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CHAPTER 1

INTRODUCTION

Enumerative geometry is the study of certain numerical invariants of algebraic varieties,

loosely it can be thought of the study of the question how many solutions do certain geo-

metric problems have? Recently, a powerful technique emerged for tackling problems in

enumerative geometry called tropical geometry. Tropical geometry is a young field with-

out firm axiomatic foundations, but one of the most promising foundations proposed is the

category of fuzzy rings. We undertake a journey to fuzzy rings by motivating the study of

them via enumerative geometry, passing through tropical geometry on the way.
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CHAPTER 2

RINGS, FIELDS, AND VARIETIES

2.1 Rings and Fields

Before we discuss varieties, tropical or otherwise, we need to introduce a few algebraic

structures. Specifically, commutative rings and fields. A commutative ring, R, is a set

together with two binary operations, + : R × R 7→ R and ∗ : R × R 7→ R. And these

operations obey the following axioms:

1. Identity: There exists two elements, 0 and 1 in S, such that ∀x ∈ R the following

holds true: x+ 0 = 0 + x = x and 1 ∗ x = x ∗ 1 = x

2. Commutativity: ∀x, y ∈ R we have x+ y = y + x

3. Distributivity: ∀x, y, z ∈ Rwe have the following relations: z∗(x+y) = z∗x+z∗y

and (x+ y) ∗ z = x ∗ z + y ∗ z

4. Additive Inverses: ∀x ∈ R we have that ∃ − x ∈ R with x+−x = −x+ x = 0

5. Associativity: ∀x, y, z ∈ R the following holds: x ∗ (y ∗ z) = (x ∗ y) ∗ z and

x+ (y + z) = (x+ y) + z

6. Commutativity of multiplication: ∀x, y ∈ R we have x ∗ y = y ∗ x

With these restrictions in place on our binary operations, we have effectively captured the

essential properties of addition and multiplication on the integers.

Example 1.1 The prototypical example is the ring of integers with addition and multi-

plication.
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There are several constructions to build new rings from old ones, as well.

Definition 1.1 A polynomial function of degree m ̸= 0 in n-variables over k is a

function of the form:

p(x1, ..., xn) :=
∑

i1+i2...+in≤m

ai1,i2,...,inx
i1
1 x

i2
2 ...x

in
n

such that (x1, ...xn) ∈ An(k) and ai1,i2,...,in ∈ k and not all ai1,i2,...,in with i1 + ...in = m

equal to zero. As an example, consider p(x) = x2, which is a polynomial of degree 2 over

A1(R) = R and then, one recalls that the relation y = x2 which generates a particular

geometric curve in R2 this set is in fact identical to the set where p(x, y) = x2 − y which

is a polynomial of degree 2 over A2(R), is 0. And this set, the parabola, is what’s called an

affine algebraic set.

Example 1.3 The set of polynomials with coefficients in R denoted R[x] forms a ring,

called a polynomial ring.

Where a ring is an abstraction of the integers, a field is an abstraction of the rational

numbers.

Definition 1.2 A field is a ring that obeys one additional axiom,

(6.)Multiplicative inverses: ∀x ∈ S such that x ̸= 0 we have that ∃x−1 ∈ S with

x ∗ x−1 = x−1 ∗ x = 1

Along with the rational numbers, other examples of fields, typically denoted with aK,

include:
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Example 1.4 The real numbers under the standard addition and multiplication opera-

tion is a field, as are the complex numbers

Example 1.5 The finite fields, that is Z/pZ where p is a prime forms a field. To see

this, notice that the collection of elements of Z/pZ coprime to p form a group under mul-

tiplication, and since every integer less than a prime must be coprime with that prime, we

have that this is a group under multiplication and so has multiplicative inverses.

