as a reference to 

develop maximum crosstalk expressions at frequencies where the signal lines were 

electrically long. This system consists of an aggressor circuit and a victim circuit. The 

primary quantity of interest is the voltage at the near-end and far-end loads of the victim 

circuit. Coupling is assumed to occur within a region where the cross-sectional geometry 

and electrical characteristics are uniform along its length. Outside of the coupling region, 

the aggressor and victim circuits are assumed to have the same cross section (i.e., the 

signal and returns have the same size and orientation) as in the coupling region, but the 

circuits are now uncoupled. This transmission line system is loosely based on a typical 

modular system where connections among different modules are established using cable 

bundles, and coupling occurs when the aggressor and victim share the same harness. This 

crosstalk formulation allows for different aggressor and victim circuit lengths, 

independent of the coupling region size, which many other crosstalk formulations do not 

permit. Weak coupling is assumed, and the characteristic impedance is assumed to be 

approximately the same over the entire lengths of the aggressor and victim circuits. The 

weak coupling conditions are typically well satisfied in cable bundles where the 

conductor separation is at least three to five times the conductor height from a reference 

structure. 
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Fig. 1.  Coupled three-conductor transmission line system used to formulate an estimate 

of maximum crosstalk. 

 

The transmission line equations for the system in Fig. 1 are given by [9] 

 

          xILxILjxIRxIRxV
x

2121112121111 



  (1a) 

          xILxILjxIRxIRxV
x

2221212221212 



  (1b) 

          xVCxVCjxVGxVGxI
x

2121112121111 



  (1c) 

          xVCxVCjxVGxVGxI
x

2221212221212 



  (1d) 

 

where the aggressor circuit is denoted as signal line one, and the victim circuit is denoted 

as signal line two, V and I are the voltage and current along each transmission line as a 

function of length, x, and R, L, G, and C are per-unit-length parameters for resistance, 

inductance, conductance, and capacitance. The per-unit-length parameters contained in 

(1) are defined as [9], 
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
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CC
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ccc

ccc
C . (2) 

 

The per-unit-length parameter matrices are symmetric for the system in Fig. 1 due 

to reciprocity. Under the weak coupling assumption, the transmission line equations 

become [6], [9], 

 

     xILjxIRxV
x

1111111 


  (3a) 

          xILxILjxIRxIRxV
x

2221212221212 



  (3b) 

     xVCjxVGxI
x

1111111 


  (3c) 

          .2221212221212 xVCxVCjxVGxVGxI
x





  (3d) 

 

Two critical insights can be found from the weak coupling transmission line equations. 

The first insight is that the voltage and current of the culprit circuit can be solved using 

traditional methods for a single transmission line problem. This result implies that the 

voltage and current in the culprit circuit is not impacted by the voltage and current in the 

victim circuit, as expected for the weak coupling case. The second insight is that the 

coupling terms in the victim circuit can be represented by a distributed voltage and a 

distributed current source. The differential equations describing wave propagation in the 

victim circuit can be rewritten using distributed voltage and distributed current sources as 

 

       xvxILjRxV
x





222222   (4a) 

       xixVCjGxI
x





222222   (4b) 

 

where the distributed voltage and distributed current sources are given by, 
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 
   

else

xxxxILjR
xv

1212121
    

0





 


  (5a) 

 
   

else

xxxxVCjG
xi

1212121
    

0





 


 . (5b) 

 

Analytically, the transmission line system in Fig. 1 can then be reduced to a single 

transmission line system with distributed sources as in Fig. 2. 

An integral formulation was used to solve for the voltage and current in the victim 

circuit in Fig. 2. Since the circuit was linear, superposition was used to find the total 

circuit response. The total response includes the response due to a distributed voltage 

source (related to inductive and common impedance coupling) and the response due to a 

distributed current source (related to capacitive and common impedance coupling). The 

responses from these sources were found separately. To minimize complexity, the 

propagation constant, γ, was assumed to be the same for both the aggressor and victim 

circuits. 

 

Fig. 2.  Victim circuit with distributed voltage and current sources due to coupling from 

the aggressor circuit under the weak coupling assumption. 
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B. General Solution to the Transmission Line Equations for a Distributed Voltage 

Source 

The differential equations representing the response due to the distributed voltage 

source can be found from (4), where the distributed current source is set equal to zero. A 

wave equation for the current on the victim transmission line and the near-end and far-

end boundary conditions can then be written as, 

 

     xyvxIxI
x

vv 



,2

2
,22

2

  (6a) 

    0
1

2,22,2 



NEvv ZlIlI

xy

 (6b) 

    000
1

,2,2 



FEvv ZII

xy

 (6c) 

 

where 

 

2222 LjRz   (7a) 

2222 CjGy   (7b) 

yz2  (7c) 

y

z

y
Z 


02

. (7d) 

 

The subscript v in the current terms in (6) denotes the functional response due to the 

distributed voltage source. An equivalent Green’s function problem can be formulated 

using the wave equation and boundary equations as written in (6). The Green’s function 

problem is graphically represented by the circuit in Fig. 3. 
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Fig. 3.  Circuit representing the Green’s function problem for a distributed voltage source 

in the victim circuit. 

 

The wave equation for the Green’s function problem and the near-end and far-end 

boundary conditions can then be written as, 

 

      



xxgxg

x
vivi for    0,

2
,2

2

 (8a) 

    0
1

2,2, 



NEvivi Zlglg

xy

 (8b) 

    .000
1

,, 



FEvivi Zgg

xy

 (8c) 

 

The general solution for the Green’s function is given as, 

 

 
 
  
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xg

xx

xx

  

  

,

,
,  (9) 

 

where the unknown constants A, B, C, and D must be found through four independent 

equations. Two of these equations are given in the near-end and far-end boundary 

conditions of (8b) and (8c). Another two equations can be found by using the continuity 

condition and the jump condition at the voltage source as given in (10). 
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      gg  (10a) 

1
  dx

dg

dx

dg  (10b) 

 

The Green’s function for the victim circuit current response due to a distributed voltage 

source was found to be [25], 
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where 
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ZZ
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


  (12a) 

02
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ZZ
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FE

FE
FE




 . (12b) 

 

The Green’s function in (11) is symmetric as expected because the Green’s function 

problem is self-adjoint. The general solution to the differential equation (6a) can be found 

from, 

 

       dxgyvxI viv  ,,,2
. (13) 

 

The particular solution for the current can be written in a piecewise manner as, 
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 (14) 

 

Re-arranging (4b), the voltage on the transmission line can be found from (13)-(14) as, 
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C. General Solution to the Transmission Line Equations for a Distributed Current 

Source 

The differential equations representing the response due to the distributed current 

source can be found from (4), where the distributed voltage source is set equal to zero. 

Using (7) in (4), the wave equation for the voltage on the victim transmission line and the 

near-end and far-end boundary conditions can then be written as, 
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xz
iNEi

 (16b) 

    000
1
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


iFEi VZV

xz
 (16c) 

 

where, the subscript i in the voltage terms denotes the functional response due to the 

distributed current source. An equivalent Green’s function problem can be formulated 

using the wave equation and boundary equations as written in (16). The Green’s function 

problem is graphically represented by the circuit in Fig. 4. 

 

 

Fig. 4.  Circuit representing the Green’s function problem for a distributed current source 

in the victim circuit. 

 

The wave equation for the Green’s function problem is the same as (8a) and the near-end 

and far-end boundary conditions can then be written as, 
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The general solution for the Green’s function is given in (9). The unknown constants may 

be found with the near-end and far-end boundary conditions as given in (17) and the 

continuity condition and jump condition at the current sources as given in (10). The 



 

 

15 

Green’s function for the victim circuit voltage response due to a distributed current 

source was found to be [25], 
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The Green’s function in (18) is symmetric as expected because the Green’s function 

problem is self-adjoint. The general solution to the differential equation (16a) can then be 

found from, 

 

       dxgzixV ivi  ,,,2
. (19) 

 

The particular solution for the voltage can be written in a piecewise manner as, 
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Re-arranging (4a), the current on the transmission line can be found with, 
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D. Total Solution to the Transmission Line Equations for an Electrically Small Coupling 

Region 

By the superposition principle, the total solution for the victim voltage response is 

given by the sum of the responses from the distributed voltage and distributed current 

sources, 

 

     xVxVxV iv ,2,22  . (22) 

 

The voltage response in the victim circuit is directly related to the voltages and currents 

in the aggressor circuit in addition to the mutual coupling parameters seen in (4) and (5). 

The aggressor circuit voltages and currents when the aggressor is electrically long are 

given by, 
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where, 

 

bal 1
 (24a) 
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When the coupling region is electrically small, the distributed voltage and current sources 

given in (5) can be approximately lumped into single lumped sources. In this case, (5) 

can be rewritten as, 
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where, 
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The victim voltage due to the voltage source in (25a) can be found from (11), (13), and 

(15) as, 
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The victim voltage due to the current source in (25b) can be found from (18)-(19) as, 
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The total victim voltage can then be written from (22) and (27)-(28) as, 
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An alternative form to (27)-(29) may also be written when the coupling region is 

electrically small and the distributed voltage and current sources in (5) have a uniform 

distribution. The culprit and voltages and currents then only need to be evaluated at a 

point –x0 in the coupling region. The victim voltage due to the distributed voltage source 

in (5a) can then be written as, 
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The victim voltage due to the distributed current source in (5b) can then be written as, 
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The total victim voltage outside the coupling region can then be written from (22) as, 
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E. Total Solution to the Transmission Line Equations for an Electrically Large Coupling 

Region 

The total solution for the victim voltage response is given by the superposition 

principle in (22). The voltage response in the victim circuit is directly related to the 

voltages and currents in the aggressor circuit in addition to the mutual coupling 

parameters seen in (4) and (5). The aggressor voltages and currents when the culprit is 

electrically long can be found in (23). The victim voltage due to distributed voltage 

sources in (5a) when the coupling region is electrically large can be found from (11), 

(13), and (15) as, 
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The victim voltage due to distributed current sources in (5b) can be found from (18)-(19) 

as, 
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The total voltage in the victim circuit outside the coupling region can be written from 

(22) and (33)-(34) as, 
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Although the mathematics for finding the voltage in the victim circuit was based 

on the presumption that the signal lines were electrically long, the integral formulation is 

also applicable when the signal lines are electrically small. When the aggressor circuit is 

electrically small, the voltage and current in the aggressor circuit is approximately the 

same along the length of the line. Evaluation of the integral formulation remains the 

same. The final result for the victim voltage, however, is more compact when the lines 

are electrically small due to a greater simplicity in the voltage and current expressions for 

the aggressor circuit. 

 

F. Maximum Crosstalk Estimation 

The crosstalk between the aggressor and victim circuits at the near-end and far-

end loads can be evaluated using (35), though the resulting expression does not provide 

the worst case crosstalk at all frequencies. The maximum crosstalk can be found through 

mathematical manipulations that find a maximum envelope for crosstalk given in (35). 

These manipulations vary with the electrical length of the aggressor circuit and the 

coupling region. When the aggressor is electrically small, the maximum victim voltages 
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can be extracted from the magnitude of (35). When the aggressor circuit is electrically 

large, modifications to (35) are required. Equation (35) is written in a product of sums 

format. Thus, the maximum envelope for (35) can be approximated as the multiplication 

of the maximum envelopes for each of the individual products. Maximum values are 

approximated by modifying addition and subtraction operations to maximize the value of 

numerators and minimize the value of denominators, within the bounds of parameter 

values. Many of the terms in (35) are of the form le 1 . At maximum or minimum, the 

exponential quantity becomes real and is then of the form le 1 .  

The mathematical manipulations required to find the maximum crosstalk can be 

illustrated with an example. One term in the far-end crosstalk expression derived from 

(35b) is      al
FENE ee  22

FE 11


 . The denominator of this term is minimized when 

the product 22 l
FENE e


  is a positive, real number. The numerator maximum can be 

found without significant overprediction by taking the magnitude of 
FE1  and using 

aa ee   . The maximum envelope of this example term can then be defined as 

     al
FENE ee  22

FE 11


 . Similarly, the maximum voltages at the victim loads can 

be found as a function of the aggressor electrical length and the coupling region electrical 

length with the piecewise expressions shown as follows: 
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where 

 

 j  (38) 
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where λ is the wavelength of the signal in the propagating medium and n is a positive, 

odd integer. The subscripts NE and FE represent the near-end and far-end position of the 

victim loads relative to the aggressor source. 

Equation (36) and (37) confirm on a mathematical basis that the maximum 

crosstalk can be minimized by: reducing the aggressor source voltage, minimizing the 

coupling region length, using loads well matched to the transmission line characteristic 

impedance in the aggressor and victim circuits, and decreasing capacitive, inductive, and 

common impedance coupling mechanisms. The first piecewise expression for the near-

end and far-end maximum voltages, (36a) and (37a), were derived from a formulation 

where the aggressor circuit was electrically small. This formulation was used instead of 

the electrically large formulation presented in (35) to provide better insight into the 

crosstalk response and to minimize the possibility of overpredicting the maximum 

crosstalk. The remaining piecewise expressions were derived from the electrically large 

aggressor circuit formulation in (35). The second piecewise expression in both equations, 

(36b) and (37b), are given when the aggressor circuit is electrically large, but the 

coupling region is less than one quarter wavelength. The last piecewise expression in 

both equations, (36c) and (37c), is evaluated when the coupling region is greater than one 

quarter wavelength. To predict the maximum values of crosstalk, (36c) and (37c) are 

evaluated at discrete frequency points where the coupling region is odd, integer quarter 

wavelengths long. This unique evaluation constraint removes undulations in the 

maximum crosstalk response due to the electrical length of the coupling region. 

 

III. ANALYTIC VALIDATION 

The validity of (35), from which (36) and (37) were derived, can be shown 

indirectly by demonstrating that it can be reduced to simpler formulas found in the 

literature under the correct conditions. For the case where circuits are electrically small, 

(35) can be reduced to the well-known crosstalk equations found in [6], as shown below. 

The voltage and current on the aggressor circuit can be written as (23a) and (23b). When 

the aggressor circuit is electrically small, the voltage and current are approximately the 

same along the length of the transmission line and satisfy    011 xVxV   and 
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   011 xIxI  . The voltage at the near-end and far-end loads of the victim circuit due to 

an equivalent lumped voltage source at a position 0x  can be found from (13) and (15) 

where    0xVv N   . At the near-end 2lx  , and at the far-end 0x . Using these 

relationships the voltages at the near-end and far-end of the victim circuit can be written 

as, 

 

    
02

2

0

2

2
,

,
1

11

2

xl

l
FENE

x
FENENEN

NEv e
e

eV
V

















 (39a) 

    
0

2

02

2

2
,

,
1

11

2

x

l
FENE

xl
NEFEFEN

FEv e
e

eV
V
















 (39b) 

 

where, 
NENV ,

 and 
FENV ,

 is the lumped voltage source in the victim transmission line that 

creates the victim near-end and far-end responses, respectively. When the coupling 

region is electrically large, 
FENNEN VV ,,   and the analysis of the near-end and far-end 

responses are completed separately. Similarly, the voltage at the near-end and far-end 

loads of the victim circuit due to an equivalent lumped current source at a position 0x  

can be found from (19) where    0xIi N   . At the near-end 2lx  , and at the far-

end 0x . Using these relationships the voltages at the near-end and far-end of the 

victim circuit can be written as, 
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where, 
NENI ,

 and 
FENI ,

 is the lumped current source in the victim transmission line that 

creates the victim near-end and far-end responses, respectively. When the coupling 

region is electrically large, 
FENNEN II ,,   and the analysis of the near-end and far-end 

responses are completed separately. Although (35) was formulated based on distributed 



 

 

26 

voltage and current sources in the victim circuit, (35) can be re-arranged as a 

superposition of responses due to equivalent lumped sources. The near-end and far-end 

voltages in the victim circuit can be evaluated from (41)-(42). 
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If the transmission lines are assumed to be lossless, where  j  but R12 is kept to 

account for common impedance coupling, the transmission lines are also assumed to be 

electrically small, and the operating frequency is sufficiently low that all of the 

exponential terms are equal to one in (23) and (39)-(42), then the source equations 

simplify to,  

 

    01121212,, xILjRxxVV FENNEN  
 (43a) 
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    .01121212,, xVCjGxxII FENNEN    (43b) 

 

The voltage and current in the aggressor circuit can be simplified from (23) as 
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Then the near-end and far-end voltages, derived from (35), can be written as a summation 

of inductive ( IND
FENEM /

), capacitive ( CAP
FENEM /

), and common impedance ( CI
FENEM /

) coupling 

mechanisms as in [6]. Thus, (35) is validated for the case where transmission lines are 

approximately lossless, electrically small, and the operating frequency is sufficiently 

small. 

 

IV. SIMULATIONS AND MEASUREMENTS 

Equations (35)-(37) were validated through multiple simulations and 

measurements. The exact formulation in (35) was validated by applying the finite 

difference method to the weak coupling transmission line equations in (3)-(5). These low-

level simulations showed agreement between the simulated results and (35) to within 

fractions of a dB over the entire simulation frequency range. Further details about these 

simulations are provided in Appendix A and Appendix B. Hspice simulations with w-

element models that described the transmission line characteristics in the aggressor and 

victim circuits were also performed, as will be illustrated later. In both the measurements 

and the Hspice simulations the weak coupling condition was achieved through the design 

of the aggressor and victim circuit per-unit-length parameter ratios. The weak coupling 

condition allows the coupling from the victim back to the aggressor to be ignored and 

implies the following relationships [6]: 

 

       xILjxIRxILjxIR 212212111111    (45a) 

       xVCjxVGxVCjxVG 212212111111   . (45b) 
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Assuming the voltages and currents are of the same magnitude in both the aggressor and 

victim circuits, the real and imaginary parts of (45) show that the weak coupling 

assumption is valid when 11211 ll ,   1121211  ccc ,   112111  rrr , and 

  1121211  ggg . These per-unit-length parameter ratios defining weak coupling are 

similar to conditions that have been derived by others [3], [6], [11], [26]. 

The measurement setup to validate (35)-(37) consisted of a printed circuit board 

(PCB) with six sets of coupled traces as shown in Fig. 5. The use of a PCB rather than a 

wiring harness or similar setup allowed precise specification of system geometry. The 

two layer PCB was fabricated with a 59 mil thick Isola FR402 dielectric and consisted of 

1 oz. copper traces that were 116 mils wide. Six cases were tested as shown in Table I. 

Parameters for the test cases are defined in Fig. 1. The aggressor and victim traces were 

separated by 120 mils for Case 1-3 and Case 5-6 to satisfy the weak coupling conditions 

implied by (45) in the coupling region. Case 4 had a 20 mil separation distance in the 

coupling region and did not satisfy the weak coupling conditions implied by (45). The 

aggressor and victim traces were separated by 634 mils at the thru-hole SMA connectors. 

Single-ended traces were placed at the bottom of the PCB to facilitate substrate 

and connector parasitic characterization measurements. The SMA connector parasitic 

model used was a shunt 1.1 pF capacitance with a series 0.8 nH inductance. The per-unit-

length parameters for the geometries on the PCB were extracted from a signal integrity 

tool, Hyperlynx, for 7.4r  and .015.0tan   These parameters were used in w-

element models in Hspice. An example simulation without connector parasitics for Case 

1 and a modified form of Case 1 is shown in Fig. 6 and Fig. 7, respectively. Connector 

parasitics were not included in the simulations to reduce simulation complexity. The 

modified Case 1 simulation used all of the same layout parameters as Case 1 except for a 

500 mil trace separation in the coupling region. The loads for both simulations were 

defined as  910030  ejZS  ,   1230175  ejZL  ,  91045  ejZ NE  , and 

  125175  ejZFE  . 

Fig. 6 and Fig. 7 show that there is better agreement between the Hspice 

simulations and the analytical results above 3 GHz when there is a greater separation of 

the traces in the coupling region. This trend occurs because the weak coupling 
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TABLE I.  MEASUREMENT SETUP DIMENSIONS (MILS) 

 

 

Fig. 5.  Coupled microstrip PCB used to validate the maximum crosstalk equations. The 

total PCB size was 12” x 16”. Traces were made long to facilitate electrically long 

crosstalk measurements at low frequencies. 

 

assumption is better satisfied with increasing trace separation. A comparison of the per-

unit-length parameter ratios used to quantify weak coupling for these two simulations at 3 

GHz is shown in Table II. An additional weak coupling condition for inhomogeneous 

media exists that cannot be deduced from (45). Reference [26] lists a condition in (15) 

that illustrates frequency dependence in the weak coupling assumption for lossless, 

inhomogeneous media. Rewriting this equation according to parameters given in Fig. 1 

and (2), this condition is given by [26] 

 

Case # b l2 x2 x1 a 
Trace 

Separation 

Case 1 14853 14640 11320 3320 213 120 

Case 2 14853 14640 9320 5320 213 120 

Case 3 14853 14640 12320 8320 213 120 

Case 4 14894 14640 11320 3320 254 20 

Case 5 12533 12320 8000 2000 2213 120 

Case 6 14853 12320 10320 4320 -107 120 
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  1
2 21211111

11211121
12 






CLCL

CLLC
xx . (46) 

 

Neglecting the transmission line losses in the Case 1 and modified Case 1 simulations, 

(46) was found to equal one at 4 and 19 GHz, respectively, which corresponds to the loss 

of accuracy between (35) and the simulated response. A condition similar to (46) that 

includes transmission line losses would fully explain the divergence in results in Fig. 6, 

but this derivation is outside the scope of this paper. 

Crosstalk measurements were taken for the coupled trace cases illustrated in Fig. 

5 using a two port network analyzer. The top microstrip trace and bottom microstrip trace 

for each coupled pair was considered as the aggressor circuit and victim circuit, 

respectively. The SMA jacks on the left of the PCB were dedicated to aggressor source 

and victim near-end load connections. The SMA jacks on the right of the PCB were 

dedicated to aggressor load and victim far-end load connections. 
LZ  and 

FEZ  were 

varied to study the near-end crosstalk response as a function of load impedance. 

Similarly, 
LZ  and 

NEZ  were varied to study the far-end crosstalk response. Three load 

combinations were measured for each crosstalk response and included two matched 

loads, two shorts, and two opens. 

The measured crosstalk responses for Case 1 are illustrated in Fig. 8-Fig. 10. The 

coupling length was approximately one wavelength long at 793 MHz. Thus, the coupling 

length was electrically long for most of the measurement frequency range. Fig. 8-Fig. 10 

show that the maximum crosstalk estimations given by (36) and (37) predict the crosstalk 

envelope within a few decibels. Initial attempts to compare the maximum crosstalk 

expressions in (36) and (37) with those in [24] with meaningful results were unsuccessful 

for the measurement setup of Fig. 5. This is due in part to the inhomogeneous nature of 

the test setup in Fig. 5. It can be shown that the equations in [24] can be derived from 

(35) using a homogeneous medium relationship. 

A divergence between the analytical modeling and the crosstalk measurement in 

Fig. 8-Fig. 10 can be seen starting around 3 GHz. This discrepancy is due mostly to the 

weak coupling assumption not being well satisfied from a frequency dependent condition 

similar to (46). This assertion is supported by the data in Fig. 6 and Fig. 7. Some 
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TABLE II.  WEAK COUPLING RATIOS FOR TWO CASE 1 SIMULATIONS AT 3 GHZ 

 

 

Fig. 6.  Crosstalk example for the Case 1 configuration without SMA connector 

parasitics. (a) Near-end crosstalk. (b) Far-end crosstalk. The separation between traces in 

the coupling region was 120 mil. The analytical equation is given by (35a) and (35b) and 

the maximum crosstalk estimate is given by (36) and (37) for (a) and (b), respectively. 

 

Fig. 7.  Crosstalk example for the modified Case 1 configuration without SMA connector 

parasitics. (a) Near-end crosstalk. (b) Far-end crosstalk. The separation between traces in 

the coupling region was 500 mil. The analytical equation is given by (35a) and (35b) and 

the maximum crosstalk estimate is given by (36) and (37) for (a) and (b), respectively. 

Simulation Case 1211 ll    121211 ccc     12111 rrr     121211 ggg   

Original 11 37 26 152 

Modified 69 796 82 2337 
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Fig. 8.  Crosstalk example for the Case 1 configuration with SMA connector parasitics. 

(a) Near-end crosstalk. (b) Far-end crosstalk. Matched loads were used for the ports not 

connected to the network analyzer on the PCB. The maximum crosstalk curves are 

predicted from (36) and (37). 

 

Fig. 9.  Crosstalk example for the Case 1 configuration with SMA connector parasitics. 

(a) Near-end crosstalk. (b) Far-end crosstalk. The ports not connected to the network 

analyzer on the PCB were left open. The maximum crosstalk curves are predicted from 

(36) and (37). 
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Fig. 10. Crosstalk example for the Case 1 configuration with SMA connector parasitics.  

(a) Near-end crosstalk. (b) Far-end crosstalk. Shorts were used for the ports not 

connected to the network analyzer on the PCB. The maximum crosstalk curves are 

predicted from (36) and (37). 

 

additional divergence in the results may also be caused by an inadequate SMA connector 

parasitic model above 3 GHz and by higher order mode effects. Despite the difference in 

measured and analytically predicted results above 3 GHz, the maximum crosstalk curves 

still adequately predict the maximum crosstalk to relatively high frequency. The other 

test cases on the PCB were tested with similar results. Although the maximum crosstalk 

formulas were derived on the basis of weak coupling, these formulas may still give 

reasonable results in cases where the weak coupling assumption is not strictly met. The 

measured crosstalk responses for Case 4, which does not satisfy the weak coupling 

conditions implied by (45), are shown in Fig. 11-Fig. 13. 

 

 

 

 



 

 

34 

 

Fig. 11. Crosstalk example for the Case 4 configuration with SMA connector parasitics. 

(a) Near-end crosstalk. (b) Far-end crosstalk. Matched loads were used for the ports not 

connected to the network analyzer on the PCB. The maximum crosstalk curves are 

predicted from (36) and (37). 

 

Fig. 12. Crosstalk example for the Case 4 configuration with SMA connector parasitics. 

(a) Near-end crosstalk. (b) Far-end crosstalk. The ports not connected to the network 

analyzer on the PCB were left open. The maximum crosstalk curves are predicted from 

(36) and (37). 
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Fig. 13. Crosstalk example for the Case 4 configuration with SMA connector parasitics. 

(a) Near-end crosstalk. (b) Far-end crosstalk. Shorts were used for the ports not 

connected to the network analyzer on the PCB. The maximum crosstalk curves are 

predicted from (36) and (37). 

 

V. CONCLUSION 

Equations for estimating the maximum crosstalk in a three-conductor 

transmission line have been presented and validated against a well-known crosstalk 

formulation and validated against simulated and measured data. These formulas are based 

on the weak coupling assumption where the transmission line system has a single 

coupling region with a uniform cross section. These equations may be expanded to 

systems with more than three conductors through the application of the superposition 

principle. If weak coupling is assumed among all conductors in such a system, a first-

order approach to find the maximum crosstalk estimate would be to formulate a three-

conductor transmission line problem as in Fig. 1 for each aggressor. The maximum 

crosstalk could then be formulated as the summation of (36) at the near-end, and (37) at 

the far-end for all of the three-conductor transmission line problems. This approach 

would neglect higher order coupling effects where a signal could propagate and couple 

among multiple aggressor lines before coupling to a victim line. Transmission line losses 

and resistive transmission line terminations in many cases could make these higher order 

coupling effects negligible. This superposition approach could also be used for systems 
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that have more than one coupling region. Caution should be used, however, as the 

resulting maximum crosstalk expression may suffer from over prediction problems.  

The newly presented formulas can model the maximum crosstalk for transmission 

lines in lossy, inhomogeneous media where the transmission lines may have unique and 

arbitrary lengths. Measurements and simulations show that the maximum crosstalk 

formulas capture the envelope of the near-end and far-end victim voltages well, often 

within a few decibels. Future work may include estimation of maximum crosstalk for 

transmission lines without the weak coupling assumption, for transmission lines with 

non-uniform cross sections, and for systems containing more than two transmission lines. 

These equations are also well suited for evaluation of signal integrity in systems where 

transmission line parameters are not well known and crosstalk sensitivity analysis is 

needed. 
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II. Maximum Crosstalk Estimation in Lossless and Homogeneous Transmission 

Lines 

Matthew S. Halligan and Daryl G. Beetner, Senior Member, IEEE 

 

Abstract—In earlier papers, analytical formulas were derived to estimate the 

maximum crosstalk in the frequency domain for systems with electrically long signal 

lines. These formulas were developed to give designers intuitive feedback as to the 

causes for crosstalk problems and methods for maximum crosstalk reduction. In one of 

these papers the maximum crosstalk estimates are based on intuitive relationships for 

infinitely long transmission lines. While the resulting model is quite simple and easy to 

understand, its limitations are poorly understood. In another paper the maximum 

crosstalk estimates are based on a mathematically rigorous, integral formulation, but the 

resulting model is relatively complex. This rigorous model is derived assuming the signal 

lines are weakly coupled and the transmission line characteristic impedances are 

approximately the same over the entire lengths of the aggressor and victim circuits. The 

following paper illustrates how the less rigorously developed estimates, based on 

infinitely long transmission lines, may be derived from the mathematically rigorous 

maximum crosstalk estimates for lossless and homogeneous transmission lines in the 

frequency domain. The resulting derivation provides insight into the limitations and 

mathematical validity of the less rigorous estimates that are not available in the original 

paper. The mathematically rigorous maximum crosstalk estimates are shown to have 

fewer and less restrictive assumptions than the estimates based on infinitely long 

transmission lines. Measurements and simulations are presented that validate results and 

illustrate maximum crosstalk estimate limitations. 

 

Index Terms—Cabling and transmission systems, crosstalk, frequency domain 

techniques, modeling techniques, transmission line theory 
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I. INTRODUCTION 

Present design trends in commercial electronics are toward designs that are 

smaller, weigh less, and consume less power than designs of the past. One major 

implication of this trend is increased problems with crosstalk. Crosstalk is often evaluated 

through a combination of numerical simulations and rules of thumb and has been 

extensively studied in literature. Some crosstalk modeling approaches have included 

SPICE modeling methods for multiconductor transmission lines as in [1] and alternative 

modeling methods for multiconductor transmission lines with many conductors and non-

uniform cross-sections as in [2]. Crosstalk reduction strategies have also been explored 

[3]-[4]. In [3], on-wafer measurements were performed and showed transmission line 

differential mode excitations had smaller crosstalk than transmission line common mode 

excitations and single-ended excitations. Conductor routing was investigated in [4] to 

reduce nearest neighbor crosstalk. Crosstalk has also been analyzed while considering 

“continuous-spectrum” currents and bound mode currents in a coupled, two microstrip 

line structure [5].  

While most literature has focused on exact crosstalk formulations that capture 

every peak and valley in the crosstalk over frequency, design decisions are often better 

formulated from a maximum, worst case envelope perspective since the physical 

parameters for any transmission line system are never fully known. When the circuit 

becomes electrically large, in particular, small variations in transmission line parameters 

can cause large changes in the crosstalk at a given frequency, possibly making the 

difference between a system which passes or fails crosstalk requirements. Basing design 

decisions on a maximum crosstalk envelope rather than an exact model could lead to 

better design decisions since the maximum crosstalk envelope is generally less sensitive 

to transmission line parameter variations than an exact formulation. This bounding 

approach to design is also of interest to designers because passing this worst case 

performance limit eliminates the need for further design analysis and modifications. 

Worst case formulations are also often simpler than exact formulations, giving the 

designer a better opportunity to understand why crosstalk problems occur and how to fix 

them. 
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Several recent efforts have focused on the estimation of maximum crosstalk [6]-

[10]. An effort was made in [8]-[9] to predict maximum crosstalk at “high frequencies”, 

where the signal lines were electrically large, in a homogeneous medium, and weak 

coupling was assumed. Although the results in [8] were shown to predict the crosstalk 

well, the maximum crosstalk formulations did not account for transmission line loss and 

lacked mathematical rigor. Mathematical derivations for new maximum crosstalk 

formulas were presented in [10] that addressed many of the shortcomings of [8]. The 

estimates in [10] were based on a mathematically rigorous, integral formulation where 

the transmission lines could be lossy and in an inhomogeneous medium. The estimates in 

[10] were formulated in the frequency domain where the signal lines were assumed to be 

weakly coupled, and the transmission line characteristic impedances were approximately 

the same over the entire lengths of the aggressor and victim circuits. 

One objective of this paper is to show how the general maximum crosstalk 

estimates in [10] can be simplified for the specific case of lossless transmission lines and 

a homogeneous medium assumption. Another objective is to illustrate the limitations and 

mathematical validity of the estimates in [8] which are not available in the original paper. 

It is shown that the maximum crosstalk estimates in [8] can be derived from the formulas 

in [10] under the correct conditions. This paper provides rigorous derivations for the 

maximum crosstalk estimates in [8] which were originally formulated from an intuitive 

basis. It is shown that the mathematically rigorous crosstalk estimates in [10] provide a 

more general solution for the estimate of maximum crosstalk. 

Derivations for the maximum crosstalk estimates based on the integral 

formulation in [10] for lossless and homogeneous transmission lines are first presented in 

Section II. Section III introduces an estimate based on lossless, homogeneous, and 

infinitely long transmission lines. Mathematical derivations for this estimate are also 

presented that are not available in [8]. An analytical comparison, and a measurement and 

simulation validation of the two maximum crosstalk estimates is presented in Section IV. 

Conclusions are given in Section V. 
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II. MAXIMUM CROSSTALK ESTIMATES FROM AN INTEGRAL FORMULATION 

A detailed derivation of formulas for the maximum crosstalk estimates in weakly 

coupled transmission lines, including transmission line losses, can be found in [10]. The 

three conductor transmission line system in Fig. 1 was used as part of this derivation to 

develop maximum crosstalk expressions at frequencies where the signal lines were 

electrically long. This system consists of an aggressor circuit and a victim circuit, where 

the aggressor circuit is denoted as signal line one, and the victim circuit is denoted as 

signal line two. The primary quantity of interest is the voltage at the near-end and far-end 

loads of the victim circuit. 

 

Fig. 1.  Coupled three conductor transmission line system used to formulate an estimate 

of maximum crosstalk [10]. 

 

An integral formulation was used to solve for the voltage and current in the victim 

circuit in Fig. 1. Since the circuit is linear, superposition was used to find the total circuit 

response. The total circuit response consists of the response due to a distributed voltage 

source (related to inductive and common impedance coupling) and the response due to a 

distributed current source (related to capacitive and common impedance coupling). The 

responses from these sources were found separately. To minimize complexity, the 

propagation constant, γ, is assumed to be the same for both the aggressor and victim 

circuits. Weak coupling is also assumed where the voltages and currents in the aggressor 

circuit are not influenced by the voltages and currents in the victim circuit. The 

characteristic impedances, Z01 and Z02, are assumed to be approximately the same over 
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the entire lengths of the aggressor and victim circuits, respectively. The exact expressions 

for the victim near-end voltage and far-end voltage are [10] 
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 j  (2a) 

bal 1
 (2b) 

01

01

ZZ

ZZ

L

L
L




  (2c) 

01

01

ZZ

ZZ

S

S
S




  (2d) 

02

02

ZZ

ZZ

NE

NE
NE




  (2e) 

02

02

ZZ

ZZ

FE

FE
FE




  (2f) 

 

and R21, L21, G21, and C21 represent the transmission line per-unit-length coupling 

parameters in the coupling region. The subscripts NE and FE represent the near-end and 

far-end position of the victim loads relative to the aggressor source in Fig. 1. 
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If the transmission line system is lossless and homogeneous, (1) reduces to 
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where the per-unit-length parameters for inductance and capacitance in the coupling 

region are defined as [11] 
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The per-unit-length parameter matrices are symmetric for the system in Fig. 1 due to 

reciprocity. Equation (3) was derived using the relationship [12] 
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which is valid in a homogeneous medium. Equation (3) can thus be alternatively written 

with a ratio of per-unit-length parameter capacitances rather than inductances.  