Example 1.6 The ring of formal Laurent series, denoted R((x)), forms a field when

R = K, whereK is a field. Consider sums of the form

∞∑
n=−∞

ai ∗ xi,

with the additional constraint that only a finite number of terms of negative index may be

non-zero. Then, with multiplication and addition defined analogously to how they are for

polynomials with coefficients in our fieldK, we obtain the field of formal Laurent series[5].

Example 1.7 The Puiseux series, denotedK{{x}}, is the set consisting of elements of

the form
∑+∞

k=k0
ckT

k
n where the ck are elements of a field characteristic zero, that is, where

there does not exist an n such that the following identity for n-fold sums, x + ... + x = 0

holds for all x. And where T is an indeterminate. Then, this set of series forms a field with

operations defined analogously to those of polynomials.[5]

2.2 Affine Algebraic Sets and Ideals

We are prepared to introduce the notion of affine algebraic sets and ideals of rings! These

will form the basis of our investigations into algebraic geometry. Affine algebraic sets are

defined as special kinds of subsets of a structure called the affine n-space over a field k, de-
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notedAn(k)which is simply the n-fold cartesian product of k with itself. That is, it’s the set

of elements of the form (x1, x2, x3, ...xn) with xi ∈ k, ∀1 ≤ i ≤ n. An(k) has the structure

of a vector space over a field, with multiplication and addition defined component-wise.

That is, if x, y ∈ An(k) then x+ y = (x1, ..., xn) + (y1, ...yn) = (x1 + y1, ..., xn + yn) and

multiplication by scalars defined by α ∗ (x1, ..., xn) = (αx1, ..., αxn).

Definition 1.3 An affine algebraic set is a subset of An denoted V (S) ⊂ An(k)

is simply the set of common zeros of a collection polynomials, S, over An(k), that is,

V (S) := {x ∈ An(k) : ∀ p ∈ S, p(x) = 0} or equivalently
∩
p∈S{x ∈ An(k) : p(x) = 0}

Definition 1.4 Let R be a ring. An ideal, S ⊂ R is a subset of R such that ∀x, y ∈ S

we have that x+ y ∈ S and x ∗ y ∈ S. Furthermore, if z ∈ R and x ∈ S then we have that

zx ∈ S. We may define the ideal of an affine algebraic set. We say that an ideal is prime

if xz ∈ S then either x or z is in S. And an ideal is maximal if it is not contained in any

proper ideal. Where a proper ideal means an ideal that isn’t all of R or the set {0}

Example 1.7 Z/pZ, that is, the integers modulo some integer, p. Is an example of

a quotient ring. More generally, let R be a ring, and S ⊂ R be an ideal, that is, S is

closed under the addition and multiplication operations of R and RS ⊆ S. Then the cosets

R/S := {x + S : x ∈ R} form a ring, with identities 1 + S, 0 + S and operations

x+ S + y + S = (x+ y) + S and (x+ S)(y + S) = x ∗ y + S.

Definition 1.5 Let V ⊂ An(k) be an affine algebraic set. With S a set of polynomials

in An(k) that are zero on all of V . Then, the ideal of V , denoted I(V ) is the ideal generated

by the polynomials in S. That is, all polynomials of the form
∑

s(x)∈S ps(x) ∗ s(x). Where

only a finite number of the terms in this sum are non-zero. This is called the the ideal of V.[1]
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We say that an affine algebraic set is reducible if it can be written as the union of two

proper subsets that are also affine algebraic sets. If not, then the set is irreducible. There is

actually a really simple characterization of when an affine algebraic set is irreducible!

Theorem 1.1 An algebraic set is irreducible if and only if the ideal of that algebraic

set is prime[1].

2.3 Algebraic Varieties, definitions and examples

We can now introduce the notion of an affine variety!

Definition 1.6 An affine variety is an irreducible affine algebraic set.

Example 1.8 As a trivial, and not very exciting example, the affine plane itself is an

affine variety! It is the roots of the polynomial f(x) = 0

Example 1.9 Let k be the real numbers with affine 2-space A2(k). Then a conic sec-

tion is the set of zeros of the polynomial, P (x, y) := ax2 + bxy + cy2 + dx + ey + f .

A conic section is not always an example of an affine variety, and in fact are possibly the

prototypical examples of interesting algebraic curves that are not varieties to keep in mind.

To see that the ideal generated is not always prime, consider the case of P (x, y) := x2− y2

Then, the ideal generated by P (x, y) is not prime, as it factors, P (x, y) = (x − y)(x + y)

and thus is the union of the affine algebraic sets defined by (x− y) and (x+ y)

We can investigate another class of varieties called projective algebraic varieties. Let
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us return to affine 2-space over a field k, A2(k). A point in this space can be denoted with

coordinates (x, y). Then we, can map to a corresponding point in A3(k) by sending (x, y)

to (x, y, 1). The point (x, y, 1) then lies on a unique line through the origin, defined by

f(t) := (xt, yt, t). Conversely, every line through the origin corresponds to a unique point

in A2(k) except for the lines g(t) := (tx, ty, 0) which we say correspond to ”points at in-

finity.” We generalize this construction to affine n-space, An(k).

2.4 Projective Varieties

Definition 1.10 Projective n-space, denoted Pn(k) is then the space of lines through the

origin in An+1(k). Each point x := (x1, ..., xn+1) in An+1(k) determines a line by x(t) :=

(tx1, ...txn+1). We can see immediately that two non-zero points x, y determine the same

line if ∃t ∈ R such that tx = y. So we can say that Pn(k) is the collection of equivalence

classes of points in An+1(k)\{0} under the relation x ∼ y iff ∃t ∈ R such that t ̸= 0 and

tx = y. We can then write elements of Pn(k) in what are called homogeneous coordinates

as [x1, ..., xn+1], that is, we select an element of the equivalence class in affine space as a

representative. We will also call elements of the projective plane points. An immediate

issue is that the i-th coordinate is only actually defined relative to the other terms in the

(n+1)-tuple. Specifically, the ratios xj
xi
are always well-defined if xi is non-zero. We can

define another kind of coordinates on elements of Pn(k).

Definition 1.11 Ui := {x ∈ Pn(k) : xi ̸= 0}. Then, if p ∈ Ui we define the non-

homogeneous coordinates of p with respect to Ui to be [x1, ...xi−1, 1, xi+1, ...xn+1]. Which

defines each element of Ui uniquely, as each p can be viewed as a set of points of the

form (tx1, ...txn+1) and there is only one element ofR sending xi to 1 under multiplication.

Thus, we have a bijection between elements of Ui and elements ofAn(k), ϕi : Ui 7→ An(k),
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ϕi(p) := (p1, ...pi−1, pi+1, ..., pn)

We finally have the machinery required to define projective algebraic sets!

Definition 1.12 Let k[X1, ...Xn+1] be the ring of polynomials on An+1(k) with terms

corresponding to homogeneous coordinates in Pn(k). Then, P (x) ∈ k[X1, ...Xn+1] has a

zero at point p ∈ Pn(k) if P (p) = 0 for any representative of p in homogeneous coor-

dinates. Then, a projective algebraic set is simply the set of common zeros in Pn(k) of a

collection of polynomials on An+1(k), and a projective algebraic variety is an irreducible

projective algebraic set.

Example 1.10An example of a collection of varieties that will be explored later are the

cubic surfaces. These are the surfaces defined by the zeros of homogeneous polynomials of

degree 3 in four variables, that is, polynomials of the form:
∑

Xi+Yi+Zi+Wi=3 aiX
xiY yiZziWwi .

Not all cubic surfaces are irreducible. In fact, in projective algebraic sets, we have a

nice irreducibility criterion, by a version of the nullstellensatz, a projective hypersurface

is irreducible if and only if the polynomial defining it is irreducible! Thus, if the cubic

polynomial defining our surface is reducible, our surface must be also. Given that we

are considering cubic polynomials in projective 4-space, any homogeneous polynomial

of degree three must then be a hypersurface. An example, then, of a reducible cubic is

P (X, Y, Z,W ) := X(Y Z −W 2) as this is a homogeneous polynomial of degree 3, which

factors into homogeneous polynomials of degree 2 and 1.