The crosstalk between the aggressor and victim circuits at the near-end and far-

end loads can be evaluated using (3), though the resulting expression does not provide the 

worst case crosstalk at all frequencies. The maximum crosstalk can be found through 

mathematical manipulations that find a maximum envelope for crosstalk given in (3). 

These manipulations vary with the electrical length of the aggressor circuit and the 

coupling region. When the aggressor is electrically small, the maximum voltages at the 

victim loads can be extracted from the magnitude of (3). When the aggressor circuit is 

electrically large, modifications to (3) are required. Equation (3) is written in a product of 

sums format. Thus, the maximum envelope for (3) can be approximated as the 
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multiplication of the maximum envelopes for each of the individual products. Maximum 

values are approximated by modifying addition and subtraction operations to maximize 

the value of numerators and minimize the value of denominators, within the bounds of 

parameter values. Many of the terms in (3) are of the form lje 1 . At maximum or 

minimum, the exponential quantity becomes real and the term is then of the form 1 . 

The mathematical manipulations required to find the maximum crosstalk is illustrated in 

[10] with an example. The maximum voltages at the victim loads can be found as a 

function of the aggressor electrical length and the coupling region electrical lengths with 

the piecewise expressions as given in (6)-(7). 
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where, 

 

2

21
0

xx
x


 , (8) 

 

and λ is the wavelength of the signal in the propagating medium. 

The first piecewise expressions for the near-end and far-end maximum voltages, 

(6a) and (7a), were derived from a formulation where the aggressor circuit was 

electrically small. This formulation was used instead of the electrically large formulation 

presented in (3) to provide better insight into the crosstalk response and to minimize the 

possibility of over-predicting the maximum crosstalk. The remaining piecewise 

expressions were derived from the electrically large aggressor circuit formulation in (3). 

The second piecewise expressions in (6b) and (7b) are given when the aggressor circuit is 

electrically large, but the coupling region is less than one quarter wavelength. The last 

piecewise expressions in (6c) and (7c) are evaluated when the coupling region is greater 

than or equal to one quarter wavelength and is a modification to (6b) and (7b). When the 

coupling region length is equal to or larger than one quarter wavelength, the worst case 

value of 1222 xjxj
ee


  is two. This worst case condition occurs when the coupling 

region length is an odd multiple of one quarter wavelength. It should be noted that (6) 

and (7) apply to transmission lines that are lossless and in a homogeneous medium. 

Application of these equations to media that are not homogeneous, where (5) is not 

approximately satisfied, can result in significant errors. For inhomogeneous or lossy 

media the reader should refer to the equations in [10]. 

 

III. MAXIMUM CROSSTALK ESTIMATES FROM INFINITELY LONG TRANSMISSION LINES 

A. Introduction 

A similar estimate of the maximum crosstalk based on lossless, infinitely long 

transmission lines was developed in [8]. To simplify the derivation, [8] defines crosstalk 

as a ratio of maximum voltages or currents in the victim and aggressor transmission lines, 

rather than at the loads as is typically done [12]. The crosstalk formulation in [8] assumes 
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a majority of coupling occurs over a portion of the victim circuit length where coupling is 

greatest. The theory in [8] further assumes: 

1. The geometry is uniform where coupling occurs. 

2. The medium is homogeneous. 

3. The transmission lines are weakly coupled. 

4. The transmission lines are lossless. 

A single, lumped voltage source or current source in the victim circuit is suggested in [8] 

to describe the coupling from the aggressor circuit. This representation reduces the 

transmission line system in Fig. 1 to a single transmission line system with a lumped 

source as in Fig. 2. 

 

Fig. 2.  Equivalent circuit model of weak inductive coupling to the victim circuit at a 

single location [8]. 

 

The ratio of the maximum voltage along the length of the victim transmission line 

to the maximum voltage in the aggressor transmission line was estimated in [8] by 

1121max,1max,2 llVV   on intuitive grounds, based on the magnetic flux wrapping the 

aggressor and victim circuits. The worst case voltage induced at a specific location in the 

victim transmission line (assuming an infinite transmission line) would then be given by 

 1121max,1 llVVN  , where max,1V  denotes the maximum voltage along an infinitely long 

aggressor transmission line [8]. Using transmission line theory for the finite length 
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transmission line in Fig. 2, the maximum voltage in the victim circuit can then be found 

as 
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Application of  1121max,1 llVVN   and the homogeneous medium relationship in (5) 

allows the maximum voltage in the victim circuit to then be represented by 
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B. Mathematical Derivations 

The ratio of the maximum voltages along the infinite transmission lines and the 

lumped voltage source NV  were developed in [8] from an intuitive basis. These quantities 

can be derived rigorously to show the validity and to better understand the limitations of 

the work in [8]. Consider two lossless, coupled transmission lines in a homogeneous 

medium, as shown in Fig. 1. The transmission lines are assumed to be infinite in length 

with a finite length coupling region. The voltage on the aggressor circuit can be written as 
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From (11), the maximum voltage along the aggressor circuit is  

 

SVV
2

1
max,1   (12) 

 

where all of the reflection coefficients are set equal to zero to satisfy the infinite 

transmission line length condition and where  j  in the lossless case. The maximum 

voltage in the victim circuit is found as 
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 mRHSmSRmLHS VVVV ,2,2,2max,2 ,,max  (13) 

 

where, mLHSV ,2  is the maximum voltage in the victim circuit for 2xx  , mSRV ,2  is the 

maximum voltage in the victim circuit for 12 xxx  , and mRHSV ,2  is the maximum 

voltage in the victim circuit for 1xx  . mLHSV ,2  and mRHSV ,2  are obtained from [10, eq. 

(18)] by taking the magnitude of the expression, applying the infinite transmission line 

condition, and applying the lossless transmission line condition. Similarly, mSRV ,2  is 

based on the total voltage response in the coupling region, which is found with the 

application of equations in [10, eq. (8), (10), (11), and (13)-(16)]. mSRV ,2  is found by 

taking the magnitude of the expression for the total voltage response, applying the infinite 

transmission line condition, and applying the lossless transmission line condition. The 

maximum voltage in the victim circuit is thus found to be 
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To satisfy 0S , 01ZZS   in (14). The coupling region length must follow the 

relationship  412 nxx  , where n is a positive, odd integer for mLHSV ,2  to be 

maximum. Similarly, a location in the coupling region must be possible to satisfy 

 41 nxx  , where n is a positive, odd integer for mSRV ,2  to be maximum. Using the 

property where the propagation constant,   21 , the phase velocity pV  in the victim 

or aggressor circuit can be written as   2221221 cclVp  . The characteristic 
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impedances can be defined as pVlZ 1101   and pVlZ 2202  . Assuming the transmission 

lines are in a homogeneous medium, (14) can be written as 
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where (5) was utilized for a homogeneous medium. Thus the maximum voltage in the 

victim circuit is 

 

SS V
cc

c
V

l

l
V

2221

21

11

21
max,2

2

1

2

1


  (16) 

 

and the ratio of the maximum voltages is  
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as was found in [8] in an intuitive manner for coupled, infinite length, homogeneous, and 

lossless transmission lines. 

The lumped voltage source NV  was also derived on intuitive grounds. This source 

was defined in [8] for finite length transmission lines using the relationship given in (17) 

and assuming infinitely long transmission lines (so that there would be a location at 

which this maximum coupling would occur). This voltage source can be derived more 

rigorously from the formulas presented in this paper and from [10] as follows. The victim 

circuit voltage for a lumped voltage source at a position 0x  as in Fig. 2 for 0xx   and 

0xx   is found from [10, eq. (10)-(11)] with    0xVv N   . The voltages to the 

left and the right of the source can be written as, 
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where, LHSNV ,  and RHSNV ,  are the lumped voltage sources in the victim transmission line 

that creates the victim responses in the 0xx   and 0xx   regions, respectively. The 

subscripts LHS and RHS indicate the position ranges 0xx   and 0xx   over which a 

variable is defined. The victim circuit voltage for a lumped current source at a position 

0x  for 0xx   and 0xx   can be found from [10, eq. (14)] where 

   0xIi N   . The voltages to the left and the right of the source can be written as, 
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where, LHSNI ,  and RHSNI ,  is the lumped current source in the victim transmission line 

that creates the victim responses in the 0xx   and 0xx   regions, respectively. 

Comparing (18) and (19), an equivalent total lumped voltage source can be defined for 

each region as 
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where the total circuit voltage can be obtained by inserting (20a) for LHSNV ,  in (18a) and 

(20b) for RHSNV ,  in (18b). Mathematically equivalent lumped voltage and current sources 

can be found for an electrically large coupling region by equating equation forms. LHSNV ,  
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and RHSNV ,  are determined by equating  xV v,2  in [10, eq. (11)] with (18). Similarly, 

LHSNI ,  and RHSNI ,  are determined by equating  xV i,2  in [10, eq. (14)] with (19). If the 

transmission lines are lossless, the coupling region is  4n  in length where n is positive 

and odd in the worst case, and the transmission lines are in a homogeneous medium, then 

the magnitude of the maximum noise voltage can be determined from (20) as 
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If the transmission lines are considered to be infinite in length, which forces the reflection 

coefficients to zero, then (21) reduces to 

 

11

21
:max,

l

l
VV SLHSN   (22a) 

0:max, RHSNV . (22b) 

 

Equation (22a) shows that  1121max,12 llVVN   where max,1V  is given by (12) rather than 

 1121max,1 llVVN   as suggested in [8]. The result of (22a) is, however, consistent with 

the defined lumped voltage source given in [9]. 

 

IV. MAXIMUM CROSSTALK ESTIMATE COMPARISON AND VALIDATION 

The previous derivations show that while the equations in [8] can be found 

rigorously, these equations mix boundary conditions between infinite and finite 

transmission lines in the sense that (22a) is applied to finite length transmission lines 

when an infinite transmission line length assumption was used. This mix of boundary 

conditions is not strictly mathematically correct, however, it can be shown that the 

maximum crosstalk estimate in [8] does provide some useful results under the right 

conditions. Crosstalk measurements were performed in [8] at the victim circuit loads 
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where at some frequencies it was assumed that the maximum victim voltage may occur at 

one of the loads. Using (22a) in (9) the maximum voltage along the length of the victim 

circuit is given by 
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where the measurements in [8] were used to validate (23). In all of these measurements 

0S  and 1L . Under these conditions the mathematically rigorous maximum 

crosstalk estimates based on an integral formulation can be reduced to a similar form as 

(23). Since [8] assumes the coupling region length is maximally resonant in the worst 

case, a direct comparison may only be made among (6c), (7c), and (23). For 0S  and 

1L , (6c) and (7c) reduce to 
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The choice of NE1  in (6c) and FE1  in (7c) rather than NE1  and 

FE1  was made to reduce the error in the estimates when the near-end and far-end 

reflection coefficients are largely negative and real (e.g., a short termination). For small 

reflection coefficients, real and positive reflection coefficients, and complex reflection 

coefficients that are largely positive and real (e.g., matched terminations and large 

resistive terminations relative to the transmission line characteristic impedance), 

 11 . Case 1 – Case 6 in [8] have terminations that satisfy NENE  11  or 

FEFE  11  where at least one of the equations in (24) can be reduced to (23). This 

reduction provides additional validation for the maximum crosstalk estimates presented 

in [8] and [10] because the estimates are equivalent under the right assumptions. 
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A series of measurements and simulations were performed to evaluate the 

effectiveness of (6)-(7) and (23) in estimating the maximum crosstalk. The estimates 

were first evaluated for a two wire cable bundle simulation where per-unit-length 

parameters were extracted from a numerical cross-sectional analysis tool [13]. In this 

case the cable bundle was modeled above an infinitely large return plane where the signal 

wires were solid conductors 1.016 mm (40 mils) in diameter, were placed 14.986 mm 

(590 mils) above the return plane, and were separated by 59.944 mm (2360 mils). The 

wires and return plane were modeled as perfect electric conductors in a vacuum. The 

signal wires were weakly coupled and had a single-ended characteristic impedance of 250 

Ω. Per-unit-length parameters from this cross-sectional analysis were: 

nH 5.8312211  ll , nH 0.252112  ll , pF 9.122211  cc , pF 4.02112  cc . The 

cable bundle was modeled with the following dimensions (see Fig. 1): m 75.8b , 

m 5.72 l , m 625.52 x , m 875.11 x , m 25.1a . A variety of loads were simulated in 

the aggressor and victim circuits. Some of these test cases are given in Table I. 

 

TABLE I.  CABLE BUNDLE SIMULATION LOADING CONDITIONS 

 

 

The exact victim circuit load voltages were compared with the maximum 

crosstalk estimates proposed in (6)-(7) and (23). The victim circuit voltages were 

generated over frequency with a simulation that applied the finite difference method to 

the weak coupling transmission line equations. The results for the Case 1 – Case 6 

simulations in Table I are shown in Fig. 3 – Fig. 7. In Fig. 3 – Fig. 5, the maximum 

crosstalk estimates (6c), (7c), and (23) were plotted along with the victim load voltages. 

Case # ZS ZL ZNE ZFE 

Case 1 250 Ω 1 MΩ (open) 250 Ω 750 Ω 

Case 2 250 Ω 0 Ω (short) 750 Ω 250 Ω 

Case 3 250 Ω 250 Ω 250 Ω 0 Ω (short) 

Case 4 250 Ω 250 Ω 250 Ω 1 MΩ (open) 

Case 5 0 Ω (short) 5 kΩ 250 Ω 250 Ω 

Case 6 200 Ω 0 Ω 750 Ω||47 pF 100 Ω + 1μH 
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Fig. 3 shows the Case 1 and Case 2 near-end maximum crosstalk estimates where (6c), 

(7c), and (23) are equivalent because 0S  and 1L . Both methods predicted the 

maximum crosstalk well. Fig. 4 – Fig. 5 illustrate how moderate to severe errors in the 

maximum crosstalk estimation may occur when both the conditions, 0S  and 1L , 

are not satisfied as in the Case 3 – Case 5 simulations. A near-end maximum crosstalk 

estimate is shown in Fig. 4 and a far-end maximum crosstalk estimate is shown in Fig. 5. 

The difference between maximum crosstalk estimates in Fig. 4 and Fig. 5 are 6 dB and 26 

dB, respectively. Fig. 6 – Fig. 7 show the near-end and far-end maximum crosstalk 

estimates using (6) and (7) for simulation Case 6. It can be seen that the maximum 

crosstalk estimate in both (6) and (7) perform better than (23) for the general case. 

Measurements were also performed on an eight layer printed circuit board (PCB) 

with two coupled stripline traces in layer five of the PCB reported in [14]-[16] to validate 

the proposed estimates. A picture of the measurement setup is shown in Fig. 8. The PCB 

was fabricated from Nelco N4000-6 FR4 substrates with 1.4r  and .017.0tan   The 

measured symmetric stripline structure had a total dielectric height of 914.40 μm  

 

Fig. 3.  Cable bundle crosstalk example for the Case 1 and Case 2 loading conditions in 

Table I. The near-end maximum crosstalk estimates (6c) and (23) are equivalent under 

these loading conditions. 
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Fig. 4.  Cable bundle crosstalk example for the Case 3 and Case 4 loading conditions. 

The near-end maximum crosstalk estimates (6c) and (23) differ by 6 dB under these 

loading conditions. 

 

Fig. 5.  Cable bundle crosstalk example for the Case 5 loading conditions in Table I. The 

far-end maximum crosstalk estimates (7c) and (23) differ by 26 dB under these loading 

conditions. 
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Fig. 6.  Cable bundle crosstalk example for the Case 6 loading conditions. The near-end 

maximum crosstalk estimates are predicted from the full piecewise expression in (6) and 

(23). 

 

Fig. 7.  Cable bundle crosstalk example for the Case 6 loading conditions in Table I. The 

far-end maximum crosstalk estimates are predicted from the full piecewise expression in 

(7) and (23). 
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Fig. 8.  Coupled stripline measurement setup used to validate the maximum crosstalk 

equations. 

(36 mils) between the reference planes and a 30.48 μm (1.2 mil) copper thickness for the 

signal traces and reference planes. The trace widths were 347.98 μm (13.7 mils), and the 

traces were separated by 419.10 μm (16.5 mils) in the coupling region. The circuit 

dimensions were as follows (see Fig. 1):  mils 9508.3 mm 241.51b , 

 mils 9508.3 mm 241.512 l ,  mils 9220.1 mm 234.192 x ,  mils 288.3 mm 7.321 x , 

and  mils 0 mm 0a . Per-unit-length parameters for the measurement were extracted 

from the signal integrity tool Hyperlynx based on the PCB stack-up information. These 

parameters were then used in w-element simulation models in Synopsys Hspice to 

simulate the crosstalk. 

Crosstalk measurements were performed using a two port network analyzer. End-

launch SMA connectors were used to interface with the stripline traces to mitigate 

connector parasitic effects. Notches were cut into the PCB at the board edges to facilitate 

the end-launch SMA connections. The loads at the two free ports in the measurements 

were varied to study the impacts on the near-end and far-end crosstalk as a function of 

load impedance. Port terminations tested included matched loads (50 Ω), shorts (8.8 nH), 

and opens (2.5 pF). A series 275 pH inductance was used as the SMA connector parasitic 

model. Some of the test cases evaluated are given in Table II. 

 

TABLE II.  PCB MEASUREMENT LOADING CONDITIONS 

 

 

Case # ZS ZL ZNE ZFE 

Case 1 50 Ω 8.8 nH (short) 50 Ω 8.8 nH (short) 

Case 2 50 Ω 2.5 pF (open) 2.5 pF (open) 50 Ω 

Case 3 50 Ω 50 Ω 50 Ω 8.8 nH (short) 

Case 4 50 Ω 50 Ω 8.8 nH (short) 50 Ω 
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Comparisons of the estimates proposed in (6)-(7), (23), and (19)-(20) in [10] for 

the test cases in Table II, are shown in Fig. 9 – Fig. 12. The simulated and measured 

crosstalk was plotted in addition to the maximum crosstalk estimates. The near-end 

crosstalk was measured in Case 1 and Case 3, whereas the far-end crosstalk was 

measured in Case 2 and Case 4. Fig. 9 – Fig. 10 show cases where the maximum 

crosstalk estimates in (6c), (7c), and (23) are equivalent because 0S  and 1L . 

Fig. 11 – Fig. 12 show that errors in the maximum crosstalk estimation in (23) may occur 

when both conditions, 0S  and 1L , are not satisfied. As Fig. 4 – Fig. 7 and Fig. 

11 – Fig. 12 show, an underestimation or overestimation of the maximum crosstalk by 

(23) is possible when 0S  and 1L . Above a few GHz, the lossless estimates in 

(6c) and (7c) significantly over-predict the maximum crosstalk. This is mostly caused by 

transmission line losses which are only accounted in (19c) and (20c) in [10] and are 

prevalent in the PCB above a few GHz. A divergence between the simulated and 

measured results above a few GHz is also seen in Fig. 9 – Fig. 12. This divergence is 

likely due to inadequate connector parasitic and per-unit-length parameter models. 

Despite the simulated and measured results divergence, these figures illustrate maximum 

crosstalk estimates can be reasonably formulated to relatively high frequencies when 

transmission line characteristics are not perfectly known. 

Although (23) has been validated in [8] and in this paper through analysis, 

measurements, and simulations, the estimates in (6)-(7) have several features which make 

them more attractive for lossless and homogeneous transmission lines. Equation (23) is 

less general than (6)-(7), where assumptions are made for the reflection coefficients of 

the aggressor circuit that may not occur in practice. Assumptions are also made for the 

victim circuit terminations when measuring the maximum crosstalk at the victim loads. 

Equation (23) is based on the crosstalk definition where crosstalk is defined either as a 

ratio of maximum voltages or currents in the victim and aggressor circuits. A crosstalk 

definition using the source voltage of the aggressor and victim load voltages as in (6)-(7) 

is believed to be more useful in general. Another limitation of (23) is it greatly over-

predicts the maximum crosstalk when the coupling region length in Fig. 1 is much less 

than one quarter wavelength as shown in Fig. 6 – Fig. 7 and Fig. 11 – Fig. 12. Equations  
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Fig. 9.  Coupled stripline crosstalk example for the Case 1 loading conditions in Table II. 

The near-end maximum crosstalk estimates (6c) and (23) are equivalent under these 

loading conditions. 

 

Fig. 10.  Coupled stripline crosstalk example for the Case 2 loading conditions in Table 

II. The far-end maximum crosstalk estimates (7c) and (23) are equivalent under these 

loading conditions. 



 

 

61 

 

Fig. 11.  Coupled stripline crosstalk example for the Case 3 loading conditions in Table 

II. The near-end maximum crosstalk estimates are predicted from the full piecewise 

expression in (6) and (23). The near-end maximum crosstalk estimates (6c) and (23) 

differ by 6 dB under these loading conditions. 

 

Fig. 12.  Coupled stripline crosstalk example for the Case 4 loading conditions in Table 

II. The far-end maximum crosstalk estimates are predicted from the full piecewise 

expression in (7) and (23). The far-end maximum crosstalk estimates (7c) and (23) differ 

by 6 dB under these loading conditions. 
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(6)-(7) extend the maximum crosstalk estimates as a function of the aggressor circuit and 

coupling region lengths to facilitate less maximum crosstalk estimate over-prediction. If 

information is not available about the coupling region length, which, could be the case in 

a practical measurement, (6c) and (7c) may be used to estimate the maximum crosstalk 

over all frequencies. The main advantage of (23) is its simplicity, which may aid 

understanding and analysis. 

 

V. CONCLUSION 

Equations for estimating the maximum crosstalk in the frequency domain and in a 

three conductor, lossless, and homogeneous transmission line have been presented based 

on an integral formulation. These formulas are based on the weak coupling assumption 

where the transmission line system has a single coupling region with a uniform cross-

section. The newly presented formulas can model the maximum crosstalk where the 

transmission lines may have unique and arbitrary lengths. Derivations on another 

maximum crosstalk estimate for finite length transmission lines based on a relationship 

for infinitely long transmission lines were also presented. These derivations illustrate that 

the previously published estimate, though relatively simple to understand and shown to 

predict the maximum crosstalk well, mixes boundary conditions between infinite and 

finite transmission lines which is not strictly mathematically correct. Despite the mixing 

of boundary conditions, the previous maximum crosstalk estimate is demonstrated to be 

equivalent to the integral formulation based estimate under some restrictive conditions. 

These conditions may not occur in a practical setup making the previous formulation 

more prone to errors. The integral formulation based maximum crosstalk estimates were 

shown to be more robust because they can estimate the maximum crosstalk with fewer 

and less restrictive assumptions. Future work may include estimation of maximum 

crosstalk for transmission lines without the weak coupling assumption, for transmission 

lines with non-uniform cross-sections, and for systems containing more than two 

transmission lines. 
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Abstract—Professor Clayton Paul made many contributions to the field of 

electromagnetic compatibility as a researcher, teacher, and mentor. Among these 

contributions, he provided a seminal push in characterizing, understanding, and 

quantifying the coupling and radiation physics of electromagnetic interference (EMI). An 

overview of these original contributions that were driven by industry problems and needs 

is given here. His work emphasized physics and formulation in order to provide 

quantitative solutions and design directions. These ideas are applied to a current industry 

challenge in understanding and quantifying EMI that results at the interface between 

high-speed, high-density connectors and printed circuit boards. 

 

Index Terms—Antenna mode, common mode, electromagnetic radiation, printed 

circuit board (PCB) connectors. 

 

I. INTRODUCTION 

Unintentional radiation is of concern in the design of electronics to avoid 

interference with other equipment and to meet regulatory requirements. The quote on the 

dedication page of Professor Clayton Paul’s well-known book Introduction to 

Electromagnetic Compatibility, “For every difficult problem there is always a simple 

answer and most of them are wrong,” is a suitable reflection on the challenges in 

understanding and quantifying electromagnetic interference (EMI) from high-speed 

digital electronics [1]. Radiated EMI can be broken down into a noise source, radiating 

structure, and a coupling path. The noise source and radiating structure, i.e., cables or 

seams, penetrations and openings in enclosures are straightforward to identify in any 

given product application. However, the coupling path will often be subtle and complex, 

and comprises the parasitic path in the layout – IC, package, printed circuit board (PCB), 
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enclosure, cabling, for coupling currents and fields to unintentional radiators. The physics 

of the EMI coupling path when the coupling region is electrically small is based on 

current continuity and conservation of charge. Ott noted that “…a signal ground is a low-

impedance (hopefully) path for current to return to the source…” [2]. (To allow for 

magnetic-field coupling to a loop with no source, a corollary is that current must flow in 

a loop.) For the EMI coupling path, the currents are unintentional, but current continuity 

and conservation of charge still apply, and these currents must flow in a loop as well. The 

unintentional current paths are comprised of both conduction currents, which are carried 

by electrons, and, displacement currents, which are carried by a time-changing electric-

flux density. 

A well-developed knowledge of unintentional radiation was incomplete into the 

1980s. The powerful numerical electromagnetic (EM) modeling capabilities as well as 

easy-to-use network and spectrum analyzers that are available today for discovering and 

identifying the EMI coupling path through modeling, or two-port transfer function 

methods did not exist. Diagramming an EMI problem was typically a combination of one 

or more “liver-shape” objects, a line to represent the cable and a (+) and (–) across 

somewhere identified as the “common-mode” source. These sketches can look more like 

the beginning of a Far Side cartoon than a discussion of physics and engineering. The 

current on the cable was referred to as “common-mode” current, and there may be no 

indication of a complete current path or the current return for these “common-mode” 

currents. 

Professor Paul’s formal graduate education was in the controls area, and in the 

late 1980s, he brought the habits of the area for mathematical formulation, rigor, and 

logic, together with his knowledge of electromagnetic physics, to provide a seminal push 

for developing a better understanding and quantifying unintentional radiation in 

electronics. He had already made significant contributions to crosstalk in cable 

assemblies and was an IEEE Fellow (1987) “for contributions to the understanding and 

solution of crosstalk problems in cable assemblies.” Professor Paul’s contributions 

toward understanding and quantifying EMI are overviewed here. Only the work and ideas 

with colleagues and students relevant to the EMI area are articulated. A comprehensive 

history or literature review of the subject is not intended. 
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Early 8-bit microprocessors produced in 1974 and 1975 that provided the spark 

for the PC conflagration had nominal clock rates of 1-2 MHz. At these frequencies, 

unintentional radiation was dominated by cables exiting from the electronics [3], and 

these were ineffective radiators, since they were electrically very short. At low-megahertz 

clock rates, managing unintentional radiation was often a matter of shielding and filtering 

at the connector/cable interface. The details of the electromagnetic physics of the 

coupling between the noise source in the electrical/electronic design and the radiating 

cable were not important as long as the specifications could be met with straightforward 

mitigation approaches of “grounding,” shielding, and filtering. In the mid-1980s though, 

the pressure for integrating electromagnetic compatibility (EMC) into the product design 

from the beginning began to increase as design cycles decreased, and cost pressures and 

design densities increased. EMI solutions implemented at the end of the design cycle 

resulted in product delays, as well as added cost. The need for eliminating the trial-and-

error process of EMC retrofits to meet EMI compliance was growing. However, 

knowledge of the EMI coupling physics that could be related directly and quantitatively 

to the circuit layout was in general lacking. 

Professor Paul’s published work in EMI focused on both efforts to make 

quantitative calculations as well as to understand and demonstrate the underlying physics 

experimentally. He observed in an early paper that “…given two printed circuit boards 

which have identical function and components but different land patterns, the board 

having the lower levels of ground drop will also have lower levels of radiated emissions” 

[4]. He proceeded in this paper to develop a lumped element model to quantify the EMI 

coupling path resulting from nonzero impedance of the current return using Ruehli’s 

concept of partial inductance [5]. A sketch, reproduced in Fig. 1 from a subsequent paper 

clearly identifies the physics associated with this coupling path as resulting from two 

parallel current paths, one for the intended return current and the other for the radiating 

current on the cable [6]. Professor Paul cites, “…the “return path” for these common-

mode currents is via displacement current …” and represents the displacement current 

that is due to a time-changing electric flux density as a capacitor in his sketch [6], [7]. 

The groundL  is calculated from partial inductance concepts in [4], and in the PCB layout is 

the inductance of the conductor comprising the intended return path for the intentional  
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Fig. 1.  Original sketch from [6] identifying the physics associated with illumination and 

EMI from cables as a result of nonzero impedance (inductance) in a signal return 

conductor. 

 

signal current DMI . For this coupling path, the unintentional currents on the cable result 

from a low impedance electrical connection between the signal-return conductors of the 

intended circuit, and extended conductors in the cable connected to the traces or area fills 

on the PCB. In those days of single- and double-sided PCBs, the signal current return 

path would have been routed on traces or irregular area fills and denoted as “GND” or 

ground on the circuit schematic. The currents going off the PCB in a cable, power and 

signal currents, would have a current return in the cable that would be attached to the 

“GND” of the PCB. This extended conductor comprised the antenna for the unintentional 

radiation. In Fig. 1, the intended signal return current is also labeled as DMI , but 

enforcing Kirchhoff’s current law (KCL) at the node connecting LR , the cable signal 

return conductor, and the circuit signal return conductor on the PCB GND is actually 

cableDM II  . Paul notes in another paper that KCL applies, and, hence, includes the 

radiating current on the cable [7]. In that paper, it was demonstrated that cableDM II  , 

and the current on the reference structure shown in Fig. 1 is approximated as DMI . Fig. 1 

and [6] from which it is extracted also reflect Paul’s close collaborations with industry 

and habit to work toward applying research outcomes to practical design. In [6], where 

the conductor for the signal return current is electrically small, the voltage 

DMgroundground ILjV   can be calculated and used as a source in a dipole antenna model 
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for approximate EMI calculations, and groundL  used directly for comparison between 

design layouts for the PCB signal return. 

Paul demonstrated “that predictions of radiated emissions based solely on 

differential-mode (DM) [transmission-line (TL)] currents will generally bear no 

resemblance to measured levels of radiated emissions…” rather that the “…common-

mode (antenna) currents can be the dominant radiation mechanism from lands on 

PCB’s…” though the common-mode antenna currents can be orders of magnitude 

smaller than the signal DM TL currents [7]. In these statements, he uses language 

common to EMI engineers denoting the radiating currents as “common-mode” and the 

signal currents as “differential mode,” but was also careful to identify the physics that 

evokes an analytical model of a folded dipole antenna [8], both in language and in the 

diagram in [7, Fig. 1] by identifying the signal currents as (non-radiating) TL currents 

and the radiating currents as antenna currents. 

A series of papers by Professor Paul, colleagues, and students in the early 1990s 

focused on the relationship between asymmetry and imbalance in the geometry of a PCB 

layout, as well as interconnect cables and radiated emissions [9]-[13]. The work was a 

careful theoretical assessment addressing imbalances in the source and load locations, as 

well as in the layout geometry itself [9]-[12]. The source, load, and layout geometry were 

divided into a symmetric portion, a symmetric mode model (SMM), and a remaining 

portion, an asymmetric mode model (AMM) that included all the asymmetries and 

imbalances, which when put together using superposition would produce the same 

electromagnetic field. Hardin and Paul [10] observed from the particular geometry 

reproduced in Fig. 2 that they considered experimentally and numerically over the 

frequency range 30-200 MHz “…that the AMM is the dominant cause of emissions 

above 80 MHz (by as much as 20 dB)…” and “that common-mode or asymmetrical 

currents on transmission line structures are often the dominant contributors to the total 

radiated emissions of a structure. The symmetric or differential-mode currents on these 

transmission line structures are often not the dominant contributor to the total radiated 

emissions of the structure….” The layout and routing of the asymmetric structure will 

include portions or all of the intended signal path but will also include unintentional 

current on extended reference conductors as discussed above, or conductors in proximity,  
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Fig. 2.  Geometry used in [10] for numerical and experimental demonstration of the 

decomposition of a signal path with extended reference structures into symmetric and 

asymmetric components and quantifying and comparing the EMI associated with each. 

 

e.g., coupling from a signal trace that runs adjacent to a heatsink and capacitively couples 

to the heatsink. This study was also among the early efforts on EMI modeling using 

numerical methods, in this case an integral equation formulation with method of 

moments discretization that used the MININEC code [14]. Jerse and Paul continued to 

expand this idea further to include a hybrid multiconductor TL (MTL)/radiation 

formulation using MTL theory and the partial element equivalent circuit (PEEC) method 

[15]. This approach had the advantage that while PEEC is a full-wave EM formulation 

that includes radiation, a SPICE-compatible model is extracted that requires no matrix 

solution of the integral equation formulation as necessary when discretizing the integral 

equation with the method of moments. 

In this paper, a method to analyze the radiation properties of a PCB/connector 

structure is presented based on network parameters. A discussion of current modes in 

differential system designs is first presented in Section II. Section III highlights mode 

conversion mechanisms and their quantification in mixed-mode S-parameters. A 

PCB/connector geometry under study is presented in Section IV. Section V outlines the 
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mathematical details to perform radiated power analysis with network parameters. The 

radiation properties of the PCB/connector structure presented in Section IV are shown in 

Section VI. Section VII contains an example calculation of radiated power for digital 

signals and illustrates individual radiated power contributions. 

 

II. TRANSMISSION LINE AND ANTENNA CURRENTS AT PCB/CONNECTOR INTERFACES 

As data rates increase there is a trend to move from single-ended signals to 

differential signals in order to maintain high signal fidelity. Furthermore, well-balanced 

currents in a TL differential signal pair can potentially be a better design for reducing 

unintended radiated emissions or EMI. These are currents with the signal current and 

signal-return current on a symmetric, balanced pair with a net zero return current on a 

reference structure (so-called “ground”). At data rates and frequencies where the signal 

routing is no longer electrically short, these are the odd-mode TL currents for a three-

conductor set comprising two signal conductors and one reference conductor. In the EMC 

literature, this is typically denoted the DM, though there is a factor of 21  between 

these definitions. An illustration of these TL-DM currents is shown in Fig. 3 and can be 

found in [16]. 

The TL common-mode (TL-CM) currents on a balanced differential signal pair 

are similar to single-ended signal currents; in that, they can result in a coupling path 

leading to significant EMI. These currents are those signal currents that have a signal 

return current that uses a common reference structure. These are the even-mode TL 

currents for a three-conductor set and will be denoted herein as the TL common-mode 

currents. An illustration of these TL-CM currents is shown in Fig. 3 can be found in [16]. 

The reference structure in a printed circuit layout with plug-in modules or 

attached cables will be of significant electrical extent, and typically extend beyond the 

footprint of the signal conductor as depicted in the drawing of Fig. 1. The unintentional 

current on the extended reference conductor leads to unintended radiation. The extended 

reference structures comprise the effective antenna and the unintentional current on these 

conductors that result in radiation or contribute to EMI are referred to herein as common-

mode antenna currents. The CM antenna currents wind up on external data cables 
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Fig. 3.  (a) Odd-mode or differential-mode currents in a coupled, microstrip printed 

circuit board. (b) Even-mode or common-mode currents in a coupled, microstrip printed 

circuit board. 

 

(shielded or unshielded), heatsinks, and extended ground-reference planes on PCBs 

connected by connectors, among many other possibilities. 

It is necessary to understand the radiation physics for high-density PCB 

connectors and to be able to quantify the radiated emissions performance in order to 

provide design direction at the silicon and board levels, as well as to determine potential 

EMI mitigation approaches. Present connector design specifications are dominated by 

signal integrity. Furthermore, the EMI coupling physics at the PCB/connector interface 

are not well quantified for providing design approaches for the connector or on the PCB. 