Another important class of varieties are the toric varieties. This is a very large class of

varieties that have a very nice combinatorial description. We will describe a specific kind

of toric variety here, that is, the toric variety of a cone. Wewill need several definitions first.
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Definition 1.13 A cone, C, in a vector space, V , over an ordered field, F , is a subset

of V such that if a ∈ F and c ∈ C with a ≥ 0 then ac ∈ C. We say that C is a convex

cone if ∀x, y ∈ C if α, β ≥ 0 then αx + βy ∈ C. This cone is called polyhedral if there

is a finite set of vectors v1, ..., vk ∈ C such that if w ∈ C then we have w =
∑k

i=1 λivi for

some set of constants λi in R. A polyhedral cone is rational if we can insist that λi ∈ Z

Definition 1.14 If V is a finite dimensional vector space over the reals, then V has an

inner-product and we may define the dual cone of C,D, as {w ∈ V : ∀v ∈ C, ⟨w, v⟩ ≥ 0}.

Then, we say that a cone is strongly convex if dim(D) = dim(C) where the dimension of

a subset of V is taken to be the dimension of the smallest subspace containing that subset.

Definition 1.15 The affine toric variety of a strongly convex rational polyhedral cone

is the spectrum of the semi-group algebra formed by the ”basis vectors” of the cone.

Example 1.11 The affine variety V (x3 − y2) in C2 is a toric variety. Specifically, we

have that V (x3 − y2) = Spec(C[NA]) where A = {2, 3}[3].
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CHAPTER 3

ENUMERATIVE PROBLEMS IN ALGEBRAIC GEOMETRY

3.1 Bézout’s Theorem

The simplest and most well known enumerative result in algebraic geometry is Bézout’s

Theorem for projective plane curves. It is a fundamental result in algebraic geometry. But

we’ll need some definitions before introducting it. For further reading, we refer the reader

to [1]

Definition 2.1We denote by Op(A2) the set of rational functions defined at p ∈ A2,

where a rational function defined at p is a function F (X) = P (X)
Q(X)

where P (X) and Q(X)

are polynomials such that Q(p) ̸= 0. The rational functions defined at a point form a ring.

Definition 2.2 Let f, g be affine plane curves. That is, an equivalence class of poly-

nomials under the relation defined on homogeneous polynomials, also called forms below.

Then, if f and g intersect at a point p ∈ A2(k), we define the intersection number, I , of f

and g at p by the formula I(p, fg) := dimk(Op(A2)/(f, g)).

Definition 2.3 Let F,G ∈ C[X, Y, Z] be homogeneous polynomials, then we con-

struct an equivalence relation by F ∼ G if ∃λ ∈ C\{0} : λF = G. A projective plane

curve is then an equivalence class of homogeneous polynomials on C[X,Y, Z].

Bézout’s Theorem Let X and Y be two plane projective curves in C[X,Y, Z] with no

components(irreducible factors) in common. Then we have∑
p(I, F ∩G) = mn wherem and n are the degrees of F and G.

Proof Here, dim will always denote dimension as a field extension of k. We know

that FG has finite cardinality, else F and G would have a component in common. Thus,
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we may assume without loss of generality that none of the points of intersection lay on a

line at infinity, Z = 0. To see this, assume that p ∈ F and p is on the line at infinity,

then we can make a projective change of coordinates that maps some line not in our inter-

section to the line at infinity, then by injectivity, the image of any point in our intersection

under this transformation will not be on the line at infinity. Let π : R 7→ Γ be the natural

map onto the quotient ring. Then define ϕ : R × R 7→ R by ϕ(A,B) := AF + BG and

ψ : R 7→ R × R by ψ(C) = (GC,−FC). Since F and G have no common factors, we

can construct an exact sequence 0 −→ R
ψ−→ R × R

ϕ−→ R
π−→ Γ −→ 0. To see that this

sequence is exact, we note that ker(ψ) must be 0 since k is a field and thus an integral

domain, thus, if ϕ(A,B) = 0 then we have thatAF +BG = 0 but this meansAF = −BG

and since F,G have no common factors, this means that A must be of the form GC and B

must be of the form −FC. But this is exactly image(ψ). Finally, the natural projection is

only 0 if and only if the f ∈ (F,G) which means f = AF + BG which is in image(ϕ).

Hence, this sequence is exact. Then by restricting the maps in the exact sequence we obtain

a second exact sequence, 0 −→ Rd−m−n
ψ−→ Rd−m × Rd = n

ϕ−→ Rd
π−→ Γd −→ 0. Finally,

dim(Rd) = (d+1)(d+2)
2

so if dmn then by a result on the dimension of field extensions in

exact sequences we then have that dim(Γd) = mn.

Consider the map, a : Γ 7→ Γ defined by a(H) = residue(ZHmod(F,G)) we will

prove is one-to-one. First, let J ∈ C[X, Y, Z], then let J0 = J(X,Y, 0), and since F,G, and

Z do not have any common zeros, we have that F0 and G0 are relatively prime in C[X,Y ].

Assume now that ZH = AF + BG, then A0F0 = −G0B0 and thus ∃C ∈ C[X,Y ], A0 =

G0C, and B0 = −F0C. Set A1 = A + CG and B1 = B − CF , then (A1)0 = (B1)0 = 0

therefore ∃A′, B′ ∈ C[X, Y, Z]withA1 = ZA′ andB1 = ZB′ and sinceZH = FA1+GB1

we have that H = A′F +B′G and so the map a is one-to-one.
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Letting dm + n we choose a sequence of polynomials in Rd, A1, ..., Amn such that

res((A1)mod(F,G), ..., res((Amn)) ∈ Γd form a basis. And define Ai∗ = Ai(X, Y, 1) ∈

C[X, Y ] then let ai be the residue of Ai∗ in Γ∗. Then these are a basis for Γ∗. To see

this, first notice that since a is an injective map, the restriction to Γd is an isomorphism

onto Γd+1 since injective maps between vector spaces of the same dimension must be iso-

morphisms. And so the residues of ZrA1, ...Z
rAmn form a basies of Γd+r if r0. To see

spanning, let h = res(H)mod(F∗, G∗) with H ∈ C[X, Y ], for some N0 we have that

ZNH∗ is a form of degree d + r and so ZNH∗ =
∑mn

i=1 λiZ
rAi + BF + CG for some

λi ∈ k and B,C ∈ C[X, Y, Z]. ThenH = (ZNH∗)∗ =
∑
λiAi∗ +B∗F∗ +C∗G∗ and so h

is in the span of the ai.

To see independence, assume
∑
λiai = 0, then (

∑
λiAi∗) = BF∗ + CG∗. This im-

plies Zr
∑
λiAi = ZsB∗F + ZtC∗G by a property of dehomogenizations of forms. But

then we have that
∑
λi(res(Z

rAimod(F∗, G∗)) = 0 in Γd and so λi must all be zero, as

the res(ZrAimod(F∗, G∗)) form a basis. And so, we have shown that dim(Γd) = mn and

dim(Γd) = dim(Γ∗ and so Bézout’s theorem has been proved. ■

Bézout’s theorem is a fundamental result in enumerative geometry, and has a gener-

alization to hypersurfaces. If we have n projective hypersurfaces in n + 1 variables then

the number of intersection points counting multiplicity is the product of the degrees of the

polynomials defining the hypersurfaces, or infinite.