As data rates have increased, significant challenges result in real-world designs where 

products can fail radiated emissions requirements due to inadequate understanding of the 

EMI coupling physics and design approaches for mitigating the radiation either in the 

connector or on the board, or both. A methodology is proposed here for comparing 

connector radiated emissions performance so that EMI performance can be balanced 

along with signal integrity and cost in identifying a suitable high-speed connector for a 

system design. 
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III. SCATTERING AT THE PCB/CONNECTOR INTERFACE IN DIFFERENTIAL-MODE      

SIGNALING 

Differential signals in high-speed digital printed circuits are most often routed 

edge-coupled. In order to achieve a 100  TL DM characteristic impedance with a 

typical material dielectric constant 5.43.3  r , the signal pair on the PCB is weakly 

coupled [17]. The modal TL DM voltage DMV  and the CM voltage CMV  are defined in 

terms of the single-ended voltages 1V  and 2V  as 

 

12 VVVDM   (1) 

 12
2

1
VVVCM  . (2) 

 

A nonzero TL common-mode signal can arise in a differential signaling system 

through signal asymmetries in the time-domain waveforms of 1V  and 2V , geometry 

asymmetries in the routing, or material asymmetries. Waveform asymmetries include 

amplitude mismatches between 1V  and 2V , rise- and fall-time mismatches, or time 

offsets between the transitions of the two single-ended signals (skew). Geometry 

asymmetries include any non-mirror image routing of the 1V  and 2V  traces such as one 

trace over a reference plane while the companion trace is not, one is closer to a reference 

plane edge, pairs routed through connectors with asymmetric ground reference structures, 

and asymmetric placement of vias connected to the ground reference in PCBs that are 

near the signal traces or signal vias. At every point along the propagation path where the 

translational invariance of the differential pair and reference cross-section as shown in 

Fig. 3 is disrupted by a geometry asymmetry, there will be scattering between the TL 

differential- and common-modes. Geometry asymmetries also include electrical length 

differences between the 1V  and 2V  signal propagation paths, such as pairs routed through 

right-angle connector pins with different lengths, e.g., backplane connectors. Material 

asymmetries, e.g., one trace over a glass fiber bundle, while the companion trace is not, 

the so-called "glass weave effect,” will also contribute to the TL common-mode signal. 
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The TL-DM and TL-CM voltages are uncoupled over a propagation length where 

the cross-sectional geometry is translationally invariant. If a pure TL-DM voltage, with 

no TL-CM voltage, is incident on the PCB/connector interface, where the translational 

invariance of the TL geometry set on the PCB is interrupted, scattering results. The 

incident TL-DM voltage is scattered into transmitted (onto the connector) and reflected 

(from the connector) TL-DM voltages. Because of the geometry asymmetry in the right-

angle connectors considered here, scattering of the incident TL-DM into a reflected TL-

CM and transmitted TL-CM also occurs at the PCB/connector interface to match the 

continuity of current and continuity of voltage boundary conditions at the PCB/connector 

interface.   

The mixed-mode S-parameter matrix that characterizes the scattering due to the 

discontinuity in the geometry from the PCB to the connector is [18] 
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For an incident TL-DM, 11ddS  is the reflected TL-DM at mixed-mode Port 1 and 21ddS  is 

the transmitted TL-DM to mixed-mode Port 2. The parameters for the TL-CM are 

analogous. The scattering between the modes is characterized by the dcijS  and cdijS  

terms. For example, 11cdS  characterizes the reflected TL-CM wave that results from an 

incident TL-DM wave and 21cdS  is the transmitted TL-CM wave to mixed-mode Port 2 

that results from the incident TL-DM wave. Further, because the geometry of the 

differential pair within the connector is not translationally invariant, it is expected that 

there will be coupling between the TL-DM and the TL-CM as the wave propagates 

through the connector. 

The mixed-mode S-parameters are network parameters and characterize the 

voltage waves at the ports on either side of the connector. However, since the geometry 

of the differential signal pair is imbalanced, radiation also occurs as the wave propagates 

through the connector [10]. Currently, the detailed physics and a quantitative model for 
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the radiation in terms of the coupling of the TL-DM and TL-CM to antenna currents on 

the connector are unknown. However, as a first step for providing design guidance it is 

sufficient to quantify this radiation using network parameters and power conservation. 

The radiation as a function of the incident waveform can then be quantified. 

 

IV. PCB/CONNECTOR GEOMETRY 

The paper presented here for modeling the radiation for a PCB/connector 

interface focused on a connector design in which the differential pair signal conductors 

had wide reference conductor blades on three sides, as shown in Fig. 4. The connector 

geometry in the study was loosely based on commercially available 100 Ω differential 

characteristic impedance designs. This signal/reference layout strategy is one approach 

used in commercial connector designs, though the geometry shown is simplified for EM 

modeling purposes and is not intended to match any specific commercial product. The 

connector design under study consisted of two wafer layers that contained signal blades 

and signal reference blades whose cross-sectional layout is given in Fig. 4(b). Only two 

wafers were modeled to minimize the complexity of the problem. A full-wave EM 

modeling tool (CST Microwave Studio) was used to simulate the connector geometry. 

This style of high-speed connector is typically a press-fit connector with through-hole 

vias on the PCB into which the connector pins are pressed. However, in the simplified 

model, no through-hole vias were included and only the strip transition from a microstrip 

differential pair to the connector was modeled. 

The radiation from a PCB/connector structure is dependent upon both the 

connector PCB return plane dimensions and the connector dimensions. Two different 

structures were simulated to determine the dominant geometry features in the connector 

radiated power response, as shown in Fig. 4(a). Thirteen magnetic field circulation 

integrals were placed around the connector structure as shown in Fig. 4(a) to calculate the 

CM antenna currents. The left structure in Fig. 4(a) is denoted as the “connector only” 

case and was simulated to determine the radiation due to the connector itself. A small 

PCB area around the connector footprint was modeled with the connector geometry so 

that the PCB to connector transitions and the associated scattering remained in the  
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(a) 

 

(b) 

 

(c) 

Fig. 4.  (a) Left PCB/connector structure is the simulated “connector only” case. The 

right PCB/connector structure is the simulated “large PCB plane” case. These simulations 

were formulated without conductor and dielectric losses. The connector consisted of two 

differential signaling pairs. (b) Wafer cross-sectional layout for the connector of (a). The 

connector in (a) consisted of two wafer layers. (c) Front connector wafer signal blades 

layout for the connector in (a). 
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problem. The PCB area footprint for the connector only case as shown in Fig. 4(a) was 

101 mils   390 mils, and the transition was from a 99  differential characteristic 

impedance microstrip line to the 102 differential characteristic impedance connector. 

The signal reference conductors in the connector were modeled to electrically connect to 

the signal return reference for the microstrip lines in the small PCB area footprint. The 

right structure in Fig. 4(a) is denoted as the “large PCB plane” case and was simulated to 

determine radiation due to larger PCB return planes. The sources and geometry of the 

transition from the PCB to the connector remained the same as the previous connector 

only case, and only the reference planes for the PCB microstrip geometry were extended 

as shown in Fig. 4(a). The radiation due to illumination of the large PCB reference planes 

was identified by the difference in radiation responses in these two cases. The connector 

was placed in the middle of the PCB edges as shown in Fig. 4(a). 

The structures in Fig. 4 have many features that are the same. Additional physical 

layout details for the simulated structures in Fig. 4(a) that are the same are given in Fig. 

4(b) and (c). The microstrip traces were 42 mils long and were on a substrate with 4.3 

relative permittivity and 14.45 mils thickness. The substrate completely covered the PCB 

return planes and did not extend beyond the return plane dimensions. The PCB signal 

conductors had a 0.7 mil thickness. Fig. 4(b) illustrates the cross-sectional layout of the 

connector wafers and Fig. 4(c) depicts the layout of the signal blades in the front 

connector wafer. In Fig. 4(c), only unique connector dimensions are denoted; all other 

dimensions may be found by structure symmetry. 

The objective of modeling the PCB/connector geometry was to identify the 

geometry features that contributed to the radiation as well as quantify the radiation from 

the network parameters. The signal traces for both simulations shown in Fig. 4(a) were 

fed with discrete face ports on the PCB microstrip traces, and the PCB/connector 

structure was modeled in air with PML absorbing boundary conditions. The discrete face 

port impedances were set to 50 Ω. Time-domain simulations were performed and the S-

parameters of the PCB/connector geometry were extracted in CST Microwave Studio 

from the time-domain signals. 
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V. RADIATED POWER CALCULATIONS USING NETWORK PARAMETERS 

The radiated power resulting from signals through the connector can be calculated 

either from the fields or with conservation of power using network parameters. The 

electric and magnetic fields over a surface enclosing the PCB/connector geometry are 

calculated in the full-wave simulations and can be used to calculate the radiated power. In 

general, this calculation method is unsuitable for design because it can be computer 

memory intensive and the computations can be time consuming. Further, the spatial 

variation of the fields are unneeded for typical design choices related to connector 

performance and to provide guidance on the differential signal time-waveform balance 

that might impact EMI. An alternative approach to the calculation is to use S-parameters 

generated from full-wave simulations to calculate the radiated power. This radiated 

power calculation from network parameters at ports has the advantage of a much faster 

simulation time than the radiated power calculations using the electric and magnetic 

fields. However, the time-domain simulations must be run sufficiently long that the 

radiation aspects of the problem are captured from the network S-parameters. 

Terminating the simulations too early in the time history may provide sufficient S-

parameter results for signal integrity purposes, but insufficient for radiation calculations. 

Design discovery for radiation attributes is readily facilitated using the network 

parameter and power conservation approach. The important attributes are those geometry 

features that impact the S-parameters including the transition from the PCB to the 

connector and the specifics of the connector geometry itself. Also, quantifying the 

radiation with the differential signal time-waveform imbalance is readily done using the 

network parameters. 

Radiated power can be calculated using incident port voltages and single-ended S-

parameters as [16] 
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where, 0Z  is the port characteristic impedance, V     is the incident voltage vector, t 

denotes the complex conjugate transpose, I 
   is the identity matrix, and 

SES 
   is the 

single-ended S-parameter matrix at ports on the PCBs. The ports on the PCBs must have 

a well-defined voltage and current, and so must be sufficiently removed from the 

transition of the signal on the PCB to the connector so that a transverse electromagnetic 

(TEM) mode exists. The location can be quantified such that 1transverseaxial EE , 

where axialE  is the field along the propagation direction and transverseE  is the transverse 

field, which is the only component for a TEM mode. The total radiated power can also be 

represented in a modal form using mixed-mode S-parameters [18]. 

The total radiated power from the PCB/connector geometry can be written in the 

modal domain as the superposition of radiated power from an incident wave that is purely 

a TL DM and an incident wave that is purely a TL CM, in addition to a term with the 

product of 
DMCMVV . The total radiated power using modal quantities can then be written 

as 

 

productrad
CM

Vrad
DM

Vradtotalrad PPPP ,,,,   . (5) 

 

The notation is not meant to suggest that there is radiation from a TL DM signal or a TL 

CM signal, but rather identifies the radiation resulting from the modal TL incident wave. 

A single pair of signal conductors in a PCB/connector geometry with single-

ended and mixed-mode port assignments is shown in Fig. 5. From (1) and (2), writing the 

incident voltage at single-ended Port 1 as     DMCM VVV 211  and the incident voltage 

at single-ended Port 3 as     DMCM VVV 213 , it follows that the incident voltage vector 

V     is given by 
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Fig. 5.  Single-ended and mixed-mode port assignments for a single signal pair in a 

connector.  

 

where T is the transpose. The radiated power from (4) can then be written as 
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The radiated power due to the DM incident waves is given by 
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where 11ddS  in decibels is the TL-DM return loss, 21ddS  in decibels is the TL-DM 

insertion loss, 11cdS  in decibels is the TL-DM to TL-CM return loss (incident TL-DM 

that gets reflected into the TL-CM), and 21cdS  in decibels is the TL-DM to TL-CM 

insertion loss (incident TL-DM that gets scattered into a transmitted TL-CM). The 

radiated power due to the TL-CM incident waves is given by 
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where 11ccS  in decibels is the TL-CM return loss, 21ccS  in decibels is the TL-CM 

insertion loss, 11dcS  in decibels is the TL-CM to TL-DM return loss, and 21dcS  in 

decibels is the TL-CM to TL-DM insertion loss. The radiated power in the product term 


DMCMVV  is given by 
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and is real as is necessary. 

The modal radiated power expressions (5)-(11) assume that the TL coupling 

between signal pairs in multiple pair connectors is negligible, since the formulas were 

derived for a single signal pair. For cases where the coupling among signal pairs is 

nonnegligible, (4) still holds. If desired, a portion of the S-parameter matrix may be used 

in (4) rather than the full matrix representing the entire PCB/connector geometry with 

multiple signal pairs. A reduced S-parameter matrix must retain data for the ports that are 

fed and ports that have significant coupling to the feed ports. 
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VI. RADIATION FROM THE PCB/CONNECTOR ASSEMBLY 

The radiated power calculated from the mixed-mode S-parameters when the 

outermost and innermost signal pairs were excited as shown in Fig. 4 are illustrated in 

Fig. 6 and Fig. 7, respectively. The outermost signal pair is denoted as “Pair 1” and the 

innermost signal pair as “Pair 2” in Fig. 6 and Fig. 7. The calculated radiated powers are 

shown when the incident waves were a TL CM excitation and a TL DM excitation. The 

modal excitations were created from 1 V single-ended incident port voltages. The 

radiated power resonances below 3 GHz only occurred for the TL common-mode 

excitation with the large PCB plane case of Fig. 4(a), as seen in Fig. 6(a) and Fig. 7(a). 

For the TL common-mode excitation, the dominant antenna structure was related to the 

PCB reference plane dimensions below 3 GHz, whereas above 3 GHz the dominant 

antenna structure was the connector geometry itself, as described later. 

There were two primary resonant geometry features in the TL common-mode 

response below 3 GHz. The first resonance frequency at 0.49 GHz was created by the 

length of the PCB return perimeter and a path length through the connector as shown by 

the dashed-dotted line in the right structure of Fig. 4(a). The second resonance frequency 

at 1.14 GHz was influenced by the placement of the connector along the length of the 

PCB-PCB gap, where the resonance was dictated by the length of the gap as shown by 

the dashed line in the right structure of Fig. 4(a). The gap width was 350 mils, and though 

the E-field across the gap was not highly varying, attempts at modeling it as a narrow gap 

with constant fields fed at a well-defined port for frequencies well into the gigahertz 

range were unsuccessful. The 1.14 GHz resonance was minimally influenced by the gap 

width and remained fixed in frequency so long as a gap existed. When the gap between 

PCBs was eliminated with a continuous plane, the 0.49 and 1.14 GHz resonances were 

eliminated from the radiated power response. 

Both resonances below 3 GHz occurred when the indicated resonant lengths in the 

right structure of Fig. 4(a) were approximately λ/2 in length. For the right geometry in 

Fig. 4(a), the indicated lengths were approximately 13367 mils and 5367 mils. Using the 

free-space wave velocity, the predicted resonances were 0.44 and 1.10 GHz. Some of the 

discrepancies between the predicted resonances and the actual resonances at 0.49 and 

1.14 GHz can be attributed to length assignments for the CM antenna current flow paths  
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Fig. 6.  Radiated power when the outermost signal pair, Pair 1, was fed and all other ports 

were matched for the PCB/connector structures of Fig. 4(a). Incident single-ended port 

voltages were 1 V. (a) TL CM excitation. (b) TL DM excitation. 
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Fig. 7.  Radiated power when the innermost signal pair, Pair 2, was fed and all other ports 

were matched for the PCB/connector structures of Fig. 4(a). Incident single-ended port 

voltages were 1 V. (a) TL CM excitation. (b) TL DM excitation. 
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Fig. 8.  Surface current density plot at 0.49 GHz when Pair 1 was fed with a TL CM 

excitation and all other ports were matched. 

 

Fig. 9.  Surface current density plot at 1.14 GHz when Pair 1 was fed with a TL CM 

excitation and all other ports were matched. 

 

in the connector geometry and the low quality factor of the resonances. The surface 

current density in the PCB/connector structure at the 0.49 GHz and 1.14 GHz resonant 

frequencies are given in Fig. 8 and Fig. 9, respectively. These plots illustrate the CM 

antenna currents on the PCB return planes that contribute significantly to the 

connector/PCB radiated power. 

A series of simulations were performed to study the proposed dominant geometry 

features in the radiated power response. The basic structure on the right in Fig. 4(a) was 

used and the simulations were run when individual return planes had widths of W = 
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2000, 3000, and 4000 mils. The results from this series of simulations are shown in Fig. 

10, where Pair 2 was fed and all other ports were matched. The first low-frequency 

resonance near 0.5 GHz increased in frequency as the width of the PCB return plane 

decreased. The second low frequency resonance near 1.2 GHz remained relatively fixed 

in frequency as expected since the length of the PCB-PCB gap and the connector position 

were unchanged. The radiated power remained relatively unchanged above 3 GHz, 

independent of the plane width geometry variation, because the response was dominated 

by the connector structure only. 

The resonances in the radiated power above 3 GHz as seen in Fig. 6 and Fig. 7 are 

due to CM antenna currents on the connector blades, independent of the modal excitation. 

These resonances are due to the electrical lengths of particular geometry feature(s) in the 

connector design and groupings of these resonances can be easily referenced to signal 

pairs that drive TL currents on the associated resonant reference blades. The first set of 

resonances for Pair 1 was at 3.30 and 3.89 GHz and for Pair 2 was at 4.63 and 5.83 GHz. 

Magnetic field circulation integrals were placed about contours that encircle the 

connector structure as shown in Fig. 4(a) to find the CM antenna current as a function of 

connector angular position. The circulation integrals were arranged about the connector 

relative to the innermost reference blade. The integrals were placed at the midpoints and 

ends of each straight conductor in the innermost reference blade. The CM antenna 

currents were calculated at both Pair 1 half wavelength resonances (3.30 and 3.89 GHz) 

and at a high-order resonance (7.17 GHz) as shown in Fig. 11. The CM antenna currents 

form approximately a λ/2 and λ distribution along the connector arc at the half 

wavelength resonances and at the high-order resonance, respectively. 

The radiated power resonances can be approximately predicted from the edge 

lengths of the reference blades that are closest to the resonant signal pair in question and 

on the same layer as the signal pair. The inner edge of the left return blade and the outer 

edge of the right return blade for Pair 1 are 1745 and 1483 mils. The λ/2 resonant 

frequencies for these lengths are 3.38 and 3.98 GHz, respectively, which are close to the 

actual 3.30 and 3.89 GHz resonances. The inner edge of the left return blade and the 

outer edge of the right return blade for Pair 2 are 1257 and 996 mils. The λ/2 resonant 
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frequencies for these lengths are 4.70 and 5.93 GHz, respectively, which are near the 4.63 

and 5.83 GHz resonances. 

 

Fig. 10.  Connector TL common-mode radiated power response for varying return plane 

width when Pair 2 was fed. Incident single-ended port voltages were 1 V and all non-

source ports were matched. 
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Fig. 11. Connector CM antenna currents at 3.30, 3.89, and 7.17 GHz resonances when 

Pair 1 was fed with a TL common-mode excitation. Incident single-ended port voltages 

were 1 V. (a) Right connector structure of Fig. 4(a). (b) Left connector structure of Fig. 

4(a). 
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VII. RADIATION CALCULATIONS WITH A DIGITAL SIGNAL 

An analysis is given in this section to illustrate the level of the radiated emissions 

with the right PCB/connector structure in Fig. 4(a). Single-ended time-domain incident 

voltage waveforms 
1V  and 

3V  with amplitudes of 500 mV and with rise- and fall-times 

of 52.5 ps are used in this example. The incident voltage waveforms are shown in Fig. 12. 

An offset skew of 50 ps was added to 
3V , which is 10% of the unit interval. The incident 

TL differential- and common-mode voltages have peak amplitudes of 1 V and 383 mV, 

respectively. The time-domain signals were converted to the frequency-domain using a 

fast Fourier transform, and the modal radiated powers were calculated using (9)-(11). The 

contributions for the individual terms 
DM

Vrad
P

,
, 

CM
Vrad

P
,

, and productradP ,  are shown in 

Fig. 13(a) where Pair 1 in the PCB/connector structure was fed. The radiated power for 

incident TL-CM voltages is 10-20 dB greater than the radiated power for incident TL-

DM voltages over most of the simulated frequency range. 

It is useful to convert radiated power into an electric field quantity so comparisons 

may be made to the Federal Communications Commission (FCC) Class B Limit and to 

provide a reference on the radiation level. Typical high-speed designs using the type of 

connector in Fig. 4 are often contained within a shielded enclosure and contain many 

wafers with a wide variety of signals. Thus, the following calculations serve only as a 

reference and not a prediction of the actual EMI in an application. In the far-field, the 

electric field in free space can be calculated as [1] 

 

 
r

PD
rE

radmax60
,,   (12) 

 

where maxD  is the maximum directivity of the antenna structure, radP  is the radiated 

power, and r  is the distance from the radiator. The electric field for the present example 

was calculated from (12) and is compared to the FCC Class B Limit at three meters in 

Fig. 13(b), using a factor of one for the maximum directivity. 
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Fig. 12.  Time-domain incident port voltages in the single-ended and modal domains 

applied to Port 1 and Port 3 of the right PCB/connector structure in Fig. 4(a). 
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(a) 

 

(b) 

Fig. 13.  (a) Connector frequency-domain modal radiated power. The solid trace 

represents the radiated power due to the DM incident voltages. The dashed trace 

represents the radiated power due to the CM incident voltages. The dashed-dotted trace 

represents the radiated power due to the CM and DM incident voltage product. (b) 

Connector radiated electric field comparison with FCC Class B Limit at three meters. 



 

 

92 

VIII. CONCLUSION 

Clayton Paul, working together with industry colleagues, provided a seminal push 

toward developing a better understanding of EMI coupling paths and radiation physics. 

Aspects of these core ideas are being used in the present study to understand and quantify 

the EMI physics in PCB/connector interfaces for high-speed digital applications. Three 

distinct radiation modes were found. The first mode consists of a radiating structure 

comprised of PCB reference planes driven by signals through the connector. This mode 

produces half-wavelength dipole type current on the PCB reference planes. The radiation 

is significant with a TL common-mode excitation, even with ground references on three 

sides of the signal pair in the connector. Another radiation mode is associated with the 

gap between the PCBs that the connector spans. At the resonance frequency of 1.14 GHz, 

the 350 mil gap is electrically small, and the radiation physics corresponded to those of a 

slot antenna that include the ground reference path through the connector. Finally, at 

frequencies where the connector signal path lengths are not electrically short, resonances 

associated with integer half-wavelength antenna-mode current distributions result in 

significant radiation. The coupling of TL modes to a radiating antenna mode is unknown 

at present. 

The radiation was calculated using S-parameters, and expressions were developed 

using mixed-mode S-parameters to quantify the radiation in terms of the TL DM and TL 

CM incident voltages. The formulation facilitates calculations for determining signal 

balance for minimizing the radiation. These calculations were also used to provide a 

simple example of the level of the radiation. In particular, for a single signal pair, the 

radiation was within a few decibels of the FCC Class B Limit, and can well exceed the 

limit at the antenna-mode resonance frequencies of the PCB geometry. 

Extensive work remains to characterize and quantify the radiation physics for a 

propagating signal along a connector. Additional research is needed to develop a better 

understanding of coupling from TL modes to a radiation mode, e.g. [19], and to relate 

coupling to a radiation mode with the geometry in more than the rudimentary manner 

provided at present. A suitable formulation of the physics is needed to better engineer 

high-speed connectors for determining tradeoffs between signal integrity and EMI across 

the connector. Further work is also needed to understand and quantify the effects of many 
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simultaneous signals, and numerous wafers (10-50 is common) in the connector 

geometry, so that expectations of shielding performance for the product enclosure can be 

specified. 

Professor Paul made many contributions to the field of EMC. The second quote 

on the acknowledgement page of his EMC book [1]  

 

“When you can measure what you are speaking about and express it in numbers 

you know something about it; but when you cannot measure it, when you cannot express 

it in numbers your knowledge is of meagre and unsatisfactory kind; it may be the 

beginning of knowledge but you have scarcely progressed in your thoughts to the stage of 

science whatever the matter may be.”  – Lord Kelvin 

 

is a fitting summary of the approach he adapted for his scientific work. 
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Abstract—A method is presented to quantify the radiated power in a high-density 

connector. This method is based on network parameters and the principle of conservation 

of power. Unlike previous work, which assumed only radiated losses were present, the 

proposed method is able to characterize the radiated power in environments that contain 

material losses and when there are multiple signals at the printed circuit board 

(PCB)/connector interface. The power losses are quantified through the definition of 

power loss constant matrices that can be used to find the power losses for arbitrary input 

excitations when the matrices are entirely known. The power loss constant matrices can 

be calculated through multiple single port and two port excitations for an N-port 

connector. The formulation of these excitations is dictated by the non-linear properties of 

the power loss calculation. Simulations and measurements are presented that validate the 

proposed power loss calculation methodology, and practical simulation problems related 

to finding the full power loss constant matrices are discussed. 

 

Index Terms—Connectors, electromagnetic radiation, printed circuit board 

connectors, radiated power, scattering parameters 

 

I. INTRODUCTION 

Connector design has become an increasingly complex, engineering challenge for 

printed circuit board (PCB) applications due to ever increasing data rates and the 

miniaturization of circuit designs. The connectors implemented in today’s multi-PCB 

systems often require a tremendous amount of signal line density while also requiring 

minimal signal degradation through crosstalk and material losses. Connector design 

requirements of the past were often dominated by signal integrity and mechanical 

requirements with little regard to electromagnetic interference (EMI). Slower data rates 
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allowed these connectors to be ineffective radiators due to their small size relative to even 

the smallest operating wavelength. Thus, EMI from the connectors themselves could 

often be ignored with little consequence. The electrically small connectors were often 

part of a much larger and more efficient dipole-like radiating structure consisting of 

attached PCBs, cables, or enclosures [1]-[4]. The radiation resulting from these dipole-

like structures, however, could not be ignored. A common design approach to minimize 

radiation facilitated by the electrically small connectors was to reduce the return 

inductance of these connectors so the feed voltage of the dipole-like structure was 

reduced [3], [4].  

The radiation physics of connectors today are different from the past due to 

increasing data rates, presently on the order of several Gbps or more [5]. Many 

connectors are now electrically large and have been shown to radiate effectively [6]-[9]. 

The connectors themselves can now comprise the majority of the radiating antenna 

structure due to significant, high-frequency spectral content in data signals. These 

electrically large connectors require more innovative solutions to mitigate EMI, and more 

robust methods to quantify radiation from connectors than provided in the literature at 

present. Much research on electromagnetic radiation due to connectors is based on the 

current and voltage driven models presented in [2]. Many studies have explored radiation 

effects through experimental methods with finite-difference time-domain simulations, 

common mode current measurements, and EM fields measurements [10]-[15]. Radiation 

performance was evaluated indirectly through transfer impedance measurements as in 

[16]-[19], and through connector inductance measurements and calculations [20]-[22]. 

Analytical formulations for connector inductances were also used in [20]-[22] to estimate 

the radiated electric field from a few common PCB/connector structures directly. 

Full-wave electromagnetic simulations are an important tool for discovering the 

radiation physics from connectors as radiation physics discovery is often limited in 

measurements. One significant challenge in industry is the lack of robust connector 

simulation models and simulation methods to quantify the radiation from high-density 

connectors (connectors containing 10’s or even 100’s of signal lines) where input signals 

can be easily modified. Much of the literature focuses on computationally small problems 

with significant geometry simplifications from a realistic product to ease the 
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computational and geometry creation burden [23]-[27]. While simplified structures can 

provide some insight into the general radiation physics, subtle but important details in the 

actual geometry of high-density connectors has been shown to significantly alter the 

radiation properties of PCB/connector structures [7]-[9]. Many simulation methods at 

present have limited flexibility for evaluating electromagnetic radiation changes with 

different signaling conditions. Changes to signal pin assignments, signal pin terminations, 

or input signal characteristics often require many additional simulations with significant 

computation times. 

The purpose of this paper is to develop a simulation method to quantify radiation 

from practical, high-density PCB/connector structures that enables flexibility in the 

evaluation of radiation mitigation solutions. The proposed method is based on power loss 

calculations with network parameters and field data in full-wave simulations. Unlike 

previous simulation studies, the proposed method is formulated to predict connector 

radiation in typical, lossy environments where signals on multiple signal lines can be 

present at a PCB/connector interface. The mathematical basis for and experimental 

validations of the radiated power loss calculation are shown in Section II. Practical 

simulation issues for the proposed radiated power calculation are discussed in Section III. 

Conclusions are given in Section IV. 

 

II. POWER LOSS CALCULATIONS FROM NETWORK PARAMETERS 

Radiation from PCB/connector interfaces was investigated in [6] using network 

parameters. In this simulation study, the radiated power was calculated from network 

parameters assuming the only loss mechanism was due to electromagnetic radiation. 

Material loss, or power loss in conductors and dielectrics, was not included in the 

simulations, and the radiated power was obtained using conservation of power. While the 

proposed method in [6] is useful for low loss PCB/connector interfaces, many practical 

interfaces have material loss that cannot be neglected and that can actually reduce the 

total radiated power from these interfaces. Application of the radiated power formula in 

[6] with non-negligible material loss can result in a large overestimation of the true 

radiated power as shown in [7], [8]. Modifications to the theory in [6] can be applied, 

however, to correctly predict the radiated power as will be shown. This work expands 
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upon the connector radiation modeling concepts presented in [6] by also quantifying the 

radiation in the presence of multiple signals at a PCB/connector interface.  

The practical connector model used to guide this study is shown in Fig. 1. This 

full-wave connector model was designed in CST Microwave Studio and is based on a 

commercial connector designed for differential signaling. Details on the connector model 

generation are provided in [7]-[8]. The modeled connector consists of three identical 

wafers placed next to one another where each wafer consists of a slice A and a slice B. 

The signal conductors and return conductors in each slice are alternated for properly 

designed signal referencing and to minimize crosstalk within the connector. Small six 

layer PCBs were included in the connector model to enable 125 mil long, 50 Ω single-

ended stripline feed structures for each signal line in the connector. The stripline feeds 

are asymmetric with a 48.3 mil total dielectric thickness between the return planes and a 

7.95 mil separation distance from the signal traces to the nearest return plane. Layers two 

and five are signal layers in the PCB. The PCB dimensions are 505 mils x 715 mils x 111 

mils, where all the signal layers and return layers have 1.35 mil conductor thicknesses. 

All conductors were modeled as perfected electric conductors and the modeled dielectrics 

in the PCB and connector were modeled with losses. The relative permittivity and the 

loss tangent of the connector plastic was modeled as 1.3r  and 02.0tan  , 

respectively. The PCB FR4 substrates were modeled with a relative permittivity of 

3.4r  and a loss tangent of 025.0tan  . A total of 96 signal ports were defined, and 

discrete face ports were defined at the end of each stripline trace with 50 Ω reference 

impedances. The PCB/connector structure was modeled in air with PML absorbing 

boundary conditions. Additional details about a similar connector model, the actual 

connector geometry, and the simulation details are given in [7]-[8]. 

 

A. Power Loss as a Function of Loss Constant Matrices 

The total power loss at a PCB/connector interface can be written as a summation 

of radiated power loss and material power loss as 

 

totalmattotalradtotalloss PPP ,,,  , (1) 



 

 

100 

 

Fig. 1.  Full-wave connector model used to formulate methods to quantify PCB/connector 

interface radiation. 

 

where, totallossP ,  is the total power loss, totalradP ,  is the total radiated power, and totalmatP ,  

is the total material loss. From [6], scattering parameters can be used to calculate the total 

power loss as 

 

          aSSIaP
HH

totalloss 




 

~~~
2/1,

 (2) 

 

where  a  is an incident power wave vector with units of Watt  and is based on 

generalized scattering parameters [28], H denotes the complex conjugate transpose,  I
~

 is 

the identity matrix, and  S
~

 is the single-ended S-parameter matrix at ports with well-

defined voltages and currents that define transverse electromagnetic wave propagation. 

The total radiated power and the total material loss in (1) cannot be separated from the 

total power loss without additional external information. In full-wave simulations, field 

monitors can separate these two loss mechanisms using the calculated fields. In 

measurements, the radiated power can be measured directly. 

The total power loss in (1) is dependent on PCB/connector geometry (which 

dictates the PCB/connector S-parameters) and the incident waves at the connector ports 

as shown in (2). Although the expressions for totalradP ,  and totalmatP ,  as a function of 

geometry and incident waves are not specified in (1), it is postulated that they take a 
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similar form to that of totallossP , . For convenience, a general power loss equation that can 

represent any of the power losses is defined as 

 

          aPaaaP const
HH

loss

~
2/12/1  , (3) 

 

where,  constP
~  is a frequency dependent power loss constant matrix and is defined by 
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The matrix,  constP
~ , is termed as a “power loss constant matrix” with reference that the 

matrix is used to quantify power loss in (3). Physically this matrix quantifies the total 

power received from all ports. The total power loss, the total radiated power, and the total 

material loss can be written in the same form as (3) as shown in (5)-(7). 

 

          aPaaaP constloss
HH

totalloss ,,

~
2/12/1   (5) 

          aPaaaP constrad
HH

totalrad ,,

~
2/12/1   (6) 

          aPaaaP constmat
HH

totalmat ,,

~
2/12/1   (7) 

 

Comparing (2) and (5) the total power loss constant matrix is defined as 

 

     SSP
H

constloss

~~~
,  , (8) 

 

whereas, the radiated power constant matrix,  constradP ,

~ , and the material loss constant 

matrix,  constmatP ,

~ , are unknown in general. The power loss constant matrices fully 

characterize the power loss in any system with ports. Once the power loss constant 

matrices are known, radiation and signal integrity performance may be evaluated with 



 

 

102 

customizable input signaling and port termination conditions. The radiated power 

constant matrix and the material loss constant matrix can be found in full-wave 

simulations with the right port excitations and field monitors as will be illustrated. 

 

B. Properties of the Power Loss Calculation and Port Excitation Solutions for the Power 

Loss Constants 

In general, the power losses in (5)-(7) can be written as a summation of power 

losses for all possible two port combinations in an N-port connector. To illustrate this 

point, consider a three port network where all three ports are fed with incident power 

waves ax, ay, az where, 
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The general power loss equation in (3) can then be written as 
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H
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H
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const

H

const

H

const

H

zyx

const
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~~~

~~~

~~~

2/1        

~
2/12/1

222

 (10) 

 

where, the sum function is the summation of all elements in the 3x3 matrix in this 

example. It can be seen that (10) contains the power losses for all possible two port 

excitations in a three port network. Thus, the values in  constradP ,

~  and  constmatP ,

~  can be 

found by solving for the power loss constants for all possible two port combinations.  

The types of excitations to find the power loss constants for a two port 

combination are greatly influenced by the non-linearity of the power loss calculation. In 

the case of (10), if 0xa , 0ya , and 0za , then the power loss for this two port 

excitation is given by 
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                      APBBPABPBAPAaaP const

H

const

H

const

H

const

H

yxpxpyloss

~~~~
2/1

22

,  . 

 (11) 

 

In contrast, when port x and port y are fed independently, the power losses are given by 

 

       APAaP const

H

xpxloss

~
2/1

2

,   (12a) 

       BPBaP const

H

ypyloss

~
2/1

2

,  . (12b) 

 

It can be seen from (11) and (12) that pxpylosspylosspxloss PPP ,,,   which indicates that the 

power loss calculation is not linear. To further illustrate the non-linearity of the power 

loss calculation, a series of simulations were performed with the connector in Fig. 1. The 

longest differential pair in slice A of the middle wafer was excited with a common-mode 

excitation with 1 W total input power, and all other ports were terminated in matched 

loads. The radiated power was then calculated in the full-wave simulation. Next, the 

signal lines in the excited differential pair were fed independently with 0.5 W, and the 

calculated radiated powers were added. A comparison of these two radiated power 

calculations is shown in Fig. 2. It can be seen that radiated power for the simultaneous 

port excitation is not equal to a linear superposition of the individual excitations. Thus, 

calculating the radiated power loss and the material power loss for a simultaneous, multi-

port excitation requires single port and well-designed two port excitations to find the full 

 constradP ,

~  and  constmatP ,

~  matrices. 

The excitations required to solve the unknown power loss constants can be found 

by investigating the power loss for a general two port excitation. Since the power losses 

for an N-port network can be written based on two port excitations, relationships obtained 

for a two port excitation can be used to determine parameters for an N-port network. 

When feeding a port x and a port y, where yx  , the incident power wave vector and a 

general power loss constant matrix can be written as 
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Fig. 2.  A radiated power calculation example illustrating the non-linear property of the 

power loss calculations for the connector in Fig. 1. 

 

  









y

x

a

a
a  (13a) 

  









yyxy

yxxx

const PP

PP
P

,,

,,~ . (13b) 

 

The general power loss in (3) can then be written as 

 

           

       ,2/12/1                 

2/12/12/12/1

,
*

,
*

,

2

,

222

,

xyyxyxyx

yyyxxxyxpxpyloss

PaaPaa

PaPaaaP



  (14) 

 

where, * denotes the complex conjugate. Elements on the diagonal of the power loss 

constant matrix in (4) and (13b) are solved from single port excitations and are purely 

real. These diagonal elements can be found when ports are excited one at a time as would 

be the case in a traditional S-parameter simulation or a measurement. The diagonal 

elements in the power loss constant matrix in (13b) can be found from 
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0,0for    
2

1
2

,

,  yx

x

pxpyloss

xx aa
a

P
P  (15a) 

0,0for    
2

1
2

,

,  yx

y

pxpyloss

yy aa
a

P
P . (15b) 

 

Off-diagonal elements in the power loss constant matrix in (4) and (13b) are 

solved from two port excitations and are complex valued. For the power loss to be purely 

real, the power loss constant matrix must satisfy reciprocity with a complex conjugate 

transpose, or,    Hconstconst PP
~~

 . This property can be illustrated from the two port power 

loss expression in (14) as follows. Consider the last two terms in (14) with the minus sign 

factored out as shown in (16). 

 

       xyyxyxyxpxpyterms PaaPaaP ,
*

,
*

, 2/12/1   (16) 

 

If jbaax  , jdcay  , jfeP yx , , and jhgP xy , , then (16) reduces to 

 

         

        
        .2/1                   

2/1                

2/12/1,

hfbdacgebcadj

hfadbcgebdac

jhgjdcjbajfejdcjbaP pxpyterms







 (17) 

 

For (17) to be real, 
*
,, yxxy PP   so eg   and fh  . Equation (17) then reduces to 

 

   adbcfbdaceP pxpyterms ,
 (18) 

 

or, more generally, 

 

          
          .ImReReImIm                

ImImReReRe

,

,,

yxyxyx

yxyxyxpxpyterms

aaaaP

aaaaPP




 (19) 
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It is also observed that the total power loss constant matrix follows    Hconstconst PP
~~

  

since,      SSP
H

constloss

~~~
,   and          SSSSP

H
H

HH

constloss

~~~~~
, 





  as is expected. 

The real and imaginary parts of the complex power loss constant yxP ,  in (14) can 

be found from two linearly independent excitations after the real power loss constants, 

xxP ,  and yyP , , have been evaluated from (15). Both the real and imaginary parts of yxP ,  

satisfy the equation, 

 

 
  


























2

1

,

,

2221

1211

Im

Re

B

B

P

P

AA

AA

yx

yx  (20) 

 

where, 

 

       
111111 ImImReRe

excyexcxexcyexcx aaaaA   (21a) 

       
111112 ImReReIm

excyexcxexcyexcx aaaaA   (21b) 

       
222221 ImImReRe

excyexcxexcyexcx aaaaA   (21c) 

       
222222 ImReReIm

excyexcxexcyexcx aaaaA   (21d) 

   yyexcyxxexcxexcyexcxexcpxpyloss PaPaaaPB ,

2

1,

2

1

2

1

2

11,,1
2

1

2

1

2

1

2

1
  (22a) 

   yyexcyxxexcxexcyexcxexcpxpyloss PaPaaaPB ,

2

2,

2

2

2

2

2

22,,2
2

1

2

1

2

1

2

1
  (22b) 

 

and exc1 and exc2 denote two different excitation cases. Two excitations that solve for 

the real and imaginary parts of yxP ,  directly in frequency-domain simulations are a 

common-mode excitation ( 11, excxa , 11, excya ) and a phase shifted excitation  

( ja excx 2, , 12, excya ). Using these excitations (20) reduces to 

 

     yyxxexcpxpylossyx PPPP ,,1,,,
2

1

2

1
1Re   (23a) 

     yyxxexcpxpylossyx PPPP ,,2,,,
2

1

2

1
1Im  . (23b) 
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It should be noted that a common-mode excitation ( 1xa , 1ya ) and a differential-

mode excitation ( 1xa , 1ya ) were not chosen to solve for yxP ,  in (20) because 

these two excitations are not linearly independent in reference to (20). Assuming prior 

single port excitations were performed, a common-mode excitation and a differential-

mode excitation will only yield the real part of a complex power loss constant. 

Although the preceding analysis is in the frequency-domain, time-domain 

simulations may also be used to quantify the power losses at a PCB/connector interface. 

In time-domain simulations, only port incident wave magnitudes and time shifts are 

defined directly. The phase of an input signal is only defined through the Fourier 

transform properties    fXtx   and     02
0

ftj
efXttx


  where a phase shift is 

defined by 02 ft   [29]. A common-mode excitation can be specified for a time-

domain, two-port excitation when there is no time shift for both excitations. A phase 

shifted excitation where the two port excitations are out of phase by 90° cannot be 

defined for all frequencies in a time-domain solver, but the only requirement to solve for 

yxP ,  is that the two, two port excitations be linearly independent in (20). An example 

choice of two excitation sets for a time-domain simulation is given in (24). Suppose that 

excitation one and excitation two are given by 

 

1,1, excxexcx aa  , 
1,1, excyexcy aa   (24a) 

2,2, excxexcx aa  ,   sincos2,2, jaa excyexcy   (24b) 

 

where, the phase in 2,excya  is created from a time delay 0t . Applying (24) to (20), the 

determinant of  A  in (20) is given by, 

 

  sindet 2,2,1,1, excyexcxexcyexcx aaaaA   (25) 

 

and is zero when  n  where n is a positive integer. It then follows that yxP ,  cannot 

be solved in general from the excitations in (24) at discrete frequencies given by 
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 02tnf  . Thus, the time delay that defined the phase in (24b) must be carefully 

chosen so the calculation of yxP ,  can be performed over any frequency band of interest. 

For some broadband simulations a third, two-port excitation with a different time delay 

than in (24b) may be necessary to calculate yxP ,  at frequencies that are inappropriate for 

the excitations in (24). 

 

C. Power Loss Relationships for Total Power Loss, Radiated Power Loss, and Material 

Power Loss 

Relationships among  constlossP ,

~ ,  constradP ,

~  and  constmatP ,

~  in (5)-(7) can also be 

derived from a general two port excitation. If a port x and a port y are fed where yx   

and the incident power wave vector is given by (13a), then the matrices for the power 

loss constants can be written as, 

 

  









ylyylx

ylxxlx

constloss PP

PP
P

,
*
,

,,

,

~  (26a) 

  









yryyrx

yrxxrx

constrad PP

PP
P

,
*

,

,,

,

~  (26b) 

  









ymyymx

ymxxmx

constmat PP

PP
P

,
*

,

,,

,

~ . (26c) 

 

From (1), (5)-(7), and (26), the diagonal elements in the power loss constant matrices 

follow 

 

1,,,  xmxxrxxlx PPP  (27a) 

1,,,  ymyyryyly PPP  (27b) 

 

where 0xa  and 0ya  was applied to find (27a) and 0xa  and 0ya  was applied to 

find (27b). Similarly, the real and imaginary parts of the complex power loss constants 

are related by 
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     ylxymxyrx PPP ,,, ReReRe   (28a) 

     ylxymxyrx PPP ,,, ImImIm   (28b) 

 

which can be condensed to 

 

ylxymxyrx PPP ,,,  . (28c) 

 

A common-mode excitation ( 1xa , 1ya ) was applied to find (28a) and a phase 

shifted excitation ( jax  , 1ya ) was applied to find (28b). Combining (27) and (28), 

the power loss constant matrices are related generally for an N-port connector by 

 

       IPPP constmatconstradconstloss

~~~~
,,,  . (29) 

 

D. A Multi-signal Power Loss Quantification Example 

A series of full-wave time-domain simulations were performed with the connector 

shown in Fig. 1. The simulations were designed so the power losses may be characterized 

when the two longest pairs in slice A of the second wafer were fed and all other ports 

were matched. A far-field monitor was defined in CST Microwave Studio so the radiated 

power could be calculated from the fields on the bounding box of the calculation domain. 

An S-parameter simulation was first performed to characterize the total power loss, and a 

full S-parameter matrix containing information about all 96 ports in the connector was 

obtained. In addition, the single port excitation radiated powers were calculated and 

recorded during the S-parameter simulation. Next, custom simulations were performed 

where two port combinations of the feed ports for the differential pairs under study were 

excited. Common-mode and time-delay excitations as indicated in (24a) and (24b), 

respectively, were performed to facilitate the calculation of the real and imaginary parts 

of the complex radiated power loss constants. The time-delay excitation used a 45 ps 

delay to optimize the calculation of the complex radiated power loss constants over 1 
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GHz – 10 GHz. The S-parameters and the radiated power data for all the excitations were 

post-processed using (15), (20), and (29) to calculate the total power loss constant matrix, 

the radiated power loss constant matrix, and the material power loss constant matrix. 

To validate the proposed power loss calculation method, the radiated power loss 

and the material power loss were evaluated for a random excitation where both signal 

pairs were fed. A full-wave simulation was performed to calculate the radiated power 

directly from the fields on the bounding box of the calculation domain. The non-zero port 

excitations are given by 

 

 

 

 

 

 
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
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
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


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



























1223211.1

1234251.0

123244.0

1218267.1

47
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41

ef

ef

ef

ef

a

a

a

a

asub









, (30) 

 

where, f is frequency in Hz, port 41 and port 43 are the feed ports for the shorter 

differential pair, and port 45 and port 47 are the feed ports for the longer differential pair. 

In this example the shortest signal conductor was excited by port 41 and the longest 

signal conductor was excited by port 47. The phases of the input excitations in (30) are 

defined according to the signal time delays indicated in parentheses. It should be noted 

that a partial incident wave vector is defined in (30). All other incident power waves not 

listed in (30) were zero since all other ports were matched. A comparison of the radiated 

power loss, the material power loss, and the total power loss for the excitation in (30) are 

shown in Fig. 3 using (5)-(7). It can be seen that the total power loss is dominated by the 

material losses as has been previously reported in [7], [8]. The radiated power calculated 

directly from the fields for the excitation in (30) is also shown in Fig. 3. The maximum 

deviation between the radiated power calculated from (6) and the direct calculation of the 

fields is 0.05 dB. An additional simulation was also performed with the excitation in (30) 

where power loss monitors were defined so the material power losses could be calculated 

directly from the fields in the lossy media. A comparison of the material power loss using 

the total power loss and the radiated power loss in (29) and the direct calculation is 

shown in Fig. 4. In the worst case the material power loss calculation differs by 0.2 dB or 

3.8 %. 
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Fig. 3.  Comparison of the total power loss, material power loss, and the radiated power 

loss for the random excitation in (30). 

 

Fig. 4.  Comparison of the material power loss calculations for the random excitation in 

(30). 
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E. Radiated Power Characterization with Reverberation Chamber Measurements 

Although the focus of this paper is to develop a simulation method for power loss 

characterization at PCB/connector interfaces using full-wave simulations, the presented 

theory also applies to measurements. A series of reverberation chamber measurements 

were performed on the connector shown in Fig. 6(a) of [7] and Fig. 6 of [8]. The radiated 

power was characterized for the 3rd differential pair (from shortest to longest) in slice A 

of the middle wafer. The ports on the other end of the fed differential pair were 

terminated in matched loads and all other ports were left open. Five continuous wave 

radiated power measurements were performed in the reverberation chamber to quantify 

the radiated power loss constants. The characterization measurements consisted of two 

single-ended excitations, a common-mode excitation using a resistive power splitter with 

two connecting cables approximately the same length, and two phase shifted excitations 

that used a resistive power splitter and phase shifters. The phase shifted excitations 

utilized phase shifters to make the phase difference between the incident power wave 

excitations 90° near 6 GHz and 13 GHz in the two measurements. Two phase shifted 

measurements were required to quantify the complex power loss constant due to the large 

frequency range of the measurement (1-18 GHz). A 20 dB attenuator was connected to 

each excited port in all of the measurements to minimize multiple wave reflections in the 

measurements. The insertion loss and the phase progression of the cabling, power splitter, 

phase shifters, and attenuator chains were measured to facilitate proper calculation of the 

incident power waves at the PCB/connector ports. The data from the five radiated power 

measurements was used to calculate the radiated power loss constants when incident 

power waves were present at the fed differential pair. To validate the radiated power 

constant matrix calculation, a 6th radiated power measurement was performed. This 

additional measurement consisted of a two port excitation generated from a resistive 

power splitter and two unequal length cables. The difference in incident wave unwrapped 

phases varied from 31° to 541° over the measured frequency range. The radiated power 

was calculated using the radiated power loss constants and compared to the measurement 

with 0 dBm input power to the power splitter as shown in Fig. 5. The measured and 

calculated results agree to within fractions of a decibel over most of the frequency range 

and within a few decibels in the worst case near 2.5 GHz. 
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Fig. 5.  Comparison of a measured and calculated radiated power loss for a continuous 

wave common-mode excitation with unequal cable lengths. 

 

III. PRACTICAL ISSUES ARISING FROM SOLVING FOR THE POWER LOSS CONSTANT  

MATRICES 

A. Computational Considerations in Solving for the Material and Radiated Power 

Losses 

Power losses in a connector with known incident power waves can be evaluated 

once the power loss constant matrices are calculated from the methods presented in 

Section II. The total power loss constants can be calculated from S-parameters obtained 

through a traditional S-parameter simulation as in (8). The radiated power constants and 

the material power loss constants can be calculated with output data from full-wave 

simulations when appropriate field monitors are defined and the correct port excitations 

applied. Radiated power can be calculated using the fields at the PML boundaries 

enclosing a PCB/connector structure with data post-processing. Material power losses 

can also be calculated from the fields inside the lossy materials. In general, it is more 

desirable to solve for the total power loss constant matrix and only one of the remaining 
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power loss constant matrices directly. Solving for all of the power loss constants directly 

with field information is potentially computationally intensive as well as computer 

memory intensive. Equation (29) can be used to find unknown power loss constants when 

two of the three power loss constant matrices are known. 

Choosing to solve for either the radiated power loss constant matrix or the 

material power loss constant matrix directly from the fields is critical for large scale 

models. Finding the material power loss constants directly has the advantage that only 

single port excitation simulations are needed. The complex material loss constants can be 

evaluated from common-mode and phase shifted excitations defined with post-processing 

steps. One disadvantage of using (29) to calculate the radiated power loss constants is 

that the radiated power is only evaluated at relatively few frequency points as defined by 

the number of material power loss monitors in the simulation. In addition, each single 

port excitation requires a tremendous amount of hard drive space for practical connector 

models since the fields are saved everywhere in the computational domain.  

An alternate simulation strategy is to solve for the radiated power loss constants 

directly with field information. This method has the advantage that the radiated power, 

which is often the desired quantity of interest, is found directly and can be defined with 

many frequency points. A moderate amount of hard drive space is required for practical 

connector models when compared to simulations calculating the material loss constants 

directly. Only field information on the bounding box of the computational domain must 

be saved for the radiated power calculation. Additional radiated powers for common-

mode and phase shifted excitations can be calculated as post-processing steps from the 

single port simulations. Solving for the radiated power loss constants directly in many 

cases is the only practical choice to find the power loss constants due to hard drive space 

limitations and is preferred. 

 

B. Computational Reduction Methods with Known Input Signaling and Worst Case 

Analysis 

Although relatively little can be done to reduce computational model size to 

achieve accurate power loss characterization, the total number of simulations required to 

characterize power losses can be reduced with some input signaling assumptions and 
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using worst case analysis. If the input signaling and terminations at a PCB/connector 

interface are known a priori to quantifying the power losses, then it is feasible that full 

power loss constant matrices are not needed to fully quantify the power losses. More 

specifically, power loss constants involving ports that do not have incident power waves 

do not need to be calculated since there are no power loss contributions from these port 

excitations. The total number of excitations required to fill the entire power loss constant 

matrices, assuming only two excitations are needed to solve for each unique complex loss 

constant, is 2N . If the entire power loss constant matrices are known, then the power 

losses may be quantified where incident power waves are present at all ports. 

Realistically, incident power waves may not be present at all ports since simultaneous, 

bidirectional transmission is not used with link protocols at present. In the worst case 

only half of a PCB/connector interface contains incident power waves due to signaling 

sources. It is possible for designated receive ports to have non-zero incident power waves 

caused by port termination mismatches; however, if all the receive ports are terminated 

with matched loads, then the minimum total number of excitations to fully characterize 

the power losses is reduced to NN 22  . Further simulation reductions may also be 

realized if some of the signal lines are not used and if fixed transmit and receive port 

assignments are also implemented. 

Worst case analysis can also reduce the total number of simulations required to 

characterize power losses and is useful when input signaling and termination information 

does not sufficiently reduce the total number of simulations. This type of analysis is an 

inexact method to characterize power losses within a connector and is less preferred over 

using input signaling and termination information to reduce the total number of 

simulations. In the worst case it is assumed that the incident power waves are configured 

for maximum total power loss, and the total power loss is solely due to radiated power 

loss. The radiated power loss in (6) can be modified to include worst case analysis and is 

written as, 

 

                aPaaPaaaP wcconstrad

T

constrad
HH

totalrad ,,
mod

,,

~
2/1

~
2/12/1   (31) 
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where, T is a non-conjugate transpose,  mod
,

~
constradP  is the modified radiated power loss 

constant matrix, and  wcconstradP ,,

~  is the worst case power loss constant matrix.  mod
,

~
constradP  is 

equivalent in form to (4) except zeroes are in place of the off-diagonal elements chosen 

for worst case analysis. The diagonal of  wcconstradP ,,

~  contains zeroes, and only the port 

combinations chosen for worst case analysis are non-zero. If, for example, all port 

combinations are chosen for worst case analysis, the modified radiated power loss 

constant matrix and the worst case power loss constant matrix are 
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
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 (33) 

    2,12,12,1 ImRe llrwc PPP   (34a) 

    nlnlnrwc PPP ,1,1,1 ImRe   (34b) 

    nlnlnrwc PPP ,2,2,2 ImRe   (34c) 

 

where, the lP  values in (34) are total power loss constants defined in (8). 

The worst case radiated power constants in (33) are derived from the fundamental 

two port example given in (14). The last two terms in (14), which are expanded in (19), 

are the only terms that can cause variations in the power loss due to signal phase. In the 

worst case, it is assumed that these terms constructively add. If the incident power waves 

and the complex power loss constant are written in rectangular format where, 

 

xxxxx ajaa  sincos   (35a) 

yyyyy ajaa  sincos   (35b) 

   yxyxyx PjPP ,,, ImRe  , (35c) 
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then (19) becomes 

 

     yxyxyxyxyxyxyxyx

pxpyterms

PaaPaa

P

 sincoscossinImsinsincoscosRe ,,

,




  

        .sinImcosRe ,,

,

yxyxyxyxyx

pxpyterms

PPaa

P

 


 (36) 

 

In the worst case (36) becomes 

 

      yxyxyxpxpyterms PPaaP ,,, ImRemin   (37) 

 

and, (14) reduces to 

 

       

        .ImRe2/1             

2/12/12/1

,,,

2

,

222

,

yxyxyxyyy

xxxyxpxpyloss

PPaaPa

PaaaP




  (38) 

 

Equation (31) is derived from (38) for the N-port case. 

Port combinations must be carefully chosen for worst case analysis so the radiated 

power is not largely over-predicted. The port combinations suitable for worst case 

analysis are those where the total power loss contribution by signal phase, in the worst 

case, is negligible compared to the radiated power loss contributions from single port 

excitations. Some details of the worst case analysis are readily illustrated with a 

fundamental two port example. Assume the full total power loss constant matrix is known 

and only the diagonal elements in the radiated power loss constant matrix are known. In 

the worst case, the radiated power loss can be written from (38) as, 

 

           1 term12/12/12/1 ,

2
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,, 
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
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where the incident power waves are assumed to be non-zero. Since the complex radiated 

power loss constant, yrxP ,  is unknown, in the worst case the complex total power loss 

constant can be used where 

 

           2 term12/12/12/1 ,

2
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
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    
   yryyxrxx

ylxylxyx

PaPa

PPaa

,

2

,

2

,, ImRe2
2 term




  (40b) 

 

as indicated in (31). If yx aa  , then (40) reduces to 

 

    2 term12/1 ,,

22

,  yryxrxxxpxpyrad PPaaP  (41a) 

    
yryxrx

ylxylx

PP

PP

,,

,, ImRe2
2 term




 . (41b) 

 

If 02 term   in (41b), this also implies that 01 term   under the same assumptions since 

1 term2 term  . The condition 02 term   indicates that the two port combination is 

relatively uncoupled and suitable for worst case analysis since the coupling between ports 

is negligible even in the worst case. If 02 term  , then the worst case analysis could 

significantly over-predict the radiated power. In this case it is advisable to perform the 

additional simulations to find the complex radiated power loss constant for the two port 

combination. 

A similar analysis as the fundamental two port example may also be applied to an 

N-port PCB/connector structure to find suitable port combinations for worst case 

analysis. If all two port combinations are chosen for worst case analysis and the radiated 

power loss constant matrix is fully known, (31) can be alternatively written as 
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and represents a deterministic, maximum radiated power estimate independent of input 

signal phase. If the full total power loss constant matrix and the diagonal elements in the 

radiated power loss constant matrix are only known, as would be the case after a 

traditional S-parameter simulation, (42) can be rewritten with the complex total power 

loss constants as suggested in (31) as 

 

           .ImRe2/12/1 ,,

1

1 11
,

2
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N

k

N

km
mk

N

k
krkk

H
wcrad PPaaPaaaP   



 

 (43) 

 

If Naaa  21 , as could be the case with traditional data traffic in a connector 

with the same logic levels, then (43) can be written as 
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In the unlikely event that 03 term   in (44b), all two port combinations are suitable for 

worst case analysis since the coupling between ports is negligible even in the worst case. 

Otherwise, additional data analysis is needed with the numerator terms in (44b) to find 

select two port combinations suitable for worst case analysis. A matrix can be formulated 

from the values in (44b) by 
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 (45) 

 

where mk  , and the indices k and m only take on values in the upper triangular part of 

an NxN matrix. The upper triangular values in (45) can be concatenated into a vector 

named vect3 term  of length  15.0 NN . The values in vect3 term  should be sorted from 



 

 

120 

smallest to largest while keeping track of the port excitation combinations. The 

contributions of successive worst case analyses can then be defined by 

 

   15.01    term3)(
1

vect  


NNkmkwc
k

m
cont

. (46) 

 

The port combinations eligible for worst case analysis can be found by using a search 

function with (46) to find the first index where the worst case analysis contribution is 

greater than a user specified limit. All port combinations associated with the power losses 

prior to the search result index can be used for worst case analysis. 

 

IV. CONCLUSION 

A method is proposed to quantify the power losses at a high-density 

PCB/connector interface. This method is based on network parameters and the 

conservation of power and can quantify power losses when material losses and multiple 

signals are present. The power losses are characterized through the definition of power 

loss constant matrices which are derived from well-designed single port and two port 

excitations for an N-port connector. Once found, the power loss constant matrices enable 

the evaluation of the radiated power loss, the material power loss, and the total power 

loss in a system with variable input signaling. This power loss characterization method 

allows designers to evaluate connector performance from EMI and signal integrity 

perspectives, as well as answer common design questions. The proposed method enables 

the evaluation of connector design modifications such as shielding, absorbing materials, 

and signal pin assignments and their relative effects on connector radiation. It also allows 

the direct evaluation of power losses in the frequency-domain which is not readily 

available when using a time-domain solver. Although the focus of this paper is the 

characterization of radiated power using simulations, the presented theory also applies to 

measurements as was shown in a reverberation chamber validation example. Despite 

using known input signaling information and worst case analysis, significant challenges 

remain to find full power loss constant matrices for large connectors with measurements 

due to the large number of measurements required. Future work includes the 



 

 

121 

development of a statistical radiated power limit for high-density PCB/connector 

interfaces using the power loss constant matrices. 
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Abstract—A method to statistically estimate radiated emissions from high-density 

connectors is presented in this paper. The statistical formulations are based on the 

radiated power quantification method using power loss constant matrices and statistical 

bounding methods. Statistical limits for the maximum radiated power are proposed based 

on the Markov and Chebyshev inequalities where only low probability events are 

expected to exceed the limits in the worst case. The magnitude power spectra of the input 

signals to the connector are assumed to be known. The phases of the input signals are 

assumed to be independent uniformly distributed random variables. Incident power 

waves at the connector ports are defined as a function of the input power waves from the 

sources through a port connectivity matrix. Maximum radiated power limits are proposed 

that depend on the level of known information in the radiated power loss constant matrix. 

Simulations and measurements are presented that validate the proposed statistical 

maximum radiated power estimates. 

 

Index Terms—Connectors, electromagnetic radiation, estimation, printed circuit 

board connectors, radiated power, scattering parameters, statistical analysis 

 

I. INTRODUCTION 

Electromagnetic radiation from printed circuit board (PCB) connectors is 

becoming a significant concern for industry as data rates increase. In the past, connectors 

alone were ineffective radiators since they were electrically small. These PCB connectors 

were often a part of a much larger unintentionally radiating structure consisting of PCBs, 

cables, or enclosures [1]-[4]. The connectors often facilitated the voltage difference 

between the two larger metallic structures through an inductive mechanism. With 

increasing data rates, however, PCB connectors have become electrically large and the 
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connectors themselves have been shown to radiate effectively and, in some cases, to be 

the dominant radiators [5]-[9]. 

Radiation from connectors has been extensively studied in literature, though a 

majority of the literature focuses on cases where the connectors are electrically small. 

Many of the radiation studies are based on the current and voltage driven models in [2]. 

Additional efforts to quantify radiation from connectors have included finite-difference 

time-domain simulations [10]-[13], common mode current measurements [10]-[11], [13], 

electromagnetic fields measurements [13]-[14], transfer impedance measurements [15]-

[16], and connector inductance measurements and calculations [17]-[18]. More recent 

efforts have focused on modeling connector radiation when connectors are electrically 

large [5]-[9]. 

In [9], a method was presented to quantify the radiated power from a high-density 

PCB/connector structure with material losses and multiple input signals. The method 

predicts PCB connector radiated power when input signals are known. Although 

deterministic evaluation is beneficial, in many cases the input signal characteristics are 

not known precisely and can be modeled as random variables. A statistical analysis can 

address this issue and can be formulated from the theory presented in [9]. The purpose of 

this paper is to expand on the foundations of [9] by developing statistical estimates of the 

maximum radiated power to quantify connector radiation performance. A review of the 

power loss calculations using power loss constant matrices is presented in Section II. The 

constraints for the defined statistical problem and bounding methods for power loss are 

discussed in Section III. Simulation and measurement results are provided in Section IV 

to validate the radiated power loss bounds defined in Section III. Conclusions are given 

in Section V. 

 

II. POWER LOSS CALCULATIONS 

A method to characterize power losses at a PCB/connector interface was 

presented in [9] using power loss constant matrices. This method is based on network 

parameters and the conservation of power and can be used to characterize any of the 

power losses (radiation, material, or total power loss). The general power loss equation is 

defined as [9] 
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          aPaaaP const
HH
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~
2/12/1,   (1) 

 

where  a  represents the inputs to the connector as an incident power wave vector with 

units of Watt  and is based on generalized scattering parameters [19], H denotes the 

complex conjugate transpose, and  constP
~  is a frequency dependent power loss constant 

matrix defined by 
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From (1), the total power loss, totallossP , , the total radiated power, totalradP , , and the total 

material loss, totalmatP , , can be written as [9] 

 

          aPaaaP constloss
HH

totalloss ,,

~
2/12/1   (3) 

 

          aPaaaP constrad
HH

totalrad ,,

~
2/12/1   (4) 

 

          aPaaaP constmat
HH

totalmat ,,

~
2/12/1  . (5) 

 

The total power loss constant matrix can be found from single-ended network parameters 

using 

 

     SSP
H

constloss

~~~
,  , (6) 

 

whereas, the radiated power constant matrix,  constradP ,

~ , and the material loss constant 

matrix,  constmatP ,

~ , must be found from single- and two-port excitations. The diagonal 
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elements in  constradP ,

~  and  constmatP ,

~  are found from the single port excitations and the off-

diagonal elements are found from the two-port common-mode and phase shifted 

excitations.  constradP ,

~  and  constmatP ,

~  can be found through simulations or measurements as 

shown in [9]. 

 

III. DERIVATIONS ON A STATISTICAL RADIATED POWER ESTIMATE 

One of the many benefits of the power loss characterization in (3)-(5) is the ability 

to quantify power losses in a PCB/connector structure when the incident power waves 

(the inputs) to the structure are known. Radiated power can be used to quantify PCB 

connector electromagnetic interference (EMI) performance. The radiated power 

formulation in (4) can be used to evaluate the radiated power deterministically or 

statistically. A statistical analysis of connector radiated power is of interest in this paper 

for a few reasons. First, the input excitations may not be fully known. In many cases the 

magnitude spectrum of the input signals will be known, but the phase spectrum will not. 

Uncertainties in the transmission line lengths from the sources to the PCB/connector 

structure interface as well as unknown relative timing characteristics of the sources can 

lead to an unknown phase spectrum. Another practical issue is that the radiated power 

loss constant matrix will often be incomplete for large connectors. Large connectors can 

contain as many as 10’s or 100’s of signal lines and the number of simulations or 

measurements required to find the entire radiated power loss constant matrix may not be 

feasible. For example, the total number of excitations required to fill the entire power loss 

constant matrix, assuming only two excitations are needed to solve for each unique 

complex loss constant, is 2n , where n  is the number of ports defined at the 

PCB/connector interface. A worst case analysis can reduce the required number of 

excitations, however, these reductions alone are often not enough to make the calculation 

practical. A statistical evaluation of the radiated power can address these issues by 

utilizing limited radiated power loss constant information to predict a statistical estimate 

for the maximum radiated power in a systematic manner. 

A statistical radiated power estimate can be derived from the general power loss 

equation in (1) with some slight modifications as will be shown. Because all of the power 
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losses can be written in the same general form, the resulting formulas can be easily 

modified to describe the statistics for any of the power loss mechanisms. In the proposed 

statistical problem, the magnitude spectrum of all the incident power waves from the 

sources is assumed to be known and deterministic. The path lengths from the sources 

driving the PCB connector and the start-times of each incident signal from the sources are 

assumed to be unknown so that the phase of the incident signals are random variables 

(RVs) that are independent and uniformly distributed on   ,  assuming phase 

wrapping. In an actual PCB connector, the incident power waves at the connector ports 

may not be independent from one another. For instance, a differential connector driven 

with differential transmitters will have incident wave dependencies on the positive and 

negative nets for each differential pair. Ideally, the positive and negative nets contain the 

same signal but with a phase difference of   radians. In addition, incident power wave 

dependencies may also exist when port terminations are not perfectly matched. Thus, a 

distinction must be made between incident waves at the connector ports and incident 

waves from independent sources. Known incident wave dependencies at the connector 

ports can be addressed in the proposed statistical problem by defining a port connectivity 

matrix that correlates the independent incident waves at the sources to the incident waves 

at the connector ports. The port connectivity matrix is defined by 

 

    ic aCa
~

 , (7) 

 

where,  C
~  is the port connectivity matrix,  ia  is the independent incident power wave 

vector from the sources, and  ca  is the incident power wave vector at the connector. The 

length of  ca  is greater than  ia  when differential signals are present, and  C
~  can be 

built so that differential signals will have equal magnitude and opposite phase. The 

general power loss equation in (1) can be rewritten using (7) as 

 

          

                .
~~~
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i
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H

cc
H

cgenloss

aCPCaaCCa

aPaaaP



  (8) 
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The incident power wave vector used for the statistical problem can then be 

written as 

 

   Tnni aaaa  2211
 (9) 

 

where T is the non-conjugate transpose and n  is the phase RV for the nth incident 

wave. The probability density function (pdf) for the uniform RV n  is given by [20] 
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Since all of the incident wave phases are statistically independent, the joint pdf is a 

multiplication of the individual RV pdfs [20]. The joint pdf is given by 
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 (11) 

 

The power loss in (8) is a function of n phase RVs. The cumulative distribution 

function (cdf) of the power loss can be found from (8) and (11) through integration, but 

the calculation is difficult due to the multi-dimensional nature of the statistical problem. 

Rather than evaluate the cdf of the power loss directly, statistical bounding methods can 

be used to formulate a maximum bound for the radiated power. Two common statistical 

bounding methods use the Markov inequality and the Chebyshev inequality, shown in 

(12) and (13) respectively [20]: 

 

 



 XXP   (12) 

 
2

2

1



 X

XX XP  . (13) 
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Both inequalities apply to non-negative RVs (X), regardless of their distribution. The 

expected value or mean of the RV is denoted by X , and the variance of the RV is 

denoted by 2
X . The scalar γ defines the statistical bound. In general, the Chebyshev 

inequality provides a tighter bound for RVs than the Markov inequality since the 

Chebyshev inequality uses the variance of the RV in addition to the mean. One possible 

bound for the Markov inequality is where X 10 . For this bound, the Markov 

inequality states the probability the RV X will be larger than or equal to X10  is less 

than or equal to 10%. Another bound can be defined from the Chebyshev inequality 

where X 3 . The Chebyshev inequality states the probability the RV is within three 

standard deviations about the mean is greater than or equal to 89%. In the worst case, the 

remaining 11% could occur above the XX  3  limit curve. 

Evaluating statistical bounds for the power loss based on (12)-(13) requires 

knowledge about the mean and variance of the power loss. The power loss mean and 

variance can be derived from the general power loss equation in (8) and with the 

constraints defined for the statistical problem. It can be shown that the power loss mean 

and variance are given by 

 

         idiag
H
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H
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         offdiagproddiagprod

H

prod CCCCC ,,

~~~~~
  (16) 

          offdiagdiagconst

H
QQCPCQ
~~~~~~

 . (17) 

 

The subscript diag and offdiag indicate matrices that contain nonzero diagonal elements 

only or nonzero off-diagonal elements only, respectively. The symbol   denotes the 

Hadamard product or matrix element-wise multiplication operator. Equations (14)-(15) 

can be used to evaluate the mean and variance for any of the power losses (radiation, 

material, or total) when using the correct power loss constant matrix. A few important 



 

 

132 

observations can be made about the mean and variance in (14)-(15). First, the mean of the 

power loss is a function of diagonal elements in the power loss constant matrix only 

when the connectivity matrix is an identity matrix. In many practical cases the diagonal 

power loss constants will be known, since these values are relatively easy to calculate 

through single-port simulations or measurements, and the mean can be calculated. 

Second, the power loss variance is a function of the off-diagonal elements of the power 

loss constant matrix, which can only be determined through a series of two-port 

excitations. If the two port excitations are not performed, the variance of the radiated 

power loss and the material power loss cannot be found. 

A worst case estimate for the maximum variance of radiated power loss can be 

formulated, however, from relationships between the power loss means and variances. 