3.2 27 Lines on a Smooth Cubic

It is a classical result in enumerative geometry that there are only 27 straight lines on a

smooth cubic surface over the complex numbers. We will provide a lemma, and sketch an
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interesting proof of this result using it. The proof in its entirety is in[3].

The proof will be sketched below, and will not be transcribed in its entirety as the

whole proof takes up 10 pages!

1. Show that if S is a non-singular cubic surface, that every plane in P3 intersects S in

an irreducible cubic, a line plus a conic, or a 3 distinct lines. And if P is a point in S,

at most 3 lines pass through it, and if there are 2 or 3 the most be coplanar.

2. Show that there is at least one line l on S.

3. Show that if there is a line l ⊂ S then there exists exactly 5 pairs (li, l′i) meeting l,

and they do so in such a way that 1)For all i, l ∪ li ∪ l′i is coplanar and 2)For i ̸= j

we have li ∪ l′i ∩ lj ∪ l′j = ∅

4. Show as a corollary of the above that there exist two disjoint lines in S

5. Prove that if l1, ...l4 are disjoint lines in P3 then either all four lines lie on a smooth

quadric and have an infinite number of transversals, or else they do not lie on any

quadric and have either 1 or 2 common transversals.

6. Notice that if l andm are two distinct lines in S thenmmeets exactly one line in each

of the five pairs meeting l,and so from this we have 17 lines defined, by noticing that

there must be five pairs form too

7. Prove that if n is any line in S other than the 17 already found, then n meets exactly

3 out of 5 lines in l1, ...l5 and given any choice of three elements from {1, 2, ..., 5},

say {ijk} then there is a unique line meeting lijk meeting li, lj, lk.

8. Deduce that there must be 27 lines on a non-singular cubic ■
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As we can see, enumerative problems can involve a substantial amount of work. Next,

we will sketch and describe an important result that will hopefully impart an understanding

of the power of tropical methods in enumerative geometry.

3.3 Some curve counting

Definition 2.4 Consider a complex projective plane curve, C, in P2, then this curve is a

variety of complex dimension 1, and thus of real dimension 2. And thus is topologically

equivalent to a surface. The genus of this surface is then the genus of C. Moreover, if C is

a non-singular curve of a degree d, then g(C), the genus of C is, 1
2
(d− 1)(d− 2)

The space of all projective curves of degree d is itself a projective space[1]. If we view

our projective curve as a point of this space, then varying the coefficients of our curve can

be viewed as moving it through this space of curves, and this transformation may cause it

to acquire singular points. If this singular point is a node, that is, an ordinary double point,

then the genus of the curve is reduced by one, and so we obtain a formula for a curve with

only p nodes and no other singularities: g(Csing) = 1
2
(d− 1)(d− 2)− p.

Definition 2.5 The Gromov-Witten number, Ng,d, is the number of irreducible curves

of genus g and degree d that pass through g+3d−1 points in the complex projective plane.

This number is well-defined, since the space of curves, formally called the moduli space of

projective curves, has dimension 1
2
(d − 1)(d − 2) + 3d − 1 = g + 3d − 1[5] and since a

curve with a node has codimension 1, the number Ng,d should be finite.

Example 2.1 If a cubic polynomial is smooth, then by the genus formula it has genus

1. If it possesses a node, then it has genus 0 and thus is a rational curve. And this happens if
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and only if the discriminant vanishes. In this case, the discriminant is a sum of 2040 mono-

mials! Instead, if one looks at the hessianH of ∂f
∂x
, ∂f
∂y
, ∂f
∂z
, we see that it is a polynomial of

degree 3. Then, if we form a matrix whose entries are the coefficients of ∂f
∂x
, ∂f
∂y
, ∂f
∂z
, ∂H
∂x
, ∂H
∂y
,

∂H
∂z

and then the discriminant of f is the determinant of this matrix! If our cubic is required

to pass through eight points in P2, then we have eight linear equations in the coefficients of

our cubic. Combining this with the condition discriminant(f) = 0 then we have a system

of equations with 12 solutions and so N0,3 = 12.