The total power loss at a PCB/connector interface can be written as a summation of 

radiated power loss and material power loss as 

 

totalmattotalradtotalloss PPP ,,,  . (18) 

 

From (14), (15), and (18), the mean and the variances for the power losses are related as 

 

matradloss    (19) 
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         offdiagdiagprod RRQCR
~~~~~

  (21) 

 

where, the radiated power mean and material power loss mean are given by rad  and 

mat , respectively. The radiated power and material power loss variance are represented 

by 2
rad  and 2

mat , respectively. From (20): 
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          
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21 i

T

offdiagmatoffdiagrad
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i aRRa 

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
   is non-negative, a worst case estimate 

of the radiated power variance is  

 

          .~~

2

1
2 ,,

22
, idiagmat

H
iidiagrad

H
imatradlosswcrad aRaaRa   (23) 

 

This estimate can be used when only the diagonal elements in the radiated power loss 

constant matrix are known, and the port connectivity matrix is an identity matrix. 

 

IV. VALIDATION 

The connector model shown in Fig. 1 of [9] and shown in Fig. 1 of this paper was 

used to validate the derived statistics on the power losses. This full-wave connector 

model was created in CST Microwave Studio for a commercially available connector 

designed for differential signaling. Additional details about the connector model and the 

generation process are given in [7]-[9]. A series of full-wave time-domain simulations 

were performed to characterize the power losses for all the pairs in slice A of the second 

wafer. The radiated power loss constant matrix was calculated so that the radiated power 

can be found when feeding any of the pairs in slice A of the second wafer. A full S-

parameter matrix containing information about all 96 ports in the connector was also 

obtained. To verify the radiated power loss constant matrix was calculated correctly, the 

radiated power loss was evaluated for a random excitation of all pairs in slice A of the 

second wafer and the radiated power loss found using (4) was compared to the value 

found through a full-wave simulation. The nonzero port excitations were given by 
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Fig. 1.  Full-wave connector model used to validate statistical estimates for maximum 

radiated power. Radiated powers for all the differential pairs in Slice A of the middle 

wafer as shown were characterized in the simulation model. 
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where, f is frequency in Hz, and the port numbers are indicated by the subscripts in the 

partial incident power wave vector. The shortest signal conductor was excited by port 33, 

and the longest signal conductor was excited by port 47. The phases of the input 

excitations in (24) are defined according to the signal time delays indicated in 

parentheses. It should be noted that (24) does not represent the full incident power wave 

vector. All other incident power waves were zero since all other ports were matched. A 

comparison of the radiated power loss, the material power loss, and the total power loss 

for the excitation in (24) are shown in Fig. 2 using (3)-(5). The maximum deviation 

between the radiated power calculated from (4) and the direct calculation of the fields is 

0.03 dB. Fig. 2 shows that the radiated power calculated from the radiated power loss 

constant matrix is equivalent to the direct fields calculation. 
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Fig. 2.  Comparison of the total power loss, material power loss, and the radiated power 

loss for the random excitation in (24). 

 

A. Simulation with Impulse Excitations 

Statistical simulations were performed with the characterized connector model in 

Fig. 1 to validate (14)-(15), (19)-(20), and (23). A series of 1,000 statistical trials per 

frequency were performed and the radiated power calculated with the general power loss 

equation in (8). All odd ports between ports 33-47 were fed with 0.5 W over the entire 

frequency range (an impulse excitation) where the excitation phases were independently 

generated with a uniform distribution on   , . In the first set of simulations, the port 

connectivity matrix was assigned to be an identity matrix, which corresponds to 

independent, single-ended (SE) signaling. The mean and the variance of the radiated 

power were calculated from the statistical trials and compared to the mean and variance 

calculated from (14)-(15). The maximum difference between the means and the standard 

deviations were 0.12 dB and 0.36 dB, respectively. A worst case radiated power variance 

was also calculated from (23). Fig. 3 shows the mean and standard deviations derived 

from (14)-(15) and (23). The average difference between the radiated power standard 

deviation from (15) and the worst case standard deviation from (23) is 6.18 dB. The term 
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in (22) containing  offdiagradR ,

~
 and  offdiagmatR ,

~
 was confirmed to be positive as assumed 

in the worst case radiated power variance formulation. The mean and standard deviation 

of the radiated power were also calculated with randomly generated connectivity matrices 

with similar agreement. 

Maximum radiated power bounds were generated with the Markov and 

Chebyshev inequalities in (12)-(13) using the radiated power mean and variances from 

(14)-(15), and (23). The maximum radiated power limit curve derived from the Markov 

inequality was defined as radradP 10max,  . Two limit curves were defined using the 

Chebyshev inequality. The first Chebyshev radiated power limit curve was defined as 

radradradP  3max,  . The second limit curve, denoted as the worst case Chebyshev 

limit, was defined as wcradradradP ,max, 3  . The Markov, Chebyshev, and worst case 

Chebyshev limit curves were evaluated using the impulse excitation conditions defined 

previously. Fig. 4 provides a comparison of all these radiated power limit curves with 

respect to a radiated power limit curve derived from statistical trials. A limit curve where 

the radiated power was below the curve 89% of the time was found from the statistical 

trials. Both the Markov and Chebyshev limit curves overpredict the 89% trial curve 

because the Markov and Chebyshev inequalities predict RV bounds for any distribution 

of a non-negative RV [20]. It can be seen that the Chebyshev limit curve differs from the 

statistical trial 89% curve by only a couple decibels over most of the frequency range. 

When the Chebyshev limit cannot be calculated, a limit curve can be defined on a 

frequency by frequency basis by taking the minimum of the Markov and worst case 

Chebyshev limits. In Fig. 4, the worst-case limit would be defined by the Markov limit 

below 3 GHz and by the worst case Chebyshev limit above 3 GHz. 

Another set of 1,000 statistical trials per frequency were performed to understand 

how the radiated power limit curves perform when the port connectivity matrix defines 

independent, differential-mode (DM) signaling. The port connectivity matrix was defined 

so that each differential pair shared a single independent incident wave source for all odd 

ports between ports 33-47. The positive and negative nets were defined to be out of phase 

by   radians in the connectivity matrix. Each port was fed with 0.5 W over the entire 

frequency range, and the independent, incident wave excitation phases were generated  
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Fig. 3.  Comparison of the radiated power mean, standard deviation, and worst case 

standard deviation for an impulse excitation and a single-ended signaling port 

connectivity matrix. 

 

Fig. 4.  Comparison of the maximum radiated power limit curves for an impulse 

excitation and single-ended signaling port connectivity matrix.  
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with a uniform distribution on   , .  The layout of the port connectivity matrix can be 

illustrated with an example. For a four port network where ports 1 and 3 and ports 2 and 

4 share the same independent incident power wave sources, the connectivity matrix 

would be defined as 
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The mean and the variance of the radiated power were calculated from the statistical trials 

and compared to the mean and variance calculated from (14)-(15). The maximum 

difference between the means and the standard deviations were 0.08 dB and 0.15 dB, 

respectively. A worst case radiated power variance was also calculated from (23). The 

Markov, Chebyshev, and worst case Chebyshev limit curves were evaluated using the 

impulse excitation conditions defined previously. Fig. 5 shows a comparison of all these 

radiated power limit curves with respect to a radiated power limit curve derived from 

statistical trials. In general, the worst case Chebyshev limit is smaller than the Markov 

limit over most of the frequency range in Fig. 5. The radiated power limit curves are 

smaller for the DM signaling case than the SE signaling case as seen when comparing 

Fig. 4 with Fig. 5. 

Additional radiated power limit curves were formulated from the minimum of the 

Markov and worst case Chebyshev limits for the SE and DM signaling cases. These limit 

curves are compared to two unique trial excitations in Fig. 6. A SE trial excitation was 

formulated where the ports were fed with 0.5 W, and all the incident power waves had a 

zero degree phase. A DM trial excitation was generated where the ports were fed with 0.5 

W, and the incident power waves were out of phase by   radians for each differential 

pair. All excited differential pairs were fed with the same differential excitation with no 

phase difference between the pairs. The SE excitation differs from the SE limit curve 

from 1.10 dB to 10.03 dB, and the DM excitation differs from the DM limit curve from 

1.64 dB to 9.34 dB as seen in Fig. 6. One important point about the formulation of the 

DM limit curve is that the DM signaling connectivity matrix requires some off-diagonal  
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Fig. 5.  Comparison of the maximum radiated power limit curves for an impulse 

excitation and a differential-mode signaling port connectivity matrix. 

 

Fig. 6.  Comparison of the spliced Markov and worst case Chebyshev limit curves using a 

single-ended signaling port connectivity matrix and a differential-mode signaling port 

connectivity matrix for impulse excitations. The SE and DM excitations represent cases 

where the independent incident waves are in phase with one another. 
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elements in the radiated power loss constant matrix to be known (i.e. for the differential 

pairs), to calculate the mean radiated power as in (14) and (17). If the necessary off-

diagonal elements are unknown when DM signaling is employed, a question remains as 

to how to formulate a maximum radiated power limit from the known power loss 

information. One option is to use the SE radiated power limit curve. Another option is to 

construct a DM limit curve from the Markov and Chebyshev limits with the total power 

loss mean, loss , and standard deviation, loss . Fig. 7 shows a comparison of these two 

types of limit curves to the DM limit curve found using the full radiated power loss 

constant matrix.  This figure shows that using the total power loss to estimate the 

statistical limit for radiated DM power substantially overestimates the radiated power.  

The DM radiation limit estimated in this way is even higher than the limit predicted for 

SE signals. 

 

Fig. 7.  Total power loss and radiated power loss limit curve comparison for differential-

mode and single-ended signaling port connectivity matrices for an impulse excitation. 

 

B. Simulation with Pseudo-Random Bit Sequences 

Radiated power limit curves were also evaluated using pseudo-random bit 

sequences (PRBSs). These types of signals are of interest since they are often used to 
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evaluate EMI performance of systems. A PRBS7 signal was designed with a 2 V total 

voltage maximum and a 0 V total voltage minimum at a matched load connected to the 

source. The PRBS7 signal was modeled as a series of trapezoidal pulses where the rise 

and fall time was 28 ps. The data rate of the bit stream was 4 Gbps. The PRBS7 signal 

was generated with shift registers where taps were placed at register six and register 

seven. The outputs of register six and register seven were fed into an exclusive-or gate, 

and the resulting output was fed into the first register of the shift register. All registers 

were initialized to the logic high state and the output of register seven was used as the 

source of the PRBS7 signal. A fast Fourier transform (FFT) was used to find the double-

sided spectrum of the PRBS7 signal, and the total voltage spectrum was converted to a 

single-sided, incident power wave spectrum. All of the frequency-domain plots in this 

section show the envelope of the power spectrum rather than stem plots to improve figure 

clarity. 

The connector model shown in Fig. 1 was used to validate the statistical formulas 

in Section III where all odd ports between ports 33-47 were fed with the PRBS7 signal, 

and all other ports were terminated with matched loads. A series of 1,000 statistical trials 

per frequency were performed and the radiated power was calculated with the general 

power loss equation in (8). In the first simulation study a SE signaling port connectivity 

matrix was used. The phases of the independent incident wave excitations were generated 

over frequency with a uniform distribution on   , . The mean and the variance of the 

radiated power were calculated from the statistical trials and compared to the mean and 

variance calculated from (14)-(15). The maximum difference between the means and the 

standard deviations were 0.17 dB and 0.35 dB, respectively. A worst case radiated power 

variance was also calculated from (23). Fig. 8 shows the mean and standard deviations 

derived from (14)-(15) and (23). The average difference between the radiated power 

standard deviation from (15) and the worst case standard deviation from (23) is 6.18 dB. 

The term in (22) containing  offdiagradR ,

~
 and  offdiagmatR ,

~
 was confirmed to be positive as 

assumed in the worst case radiated power variance formulation. The Markov, Chebyshev, 

and the worst case Chebyshev limit curves were evaluated using the PRBS7 SE signaling 

conditions. Fig. 9 provides a comparison of all these radiated power limit curves with 

respect to a radiated power limit curve derived from statistical trials. Although the  
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Fig. 8.  Comparison of the radiated power mean, standard deviation, and worst case 

standard deviation for a PRBS7 excitation and a single-ended signaling port connectivity 

matrix. 

 

Fig. 9.  Comparison of the maximum radiated power limit curves for a PRBS7 excitation 

and single-ended signaling port connectivity matrix. 
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Chebyshev limit curve differs from the statistical trial 89% curve by only a couple 

decibels over most of the frequency range, a limit curve consisting of the Markov and 

worst case Chebyshev limits may be found with incomplete radiated power loss constant 

matrices as discussed earlier. 

Another set of 1,000 statistical trials per frequency were performed to show how 

the radiated power limit curves perform when the port connectivity matrix was defined 

for DM signaling. The port connectivity matrix was defined so that each differential pair 

shared a single independent incident wave source for all odd ports between ports 33-47. 

The positive and negative nets were defined to be out of phase by   radians in the 

connectivity matrix. Each port was fed with the PRBS7 signal, and the phases of the 

independent incident power waves were generated with a uniform distribution on  

  , . The mean and the variance of the radiated power were calculated from the 

statistical trials and compared to the mean and variance calculated from (14)-(15). The 

maximum difference between the means and the standard deviations were 0.11 dB and 

0.22 dB, respectively. A worst case radiated power variance was also calculated from 

(23). The Markov, Chebyshev, and worst case Chebyshev limit curves were evaluated 

using the PRBS7 excitation conditions defined previously. Fig. 10 shows a comparison of 

all these radiated power limit curves with respect to a radiated power limit curve derived 

from the statistical trials. In general, the worst case Chebyshev limit is smaller than the 

Markov limit over most of the frequency range in Fig. 10. The radiated power limit 

curves are smaller for the DM signaling case than the SE signaling case as seen when 

comparing Fig. 9 with Fig. 10. 

Additional radiated power limit curves were formulated from the minimum of the 

Markov and worst case Chebyshev limits for the SE and DM signaling cases. These limit 

curves are compared to two unique trial excitations in Fig. 11. A SE trial excitation was 

formulated where the ports were fed with the PRBS7 signal, and all the incident power 

waves had the same phase derived from the FFT of the time-domain PRBS7 signal. A 

DM trial excitation was generated where the ports were fed with the PRBS7 signal and 

the incident power waves were out of phase by   radians for each differential pair. All 

excited differential pairs were fed with the same differential excitation with no phase 

difference between the pairs. The SE excitation differs from the SE limit curve from 1.10 
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dB to 10.03 dB, and the DM excitation differs from the DM limit curve from 1.64 dB to 

9.34 dB, the same as the impulse excitations as seen in Fig. 11.  

A comparison of three radiated power limit curves is given in Fig. 12 to determine 

the best limit curve that approaches the DM signaling limit curve when only diagonal 

elements in the radiated power loss constant matrix are known. The motivation for Fig. 

12 is the same as Fig. 7 with the impulse excitations. As before, the limit predicted for a 

DM signal using the total power loss, rather than diagonal elements in the power loss 

constant matrix, is even higher than the limit predicted for SE signals. 

 

Fig. 10.  Comparison of the maximum radiated power limit curves for a PRBS7 

excitation and a differential-mode signaling port connectivity matrix. 
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Fig. 11.  Comparison of the spliced Markov and worst case Chebyshev limit curves using 

a single-ended signaling port connectivity matrix and a differential-mode signaling port 

connectivity matrix for PRBS7 excitations. The SE and DM excitations represent cases 

where the independent incident waves are in phase with one another. 

 

Fig. 12.  Total power loss and radiated power loss limit curve comparison for differential-

mode and single-ended signaling port connectivity matrices for a PRBS7 excitation. 
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C. Measurement with Pseudo-Random Bit Sequences 

A series of reverberation chamber measurements were performed on the 

connector shown in Fig. 6(a) of [7], Fig. 6 of [8], and in Fig. 13 to characterize the 

radiated power for a single differential pair. The radiated power loss constants were 

found for the 3rd differential pair (from shortest to longest) in slice A of the middle 

wafer. The ports on the “receiving” end of the fed differential pair were terminated in 

matched loads and all other ports were left open. Continuous wave radiated power 

measurements were used to find the radiated power loss constants as described in [9]. A 

Tektronix BSA175C pattern generator with differential outputs was used in a 

reverberation chamber measurement to feed the differential pair with a PRBS7 signal. 

The pattern generator was configured with a 2 V total voltage maximum and a 0 V total 

voltage minimum output at a connected matched load. The data rate of the bit stream was 

10.3125 Gbps. According to the pattern generator data sheet the typical rise time (10-

90%) of the PRBS signal was 23 ps. 

A spectrum analyzer was used to measure the radiated power and was configured 

with the following settings: 30 kHz resolution bandwidth, 1 GHz start frequency, 20 GHz 

stop frequency, 10 second sweep time, and 40 sweep averages. The sweep time was made 

sufficiently long so that multiple periods of the PRBS would be captured during the 

length of time the resolution bandwidth filter swept over any frequency. This setting 

ensured that the amplitude spectrum of the PRBS7 signal would be deterministic and 

would not vary with every frequency sweep.  

The radiated power was predicted from the radiated power loss constant matrix 

where the PRBS7 signals for the positive and negative nets were modeled as a bit stream 

of trapezoidal pulses. The rise and fall times of the trapezoidal pulses were extrapolated 

from the data sheet typical value where the rise time was set to 28 ps and the fall time 

was set to 38 ps. An FFT was used to find the double-sided spectra of the PRBS7 signals 

for the positive and negative nets, and the total voltage spectra were converted to single-

sided, incident power wave spectra. Equation (8) was used to find the radiated power 

where the port connectivity matrix was an identity matrix. A comparison of the measured 

radiated power and the radiated power envelope predicted using the deterministic PRBS 

signal is shown in Fig. 14. Above 12 GHz the calculated envelope overestimates the 
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radiated power likely because the actual PRBS is not trapezoidal and damping in the 

actual waveform reduces the higher frequency spectral content. 

Radiated power limit curves were calculated from the radiated power loss 

constant matrix and the simulated PRBS7 signal. A comparison of the SE signaling 

Markov limit, the SE signaling Chebyshev limit, and the DM calculated envelope from 

Fig. 14 is shown in Fig. 15. The SE signaling limit curves provide a bound for the 

radiated power assuming the radiation measurement were performed again with lossless 

and variable cable lengths. These curves also show the maximum radiated power limit is 

higher for SE signaling compared to DM signaling. 

 

 

Fig. 13.  PCB/connector pair used to measure radiated power. The PCBs were shorted 

with copper tape in the actual reverberation chamber measurement so that the radiated 

power from the connector was measured. 
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Fig. 14.  Calculated radiated power envelope and measured radiated power for a 

differential pair fed with a differential PRBS7 signal. 

 

Fig. 15.  Comparison of the singled-ended signaling radiated power limit curves with the 

deterministically calculated envelope for a differential PRBS7 signal. 
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V. CONCLUSION 

Statistical estimates for maximum radiated power from a high-density connector 

are presented. These estimates are based on a power loss characterization technique using 

power loss constant matrices. Formulations are shown to provide practical, maximum 

radiated power estimates for large connectors where the entire radiated power loss 

constant matrix and the relative phase progression of the incident power wave signals 

may not be known. The statistical estimates are based on statistical bounding methods 

using the Markov and Chebyshev inequalities where the statistical problem assumes: a) 

known and deterministic magnitude spectra for the incident power waves at the 

PCB/connector interface, b) the incident power waves at the PCB/connector interface can 

be written as a linear function of independent incident power waves, and c) the 

independent incident power wave phases are uniformly distributed on   , . Maximum 

radiated power bounds are based on the radiated power mean and standard deviation 

which may require known diagonal and off-diagonal elements in the radiated power loss 

constant matrix. In many practical cases a radiated power limit can be defined as the 

minimum of a Markov and a worst case Chebyshev limit where the port connectivity 

matrix is an identity matrix. This limit can be used when the S-parameters of the PCB 

connector and only the diagonal elements in the radiated power loss constant matrix are 

known, as it assumes that all ports are driven SE (i.e. there are no DM signals). A tighter 

radiated power loss bound can be formulated with more complete radiated power loss 

constant matrices as is shown when comparing the traditional Chebyshev limit and the 

worst case Chebyshev limit. In most cases, a tighter radiated power limit can be 

formulated by performing additional two-port excitations to find off-diagonal elements in 

the radiated power loss constant matrix. Reductions in the number of independent 

incident power waves by defining incident power wave dependencies in the port 

connectivity matrix can also provide a tighter bound. Simulations and measurements are 

shown with impulse and PRBS signals to validate the statistical radiated power estimates. 

The maximum radiated power limit is illustrated to be higher for a port connectivity 

matrix representing SE signaling than for a port connectivity matrix representing DM 

signaling.  
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There are a few benefits to using a statistical approach for predicting a maximum 

radiated power limit over a worst-case deterministic approach. The first benefit is that 

this statistical approach has less severe over-prediction problems than a deterministic 

approach that uses worst case analysis to modify the radiated power equations. Another 

benefit is the modular nature of the presented statistical formulation. Additional 

information such as radiated power loss constant values or incident power wave 

dependencies can be incorporated into the radiated power limit calculation to provide an 

improved estimate should additional information be found. It is important to note that as 

the independent incident power waves are made dependent through definitions in the port 

connectivity matrix, the radiated power mean approaches the deterministic radiated 

power calculation result and the resulting radiated power variance approaches zero. An 

added benefit of the maximum radiated power limit estimation is that the presented 

formulation can be readily used to compare radiation performance from multiple PCB 

connectors, regardless of how they are driven. 
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SECTION 

2. CONCLUSION 

In the first paper of this dissertation, equations for estimating the maximum 

crosstalk in a three conductor transmission line are presented and validated against a 

well-known crosstalk formulation and validated against simulated and measured data. 

These formulas are based on the weak coupling assumption where the transmission line 

system has a single coupling region with a uniform cross section and are based in the 

frequency domain. These equations may be expanded to systems with more than three 

conductors through the application of the superposition principle. The newly presented 

formulas can model the maximum crosstalk for transmission lines in lossy, 

inhomogeneous media where the transmission lines may have unique and arbitrary 

lengths. Measurements and simulations show that the maximum crosstalk formulas 

capture the envelope of the near-end and far-end victim voltages well, often within a few 

decibels. The present equations are well suited for evaluation of signal integrity in 

systems where transmission line parameters are not well known and crosstalk sensitivity 

analysis is needed. 

In the second paper, equations for estimating the maximum crosstalk in the 

frequency domain and in a three conductor, lossless, and homogeneous transmission line 

have been presented. The presented formulas are a simplified form of the equations in 

paper one that are based on an integral formulation. Derivations on another maximum 

crosstalk estimate for finite length transmission lines based on a relationship for infinitely 

long transmission lines are also presented. These derivations illustrate that the previously 

published estimate, though relatively simple to understand and shown to predict the 

maximum crosstalk well, mixes boundary conditions between infinite and finite 

transmission lines which is not strictly mathematically correct. Despite the mixing of 

boundary conditions, the previous maximum crosstalk estimate is demonstrated to be 

equivalent to the integral formulation based estimate under some restrictive conditions. 

These conditions may not occur in a practical setup making the previous formulation 

more prone to errors. The integral formulation based maximum crosstalk estimates are 
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shown to be more robust because they can estimate the maximum crosstalk with fewer 

and less restrictive assumptions. 

In the third paper, the radiation from a printed circuit board/connector interface 

was quantified using S-parameters without the presence of conductor and dielectric 

losses. The concept of using network parameters to calculate radiation from a printed 

circuit board/connector interface in the third paper served as a basis for the radiation 

calculations presented in the fourth and fifth papers of this dissertation. Three distinct 

radiation modes were found for the printed circuit board connector analyzed in the third 

paper. The first mode consists of a radiating structure comprised of printed circuit board 

reference planes driven by signals through the connector. This mode produces half-

wavelength dipole type current on the printed circuit board reference planes. The 

radiation is significant with a transmission line common-mode excitation, even with 

ground references on three sides of the signal pair in a connector wafer. Another radiation 

mode is associated with the gap between the printed circuit boards that the connector 

spans. The radiation physics corresponded to those of a slot antenna that include the 

ground reference path through the connector. Lastly, at frequencies where the connector 

signal path lengths are not electrically short, resonances associated with integer half-

wavelength antenna-mode current distributions result in significant radiation. Extensive 

work remains to develop a better understanding of coupling from transmission line modes 

to a radiation mode and to relate coupling to a radiation mode with the geometry in more 

than the rudimentary manner provided at present. A suitable formulation of the physics is 

needed to better engineer high-speed connectors for determining tradeoffs between signal 

integrity and electromagnetic interference across the connector. 

In the fourth paper, a method is proposed to quantify the power losses at a high-

density printed circuit board/connector interface. This method is based on network 

parameters and the conservation of power and can quantify power losses when material 

losses and multiple signals are present. The power losses are characterized through the 

definition of power loss constant matrices which are derived from well-designed single 

port and two port excitations for an N-port connector. Once found, the power loss 

constant matrices enable the evaluation of the radiated power loss, the material power 

loss, and the total power loss in a system with variable input signaling. This power loss 
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characterization method allows designers to evaluate connector performance from EMI 

and signal integrity perspectives, as well as answer common design questions. The 

proposed method enables the evaluation of connector design modifications such as 

shielding, absorbing materials, and signal pin assignments and their relative effects on 

connector radiation. It also allows the direct evaluation of power losses in the frequency-

domain which is not readily available when using a time-domain solver. Although the 

focus of this paper is the characterization of radiated power using simulations, the 

presented theory also applies to measurements as was shown in a reverberation chamber 

validation example. Despite using known input signaling information and worst case 

analysis, significant challenges remain to find full power loss constant matrices for large 

connectors with measurements due to the large number of measurements required. 

In the fifth paper, statistical estimates for maximum radiated power from a high-

density connector are presented. These estimates are based on a power loss 

characterization technique using power loss constant matrices. Formulations are shown to 

provide practical, maximum radiated power estimates for large connectors where the 

entire radiated power loss constant matrix and the relative phase progression of the 

incident power wave signals may not be known. The statistical estimates are based on 

statistical bounding methods using the Markov and Chebyshev inequalities where the 

statistical problem assumes: a) known and deterministic magnitude spectra for the 

incident power waves at the PCB/connector interface, b) the incident power waves at the 

PCB/connector interface can be written as a linear function of independent incident 

power waves, and c) the independent incident power wave phases are uniformly 

distributed on   , . Maximum radiated power bounds are based on the radiated power 

mean and standard deviation which may require known diagonal and off-diagonal 

elements in the radiated power loss constant matrix. In many practical cases a radiated 

power limit can be defined as the minimum of a Markov and a worst case Chebyshev 

limit where the port connectivity matrix is an identity matrix. This limit can be used when 

the S-parameters of the PCB connector and only the diagonal elements in the radiated 

power loss constant matrix are known, as it assumes that all ports are driven SE (i.e. there 

are no DM signals). A tighter radiated power loss bound can be formulated with more 

complete radiated power loss constant matrices as is shown when comparing the 
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traditional Chebyshev limit and the worst case Chebyshev limit. In most cases, a tighter 

radiated power limit can be formulated by performing additional two-port excitations to 

find off-diagonal elements in the radiated power loss constant matrix. Reductions in the 

number of independent incident power waves by defining incident power wave 

dependencies in the port connectivity matrix can also provide a tighter bound. 

Simulations and measurements are shown with impulse and PRBS signals to validate the 

statistical radiated power estimates. The maximum radiated power limit is illustrated to 

be higher for a port connectivity matrix representing SE signaling than for a port 

connectivity matrix representing DM signaling.  

There are a few benefits to using a statistical approach for predicting a maximum 

radiated power limit over a worst-case deterministic approach. The first benefit is that 

this statistical approach has less severe over-prediction problems than a deterministic 

approach that uses worst case analysis to modify the radiated power equations. Another 

benefit is the modular nature of the presented statistical formulation. Additional 

information such as radiated power loss constant values or incident power wave 

dependencies can be incorporated into the radiated power limit calculation to provide an 

improved estimate should additional information be found. It is important to note that as 

the independent incident power waves are made dependent through definitions in the port 

connectivity matrix, the radiated power mean approaches the deterministic radiated 

power calculation result and the resulting radiated power variance approaches zero. An 

added benefit of the maximum radiated power limit estimation is that the presented 

formulation can be readily used to compare radiation performance from multiple PCB 

connectors, regardless of how they are driven. 
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APPENDIX A 

 

FINITE DIFFERENCE SIMULATION FORMULATION 
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I. PER-UNIT-LENGTH MODELS 

Many of the analytical crosstalk expressions were validated by custom finite 

difference simulations. The finite difference simulation codes consisted mostly of solving 

the KVL and KCL equations formed by cascaded, electrically small transmission line 

circuits in the victim circuit. Instead of using the standard per-unit-length transmission 

line model found in most reference texts, a T-model was used as shown in Fig. 1. The T-

model was used in the simulations due to its balanced structure since simulation accuracy 

was desired to be the same at both the near-end and far-end loads. 

 

 

Fig. 1.  Per-unit-length transmission line T-model. 

 

The differential equations for the voltages and currents in the T-model are the same as 

those for the traditional per-unit-length transmission line model when the length of the 

per-unit-length section approaches zero. The derivations of the differential equations are 

given below. The two KVL equations from Fig. 1 can be written as, 
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Inserting (1b) in (1a) reveals, 
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If a limit is taken where the per-unit-length section length approaches zero, then (2) 

reduces to, 
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The KCL equation from Fig. 1 can be written as, 
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If a limit is taken where the per-unit length section length approaches zero then (4) 

reduces to, 
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When a distributed voltage source is present in the victim circuit, voltage sources must be 

added to the T-model as shown in Fig. 2. 
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Fig. 2.  Per-unit-length transmission line T-model with a distributed voltage source. 

 

It can be shown that the differential equations for the voltages and currents in Fig. 2 when 

the length of the per-unit-length section approaches zero are, 

 

 
     xvxLIjxRI

dx

xdV
   (6a) 

 
   xCVjxGV

dx

xdI
 . (6b) 

 

When a distributed current source is present in the victim circuit, a current source must be 

added to the T-model as shown in Fig. 3. 

 

 

Fig. 3.  Per-unit-length transmission line T-model with a distributed current source. 

 

It can be shown that the differential equations for the voltages and currents in Fig. 3 when 

the length of the per-unit-length section approaches zero are, 
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 
   xLIjxRI

dx

xdV
  (7a) 

 
     xixCVjxGV

dx

xdI
  . (7b) 

 

II. MATRIX EQUATIONS FOR DISTRIBUTED VOLTAGE SOURCES 

The victim circuit was split into three distinct regions in the crosstalk analysis: a 

left hand side (LHS), a source region (SR), and a right hand side (RHS). These regions 

are indicated for the victim circuit in Fig. 4. 

 

 

Fig. 4.  Finite difference simulation victim circuit layout. 

 

When considering distributed voltage sources in the source region, a series of KVL 

equation can be formulated in the victim circuit. These equations can be written using 

mesh currents and solved from a matrix of KVL equations. If a left hand side 

transmission line, source region transmission line, and right hand side transmission line 

exist, there are a total of seven unique equations that form the KVL matrix. The circuit at 

the victim near-end is shown in Fig. 5. 

 

 

Fig. 5.  Near-end victim finite difference circuit with mesh currents. 
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The near-end KVL equation is given by (8), and the general left hand side circuit KVL 

equation is given by (9). The circuit parameter definitions are defined to allow for 

different lengths for the per-unit-length transmission line sections. 
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      02 3,2,1,  iZiZLjRiZ LHSCGLHSCGLHSLHSLHSCG   (9) 

LHSLHS xRR   (10a) 

LHSLHS xLL   (10b) 

LHSLHS

LHSCG
xGxCj

Z





1
,  (10c) 

 

The circuits at the LHS transition between the LHS and the SR circuits are shown in Fig. 

6. 

  

 

Fig. 6.  LHS transition circuits with mesh currents. 

 

The LHS transition KVL equation is given by (11), and the general source region circuit 

KVL equation is given by (12). There are k-1 per-unit-length transmission line sections in 

the left hand side transmission line region. 
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        SRkSRCGkSRCGSRSRkSRCG xxviZiZLjRiZ   2,1,, 2  (12) 
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SRSR xRR   (13a) 

SRSR xLL   (13b) 

SRSR

SRCG
xGxCj

Z





1
,  (13c) 

 

The circuits at the RHS transition between the SR and the RHS circuits are shown in Fig. 

7. 

 

 

Fig. 7.  RHS transition circuits with mesh currents. 

 

The RHS transition KVL equation is given by (14). There are m-k per-unit-length 

transmission line sections in the source region transmission line region. 
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RHSRHS xRR   (15a) 

RHSRHS xLL   (15b) 

RHSRHS

RHSCG
xGxCj

Z





1
,  (15c) 

 

The circuit at the victim far-end is shown in Fig. 8. 
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Fig. 8.  Far-end victim finite difference circuit with mesh currents. 

 

The general right hand side circuit KVL equation is given by (16) and the far-end KVL 

equation is given by (17). There are n-m per-unit-length transmission line sections in the 

right hand side transmission line region. In the overall victim circuit, there are n-1 per-

unit-length transmission line sections. 

 

      02 ,1,2,   nRHSCGnRHSCGRHSRHSnRHSCG iZiZLjRiZ   (16) 
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The KVL matrix for the victim circuit can be written as shown in (18) and (19). 
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 (19a) 

   Tnininimimimimimikikikikikiiiii 1221122112321    (19b) 
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 (19j) 

 

If a source region transmission line and right hand side transmission line only 

exist, there are a total of five unique equations that form the KVL matrix. The KVL 

matrix for this case is similar to the KVL matrix where the LHS, SR, and RHS 

transmission line regions exist. The main difference resides in the KVL equation with the 

near-end load and the source region circuits. The circuit at the victim near-end is shown 

in Fig. 9, and the associated KVL matrix is shown in (20). 

 

 

Fig. 9.  Distributed voltage sources at the near-end. 
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   Tnininimimimimimiiiii 122112321    (20b) 
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If the LHS, SR, and RHS transmission line regions exist, but the LHS 

transmission line region has only one per-unit-length section as shown below in Fig. 10, 

the KVL matrix must be modified to (21). 

 

 

Fig. 10.  Distributed voltage source close to the near-end. 

 



 

 

167 

 

















































1,
00000000

,,
0000000

0

0
,,

00000

00
,,

0000

000
,,

000

0000

0000
,,

0

00000
,,

000000
,1

 

G
RHSCG

Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZE

SRCG
Z

SRCG
ZD

SRCG
Z

SRCG
ZD

SRCG
Z

SRCG
ZC

LHSCG
Z

LHSCG
ZA

ZKVL

















 (21a) 

   Tnininimimimimimiiiiii 1221124321    (21b) 

          T

SR
x

xv
SR

xxv
SR

xxv
SR

x
xv

v






 000

22
0   (21c) 

 

If the LHS, SR, and RHS transmission line regions exist, but the SR transmission 

line region has only one per-unit-length section as shown below in Fig. 11, the KVL 

matrix must be modified to (22). 

 

 

Fig. 11.  Distributed voltage source single section. 
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   Tnininikikikikikikiiiii 1232112321    (22b) 
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If the LHS, SR, and RHS transmission line regions exist, but the RHS 

transmission line region has only one per-unit-length section as shown in Fig. 12, the 

KVL matrix must be modified to (23). 

 

 

Fig. 12.  Distributed voltage source close to the far-end. 
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If a left hand side transmission line and a source region transmission line only 

exist, there are a total of five unique equations that form the KVL matrix. The KVL 

matrix for this case is similar to the KVL matrix where the LHS, SR, and RHS 

transmission line regions exist. The main difference resides in the KVL equation with the 
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far-end load and the source region circuits. The circuit at the victim far-end is shown in 

Fig. 13, and the associated KVL matrix is shown in (24). 

 

 

Fig. 13.  Distributed voltage sources at the far-end. 
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III. MATRIX EQUATIONS FOR DISTRIBUTED CURRENT SOURCES 

When considering distributed current sources in the source region, a series of 

KCL equations can be formulated in the victim circuit. These equations can be written 

using node voltages and the node voltages can be solved from a matrix of these KCL 

equations. If a left hand side transmission line, source region transmission line, and right 

hand side transmission line exist, there are a total of 11 unique equations that form the 

KCL matrix. The circuit at the victim near-end is shown in Fig. 14. 
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Fig. 14.  Near-end victim finite difference circuit with node voltages. 

 

The near-end KCL equations are given by (25) and (26). The general left hand side 

circuit KCL equation is given by (27). The circuit parameter definitions are defined to 

allow for different lengths for the per-unit-length transmission line sections. Additional 

parameter definitions are given in (10). 
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The circuits at the LHS transition between the LHS and the SR circuits are shown in Fig. 

15. 

 

 

Fig. 15.  LHS transition circuits with node voltages. 
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The LHS transition KCL equations are given by (28) and (29). The general source region 

circuit KCL equation is given by (30). There are k-1 per-unit-length transmission line 

sections in the left hand side transmission line region. Additional parameter definitions 

are given in (13). 
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The circuits at the RHS transition between the SR and the RHS circuits are shown below 

in Fig. 16. 

 

 

Fig. 16.  RHS transition circuits with node voltages. 

 

The RHS transition KCL equations are given by (31) and (32). There are m-k per-unit-

length transmission line sections in the source region transmission line region. Additional 

parameter definitions are given in (15). 
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The circuit at the victim far-end is shown below in Fig. 17. 

 

 

Fig. 17.  Far-end victim finite difference circuit with node voltages. 

 

The general right hand side circuit KCL equation is given by (33), and the far-end KCL 

equations are given by (34) and (35). There are n-m per-unit-length transmission line 

sections in the right hand side transmission line region. In the overall victim circuit, there 

are n-1 per-unit-length transmission line sections. 
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The KCL matrix can then be written as shown in (36) and (37). 
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If a source region transmission line and right hand side transmission line only 

exist, there are a total of eight unique equations that form the KCL matrix. The KCL 

matrix for this case is similar to the KCL matrix where the LHS, SR, and RHS 

transmission line regions exist. The main difference resides in the KCL equations with 

the near-end load and the source region circuits. The circuit at the victim near-end is 

shown in Fig. 18, and the associated KCL matrix is shown in (38). 
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Fig. 18.  Distributed current sources at the near-end. 

 

 















































RN

NQN

NPN

NPN

NML

LKH

HJH

HJH

HCH

HA

YKVL

20000000000

2000000000

000000000

00

00000000

00000000

00000000

00000000

000000

0000000

00000002

000000002

 

2

2



















 (38a) 

   T
n

v
n

v
n

v
n

v
m

v
m

v
m

v
m

v
m

v
m

vvvvvv
112321124321 

   (38b) 

          T
SR

xxi
SR

xxi
SR

xxi
SR

xxii 000000    (38c) 

SRSRNE LjRZ
A




21
2  (38d) 

SRCGSRSR ZLjR
C

,

2

13






 (38e) 

 

If the LHS, SR, and RHS transmission line regions exist, but the LHS 

transmission line region has only one per-unit-length section as shown in Fig. 19, the 

KCL matrix must be modified to (39). 
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Fig. 19.  Distributed current source close to the near-end. 
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If the LHS, SR, and RHS transmission line regions exist, but the SR transmission 

line region has only one per-unit-length section as shown in Fig. 20, the KCL matrix 

must be modified to (40). 
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Fig. 20.  Distributed current source single section. 
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If the LHS, SR, and RHS transmission line regions exist, but the RHS 

transmission line region has only one per-unit-length section as shown in Fig. 21, the 

KCL matrix must be modified to (41). 
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Fig. 21.  Distributed current source close to the far-end. 
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If a left hand side transmission line and a source region transmission line only 

exist, there are a total of eight unique equations that form the KCL matrix. The KCL 

matrix for this case is similar to the KCL matrix where the LHS, SR, and RHS 

transmission line regions exist. The main difference resides in the KCL equation with the 
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far-end load and the source region circuits. The circuit at the victim far-end is shown in 

Fig. 22, and the associated KCL matrix is shown in (42). 

 

 

Fig. 22.  Distributed current sources at the far-end. 
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IV. MATRIX EQUATIONS FOR A LUMPED VOLTAGE SOURCE 

The matrix equations for a victim circuit containing a single, lumped voltage 

source are similar to the case with distributed voltage sources. The main difference is 

with the KVL equations that interface with the source or source region. If a left hand side 

transmission line and right hand side transmission line exist, there are a total of five 

unique equations that form the KVL matrix. The KVL equations at the victim near-end 

are given by (8)-(9). These equations were originally derived for the distributed voltage 

sources case, however, these equations also apply to the lumped voltage source case. The 

circuits that transition between the LHS, the lumped voltage source, and the RHS are 

shown below in Fig. 23. 

 

 

Fig. 23.  Lumped voltage source transition with mesh currents 

 

The KVL equation that involves the lumped voltage source is given by (43). There are k-

1 per-unit-length transmission line sections in the left hand side transmission line region. 

For the lumped voltage source case, m = k and thus there is said to be zero per-unit-

length transmission line sections in the source region transmission line region. Additional 

parameter definitions are given in (10) and (15). 
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The KVL equations at the victim far-end are given by (16)-(17). These equations were 

originally derived for the distributed voltage sources case, however, these equations also 
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apply to the lumped voltage source case. The KVL matrix can be written as shown in 

(44). Additional parameter definitions are given in (19). 

 

 

















































1,
0000000

,,
000000

0

0
,,

0000

00
,2,

000

000
,,

00

0000

0000
,,

00000
,1

 

G
RHSCG

Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZC

LHSCG
Z

LHSCG
ZB

LHSCG
Z

LHSCG
ZB

LHSCG
Z

LHSCG
ZA

ZKVL















 (44a) 

   T
n

i
n

i
n

i
k

i
k

i
k

i
k

i
k

iiiii
122112321 

   (44b) 

   T
s

vv 000000   (44c) 

RHSCG
RHSRHS

LHSCG
LHSLHS Z

LjR
Z

LjR
C ,,2

22









 (44d) 

 

If the lumped voltage source is placed at the near-end such that there is no left 

hand side transmission line region as shown in Fig. 24, the KVL matrix must be modified 

to (45). 

 

 

Fig. 24.  Lumped voltage source at the near-end. 
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If the lumped voltage source is placed at the near-end such that there is only one 

per-unit-length section in the left hand side transmission line region as shown in Fig. 25, 

the KVL matrix must be modified to (46). 

 

 

Fig. 25.  Lumped voltage source close to the near-end. 

 

 







































1,
0000

,,
000

0

0
,,

0

00
,2,

000
,1

 

G
RHSCG

Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZF

RHSCG
Z

LHSCG
ZC

LHSCG
Z

LHSCG
ZA

ZKVL









 (46a) 

   Tnininiiiiii 124321    (46b) 



 

 

183 

   Tvv s 0000   (46c) 

 

If the lumped voltage source is placed at the far-end such that there is only one 

per-unit-length section in the right hand side transmission line region as shown in Fig. 26, 

the KVL matrix must be modified to (47). 

 

 

Fig. 26.  Lumped voltage source close to the far-end. 
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If the lumped voltage source is placed at the far-end such that there is no right 

hand side transmission line region as shown below in Fig. 27, the KVL matrix must be 

modified to (48). 
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Fig. 27.  Lumped voltage source at the far-end. 
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V. MATRIX EQUATIONS FOR A LUMPED CURRENT SOURCE 

The matrix equations for a victim circuit containing a single, lumped current 

source are similar to the case with distributed current sources. Instead of implementing 

KCL equations for the lumped current source case, it is possible to implement KVL 

equations. If a left hand side transmission line and right hand side transmission line exist, 

there are a total of six unique equations that form the KVL matrix. The KVL equations at 

the victim near-end are given by (8)-(9). These equations were originally derived for the 

distributed voltage sources case, however, these equations also apply to the lumped 

current source case. The circuits that transition between the LHS, the lumped current 

source, and the RHS are shown below in Fig. 28. 
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Fig. 28.  Lumped current source transition with mesh currents. 

 

The KVL equations that involve the lumped current source are given by (49) and (50). 

There are k-1 per-unit-length transmission line sections in the left hand side transmission 

line region. Additional parameter definitions are given in (10) and (15). 
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The KVL equations at the victim far-end are given by (16)-(17). These equations were 

originally derived for the distributed voltage sources case, however, these equations also 

apply to the lumped current source case. The KVL matrix can be written as shown in 

(51). Additional parameter definitions are given in (19). 

 

 

















































1,
00000000

,,
0000000

0

0
,,

00000

000110000

00
,23,

000

0000
,,

00

00000

00000
,,

000000
,1

 

G
RHSCG

Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZF

RHSCG
Z

RHSCG
ZEC

LHSCG
Z

LHSCG
ZB

LHSCG
Z

LHSCG
ZB

LHSCG
Z

LHSCG
ZA

ZKVL

















 (51a) 

   T
n

i
n

i
n

i
k

i
k

i
k

i
k

i
k

i
k

iiiii
1232112321 

   (51b) 

   T
s

iv 0000000   (51c) 



 

 

186 

LHSCG
LHSLHS Z

LjR
C ,3

2






 (51d) 

RHSCG
RHSRHS Z

LjR
E ,2

2






 (51e) 

 

If the lumped current source is placed at the near-end such that there is no left 

hand side transmission line region as shown in Fig. 29, the KVL matrix must be modified 

to (52). 

 

 

Fig. 29.  Lumped current source at the near-end. 
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If the lumped current source is placed at the near-end such that there is only one 

per-unit-length section in the left hand side transmission line region as shown in Fig. 30, 

the KVL matrix must be modified to (53). 
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Fig. 30.  Lumped current source close to the near-end. 
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If the lumped current source is placed at the far-end such that there is only one 

per-unit-length section in the right hand side transmission line region as shown in Fig. 31, 

the KVL matrix must be modified to (54). 

 

 

Fig. 31.  Lumped current source close to the far-end. 
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If the lumped current source is placed at the far-end such that there is no right 

hand side transmission line region as shown in Fig. 32, the KVL matrix must be modified 

to (55). 

 

 

Fig. 32.  Lumped current source at the far-end. 
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It can be noted that for an electrically small coupling region (coupling region 

length < λ/10), the noise induced in the victim circuit can be represented by a lumped 

element voltage and a lumped element current source rather than distributed sources. In 

the corresponding finite difference simulations the total lumped source voltage and the 

total lumped source current are found by multiplying the per-unit-length values by the 

coupling region length. The magnitude of these noise sources are directly influenced by 

the current and voltage present in the culprit circuit as can be seen in the lumped source 

formulation. Because of the electrically small coupling region constraint, even if there are 

standing waves in the culprit circuit, there should be minimal variation in the voltage and 

current in the coupling region. The finite difference simulation samples the voltage and 

current values in the middle of the coupling region for the culprit circuit (denoted as 

0x ) to match the analytical solution. 
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APPENDIX B 

 

FINITE DIFFERNCE CODES 
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The finite difference equations presented in Appendix A were implemented in 

Matlab to validate the analytical expressions for the near-end and far-end coupling in the 

victim circuit. The weak coupling assumption was explicitly programmed into the finite 

difference codes, where the voltages and currents in the culprit circuit were calculated 

using traditional single-ended transmission line theory. The voltages and currents in the 

culprit coupling region were applied as applicable to voltage and current source terms in 

the victim circuit. 

This appendix contains the Matlab programs used to validate the analytical 

voltage expressions for the victim circuit. The names of the six programs contained in 

this appendix are: Lossy_TL_Lumped_V.m, Lossy_TL_Lumped_I.m, 

Lossy_TL_Uniform_Distributed_V2.m, Lossy_TL_Uniform_Distributed_I1.m, 

Lossy_TL_Non_Uniform_Distributed_V2.m, 

Lossy_TL_Non_Uniform_Distributed_I2.m. The first two files validate the lumped 

voltage and lumped current source analytical formulations, respectively. The third and 

fourth files validate the uniform distributed voltage sources and current sources analytical 

formulations, respectively. The fifth and sixth files validate the non-uniform distributed 

voltage sources and current sources analytical formulations, respectively. The analytical 

voltage expressions along the victim transmission line were shown to be validated upon 

the analytical voltage curves matching the finite difference simulation curves. 

All six of the Matlab programs contained a similar code layout. An outline of the 

code structure to simulate the presence of distributed noise sources in the victim is given 

below. 

 

 Victim Parameters 

o Define per-unit-length parameters 

o Define frequency range of simulation 

o Define common transmission line parameters (γ, α, β, Vp, Z0) 

o Define geometry parameters (line length, relative noise source position, 

and length) 

o Define loads and reflection coefficients 

 Culprit Parameters 
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o Define per-unit-length parameters 

o Define common transmission line parameters (γ, Z0, Vs) 

o Define geometry parameters (line length, relative noise source position, 

and length) 

o Define loads and reflection coefficients 

 Per-unit-length Section Parameters 

o Define target length for all per-unit-length sections 

o Calculate actual per-unit-length section length for the LHS 

o Calculate RLGC parameters for each per-unit-length section in the LHS 

o Calculate actual per-unit-length section length for the SR 

o Calculate RLGC parameters for each per-unit-length section in the SR 

o Calculate actual per-unit-length section length for the RHS 

o Calculate RLGC parameters for each per-unit-length section in the RHS 

 Position Vectors 

o Define position vectors in the victim circuit 

o Define position vectors in the culprit circuit 

 Calculate and fill the distributed voltage or distributed current source array 

 Fill the KVL or KCL matrix 

 Solve the KVL or KCL matrix 

 Calculate the unknown node voltages or mesh currents 

 Plot the simulation data and compare with the analytical expressions 
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Matlab File “Lossy_TL_Lumped_V.m” 

 

clear all; 

close all; 

clc; 

 

%This simulation calculates the voltage and current on a transmission line 

%where a lumped voltage source is placed anywhere along the line. The 

%transmission line can be lossless or lossy. 

 

%Simulation cases for lossy - distortionless line (R/L = G/C) 

%Define PUL Parameters - Consider frequency dependence for improvements 

C_pul = 100e-12; %F/m 

L_pul = 250e-9; %H/m 

R_pul = 100;%4; %Ohm/m 

G_pul = 2e-8;%2e-10; %S/m 

%Define Propagation Parameters 

f = (1e6:10e6:1e9)'; %Frequency range simulation (Hz) 

w = 2*pi*f; 

gamma = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); 

alpha = real(gamma); %Loss (Np/m) [interesting when = 1] 

B = imag(gamma); %Beta 

Vp = w./B; %Phase velocity (m/s) 

Z0 = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm) 

lambda_min = min(Vp./f); %Smallest wavelength (m) 

j = sqrt(-1); 

%Geometry Parameters 

L = 1; %Line Length (m) 

x0 = 0.4; %Source Location (make this a positive number) (m) 

l_length = L-x0; %TL length left of source (m) 

r_length = x0; %TL length right of source (m) 

%Load Parameters 

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm) 

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm) 

G_NE = (ZNE-Z0)./(ZNE+Z0); %Reflection coefficient at the near-end 

G_FE = (ZFE-Z0)./(ZFE+Z0); %Reflection coefficient at the far-end 

 

%Define Source Voltage 

Vn = 1; %Noise Source Voltage 

 

%Set up TL KVL Circuit Simulation 

%For a good simulation, each PUL section must be no larger than lambda/20 

%in length. 

pul_length = lambda_min/40; %Target PUL section length 

%Must have an integer number of TL sections, so the actual pul_length 

%sections for the left and right hand sides of the TL problem may not be at 

%the same spacing 

 

%Determine LHS circuit properties 

l_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents 

if l_length == 0 

    l_pul_length = 0; 

else %Finite section length 

    l_pul_length = l_length/l_pul_secs; %LHS pul section length 

end; 

C_LHS = C_pul*l_pul_length; 
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L_LHS = L_pul*l_pul_length; 

R_LHS = R_pul*l_pul_length; 

G_LHS = G_pul*l_pul_length; 

 

%Determine RHS circuit properties 

r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents 

if r_length == 0 

    r_pul_length = 0; 

else %Finite section length 

    r_pul_length = r_length/r_pul_secs; %RHS pul section length 

end; 

C_RHS = C_pul*r_pul_length; 

L_RHS = L_pul*r_pul_length; 

R_RHS = R_pul*r_pul_length; 

G_RHS = G_pul*r_pul_length; 

 

%Determine Source Loop 

s_loop = l_pul_secs+1; %Source loop number 

tot_loops = l_pul_secs+r_pul_secs+1; %Total number of KVL loops to solve 

Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix 

 

%Setup KVL Matrix to solve 

%Create voltage matrix 

V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros 

V_mat(s_loop) = Vn; %Insert source voltage 

%Create current matrix 

I_mat = zeros(length(f),tot_loops); %Initialize current matrix to zeros 

 

for i = 1:length(f) 

    %Fill Impedance Matrix for each frequency 

    for k = 1:tot_loops 

        switch k 

            case {1} 

                %ZNE loop 

                if l_length ~= 0 

                    Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+... 

                        1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS); 

                else %Source at near-end 

                    Z_mat(k,k) = ZNE(i)+(R_RHS+j*w(i)*L_RHS)/2+... 

                        1/(j*w(i)*C_RHS+G_RHS); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS); 

                end; 

            case {tot_loops} 

                %ZFE loop 

                if r_length ~= 0 

                    Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+... 

                        1/(j*w(i)*C_RHS+G_RHS); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS); 

                else %Source at far-end 

                    Z_mat(k,k) = ZFE(i)+(R_LHS+j*w(i)*L_LHS)/2+... 

                        1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS); 

                end; 

            case {s_loop} 

                %Source loop 
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                Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS); 

                Z_mat(k,k) = 1/(j*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2+... 

                    1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2; 

                Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS); 

            otherwise 

                %Internal loops 

                if k < s_loop 

                    Ctemp = C_LHS; 

                    Ltemp = L_LHS; 

                    Rtemp = R_LHS; 

                    Gtemp = G_LHS; 

                else %k > s_loop 

                    Ctemp = C_RHS; 

                    Ltemp = L_RHS; 

                    Rtemp = R_RHS; 

                    Gtemp = G_RHS; 

                end; 

                Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp); 

                Z_mat(k,k) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp; 

                Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp); 

        end; 

    end; 

    %Solve for the currents 

    I_mat(i,:) =( Z_mat^(-1))*V_mat; 

    clear Ctemp Ltemp Rtemp Gtemp; 

end; 

%Create position vectors 

if l_pul_length ~= 0 

    x_KVL_LHS = -L+(0:l_pul_length:(l_pul_length*l_pul_secs)); 

else %Source at near-end 

    x_KVL_LHS = -L; 

end; 

if r_pul_length ~= 0 

    x_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs)); 

else %Source at far-end 

    x_KVL_RHS = 0; 

end; 

if r_pul_length ~= 0 

    x_KVL_I = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS))); 

else %Source at far-end 

    x_KVL_I = x_KVL_LHS; 

end; 

x_KVL_V = horzcat(x_KVL_LHS,x_KVL_RHS); 

% clear x_KVL_LHS x_KVL_RHS; 

 

%Find voltages 

V_node_mat = zeros(length(f),tot_loops+1); %Initialize voltage matrix to zeros 

%Solve voltages at each node 

for k = 1:tot_loops+1 

    switch k 

        case {1} 

            %ZNE node 

            V_node_mat(:,k) = -ZNE.*I_mat(:,k); 

        case {s_loop+1} 

            %Node to the right of the source 

            V_node_mat(:,k) = V_node_mat(:,k-1)+Vn; 
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        case {tot_loops+1} 

            %ZFE node 

            V_node_mat(:,k) = ZFE.*I_mat(:,k-1); 

        otherwise 

            %Internal nodes 

            if k <= s_loop+1 

                Ctemp = C_LHS; 

                Ltemp = L_LHS; 

                Rtemp = R_LHS; 

                Gtemp = G_LHS; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k); 

            else %k > s_loop 

                Ctemp = C_RHS; 

                Ltemp = L_RHS; 

                Rtemp = R_RHS; 

                Gtemp = G_RHS; 

                %Since there is an extra voltage node in the source loop, there 

                %is another factor of -1 running around when calculating the 

                %voltages in the RHS of the circuit 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-2)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k-1); 

            end; 

    end; 

end; 

clear Ctemp Ltemp Rtemp Gtemp; 

 

%Define Analytical Expressions 

xLHS = x_KVL_LHS; %Position vector for LHS of circuit (m) 

xRHS = x_KVL_RHS; %Position vector for RHS of circuit (m) 

VLHS = zeros(length(f),length(xLHS)); %Initialize VLHS matrix to zeros 

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros 

%Find the Voltage on the TL for all positions 

for i = 1:length(xRHS) 

    VRHS(:,i) = (Vn/2)*(1-G_NE.*exp(-2*gamma*(L-x0))).*(1+G_FE.*exp(2*gamma*xRHS(i))).*... 

        exp(-gamma*(xRHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L)); 

end; 

for i = 1:length(xLHS) 

    VLHS(:,i) = (-Vn/2)*(1-G_FE.*exp(-2*gamma*x0)).*(1+G_NE.*exp(-2*gamma*(xLHS(i)+L))).*... 

        exp(gamma*(xLHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L)); 

end; 

VTOT = horzcat(VLHS,VRHS); 

xTOT = horzcat(xLHS,xRHS); 

 

%Compare the Analytical Results to the Simulation Results 

figure; 

plot(xTOT,abs(VTOT(1,:)),x_KVL_V,abs(V_node_mat(1,:)),'r'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

title('Low Frequency Response'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

plot(xTOT,abs(VTOT(floor(length(f)/2),:)),... 

    x_KVL_V,abs(V_node_mat(floor(length(f)/2),:)),'r'); 

xlabel('TL Position (m)'); 
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ylabel('|V|'); 

title('Middle Frequency Response'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

plot(xTOT,abs(VTOT(length(f),:)),x_KVL_V,abs(V_node_mat(length(f),:)),'r'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

title('High Frequency Response'); 

legend('Analytical','Simulation','Location','Best'); 

 

%Look at phase 

% figure; 

% plot(xTOT,angle(VTOT(1,:)),x_KVL_V,angle(V_node_mat(1,:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Low Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xTOT,angle(VTOT(floor(length(f)/2),:)),... 

%     x_KVL_V,angle(V_node_mat(floor(length(f)/2),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Middle Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xTOT,angle(VTOT(length(f),:)),x_KVL_V,angle(V_node_mat(length(f),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('High Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

 

%Plot movie for comparing the Analytical Results to the Simulation Results 

figure; 

for k = 1:length(f) 

    plot(xTOT,abs(VTOT(k,:)),x_KVL_V,abs(V_node_mat(k,:)),'r'); 

    title(strcat([num2str(f(k)) ' Hz Frequency Response'])); 

    xlabel('TL Position (m)'); 

    ylabel('|V|'); 

    legend('Analytical','Simulation','Location','Best'); 

    pause(0.01); 

end; 
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Matlab File “Lossy_TL_Lumped_I.m” 

 

clear all; 

close all; 

clc; 

 

%This simulation calculates the voltage and current on a transmission line 

%where a lumped current source is placed anywhere along the line. The 

%transmission line can be lossless or lossy. 

 

%Simulation cases for lossy - distortionless line (R/L = G/C) 

%Define PUL Parameters - Consider frequency dependence for improvements 

C_pul = 100e-12; %F/m 

L_pul = 250e-9; %H/m 

R_pul = 100;%4; %Ohm/m 

G_pul = 2e-8;%2e-10; %S/m 

%Define Propagation Parameters 

f = (1e6:10e6:1e9)'; %Frequency range simulation (Hz) 

w = 2*pi*f; 

gamma = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); 

alpha = real(gamma); %Loss (Np/m) [interesting when = 1] 

B = imag(gamma); %Beta 

Vp = w./B; %Phase velocity (m/s) 

Z0 = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm) 

lambda_min = min(Vp./f); %Smallest wavelength (m) 

j = sqrt(-1); 

%Geometry Parameters 

L = 1; %Line Length (m) 

x0 = 0.2; %Source Location (make this a positive number) (m) 

l_length = L-x0; %TL length left of source (m) 

r_length = x0; %TL length right of source (m) 

%Load Parameters 

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm) 

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm) 

G_NE = (ZNE-Z0)./(ZNE+Z0); %Reflection coefficient at the near-end 

G_FE = (ZFE-Z0)./(ZFE+Z0); %Reflection coefficient at the far-end 

 

%Define Source Voltage 

In = 1; %Noise Source Voltage 

 

%Set up TL KVL Circuit Simulation 

%For a good simulation, each PUL section must be no larger than lambda/20 

%in length. 

pul_length = lambda_min/20; %Target PUL section length 

%Must have an integer number of TL sections, so the actual pul_length 

%sections for the left and right hand sides of the TL problem may not be at 

%the same spacing 

 

%Determine LHS circuit properties 

l_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents 

if l_length == 0 

    l_pul_length = 0; 

else %Finite section length 

    l_pul_length = l_length/l_pul_secs; %LHS pul section length 

end; 

C_LHS = C_pul*l_pul_length; 
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L_LHS = L_pul*l_pul_length; 

R_LHS = R_pul*l_pul_length; 

G_LHS = G_pul*l_pul_length; 

 

%Determine RHS circuit properties 

r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents 

if r_length == 0 

    r_pul_length = 0; 

else %Finite section length 

    r_pul_length = r_length/r_pul_secs; %RHS pul section length 

end; 

C_RHS = C_pul*r_pul_length; 

L_RHS = L_pul*r_pul_length; 

R_RHS = R_pul*r_pul_length; 

G_RHS = G_pul*r_pul_length; 

 

%Determine Source Loop 

s_loop = l_pul_secs+1; %Loop number left of source 

tot_loops = l_pul_secs+r_pul_secs+2; %Total number of KVL loops to solve 

Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix 

 

%Setup KVL Matrix to solve 

%Create voltage matrix (most equations are voltage equations) 

V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros 

V_mat(s_loop+1) = In; %Insert source current 

%Create current matrix 

I_mat = zeros(length(f),tot_loops); %Initialize current matrix to zeros 

 

for i = 1:length(f) 

    %Fill Impedance Matrix for each frequency 

    for k = 1:tot_loops 

        switch k 

            case {1} 

                %ZNE loop 

                if l_length ~= 0 

                    Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+... 

                        1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS); 

                else %Source at near-end 

                    %Write supermesh equation 

                    Z_mat(k,k) = ZNE(i); 

                    Z_mat(k,k+1) = (R_RHS+j*w(i)*L_RHS)/2+1/(j*w(i)*C_RHS+G_RHS); 

                    Z_mat(k,k+2) = -1/(j*w(i)*C_RHS+G_RHS); 

                end; 

            case {tot_loops} 

                %ZFE loop 

                if r_length ~= 0 

                    Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+... 

                        1/(j*w(i)*C_RHS+G_RHS); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS); 

                else %Source at far-end 

                    %Write source equation 

                    Z_mat(k,k-1) = -1; 

                    Z_mat(k,k) = 1; 

                end; 

            case {s_loop} 
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                %Loop left of source -> Write supermesh equation 

                if r_length ~= 0 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k) = 1/(j*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2; 

                    Z_mat(k,k+1) = 1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2; 

                    Z_mat(k,k+2) = -1/(j*w(i)*C_RHS+G_RHS); 

                else %Source at far-end -> Different supermesh equation 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k) = (R_LHS+j*w(i)*L_LHS)/2+... 

                        1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k+1) = ZFE(i); 

                end; 

            case {s_loop+1} 

                %Loop right of source -> Write source equation 

                Z_mat(k,k-1) = -1; 

                Z_mat(k,k) = 1; 

            otherwise 

                %Internal loops 

                if k < s_loop 

                    Ctemp = C_LHS; 

                    Ltemp = L_LHS; 

                    Rtemp = R_LHS; 

                    Gtemp = G_LHS; 

                else %k > s_loop 

                    Ctemp = C_RHS; 

                    Ltemp = L_RHS; 

                    Rtemp = R_RHS; 

                    Gtemp = G_RHS; 

                end; 

                Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp); 

                Z_mat(k,k) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp; 

                Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp); 

        end; 

    end; 

    %Solve for the currents 

    I_mat(i,:) =( Z_mat^(-1))*V_mat; 

    clear Ctemp Ltemp Rtemp Gtemp; 

end; 

%Create position vectors 

if l_pul_length ~= 0 

    x_KVL_LHS = -L+(0:l_pul_length:(l_pul_length*l_pul_secs)); 

else %Source at near-end 

    x_KVL_LHS = -L; 

end; 

if r_pul_length ~= 0 

    x_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs)); 

else %Source at far-end 

    x_KVL_RHS = 0; 

end; 

if r_pul_length ~= 0 

    x_KVL_V = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS))); 

else %Source at far-end 

    x_KVL_V = x_KVL_LHS; 

end; 

x_KVL_I = horzcat(x_KVL_LHS,x_KVL_RHS); 

% clear x_KVL_LHS x_KVL_RHS; 
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%The current position vector will have 1 more point than the voltage 

%position vector. 

 

%Find voltages 

V_node_mat = zeros(length(f),tot_loops-1); %Initialize voltage matrix to zeros 

%Solve voltages at each node 

for k = 1:tot_loops-1 

    switch k 

        case {1} 

            %ZNE node 

            V_node_mat(:,k) = -ZNE.*I_mat(:,k); 

        case {tot_loops-1} 

            %ZFE node 

            V_node_mat(:,k) = ZFE.*I_mat(:,k+1); 

        otherwise 

            %Internal nodes 

            if k <= s_loop 

                Ctemp = C_LHS; 

                Ltemp = L_LHS; 

                Rtemp = R_LHS; 

                Gtemp = G_LHS; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k); 

            else %k > s_loop 

                Ctemp = C_RHS; 

                Ltemp = L_RHS; 

                Rtemp = R_RHS; 

                Gtemp = G_RHS; 

                %Since there is one less voltage node than current, there 

                %is a factor of +1 running around when calculating the 

                %voltages in the RHS of the circuit 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k+1); 

            end; 

    end; 

end; 

clear Ctemp Ltemp Rtemp Gtemp; 

 

%Define Analytical Expressions 

xLHS = x_KVL_LHS; %Position vector for LHS of circuit (m) 

xRHS = x_KVL_RHS; %Position vector for RHS of circuit (m) 

VLHS = zeros(length(f),length(xLHS)); %Initialize VLHS matrix to zeros 

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros 

%Find the Voltage on the TL for all positions 

for i = 1:length(xRHS) 

    VRHS(:,i) = (In*Z0/2).*(1+G_NE.*exp(-2*gamma*(L-x0))).*(1+G_FE.*exp(2*gamma*xRHS(i))).*... 

        exp(-gamma*(xRHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L)); 

end; 

for i = 1:length(xLHS) 

    VLHS(:,i) = (In*Z0/2).*(1+G_FE.*exp(-2*gamma*x0)).*(1+G_NE.*exp(-2*gamma*(xLHS(i)+L))).*... 

        exp(gamma*(xLHS(i)+x0))./(1-G_NE.*G_FE.*exp(-2*gamma*L)); 

end; 

VTOT = horzcat(VLHS,VRHS); 

xTOT = horzcat(xLHS,xRHS); 

 

%Compare the Analytical Results to the Simulation Results 
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figure; 

plot(xTOT,abs(VTOT(1,:)),x_KVL_V,abs(V_node_mat(1,:)),'r'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

title('Low Frequency Response'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

plot(xTOT,abs(VTOT(floor(length(f)/2),:)),... 

    x_KVL_V,abs(V_node_mat(floor(length(f)/2),:)),'r'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

title('Middle Frequency Response'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

plot(xTOT,abs(VTOT(length(f),:)),x_KVL_V,abs(V_node_mat(length(f),:)),'r'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

title('High Frequency Response'); 

legend('Analytical','Simulation','Location','Best'); 

 

%Look at phase 

% figure; 

% plot(xTOT,angle(VTOT(1,:)),x_KVL_V,angle(V_node_mat(1,:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Low Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xTOT,angle(VTOT(floor(length(f)/2),:)),... 

%     x_KVL_V,angle(V_node_mat(floor(length(f)/2),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Middle Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xTOT,angle(VTOT(length(f),:)),x_KVL_V,angle(V_node_mat(length(f),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('High Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

 

%Plot movie for comparing the Analytical Results to the Simulation Results 

figure; 

for k = 1:length(f) 

    plot(xTOT,abs(VTOT(k,:)),x_KVL_V,abs(V_node_mat(k,:)),'r'); 

    title(strcat([num2str(f(k)) ' Hz Frequency Response'])); 

    xlabel('TL Position (m)'); 

    ylabel('|V|'); 

    legend('Analytical','Simulation','Location','Best'); 

    pause(0.01); 

end; 
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Matlab File “Lossy_TL_Uniform_Distributed_V2.m” 

 

clear all; 

close all; 

clc; 

 

%This simulation calculates the voltage and current on a victim  

%transmission line where a uniform distributed voltage source is placed  

%anyhwere along the line. The formulation of the code is taken from the  

%case where a non-uniform source is analyzed. This simulation validates the 

%non-uniform distributed voltage source simulation code with the simulation 

%matching the analytical expressions. 

 

%The transmission line can be lossless or lossy. The distributed voltage 

%source is considered to be uniform. Analytical expressions for comparison 

%purposes with the simulation are given for the uniform noise source case. 

 

%Assumptions 

%1. Weak Coupling 

%2. Culprit and Victim propagation parameter gamma must be the same 

%3. Characteristic impedance is approximately uniform in the victim 

 

%Simulation cases for lossy - distortionless line (R/L = G/C) 

%Define Victim PUL Parameters 

C_pul = 100e-12; %F/m 

L_pul = 250e-9; %H/m 

R_pul = 100;%4; %Ohm/m 

G_pul = 2e-8;%2e-10; %S/m 

%Define Coupling PUL Parameters 

L21 = 100e-9; %H/m 

R21 = 1; %Ohm/m 

%Define Propagation Parameters 

f = (1e6:10e6:1e9)'; %Frequency range simulation (Hz) 

w = 2*pi*f; 

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); 

alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1] 

B = imag(gamma_v); %Beta 

Vp = w./B; %Phase velocity (m/s) 

Z0v = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm) 

lambda_min = min(Vp./f); %Smallest wavelength (m) 

j = sqrt(-1); 

%Victim Geometry Parameters 

Lv = 1; %Line length (m) 

x0L = -0.6; %Distributed source left boundary (make this a negative number) (m) 

x0R = -0.3; %Distributed source right boundary (make this a negative number) (m) 

l_length = x0L+Lv; %TL length left of source (m) 

r_length = -x0R; %TL length right of source (m) 

s_length = x0R-x0L; %Distributed source length (m) 

%Victim Load Parameters 

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)  

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm) 

G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end 

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end 

 

%Culprit Geometry Parameters 

%Define Culprit PUL Parameters 
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C_pul_c = C_pul; %F/m 

L_pul_c = L_pul; %H/m -(gamma_v.^2)./((w.^2)*C_pul_c) 

R_pul_c = R_pul;%4; %Ohm/m 

G_pul_c = G_pul;%2e-10; %S/m 

gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter 

Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm) 

 

Vs = 100; %Source voltage (V) 

a = 1.2; %RHS position variable (usually positive) (m) 

b = 1.5; %LHS position variable (usually positive) (m) 

Lc = a+b; %Culprit circuit length (m) 

 

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm) 

ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)  

G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end 

G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end 

 

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis 

x_CP_ends = [x0L x0R]; %Same coordinate system as the victim 

 

%Set up TL KVL Circuit Simulation 

%For a good simulation, each PUL section must be no larger than lambda/20 

%in length. 

pul_length = lambda_min/40; %Target PUL section length 

%Must have an integer number of TL sections, so the actual pul_length 

%sections for the left hand side, distributed source region, and right hand 

%sides of the TL problem may not be at the same spacing. 

 

%Determine LHS circuit properties 

l_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents 

if l_length == 0 

    l_pul_length = 0; 

else %Finite section length 

    l_pul_length = l_length/l_pul_secs; %LHS pul section length 

end; 

C_LHS = C_pul*l_pul_length; 

L_LHS = L_pul*l_pul_length; 

R_LHS = R_pul*l_pul_length; 

G_LHS = G_pul*l_pul_length; 

 

%Determine source region circuit properties 

s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents 

if s_length == 0 

    s_pul_length = 0; 

else %Finite section length 

    s_pul_length = s_length/s_pul_secs; %Source region pul section length 

end; 

C_SR = C_pul*s_pul_length; 

L_SR = L_pul*s_pul_length; 

R_SR = R_pul*s_pul_length; 

G_SR = G_pul*s_pul_length; 

 

%Determine RHS circuit properties 

r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents 

if r_length == 0 

    r_pul_length = 0; 
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else %Finite section length 

    r_pul_length = r_length/r_pul_secs; %RHS pul section length 

end; 

C_RHS = C_pul*r_pul_length; 

L_RHS = L_pul*r_pul_length; 

R_RHS = R_pul*r_pul_length; 

G_RHS = G_pul*r_pul_length; 

 

%Create position vectors 

if l_pul_length ~= 0 

    x_KVL_LHS = -Lv+(0:l_pul_length:(l_pul_length*l_pul_secs)); 

else %Source at near-end 

    x_KVL_LHS = -Lv; 

end; 

if s_pul_length ~= 0 

    x_KVL_SR = x_KVL_LHS(length(x_KVL_LHS))+... 

        (0:s_pul_length:(s_pul_length*s_pul_secs)); 

else %No source region 

end; 

if r_pul_length ~= 0 

    x_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs)); 

else %Source at far-end 

    x_KVL_RHS = 0; 

end; 

if s_pul_length ~= 0 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),... 

        x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_SR x_KVL_RHS; 

else %No source region 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_RHS; 

end; 

 

%Create culprit position vector 

x_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2); 

%The above position matrix is offset by a half cell and has one more 

%position than desired. A position vector is desired in the middle of the 

%cells since this is where the source value will be evaluated. Fixing the 

%position matrix: 

x_CP_source(length(x_CP_source)) = []; %Delete last value 

x_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells 

%Create equivlant position matrix in the victim circuit 

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2); 

%Formulate the noise voltage source 

%Vn = -(R21+j*w*L21)*I(x) <- A function of frequency and space 

Vn = zeros(length(f),length(x_CP_source)); 

%Fill noise voltage matrix in continuous domain (V/m) 

for i = 1:length(f) 

    Vn(i,:) = -(R21+j*w(i)*L21)*(Vs*exp(-gamma_c(i)*Lc)*... 

        (exp(-gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a))-... 

        G_ZL(i)*exp(gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a)))./... 

        ((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_ZS(i)*exp(-2*gamma_c(i)*Lc)))); 

end; 

%Define Distributed Source Voltage in the Discrete Domain 

V_SR = Vn*s_pul_length; 
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%Determine Source Region Transition Loops 

t_loop1 = l_pul_secs+1; %First transition loop number 

t_loop2 = l_pul_secs+s_pul_secs+1; %Second transition loop number 

tot_loops = l_pul_secs+s_pul_secs+r_pul_secs+1; %Total number of KVL loops to solve 

Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix 

 

%Create voltage matrix 

V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros 

 

%Create current matrix 

I_mat = zeros(length(f),tot_loops); %Initialize current matrix to zeros 

 

%Setup KVL Matrix to solve 

for i = 1:length(f) 

    %Insert source voltages 

    if t_loop1 ~= t_loop2 

        V_mat(t_loop1) = V_SR(i,1)/2; %Transition loop 1 

        V_mat(t_loop2) = V_SR(i,s_pul_secs)/2; %Transition loop 2 

        V_mat((t_loop1+1):(t_loop2-1)) = V_SR(i,1:(s_pul_secs-1))/2+... 

            V_SR(i,2:s_pul_secs)/2; %Source region loops 

    else 

    end; 

    %Fill Impedance Matrix for each frequency 

    for k = 1:tot_loops 

        switch k 

            case {1} 

                %ZNE loop 

                if l_length ~= 0 

                    Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+... 

                        1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS); 

                else %Source at near-end 

                    Z_mat(k,k) = ZNE(i)+(R_SR+j*w(i)*L_SR)/2+... 

                        1/(j*w(i)*C_SR+G_SR); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR); 

                end; 

            case {tot_loops} 

                %ZFE loop 

                if r_length ~= 0 

                    Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+... 

                        1/(j*w(i)*C_RHS+G_RHS); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS); 

                else %Source at far-end 

                    Z_mat(k,k) = ZFE(i)+(R_SR+j*w(i)*L_SR)/2+... 

                        1/(j*w(i)*C_SR+G_SR); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR); 

                end; 

            case {t_loop1} 

                %LHS transition loop 

                Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS); 

                Z_mat(k,k) = 1/(j*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2+... 

                    1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2; 

                Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR); 

            case {t_loop2} 

                %RHS transition loop 

                Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR); 
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                Z_mat(k,k) = 1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2+... 

                    1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2; 

                Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS); 

            otherwise 

                %Internal loops 

                if k < t_loop1 

                    %LHS loops 

                    Ctemp = C_LHS; 

                    Ltemp = L_LHS; 

                    Rtemp = R_LHS; 

                    Gtemp = G_LHS; 

                elseif k > t_loop2 

                    %RHS loops 

                    Ctemp = C_RHS; 

                    Ltemp = L_RHS; 

                    Rtemp = R_RHS; 

                    Gtemp = G_RHS; 

                else 

                    %Source region loops 

                    Ctemp = C_SR; 

                    Ltemp = L_SR; 

                    Rtemp = R_SR; 

                    Gtemp = G_SR; 

                end; 

                Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp); 

                Z_mat(k,k) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp; 

                Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp); 

        end; 

    end; 

    %Solve for the currents 

    I_mat(i,:) =( Z_mat^(-1))*V_mat; 

    clear Ctemp Ltemp Rtemp Gtemp; 

end; 

 

%Find voltages 

V_node_mat = zeros(length(f),tot_loops); %Initialize voltage matrix to zeros 

%Solve voltages at each node 

for k = 1:tot_loops 

    switch k 

        case {1} 

            %ZNE node 

            V_node_mat(:,k) = -ZNE.*I_mat(:,k); 

        case {tot_loops} 

            %ZFE node 

            V_node_mat(:,k) = ZFE.*I_mat(:,k); 

        otherwise 

            %Internal nodes 

            if k <= t_loop1 

                Ctemp = C_LHS; 

                Ltemp = L_LHS; 

                Rtemp = R_LHS; 

                Gtemp = G_LHS; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k); 

            elseif k > t_loop2 

                Ctemp = C_RHS; 
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                Ltemp = L_RHS; 

                Rtemp = R_RHS; 

                Gtemp = G_RHS; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k); 

            else %In source region 

                Ctemp = C_SR; 

                Ltemp = L_SR; 

                Rtemp = R_SR; 

                Gtemp = G_SR; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k)+... 

                    V_SR(:,(k-t_loop1))/2; 

            end; 

    end; 

end; 

clear Ctemp Ltemp Rtemp Gtemp; 

 

%Define Analytical Expressions - Distributed Uniform Noise Source 

xLHS = x_KVL_LHS; %Position vector for LHS of circuit (m) 

xRHS = x_KVL_RHS; %Position vector for RHS of circuit (m) 

xSR = x_KVL_SR; %Position vector for the SR of circuit (m) 

VLHS = zeros(length(f),length(xLHS)); %Initialize VLHS matrix to zeros 

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros 

VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros 

%Define Equivalent Noise Voltage 

%This quantity is defined in case the analytical expression for a uniform 

%source is to be compared with a simulation where the sources are not 

%uniform. The middle value or the equivalent middle value in the source 

%region is used for the equivalent noise voltage. 

if size(Vn,2)-(floor(size(Vn,2)/2)*2) == 1 

    %Position matrix is odd - take the middle value for all frequencies 

    Vn_eq = Vn(:,(floor(size(Vn,2)/2)+1)); 

else %Position matrix is even - find average equivalent middle value 

    Vn_eq = mean([Vn(:,floor(size(Vn,2)/2)) Vn(:,(floor(size(Vn,2)/2)+1))],2); 

end; 

 

%Find the Voltage on the TL outside the coupling region 

for i = 1:length(xRHS) 

    VRHS(:,i) = (Vn_eq./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*... 

        ((1+G_NE.*exp(-2*gamma_v*(Lv-abs(x0R)))).*... 

        (1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0R)))-... 

        (1+G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*... 

        (1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0L)))); 

end; 

for i = 1:length(xLHS) 

    VLHS(:,i) = (Vn_eq./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*... 

        ((1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*... 

        (1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xLHS(i)+abs(x0R)))-... 

        (1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*... 

        (1+G_FE.*exp(-2*gamma_v*abs(x0L))).*exp(gamma_v*(xLHS(i)+abs(x0L)))); 

end; 

%Find the voltage on the TL inside the coupling region 

for i = 1:length(xSR) 

    VSR(:,i) = (Vn_eq./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*... 

        ((1+G_NE.*exp(-2*gamma_v*(Lv+xSR(i)))).*... 
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        (1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xSR(i)+abs(x0R)))-... 

        (1+G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*... 

        (1+G_FE.*exp(2*gamma_v*xSR(i))).*exp(-gamma_v*(xSR(i)+abs(x0L)))); 

end; 

 

xAnal = horzcat(xLHS,xSR(2:(length(xSR)-1)),xRHS); 

VTOT = horzcat(VLHS,VSR(:,(2:(length(xSR)-1))),VRHS); 

 

%Compare the Analytical Results to the Simulation Results 

%Subplots may be useful here 

%    Top Plot - Coupling Voltage Waveform in the coupling region 

%    Bottom Plot - Voltage along the victim TL 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(Vn(1,:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(1)),'-r'); 

title('Low Frequency Response - Noise Voltage Waveform'); 

ylabel('|V|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),'r'); 

title('Low Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(Vn(floor(length(f)/2),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(floor(length(f)/2))),'-r'); 

title('Middle Frequency Response - Noise Voltage Waveform'); 

ylabel('|V|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(floor(length(f)/2),:)),... 

    x_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r'); 

title('Middle Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(Vn(length(f),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(length(f))),'-r'); 

title('High Frequency Response - Noise Voltage Waveform'); 

ylabel('|V|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(length(f),:)),x_KVL,abs(V_node_mat(length(f),:)),'r'); 

title('High Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 
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ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

%Look at phase 

% figure; 

% plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Low Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xAnal,angle(VTOT(floor(length(f)/2),:)),... 

%     x_KVL,angle(V_node_mat(floor(length(f)/2),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Middle Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xAnal,angle(VTOT(length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('High Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

 

%Plot movie for comparing the Analytical Results to the Simulation Results 

figure; 

for k = 1:length(f) 

    subplot(2,1,1); 

    plot(x_KVL_SR_mid,abs(Vn(k,:)),... 

        x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(k)),'-r'); 

    title(strcat(['Noise Voltage Waveform @ ' num2str(f(k)) ' Hz'])); 

    ylabel('|V|'); 

    legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

    xlim([xLHS(1) xRHS(length(xRHS))]); 

    subplot(2,1,2); 

    plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),'r'); 

    title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz'])); 

    xlabel('TL Position (m)'); 

    ylabel('|V|'); 

    legend('Analytical','Simulation','Location','Best'); 

    pause(0.01); 

end; 
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Matlab File “Lossy_TL_Uniform_Distributed_I1.m” 

 

clear all; 

close all; 

clc; 

 

%This simulation calculates the voltage and current on a victim  

%transmission line where a uniform distributed current source is placed 

%anyhwere along the line. The formulation of the code is taken from the 

%case where a non-uniform source is analyzed. This simulation validates the 

%non-uniform distributed current source simulation code with the simulation 

%matching the analytical expressions. 

 

%The transmission line can be lossless or lossy. The distributed 

%current source is considered to be uniform. Analytical expressions for 

%comparison purposes with the simulation are given for the uniform noise 

%source case. 

 

%Assumptions 

%1. Weak Coupling 

%2. Culprit and Victim propagation parameter gamma must be the same 

%3. Characteristic impedance is approximately uniform in the victim 

 

%Simulation cases for lossy - distortionless line (R/L = G/C) 

%Define Victim PUL Parameters 

C_pul = 100e-12; %F/m 

L_pul = 250e-9; %H/m 

R_pul = 100;%4; %Ohm/m 

G_pul = 2e-8;%2e-10; %S/m 

%Define Coupling PUL Parameters 

C21 = 20e-9; %F/m 20e-12 

G21 = 2e-12; %S/m 

%Define Propagation Parameters 

f = (1e6:10e6:1e9)'; %Frequency range simulation (Hz) 

w = 2*pi*f; 

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); 

alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1] 

B = imag(gamma_v); %Beta 

Vp = w./B; %Phase velocity (m/s) 

Z0v = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm) 

lambda_min = min(Vp./f); %Smallest wavelength (m) 

j = sqrt(-1); 

%Victim Geometry Parameters 

Lv = 1; %Line length (m) 

x0L = -0.6; %Distributed source left boundary (make this a negative number) (m) 

x0R = -0.3; %Distributed source right boundary (make this a negative number) (m) 

l_length = x0L+Lv; %TL length left of source (m) 

r_length = -x0R; %TL length right of source (m) 

s_length = x0R-x0L; %Distributed source length (m) 

%Victim Load Parameters 

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)  

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm) 

G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end 

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end 

 

%Culprit Geometry Parameters 
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%Define Culprit PUL Parameters 

C_pul_c = C_pul; %F/m 

L_pul_c = L_pul; %H/m -(gamma_v.^2)./((w.^2)*C_pul_c) 

R_pul_c = R_pul;%4; %Ohm/m 

G_pul_c = G_pul;%2e-10; %S/m 

gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter 

Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm) 

 

Vs = 100; %Source voltage (V) 

a = 1.2; %RHS position variable (usually positive) (m) 

b = 1.5; %LHS position variable (usually positive) (m) 

Lc = a+b; %Culprit circuit length (m) 

 

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm) 

ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)  

G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end 

G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end 

 

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis 

x_CP_ends = [x0L x0R]; %Same coordinate system as the victim 

 

%Set up TL KCL Circuit Simulation 

%For a good simulation, each PUL section must be no larger than lambda/20 

%in length. 

pul_length = lambda_min/40; %Target PUL section length 

%Must have an integer number of TL sections, so the actual pul_length 

%sections for the left hand side, distributed source region, and right hand 

%sides of the TL problem may not be at the same spacing. 

 

%Determine LHS circuit properties 

l_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents 

if l_length == 0 

    l_pul_length = 0; 

else %Finite section length 

    l_pul_length = l_length/l_pul_secs; %LHS pul section length 

end; 

C_LHS = C_pul*l_pul_length; 

L_LHS = L_pul*l_pul_length; 

R_LHS = R_pul*l_pul_length; 

G_LHS = G_pul*l_pul_length; 

 

%Determine source region circuit properties 

s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents 

if s_length == 0 

    s_pul_length = 0; 

else %Finite section length 

    s_pul_length = s_length/s_pul_secs; %Source region pul section length 

end; 

C_SR = C_pul*s_pul_length; 

L_SR = L_pul*s_pul_length; 

R_SR = R_pul*s_pul_length; 

G_SR = G_pul*s_pul_length; 

 

%Determine RHS circuit properties 

r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents 

if r_length == 0 
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    r_pul_length = 0; 

else %Finite section length 

    r_pul_length = r_length/r_pul_secs; %RHS pul section length 

end; 

C_RHS = C_pul*r_pul_length; 

L_RHS = L_pul*r_pul_length; 

R_RHS = R_pul*r_pul_length; 

G_RHS = G_pul*r_pul_length; 

 

%Create position vectors (same as if KVL equations were used) 

if l_pul_length ~= 0 

    x_KVL_LHS = -Lv+(0:l_pul_length:(l_pul_length*l_pul_secs)); 

else %Source at near-end 

    x_KVL_LHS = -Lv; 

end; 

if s_pul_length ~= 0 

    x_KVL_SR = x_KVL_LHS(length(x_KVL_LHS))+... 

        (0:s_pul_length:(s_pul_length*s_pul_secs)); 

else %No source region 

end; 

if r_pul_length ~= 0 

    x_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs)); 

else %Source at far-end 

    x_KVL_RHS = 0; 

end; 

if s_pul_length ~= 0 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),... 

        x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_SR x_KVL_RHS; 

else %No source region 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_RHS; 

end; 

 

%Create culprit position vector 

x_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2); 

%The above position matrix is offset by a half cell and has one more 

%position than desired. A position vector is desired in the middle of the 

%cells since this is where the source value will be evaluated. Fixing the 

%position matrix: 

x_CP_source(length(x_CP_source)) = []; %Delete last value 

x_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells 

%Create equivlant position matrix in the victim circuit 

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2); 

%Formulate the noise current source 

%In = -(G21+j*w*C21)*V(x) <- A function of frequency and space 

In = zeros(length(f),length(x_CP_source)); 

%Fill noise current matrix in continuous domain (A/m) 

for i = 1:length(f) 

    In(i,:) = -(G21+j*w(i)*C21)*(Vs*Z0c(i).*exp(-gamma_c(i)*Lc)*... 

        (exp(-gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a))+... 

        G_ZL(i)*exp(gamma_c(i)*(x_CP_source(floor(length(x_CP_source)/2))-a)))./... 

        ((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_ZS(i)*exp(-2*gamma_c(i)*Lc)))); 

end; 

%Define Distributed Source Current in the Discrete Domain 

I_SR = In*s_pul_length; 
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%Determine Source Region Transition Nodes 

t_node1 = l_pul_secs+1; %First transition node equation (LHS) 

t_node2 = l_pul_secs+s_pul_secs+1; %Second transition node equation (RHS) 

tot_nodes = l_pul_secs+s_pul_secs+r_pul_secs+2; %Total number of KCL equations to solve 

Y_mat = zeros(tot_nodes,tot_nodes); %Initiailize impedance matrix 

 

%Create current matrix (YV = I) 

I_mat = zeros(tot_nodes,1); %Initialize current matrix to zeros 

 

%Create voltage matrix 

V_mat = zeros(length(f),tot_nodes); %Initialize voltage matrix to zeros 

 

%Setup KCL Matrix to solve (YV = I) 

for i = 1:length(f) 

    %Insert source currents 

    if t_node1 ~= t_node2 

        I_mat((t_node1+1):(t_node2)) = I_SR(i,:); %Source region nodes 

    else 

    end; 

    %Fill Admitance Matrix for each frequency 

    for k = 1:tot_nodes 

        switch k 

            case {1} 

                %ZNE node 

                if l_length ~= 0 

                    Y_mat(k,k) = 1/ZNE(i)+2/(R_LHS+j*w(i)*L_LHS); 

                    Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS); 

                else %Source at near-end 

                    Y_mat(k,k) = 1/ZNE(i)+2/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR); 

                end; 

            case {2} 

                if l_length ~= 0 

                    if l_pul_secs == 1 

                        Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS); 

                        Y_mat(k,k) = 2/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+... 

                            2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                        Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    else %l_pul_secs > 1 

                        Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS); 

                        Y_mat(k,k) = 3/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS); 

                        Y_mat(k,k+1) = -1/(R_LHS+j*w(i)*L_LHS); 

                    end; 

                else %Source at near-end 

                    Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR); 

                    Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR); 

                end; 

            case {tot_nodes-1} 

                if r_length ~= 0 

                    if r_pul_secs == 1 

                        Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                        Y_mat(k,k) = 2/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+... 

                            2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                        Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS); 
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                    else %r_pul_secs > 1 

                        Y_mat(k,k-1) = -1/(R_RHS+j*w(i)*L_RHS); 

                        Y_mat(k,k) = 3/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS); 

                        Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS); 

                    end; 

                else %Source at far-end 

                    Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR); 

                    Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR); 

                end; 

            case {tot_nodes} 

                %ZFE node 

                if r_length ~= 0 

                    Y_mat(k,k) = 1/ZFE(i)+2/(R_RHS+j*w(i)*L_RHS); 

                    Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS); 

                else %Source at far-end 

                    Y_mat(k,k) = 1/ZFE(i)+2/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR); 

                end; 

            case {t_node1} 

                %LHS transition node 1 

                Y_mat(k,k-1) = -1/(R_LHS+j*w(i)*L_LHS); 

                Y_mat(k,k) = 1/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+... 

                    2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

            case {t_node1+1} 

                %LHS transition node 2 

                if s_pul_secs == 1 

                    Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR)+... 

                        (j*w(i)*C_SR+G_SR)+... 

                        2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS); 

                    Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS); 

                else 

                    Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+... 

                        2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR); 

                end; 

            case {t_node2} 

                %RHS transition node 2 

                Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR); 

                Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+... 

                    2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

            case {t_node2+1} 

                %RHS transition node 1 

                Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k) = 1/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+... 

                    2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k+1) = -1/(R_RHS+j*w(i)*L_RHS); 

            otherwise 

                %Internal loops 

                if k < t_node1 

                    %LHS loops 

                    Ctemp = C_LHS; 
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                    Ltemp = L_LHS; 

                    Rtemp = R_LHS; 

                    Gtemp = G_LHS; 

                elseif k > t_node2 

                    %RHS loops 

                    Ctemp = C_RHS; 

                    Ltemp = L_RHS; 

                    Rtemp = R_RHS; 

                    Gtemp = G_RHS; 

                else 

                    %Source region loops 

                    Ctemp = C_SR; 

                    Ltemp = L_SR; 

                    Rtemp = R_SR; 

                    Gtemp = G_SR; 

                end; 

                Y_mat(k,k-1) = -1/(Rtemp+j*w(i)*Ltemp); 

                Y_mat(k,k) = 2/(Rtemp+j*w(i)*Ltemp)+(j*w(i)*Ctemp+Gtemp); 

                Y_mat(k,k+1) = -1/(Rtemp+j*w(i)*Ltemp); 

        end; 

    end; 

    %Solve for the voltages 

    V_mat(i,:) =(Y_mat^(-1))*I_mat; 

    clear Ctemp Ltemp Rtemp Gtemp; 

end; 

 

%Most of the voltages are specified internal to the cells rather than end 

%points. Need to calculate the cell edge voltages and currents. The number 

%of internally solved cell voltages are given by the variables containing 

%the number of LHS, SR, and RHS sections. 

 

Z_mat_full = zeros(length(f),(tot_nodes-3)); 

Z_mat_half = zeros(length(f),(tot_nodes-3)); 

 

%Fill impedance matrices showing the impedance between solved internal 

%voltage nodes 

for k = 1:tot_nodes-3 

    if k <= l_pul_secs 

        if k ~= l_pul_secs 

            %Node internal to a LHS section 

            Z_mat_full(:,k) = R_LHS+j*w*L_LHS; 

            Z_mat_half(:,k) = (R_LHS+j*w*L_LHS)/2; 

        else 

            %Node between LHS and SR 

            Z_mat_full(:,k) = (R_LHS+j*w*L_LHS)/2+(R_SR+j*w*L_SR)/2; 

            Z_mat_half(:,k) = (R_LHS+j*w*L_LHS)/2; 

        end; 

    elseif k <= l_pul_secs+s_pul_secs 

        if k ~= l_pul_secs+s_pul_secs 

            %Node internal to a SR section 

            Z_mat_full(:,k) = R_SR+j*w*L_SR; 

            Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2; 

        else 

            %Node between SR and RHS 

            Z_mat_full(:,k) = (R_SR+j*w*L_SR)/2+(R_RHS+j*w*L_RHS)/2; 

            Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2; 
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        end; 

    else %Node internal to a RHS section 

        Z_mat_full(:,k) = R_RHS+j*w*L_RHS; 

        Z_mat_half(:,k) = (R_RHS+j*w*L_RHS)/2; 

    end; 

end; 

%Calculate the internal currents and load currents 

I_node_mat = zeros(length(f),tot_nodes-1); 

I_node_mat(:,2:(tot_nodes-2)) = ... 

    (V_mat(:,2:(tot_nodes-2))-V_mat(:,3:(tot_nodes-1)))./Z_mat_full; 

I_node_mat(:,1) = -V_mat(:,1)./ZNE; 

I_node_mat(:,tot_nodes-1) = V_mat(:,tot_nodes)./ZFE; 

%Calculate the internal voltages and fill in load voltages 

V_node_mat = zeros(length(f),tot_nodes-1); 

V_node_mat(:,2:(tot_nodes-2)) = ... 

    V_mat(:,2:(tot_nodes-2))-I_node_mat(:,2:(tot_nodes-2)).*Z_mat_half; 

V_node_mat(:,1) = V_mat(:,1); 

V_node_mat(:,tot_nodes-1) = V_mat(:,tot_nodes); 

 

%Define Analytical Expressions - Distributed Uniform Noise Source 

xLHS = x_KVL_LHS; %Position vector for LHS of circuit (m) 

xRHS = x_KVL_RHS; %Position vector for RHS of circuit (m) 

xSR = x_KVL_SR; %Position vector for the SR of circuit (m) 

VLHS = zeros(length(f),length(xLHS)); %Initialize VLHS matrix to zeros 

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros 

VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros 

%Define Equivalent Noise Current 

%This quantity is defined in case the analytical expression for a uniform 

%source is to be compared with a simulation where the sources are not 

%uniform. The middle value or the equivalent middle value in the source 

%region is used for the equivalent noise current. 

if size(In,2)-(floor(size(In,2)/2)*2) == 1 

    %Position matrix is odd - take the middle value for all frequencies 

    In_eq = In(:,(floor(size(In,2)/2)+1)); 

else %Position matrix is even - find average equivalent middle value 

    In_eq = mean([In(:,floor(size(In,2)/2)) In(:,(floor(size(In,2)/2)+1))],2); 

end; 

 

%Find the Voltage on the TL outside the coupling region 

for i = 1:length(xRHS) 

    VRHS(:,i) = (In_eq.*Z0v./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*... 

        ((1-G_NE.*exp(-2*gamma_v*(Lv-abs(x0R)))).*... 

        (1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0R)))-... 

        (1-G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*... 

        (1+G_FE.*exp(2*gamma_v*xRHS(i))).*exp(-gamma_v*(xRHS(i)+abs(x0L)))); 

end; 

for i = 1:length(xLHS) 

    VLHS(:,i) = (In_eq.*Z0v./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*... 

        ((1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*... 

        (-1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xLHS(i)+abs(x0R)))-... 

        (1+G_NE.*exp(-2*gamma_v*(Lv+xLHS(i)))).*... 

        (-1+G_FE.*exp(-2*gamma_v*abs(x0L))).*exp(gamma_v*(xLHS(i)+abs(x0L)))); 

end; 

%Find the voltage on the TL inside the coupling region 

for i = 1:length(xSR) 

    VSR(:,i) = (In_eq.*Z0v./(2*gamma_v)).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))).*... 
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        ((1+G_NE.*exp(-2*gamma_v*(Lv+xSR(i)))).*... 

        (-1+G_FE.*exp(-2*gamma_v*abs(x0R))).*exp(gamma_v*(xSR(i)+abs(x0R)))-... 

        (1-G_NE.*exp(-2*gamma_v*(Lv-abs(x0L)))).*... 

        (1+G_FE.*exp(2*gamma_v*xSR(i))).*exp(-gamma_v*(xSR(i)+abs(x0L)))+... 

        2*(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv))); 

end; 

 

xAnal = horzcat(xLHS,xSR(2:(length(xSR)-1)),xRHS); 

VTOT = horzcat(VLHS,VSR(:,(2:(length(xSR)-1))),VRHS); 

 

%Compare the Analytical Results to the Simulation Results 

%Subplots may be useful here 

%    Top Plot - Coupling Voltage Waveform in the coupling region 

%    Bottom Plot - Voltage along the victim TL 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(In(1,:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(1)),'-r'); 

title('Low Frequency Response - Noise Current Waveform'); 

ylabel('|I|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),'r'); 

title('Low Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(In(floor(length(f)/2),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(floor(length(f)/2))),'-r'); 

title('Middle Frequency Response - Noise Current Waveform'); 

ylabel('|I|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(floor(length(f)/2),:)),... 

    x_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r'); 

title('Middle Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(In(length(f),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(length(f))),'-r'); 

title('High Frequency Response - Noise Current Waveform'); 

ylabel('|I|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(length(f),:)),x_KVL,abs(V_node_mat(length(f),:)),'r'); 
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title('High Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

%Look at phase 

% figure; 

% plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Low Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xAnal,angle(VTOT(floor(length(f)/2),:)),... 

%     x_KVL,angle(V_node_mat(floor(length(f)/2),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('Middle Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

%  

% figure; 

% plot(xAnal,angle(VTOT(length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),'r'); 

% xlabel('TL Position (m)'); 

% ylabel('angle(V)'); 

% title('High Frequency Response'); 

% legend('Analytical','Simulation','Location','Best'); 

 

%Plot movie for comparing the Analytical Results to the Simulation Results 

figure; 

for k = 1:length(f) 

    subplot(2,1,1); 

    plot(x_KVL_SR_mid,abs(In(k,:)),... 

        x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(k)),'-r'); 

    title(strcat(['Noise Current Waveform @ ' num2str(f(k)) ' Hz'])); 

    ylabel('|I|'); 

    legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

    xlim([xLHS(1) xRHS(length(xRHS))]); 

    subplot(2,1,2); 

    plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),'r'); 

    title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz'])); 

    xlabel('TL Position (m)'); 

    ylabel('|V|'); 

    legend('Analytical','Simulation','Location','Best'); 

    pause(0.01); 

end; 
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Matlab File “Lossy_TL_Non_Uniform_Distributed_V2.m” 

 

clear all; 

close all; 

clc; 

 

%This simulation calculates the voltage and current on a transmission line 

%where a non-uniform distributed voltage source is placed anywhere along the 

%line. The transmission line can be lossless or lossy. The distributed 

%voltage source is considered to be non-uniform. Analytical expressions for 

%comparison purposes with the simulation are given for the non-uniform  

%noise source case. 

 

%Assumptions 

%1. Weak Coupling 

%2. Culprit and Victim propagation parameter gamma must be the same 

%3. Characteristic impedance is approximately uniform in the victim 

 

%Simulation cases for lossy - distortionless line (R/L = G/C) 

%Define Victim PUL Parameters 

C_pul = 100e-12; %F/m 

L_pul = 250e-9; %H/m 

R_pul = 100;%4; %Ohm/m 100 

G_pul = 2e-8;%2e-10; %S/m 2e-8 

%Define Coupling PUL Parameters 

L21 = 100e-9; %H/m 

R21 = 1; %Ohm/m 

%Define Propagation Parameters 

f = (1e6:10e6:1e9)'; %Frequency range simulation (Hz) 

w = 2*pi*f; 

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); %Propagation parameter 

alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1] 

B = imag(gamma_v); %Beta 

Vp = w./B; %Phase velocity (m/s) 

Z0v = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm) 

lambda_min = min(Vp./f); %Smallest wavelength (m) 

j = sqrt(-1); 

%Victim Geometry Parameters 

Lv = 1; %Line length (m) 

x0L = -0.6; %Distributed source left boundary (make this a negative number) (m) 

x0R = -0.3; %Distributed source right boundary (make this a negative number) (m) 

l_length = x0L+Lv; %TL length left of source (m) 

r_length = -x0R; %TL length right of source (m) 

s_length = x0R-x0L; %Distributed source length (m) 

%Victim Load Parameters 

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition 

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm) 

G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end 

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end 

 

%Culprit Geometry Parameters 

%Define Culprit PUL Parameters 

C_pul_c = C_pul; %F/m 

L_pul_c = L_pul; %H/m -(gamma_v.^2)./((w.^2)*C_pul_c) 

R_pul_c = R_pul;%4; %Ohm/m 

G_pul_c = G_pul;%2e-10; %S/m 
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gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter 

Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm) 

 

Vs = 100; %Source voltage (V) 

a = 1.2; %RHS position variable (usually positive) (m) 1.2 

b = 1.5; %LHS position variable (usually positive) (m) 1.5 

Lc = a+b; %Culprit circuit length (m) 

 

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm) 

ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)  

G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end 

G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end 

 

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis 

x_CP_ends = [x0L x0R]; %Same coordinate system as the victim 

 

%Set up TL KVL Circuit Simulation 

%For a good simulation, each PUL section must be no larger than lambda/20 

%in length. 

pul_length = lambda_min/40; %Target PUL section length 

%Must have an integer number of TL sections, so the actual pul_length 

%sections for the left hand side, distributed source region, and right hand 

%sides of the TL problem may not be at the same spacing. 

 

%Determine LHS victim circuit properties 

l_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents 

if l_length == 0 

    l_pul_length = 0; 

else %Finite section length 

    l_pul_length = l_length/l_pul_secs; %LHS pul section length 

end; 

C_LHS = C_pul*l_pul_length; 

L_LHS = L_pul*l_pul_length; 

R_LHS = R_pul*l_pul_length; 

G_LHS = G_pul*l_pul_length; 

 

%Determine source region victim circuit properties 

s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents 

if s_length == 0 

    s_pul_length = 0; 

else %Finite section length 

    s_pul_length = s_length/s_pul_secs; %Source region pul section length 

end; 

C_SR = C_pul*s_pul_length; 

L_SR = L_pul*s_pul_length; 

R_SR = R_pul*s_pul_length; 

G_SR = G_pul*s_pul_length; 

 

%Determine RHS victim circuit properties 

r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents 

if r_length == 0 

    r_pul_length = 0; 

else %Finite section length 

    r_pul_length = r_length/r_pul_secs; %RHS pul section length 

end; 

C_RHS = C_pul*r_pul_length; 
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L_RHS = L_pul*r_pul_length; 

R_RHS = R_pul*r_pul_length; 

G_RHS = G_pul*r_pul_length; 

 

%Create victim position vectors 

if l_pul_length ~= 0 

    x_KVL_LHS = -Lv+(0:l_pul_length:(l_pul_length*l_pul_secs)); 

else %Source at near-end 

    x_KVL_LHS = -Lv; 

end; 

if s_pul_length ~= 0 

    x_KVL_SR = x_KVL_LHS(length(x_KVL_LHS))+... 

        (0:s_pul_length:(s_pul_length*s_pul_secs)); 

else %No source region 

end; 

if r_pul_length ~= 0 

    x_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs)); 

else %Source at far-end 

    x_KVL_RHS = 0; 

end; 

if s_pul_length ~= 0 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),... 

        x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_SR x_KVL_RHS; 

else %No source region 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_RHS; 

end; 

 

%Create culprit position vector 

x_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2); 

%The above position matrix is offset by a half cell and has one more 

%position than desired. A position vector is desired in the middle of the 

%cells since this is where the source value will be evaluated. Fixing the 

%position matrix: 

x_CP_source(length(x_CP_source)) = []; %Delete last value 

x_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells 

%Create equivlant position matrix in the victim circuit 

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2); 

%Formulate the noise voltage source 

%Vn = -(R21+j*w*L21)*I(x) <- A function of frequency and space 

Vn = zeros(length(f),length(x_CP_source)); 

%Fill noise voltage matrix in continuous domain (V/m) 

for i = 1:length(f) 

    Vn(i,:) = -(R21+j*w(i)*L21)*(Vs*exp(-gamma_c(i)*Lc)*... 

        (exp(-gamma_c(i)*(x_CP_source-a))-G_ZL(i)*exp(gamma_c(i)*(x_CP_source-a)))./... 

        ((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_ZS(i)*exp(-2*gamma_c(i)*Lc))));     

end; 

%Define Distributed Source Voltage in the Discrete Domain 

V_SR = Vn*s_pul_length; 

 

%Determine Source Region Transition Loops 

t_loop1 = l_pul_secs+1; %First transition loop number 

t_loop2 = l_pul_secs+s_pul_secs+1; %Second transition loop number 

tot_loops = l_pul_secs+s_pul_secs+r_pul_secs+1; %Total number of KVL loops to solve 

Z_mat = zeros(tot_loops,tot_loops); %Initiailize impedance matrix 
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%Create voltage matrix 

V_mat = zeros(tot_loops,1); %Initialize voltage matrix to zeros 

 

%Create current matrix 

I_mat = zeros(length(f),tot_loops); %Initialize current matrix to zeros 

 

%Setup KVL Matrix to solve 

for i = 1:length(f) 

    %Insert source voltages 

    if t_loop1 ~= t_loop2 

        V_mat(t_loop1) = V_SR(i,1)/2; %Transition loop 1 

        V_mat(t_loop2) = V_SR(i,s_pul_secs)/2; %Transition loop 2 

        V_mat((t_loop1+1):(t_loop2-1)) = V_SR(i,1:(s_pul_secs-1))/2+... 

            V_SR(i,2:s_pul_secs)/2; %Source region loops 

    else 

    end; 

    %Fill Impedance Matrix for each frequency 

    for k = 1:tot_loops 

        switch k 

            case {1} 

                %ZNE loop 

                if l_length ~= 0 

                    Z_mat(k,k) = ZNE(i)+(R_LHS+j*w(i)*L_LHS)/2+... 

                        1/(j*w(i)*C_LHS+G_LHS); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_LHS+G_LHS); 

                else %Source at near-end 

                    Z_mat(k,k) = ZNE(i)+(R_SR+j*w(i)*L_SR)/2+... 

                        1/(j*w(i)*C_SR+G_SR); 

                    Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR); 

                end; 

            case {tot_loops} 

                %ZFE loop 

                if r_length ~= 0 

                    Z_mat(k,k) = ZFE(i)+(R_RHS+j*w(i)*L_RHS)/2+... 

                        1/(j*w(i)*C_RHS+G_RHS); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_RHS+G_RHS); 

                else %Source at far-end 

                    Z_mat(k,k) = ZFE(i)+(R_SR+j*w(i)*L_SR)/2+... 

                        1/(j*w(i)*C_SR+G_SR); 

                    Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR); 

                end; 

            case {t_loop1} 

                %LHS transition loop 

                Z_mat(k,k-1) = -1/(j*w(i)*C_LHS+G_LHS); 

                Z_mat(k,k) = 1/(j*w(i)*C_LHS+G_LHS)+(R_LHS+j*w(i)*L_LHS)/2+... 

                    1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2; 

                Z_mat(k,k+1) = -1/(j*w(i)*C_SR+G_SR); 

            case {t_loop2} 

                %RHS transition loop 

                Z_mat(k,k-1) = -1/(j*w(i)*C_SR+G_SR); 

                Z_mat(k,k) = 1/(j*w(i)*C_RHS+G_RHS)+(R_RHS+j*w(i)*L_RHS)/2+... 

                    1/(j*w(i)*C_SR+G_SR)+(R_SR+j*w(i)*L_SR)/2; 

                Z_mat(k,k+1) = -1/(j*w(i)*C_RHS+G_RHS); 

            otherwise 

                %Internal loops 
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                if k < t_loop1 

                    %LHS loops 

                    Ctemp = C_LHS; 

                    Ltemp = L_LHS; 

                    Rtemp = R_LHS; 

                    Gtemp = G_LHS; 

                elseif k > t_loop2 

                    %RHS loops 

                    Ctemp = C_RHS; 

                    Ltemp = L_RHS; 

                    Rtemp = R_RHS; 

                    Gtemp = G_RHS; 

                else 

                    %Source region loops 

                    Ctemp = C_SR; 

                    Ltemp = L_SR; 

                    Rtemp = R_SR; 

                    Gtemp = G_SR; 

                end; 

                Z_mat(k,k-1) = -1/(j*w(i)*Ctemp+Gtemp); 

                Z_mat(k,k) = 2/(j*w(i)*Ctemp+Gtemp)+Rtemp+j*w(i)*Ltemp; 

                Z_mat(k,k+1) = -1/(j*w(i)*Ctemp+Gtemp); 

        end; 

    end; 

    %Solve for the currents 

    I_mat(i,:) =( Z_mat^(-1))*V_mat; 

    clear Ctemp Ltemp Rtemp Gtemp; 

end; 

 

%Find voltages 

V_node_mat = zeros(length(f),tot_loops); %Initialize voltage matrix to zeros 

%Solve voltages at each node 

for k = 1:tot_loops 

    switch k 

        case {1} 

            %ZNE node 

            V_node_mat(:,k) = -ZNE.*I_mat(:,k); 

        case {tot_loops} 

            %ZFE node 

            V_node_mat(:,k) = ZFE.*I_mat(:,k); 

        otherwise 

            %Internal nodes 

            if k <= t_loop1 

                Ctemp = C_LHS; 

                Ltemp = L_LHS; 

                Rtemp = R_LHS; 

                Gtemp = G_LHS; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k); 

            elseif k > t_loop2 

                Ctemp = C_RHS; 

                Ltemp = L_RHS; 

                Rtemp = R_RHS; 

                Gtemp = G_RHS; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k); 
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            else %In source region 

                Ctemp = C_SR; 

                Ltemp = L_SR; 

                Rtemp = R_SR; 

                Gtemp = G_SR; 

                V_node_mat(:,k) = (1./(j*w*Ctemp+Gtemp)).*I_mat(:,k-1)-... 

                    (1./(j*w*Ctemp+Gtemp)+(Rtemp+j*w*Ltemp)/2).*I_mat(:,k)+... 

                    V_SR(:,(k-t_loop1))/2; 

            end; 

    end; 

end; 

clear Ctemp Ltemp Rtemp Gtemp; 

 

%Define Analytical Expressions - Distributed Non-Uniform Noise Source 

xLHS = x_KVL_LHS; %Position vector for LHS of circuit (m) 

xRHS = x_KVL_RHS; %Position vector for RHS of circuit (m) 

xSR = x_KVL_SR; %Position vector for the SR of circuit (m) 

VLHS = zeros(length(f),length(xLHS)); %Initialize VLHS matrix to zeros 

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros 

VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros 

%Define Equivalent Noise Voltage 

%This quantity is defined in case the analytical expression for a uniform 

%source is to be compared with a simulation where the sources are not 

%uniform. The middle value or the equivalent middle value in the source 

%region is used for the equivalent noise voltage. 

if size(Vn,2)-(floor(size(Vn,2)/2)*2) == 1 

    %Position matrix is odd - take the middle value for all frequencies 

    Vn_eq = Vn(:,(floor(size(Vn,2)/2)+1)); 

else %Position matrix is even - find average equivalent middle value 

    Vn_eq = mean([Vn(:,floor(size(Vn,2)/2)) Vn(:,(floor(size(Vn,2)/2)+1))],2); 

end; 

 

%Find the Voltage on the TL outside the coupling region 

%Non-uniform Analytical Equation 

for i = 1:length(xRHS) 

    VRHS(:,i) = (-(R21+j*w*L21).*(Vs*exp(-gamma_c*Lc)./... 

        ((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc))))*... 

        (1/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*... 

        (((abs(x0L)-abs(x0R))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(a+Lv)))+... 

        (1./(2*gamma_v)).*(G_ZL.*exp(-2*gamma_v*(abs(x0L)+abs(x0R)+a))+... 

        G_NE.*exp(-2*gamma_v*Lv)).*(exp(2*gamma_v*abs(x0R))-exp(2*gamma_v*abs(x0L)))).*... 

        exp(gamma_c*a).*(exp(-gamma_c*xRHS(i))+G_FE.*exp(gamma_c*xRHS(i)))); 

end; 

%Non-uniform Analytical Equation 

for i = 1:length(xLHS) 

    VLHS(:,i) = (-(R21+j*w*L21).*(Vs*exp(-gamma_c*Lc)./... 

        ((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc))))*... 

        (1/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*... 

        (((abs(x0L)-abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+... 

        (1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(-2*gamma_v*(abs(x0L)+abs(x0R)+a))).*... 

        (exp(2*gamma_v*abs(x0R))-exp(2*gamma_v*abs(x0L)))).*... 

        exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xLHS(i)+2*Lv))+exp(gamma_c*xLHS(i)))); 

end; 

%Find the voltage on the TL inside the coupling region 

%Non-uniform Analytical Equation 

for i = 1:length(xSR) 
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    VSR(:,i) = (-(R21+j*w*L21).*(Vs*exp(-gamma_c*Lc)./... 

        ((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc))))*... 

        (1/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*(... 

        (((abs(x0L)+xSR(i))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(Lv+a)))+... %RHS portion 

        (1./(2*gamma_v)).*(G_ZL.*exp(2*gamma_v*(xSR(i)-abs(x0L)-a))+... 

        G_NE.*exp(-2*gamma_v*Lv)).*(exp(-2*gamma_v*xSR(i))-exp(2*gamma_v*abs(x0L)))).*... 

        exp(gamma_c*a).*(exp(-gamma_c*xSR(i))+G_FE.*exp(gamma_c*xSR(i))))+... 

        ((-(xSR(i)+abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+... %LHS portion 

        (1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(2*gamma_v*(xSR(i)-abs(x0R)-a))).*... 

        (exp(2*gamma_v*abs(x0R))-exp(-2*gamma_v*xSR(i)))).*... 

        exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xSR(i)+2*Lv))+exp(gamma_c*xSR(i))))); 

end; 

 

xAnal = horzcat(xLHS,xSR(2:(length(xSR)-1)),xRHS); 

VTOT = horzcat(VLHS,VSR(:,(2:(length(xSR)-1))),VRHS); 

 

%Compare the Analytical Results to the Simulation Results 

%Subplots may be useful here 

%    Top Plot - Coupling Voltage Waveform in the coupling region 

%    Bottom Plot - Voltage along the victim TL 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(Vn(1,:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(1)),'-r'); 

title('Low Frequency Response - Noise Voltage Waveform'); 

ylabel('|V|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),'r'); 

title('Low Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(Vn(floor(length(f)/2),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(floor(length(f)/2))),'-r'); 

title('Middle Frequency Response - Noise Voltage Waveform'); 

ylabel('|V|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(floor(length(f)/2),:)),... 

    x_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r'); 

title('Middle Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(Vn(length(f),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(length(f))),'-r'); 
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title('High Frequency Response - Noise Voltage Waveform'); 

ylabel('|V|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(length(f),:)),x_KVL,abs(V_node_mat(length(f),:)),'r'); 

title('High Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

%Look at phase 

% % % figure; 

% % % plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),'r'); 

% % % xlabel('TL Position (m)'); 

% % % ylabel('angle(V)'); 

% % % title('Low Frequency Response'); 

% % % legend('Analytical','Simulation','Location','Best'); 

% % %  

% % % figure; 

% % % plot(xAnal,angle(VTOT(floor(length(f)/2),:)),... 

% % %     x_KVL,angle(V_node_mat(floor(length(f)/2),:)),'r'); 

% % % xlabel('TL Position (m)'); 

% % % ylabel('angle(V)'); 

% % % title('Middle Frequency Response'); 

% % % legend('Analytical','Simulation','Location','Best'); 

% % %  

% % % figure; 

% % % plot(xAnal,angle(VTOT(length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),'r'); 

% % % xlabel('TL Position (m)'); 

% % % ylabel('angle(V)'); 

% % % title('High Frequency Response'); 

% % % legend('Analytical','Simulation','Location','Best'); 

 

%Plot movie for comparing the Analytical Results to the Simulation Results 

figure; 

for k = 1:length(f) 

    subplot(2,1,1); 

    plot(x_KVL_SR_mid,abs(Vn(k,:)),... 

        x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(Vn_eq(k)),'-r'); 

    title(strcat(['Noise Voltage Waveform @ ' num2str(f(k)) ' Hz'])); 

    ylabel('|V|'); 

    legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

    xlim([xLHS(1) xRHS(length(xRHS))]); 

    subplot(2,1,2); 

    plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),'r'); 

    title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz'])); 

    xlabel('TL Position (m)'); 

    ylabel('|V|'); 

    legend('Analytical','Simulation','Location','Best'); 

    pause(0.01); 

end; 
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Matlab File “Lossy_TL_Non_Uniform_Distributed_I2.m” 

 

clear all; 

close all; 

clc; 

 

%This simulation calculates the voltage and current on a transmission line 

%where a non-uniform distributed current source is placed anywhere along the 

%line. The transmission line can be lossless or lossy. The distributed 

%current source is considered to be non-uniform. Analytical expressions for 

%comparison purposes with the simulation are given for the non-uniform 

%noise source case. 

 

%Assumptions 

%1. Weak Coupling 

%2. Culprit and Victim propagation parameter gamma must be the same 

%3. Characteristic impedance is approximately uniform in the victim 

 

%Simulation cases for lossy - distortionless line (R/L = G/C) 

%Define Victim PUL Parameters 

C_pul = 100e-12; %F/m 

L_pul = 250e-9; %H/m 

R_pul = 100;%4; %Ohm/m 100 

G_pul = 2e-8;%2e-10; %S/m 2e-8 

%Define Coupling PUL Parameters 

C21 = 20e-9; %F/m 

G21 = 2e-12; %S/m 

%Define Propagation Parameters 

f = (1e6:10e6:1e9)'; %Frequency range simulation (Hz) 

w = 2*pi*f; 

gamma_v = sqrt((R_pul+j*w*L_pul).*(G_pul+j*w*C_pul)); 

alpha = real(gamma_v); %Loss (Np/m) [interesting when = 1] 

B = imag(gamma_v); %Beta 

Vp = w./B; %Phase velocity (m/s) 

Z0v = sqrt((R_pul+j*w*L_pul)./(G_pul+j*w*C_pul)); %TL characteristic impedance (Ohm) 

lambda_min = min(Vp./f); %Smallest wavelength (m) 

j = sqrt(-1); 

%Victim Geometry Parameters 

Lv = 1; %Line length (m) 

x0L = -0.6; %Distributed source left boundary (make this a negative number) (m) 

x0R = -0.3; %Distributed source right boundary (make this a negative number) (m) 

l_length = x0L+Lv; %TL length left of source (m) 

r_length = -x0R; %TL length right of source (m) 

s_length = x0R-x0L; %Distributed source length (m) 

%Victim Load Parameters 

ZFE = 75+(1./(j*w*(5e-12))).*ones(length(f),1); %Far-end Load Definition (Ohm)  

ZNE = 45+j*w*(10e-9).*ones(length(f),1); %Near-end Load Definition (Ohm) 

G_NE = (ZNE-Z0v)./(ZNE+Z0v); %Reflection coefficient at the near-end 

G_FE = (ZFE-Z0v)./(ZFE+Z0v); %Reflection coefficient at the far-end 

 

%Culprit Geometry Parameters 

%Define Culprit PUL Parameters 

C_pul_c = C_pul; %F/m 

L_pul_c = L_pul; %H/m -(gamma_v.^2)./((w.^2)*C_pul_c) 

R_pul_c = R_pul;%4; %Ohm/m 

G_pul_c = G_pul;%2e-10; %S/m 
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gamma_c = sqrt((R_pul_c+j*w.*L_pul_c).*(G_pul_c+j*w*C_pul_c)); %Propagation parameter 

Z0c = sqrt((R_pul_c+j*w.*L_pul_c)./(G_pul_c+j*w*C_pul_c)); %TL characteristic impedance (Ohm) 

 

Vs = 100; %Source voltage (V) 

a = 1.2; %RHS position variable (usually positive) (m) 

b = 1.5; %LHS position variable (usually positive) (m) 

Lc = a+b; %Culprit circuit length (m) 

 

ZS_CP = 30+j*w*(100e-9).*ones(length(f),1); %Source Load Defintion (Ohm) 

ZL_CP = 75+(1./(j*w*(30e-12))).*ones(length(f),1); %Culprit Load Definition (Ohm)  

G_ZS = (ZS_CP-Z0c)./(ZS_CP+Z0c); %Reflection coefficient at the culprit near-end 

G_ZL = (ZL_CP-Z0c)./(ZL_CP+Z0c); %Reflection coefficient at the culprit far-end 

 

%Define Coupling Coordinate Extremes on the Culprit Circuit Axis 

x_CP_ends = [x0L x0R]; %Same coordinate system as the victim 

 

%Set up TL KCL Circuit Simulation 

%For a good simulation, each PUL section must be no larger than lambda/20 

%in length. 

pul_length = lambda_min/40; %Target PUL section length 

%Must have an integer number of TL sections, so the actual pul_length 

%sections for the left hand side, distributed source region, and right hand 

%sides of the TL problem may not be at the same spacing. 

 

%Determine LHS circuit properties 

l_pul_secs = ceil(l_length/pul_length); %Number of pul sections LHS represents 

if l_length == 0 

    l_pul_length = 0; 

else %Finite section length 

    l_pul_length = l_length/l_pul_secs; %LHS pul section length 

end; 

C_LHS = C_pul*l_pul_length; 

L_LHS = L_pul*l_pul_length; 

R_LHS = R_pul*l_pul_length; 

G_LHS = G_pul*l_pul_length; 

 

%Determine source region circuit properties 

s_pul_secs = ceil(s_length/pul_length); %Number of pul sections source region represents 

if s_length == 0 

    s_pul_length = 0; 

else %Finite section length 

    s_pul_length = s_length/s_pul_secs; %Source region pul section length 

end; 

C_SR = C_pul*s_pul_length; 

L_SR = L_pul*s_pul_length; 

R_SR = R_pul*s_pul_length; 

G_SR = G_pul*s_pul_length; 

 

%Determine RHS circuit properties 

r_pul_secs = ceil(r_length/pul_length); %Number of pul sections LHS represents 

if r_length == 0 

    r_pul_length = 0; 

else %Finite section length 

    r_pul_length = r_length/r_pul_secs; %RHS pul section length 

end; 

C_RHS = C_pul*r_pul_length; 
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L_RHS = L_pul*r_pul_length; 

R_RHS = R_pul*r_pul_length; 

G_RHS = G_pul*r_pul_length; 

 

%Create position vectors (same as if KVL equations were used) 

if l_pul_length ~= 0 

    x_KVL_LHS = -Lv+(0:l_pul_length:(l_pul_length*l_pul_secs)); 

else %Source at near-end 

    x_KVL_LHS = -Lv; 

end; 

if s_pul_length ~= 0 

    x_KVL_SR = x_KVL_LHS(length(x_KVL_LHS))+... 

        (0:s_pul_length:(s_pul_length*s_pul_secs)); 

else %No source region 

end; 

if r_pul_length ~= 0 

    x_KVL_RHS = -r_length+(0:r_pul_length:(r_pul_length*r_pul_secs)); 

else %Source at far-end 

    x_KVL_RHS = 0; 

end; 

if s_pul_length ~= 0 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_SR(2:length(x_KVL_SR)),... 

        x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_SR x_KVL_RHS; 

else %No source region 

    x_KVL = horzcat(x_KVL_LHS,x_KVL_RHS(2:length(x_KVL_RHS))); 

    % clear x_KVL_LHS x_KVL_RHS; 

end; 

 

%Create culprit position vector 

x_CP_source = x_CP_ends(1):s_pul_length:x_CP_ends(2); 

%The above position matrix is offset by a half cell and has one more 

%position than desired. A position vector is desired in the middle of the 

%cells since this is where the source value will be evaluated. Fixing the 

%position matrix: 

x_CP_source(length(x_CP_source)) = []; %Delete last value 

x_CP_source = x_CP_source+s_pul_length/2; %Positions placed in the middle of the cells 

%Create equivlant position matrix in the victim circuit 

x_KVL_SR_mid = x_KVL_SR(1:(length(x_KVL_SR)-1))+(s_pul_length/2); 

%Formulate the noise current source 

%In = -(G21+j*w*C21)*V(x) <- A function of frequency and space 

In = zeros(length(f),length(x_CP_source)); 

%Fill noise current matrix in continuous domain (A/m) 

for i = 1:length(f) 

    In(i,:) = -(G21+j*w(i)*C21)*(Vs*Z0c(i).*exp(-gamma_c(i)*Lc)*... 

        (exp(-gamma_c(i)*(x_CP_source-a))+G_ZL(i)*exp(gamma_c(i)*(x_CP_source-a)))./... 

        ((Z0c(i)+ZS_CP(i)).*(1-G_ZL(i)*G_ZS(i)*exp(-2*gamma_c(i)*Lc)))); 

end; 

%Define Distributed Source Current in the Discrete Domain 

I_SR = In*s_pul_length; 

 

%Determine Source Region Transition Nodes 

t_node1 = l_pul_secs+1; %First transition node equation (LHS) 

t_node2 = l_pul_secs+s_pul_secs+1; %Second transition node equation (RHS) 

tot_nodes = l_pul_secs+s_pul_secs+r_pul_secs+2; %Total number of KCL equations to solve 

Y_mat = zeros(tot_nodes,tot_nodes); %Initiailize impedance matrix 
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%Create current matrix (YV = I) 

I_mat = zeros(tot_nodes,1); %Initialize current matrix to zeros 

 

%Create voltage matrix 

V_mat = zeros(length(f),tot_nodes); %Initialize voltage matrix to zeros 

 

%Setup KCL Matrix to solve (YV = I) 

for i = 1:length(f) 

    %Insert source currents 

    if t_node1 ~= t_node2 

        I_mat((t_node1+1):(t_node2)) = I_SR(i,:); %Source region nodes 

    else 

    end; 

    %Fill Admitance Matrix for each frequency 

    for k = 1:tot_nodes 

        switch k 

            case {1} 

                %ZNE node 

                if l_length ~= 0 

                    Y_mat(k,k) = 1/ZNE(i)+2/(R_LHS+j*w(i)*L_LHS); 

                    Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS); 

                else %Source at near-end 

                    Y_mat(k,k) = 1/ZNE(i)+2/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR); 

                end; 

            case {2} 

                if l_length ~= 0 

                    if l_pul_secs == 1 

                        Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS); 

                        Y_mat(k,k) = 2/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+... 

                            2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                        Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    else %l_pul_secs > 1 

                        Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS); 

                        Y_mat(k,k) = 3/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS); 

                        Y_mat(k,k+1) = -1/(R_LHS+j*w(i)*L_LHS); 

                    end; 

                else %Source at near-end 

                    Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR); 

                    Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR); 

                end; 

            case {tot_nodes-1} 

                if r_length ~= 0 

                    if r_pul_secs == 1 

                        Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                        Y_mat(k,k) = 2/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+... 

                            2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                        Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS); 

                    else %r_pul_secs > 1 

                        Y_mat(k,k-1) = -1/(R_RHS+j*w(i)*L_RHS); 

                        Y_mat(k,k) = 3/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS); 

                        Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS); 

                    end; 

                else %Source at far-end 
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                    Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 3/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR); 

                    Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR); 

                end; 

            case {tot_nodes} 

                %ZFE node 

                if r_length ~= 0 

                    Y_mat(k,k) = 1/ZFE(i)+2/(R_RHS+j*w(i)*L_RHS); 

                    Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS); 

                else %Source at far-end 

                    Y_mat(k,k) = 1/ZFE(i)+2/(R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k-1) = -2/(R_SR+j*w(i)*L_SR); 

                end; 

            case {t_node1} 

                %LHS transition node 1 

                Y_mat(k,k-1) = -1/(R_LHS+j*w(i)*L_LHS); 

                Y_mat(k,k) = 1/(R_LHS+j*w(i)*L_LHS)+(j*w(i)*C_LHS+G_LHS)+... 

                    2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k+1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

            case {t_node1+1} 

                %LHS transition node 2 

                if s_pul_secs == 1 

                    Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR)+... 

                        (j*w(i)*C_SR+G_SR)+... 

                        2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS); 

                    Y_mat(k,k+1) = -2/(R_SR+j*w(i)*L_SR+R_RHS+j*w(i)*L_RHS); 

                else 

                    Y_mat(k,k-1) = -2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+... 

                        2/(R_LHS+j*w(i)*L_LHS+R_SR+j*w(i)*L_SR); 

                    Y_mat(k,k+1) = -1/(R_SR+j*w(i)*L_SR); 

                end; 

            case {t_node2} 

                %RHS transition node 2 

                Y_mat(k,k-1) = -1/(R_SR+j*w(i)*L_SR); 

                Y_mat(k,k) = 1/(R_SR+j*w(i)*L_SR)+(j*w(i)*C_SR+G_SR)+... 

                    2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k+1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

            case {t_node2+1} 

                %RHS transition node 1 

                Y_mat(k,k-1) = -2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k) = 1/(R_RHS+j*w(i)*L_RHS)+(j*w(i)*C_RHS+G_RHS)+... 

                    2/(R_RHS+j*w(i)*L_RHS+R_SR+j*w(i)*L_SR); 

                Y_mat(k,k+1) = -1/(R_RHS+j*w(i)*L_RHS); 

            otherwise 

                %Internal loops 

                if k < t_node1 

                    %LHS loops 

                    Ctemp = C_LHS; 

                    Ltemp = L_LHS; 

                    Rtemp = R_LHS; 

                    Gtemp = G_LHS; 

                elseif k > t_node2 

                    %RHS loops 

                    Ctemp = C_RHS; 
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                    Ltemp = L_RHS; 

                    Rtemp = R_RHS; 

                    Gtemp = G_RHS; 

                else 

                    %Source region loops 

                    Ctemp = C_SR; 

                    Ltemp = L_SR; 

                    Rtemp = R_SR; 

                    Gtemp = G_SR; 

                end; 

                Y_mat(k,k-1) = -1/(Rtemp+j*w(i)*Ltemp); 

                Y_mat(k,k) = 2/(Rtemp+j*w(i)*Ltemp)+(j*w(i)*Ctemp+Gtemp); 

                Y_mat(k,k+1) = -1/(Rtemp+j*w(i)*Ltemp); 

        end; 

    end; 

    %Solve for the voltages 

    V_mat(i,:) =(Y_mat^(-1))*I_mat; 

    clear Ctemp Ltemp Rtemp Gtemp; 

end; 

 

%Most of the voltages are specified internal to the cells rather than end 

%points. Need to calculate the cell edge voltages and currents. The number 

%of internally solved cell voltages are given by the variables containing 

%the number of LHS, SR, and RHS sections. 

 

Z_mat_full = zeros(length(f),(tot_nodes-3)); 

Z_mat_half = zeros(length(f),(tot_nodes-3)); 

 

%Fill impedance matrices showing the impedance between solved internal 

%voltage nodes 

for k = 1:tot_nodes-3 

    if k <= l_pul_secs 

        if k ~= l_pul_secs 

            %Node internal to a LHS section 

            Z_mat_full(:,k) = R_LHS+j*w*L_LHS; 

            Z_mat_half(:,k) = (R_LHS+j*w*L_LHS)/2; 

        else 

            %Node between LHS and SR 

            Z_mat_full(:,k) = (R_LHS+j*w*L_LHS)/2+(R_SR+j*w*L_SR)/2; 

            Z_mat_half(:,k) = (R_LHS+j*w*L_LHS)/2; 

        end; 

    elseif k <= l_pul_secs+s_pul_secs 

        if k ~= l_pul_secs+s_pul_secs 

            %Node internal to a SR section 

            Z_mat_full(:,k) = R_SR+j*w*L_SR; 

            Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2; 

        else 

            %Node between SR and RHS 

            Z_mat_full(:,k) = (R_SR+j*w*L_SR)/2+(R_RHS+j*w*L_RHS)/2; 

            Z_mat_half(:,k) = (R_SR+j*w*L_SR)/2; 

        end; 

    else %Node internal to a RHS section 

        Z_mat_full(:,k) = R_RHS+j*w*L_RHS; 

        Z_mat_half(:,k) = (R_RHS+j*w*L_RHS)/2; 

    end; 

end; 
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%Calculate the internal currents and load currents 

I_node_mat = zeros(length(f),tot_nodes-1); 

I_node_mat(:,2:(tot_nodes-2)) = ... 

    (V_mat(:,2:(tot_nodes-2))-V_mat(:,3:(tot_nodes-1)))./Z_mat_full; 

I_node_mat(:,1) = -V_mat(:,1)./ZNE; 

I_node_mat(:,tot_nodes-1) = V_mat(:,tot_nodes)./ZFE; 

%Calculate the internal voltages and fill in load voltages 

V_node_mat = zeros(length(f),tot_nodes-1); 

V_node_mat(:,2:(tot_nodes-2)) = ... 

    V_mat(:,2:(tot_nodes-2))-I_node_mat(:,2:(tot_nodes-2)).*Z_mat_half; 

V_node_mat(:,1) = V_mat(:,1); 

V_node_mat(:,tot_nodes-1) = V_mat(:,tot_nodes); 

 

%Define Analytical Expressions - Distributed Noise Source 

xLHS = x_KVL_LHS; %Position vector for LHS of circuit (m) 

xRHS = x_KVL_RHS; %Position vector for RHS of circuit (m) 

xSR = x_KVL_SR; %Position vector for the SR of circuit (m) 

VLHS = zeros(length(f),length(xLHS)); %Initialize VLHS matrix to zeros 

VRHS = zeros(length(f),length(xRHS)); %Initialize VRHS matrix to zeros 

VSR = zeros(length(f),length(xSR)); %Initialize VSR matrix to zeros 

%Define Equivalent Noise Current 

%This quantity is defined in case the analytical expression for a uniform 

%source is to be compared with a simulation where the sources are not 

%uniform. The middle value or the equivalent middle value in the source 

%region is used for the equivalent noise current. 

if size(In,2)-(floor(size(In,2)/2)*2) == 1 

    %Position matrix is odd - take the middle value for all frequencies 

    In_eq = In(:,(floor(size(In,2)/2)+1)); 

else %Position matrix is even - find average equivalent middle value 

    In_eq = mean([In(:,floor(size(In,2)/2)) In(:,(floor(size(In,2)/2)+1))],2); 

end; 

 

%Find the Voltage on the TL outside the coupling region 

%Non-uniform Analytical Equation 

for i = 1:length(xRHS) 

    VRHS(:,i) = (-(G21+j*w*C21).*(Vs*Z0c.*exp(-gamma_c*Lc)./... 

        ((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc)))).*... 

        (Z0v/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*... 

        (((abs(x0L)-abs(x0R))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(a+Lv)))+... 

        (1./(2*gamma_v)).*(G_ZL.*exp(-2*gamma_v*(abs(x0L)+abs(x0R)+a))+... 

        G_NE.*exp(-2*gamma_v*Lv)).*(exp(2*gamma_v*abs(x0L))-exp(2*gamma_v*abs(x0R)))).*... 

        exp(gamma_c*a).*(exp(-gamma_c*xRHS(i))+G_FE.*exp(gamma_c*xRHS(i)))); 

end; 

%Non-uniform Analytical Equation 

for i = 1:length(xLHS) 

    VLHS(:,i) = (-(G21+j*w*C21).*(Vs*Z0c.*exp(-gamma_c*Lc)./... 

        ((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc)))).*... 

        (Z0v/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*... 

        (((abs(x0L)-abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+... 

        (1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(-2*gamma_v*(abs(x0L)+abs(x0R)+a))).*... 

        (exp(2*gamma_v*abs(x0L))-exp(2*gamma_v*abs(x0R)))).*... 

        exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xLHS(i)+2*Lv))+exp(gamma_c*xLHS(i)))); 

end; 

%Find the voltage on the TL inside the coupling region 

%Non-uniform Analytical Equation 

for i = 1:length(xSR) 
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    VSR(:,i) = (-(G21+j*w*C21).*(Vs*Z0c.*exp(-gamma_c*Lc)./... 

        ((Z0c+ZS_CP).*(1-G_ZL.*G_ZS.*exp(-2*gamma_c*Lc)))).*... 

        (Z0v/2).*(1./(1-G_NE.*G_FE.*exp(-2*gamma_v*Lv)))).*(... 

        (((abs(x0L)+xSR(i))*(1+G_ZL.*G_NE.*exp(-2*gamma_v*(Lv+a)))+... %RHS portion 

        (1./(2*gamma_v)).*(G_ZL.*exp(2*gamma_v*(xSR(i)-abs(x0L)-a))+... 

        G_NE.*exp(-2*gamma_v*Lv)).*(exp(2*gamma_v*abs(x0L))-exp(-2*gamma_v*xSR(i)))).*... 

        exp(gamma_c*a).*(exp(-gamma_c*xSR(i))+G_FE.*exp(gamma_c*xSR(i))))+... 

        ((-(xSR(i)+abs(x0R))*(G_FE+G_ZL.*exp(-2*gamma_c*a))+... %LHS portion 

        (1./(2*gamma_v)).*(1+G_ZL.*G_FE.*exp(2*gamma_v*(xSR(i)-abs(x0R)-a))).*... 

        (exp(-2*gamma_v*xSR(i))-exp(2*gamma_v*abs(x0R)))).*... 

        exp(gamma_c*a).*(G_NE.*exp(-gamma_c*(xSR(i)+2*Lv))+exp(gamma_c*xSR(i))))); 

end; 

 

xAnal = horzcat(xLHS,xSR(2:(length(xSR)-1)),xRHS); 

VTOT = horzcat(VLHS,VSR(:,(2:(length(xSR)-1))),VRHS); 

 

%Compare the Analytical Results to the Simulation Results 

%Subplots may be useful here 

%    Top Plot - Coupling Voltage Waveform in the coupling region 

%    Bottom Plot - Voltage along the victim TL 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(In(1,:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(1)),'-r'); 

title('Low Frequency Response - Noise Current Waveform'); 

ylabel('|I|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(1,:)),x_KVL,abs(V_node_mat(1,:)),'r'); 

title('Low Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(In(floor(length(f)/2),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(floor(length(f)/2))),'-r'); 

title('Middle Frequency Response - Noise Current Waveform'); 

ylabel('|I|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(floor(length(f)/2),:)),... 

    x_KVL,abs(V_node_mat(floor(length(f)/2),:)),'r'); 

title('Middle Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

figure; 

subplot(2,1,1); 

plot(x_KVL_SR_mid,abs(In(length(f),:)),... 

    x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(length(f))),'-r'); 
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title('High Frequency Response - Noise Current Waveform'); 

ylabel('|I|'); 

legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

xlim([xLHS(1) xRHS(length(xRHS))]); 

subplot(2,1,2); 

plot(xAnal,abs(VTOT(length(f),:)),x_KVL,abs(V_node_mat(length(f),:)),'r'); 

title('High Frequency Response - Victim Voltage Waveform'); 

xlabel('TL Position (m)'); 

ylabel('|V|'); 

legend('Analytical','Simulation','Location','Best'); 

 

%Look at phase 

% % % figure; 

% % % plot(xAnal,angle(VTOT(1,:)),x_KVL,angle(V_node_mat(1,:)),'r'); 

% % % xlabel('TL Position (m)'); 

% % % ylabel('angle(V)'); 

% % % title('Low Frequency Response'); 

% % % legend('Analytical','Simulation','Location','Best'); 

% % %  

% % % figure; 

% % % plot(xAnal,angle(VTOT(floor(length(f)/2),:)),... 

% % %     x_KVL,angle(V_node_mat(floor(length(f)/2),:)),'r'); 

% % % xlabel('TL Position (m)'); 

% % % ylabel('angle(V)'); 

% % % title('Middle Frequency Response'); 

% % % legend('Analytical','Simulation','Location','Best'); 

% % %  

% % % figure; 

% % % plot(xAnal,angle(VTOT(length(f),:)),x_KVL,angle(V_node_mat(length(f),:)),'r'); 

% % % xlabel('TL Position (m)'); 

% % % ylabel('angle(V)'); 

% % % title('High Frequency Response'); 

% % % legend('Analytical','Simulation','Location','Best'); 

 

%Plot movie for comparing the Analytical Results to the Simulation Results 

figure; 

for k = 1:length(f) 

    subplot(2,1,1); 

    plot(x_KVL_SR_mid,abs(In(k,:)),... 

        x_KVL_SR_mid,ones(1,length(x_KVL_SR_mid))*abs(In_eq(k)),'-r'); 

    title(strcat(['Noise Current Waveform @ ' num2str(f(k)) ' Hz'])); 

    ylabel('|I|'); 

    legend('Actual Noise Source','Approximated Noise Source','Location','Best'); 

    xlim([xLHS(1) xRHS(length(xRHS))]); 

    subplot(2,1,2); 

    plot(xAnal,abs(VTOT(k,:)),x_KVL,abs(V_node_mat(k,:)),'r'); 

    title(strcat(['Victim Voltage Waveform @ ' num2str(f(k)) ' Hz'])); 

    xlabel('TL Position (m)'); 

    ylabel('|V|'); 

    legend('Analytical','Simulation','Location','Best'); 

    pause(0.01); 

end; 
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