Phew! Even with handwaving, that was quite the escapade. If only there was a con-

sistently simpler way to compute these numbers? Enter, tropical geometry.

Mikhalkin’sCorrespondence Principle In a landmarkwork byGrigoryMiklhakin[4],

the following result was established: The number of simple tropical cuves of degree d and

genus g that pass through 3 + 3d − 1 points in R2, where each curve is counted with its

contribution, equals the Gromov-Witten number Ng,d of the complex projective plane, P2.

Enter, tropical varieties. Moreover, they even derived a recursive formula for the numbers

N0,d!

3.4 Tropical Varieties

A tropical variety is an object that is much simpler than a classical algebraic variety in

many ways. But their definition is more abstract and requires significantly more machinery.

Despite this, there is a one-to-one correspondence between tropical curves and directed

graphs with certain conditions placed upon them.
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Figure 3.1: The amoeba and spine for the polynomial 1+ 5zw+w2 +−z3 +3z2w− z2w2

taken from[5]
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CHAPTER 4

AMOEBAS AND TROPICAL VARIETIES

4.1 Varieties from amoebas

Let I be an ideal in the ring of Laurent polynomials in n-variables as defined above. By

the first section on varieties and ideals, this ideal has a variety associated to it, V (I). The

amoeba of I , A(I) is {(log(|z1|), ..., log(|zn|)) ∈ Rn : Z = (z1, ..., zn) ∈ V (I)} An

amoeba has finitely many tentacles, where tentacles are maximal(with respect to inclusion

of convex sets) convex subsets with unbounded norm, and each one of these contains a

ray, and more specifically, it converges to a ray in the euclidean norm. The union of these

with a certain polygon embedded in the variety is then the tropicalization of the variety. An

example of such a construction is given above, using the spine of the amoeba, as defined

below.

The Passare Construction A more rigorous way of constructing tropical varieties is

from spines, which are canonical tropical hypersurfaces inside A(f) where f is a polyno-

mial defining a complex hypersurface. Let f(z, w) be a polynomial in 2 variables, then its

Ronkin Function is:

Nf (u, v) =
1

(2πi)n

∫
Log−1(u,v)

log|f(z, w)|dz
z

∧ dw

w

This function is convex and linear on each connected component of the complement

of A(f) Then, if q(u, v) is the negated maximum of these affine-linear functions, q(u, v)

is what’s called a tropical polynomial function. And the associated tropical curve is called

the spine of the amoeba.
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There are numerous ways to construct tropical varieties from amoebas, but what we

want is to put tropical varieties on a firm algebraic footing that can be generalized to any

variety over any field. To this end, we introduce the following definition:

Definition 3.1 LetK be a field. We say that aK has a valuation if there exists a map,

val : K 7→ R ∪∞ with the following properties:

(V1) val(a) = ∞ if and only if a = 0

(V2) val(ab) = val(a) + val(b)

(V3) for a, b ∈ K, val(a+ b) ≥ min{val(a), val(b)}

4.2 Tropical varieties, proper

Defition 3.2 LetK be a field equipped with a valuation and f a polynomial inK[x0, ...xn].

Writing f as
∑

u∈U cux
u, where U ⊂ Nn+1 is a set of finite cardinality, then the tropical-

ization of f is:

trop(f)(w) = min{val(cu) + w · u : u ∈ U, cu ̸= 0}

Definition 3.3 the tropical hypersurface associated with f as {w ∈ Rn : the minimum

in trop(f)(w) is achieved at least twice}. If this is confusing, it helps to keep in mind that

first, the valuation creates a set, possibly a multi-set, and then checks this for the minimum

element. If the minimum element in this set appears at least twice at some point, p ∈ (K∗)n,

then p ∈ V (f). Note, tropical varieties are considered most naturally as subvarieties of the

torus T = (K∗)n since monomials are invertible on T.[5]
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Definition 3.4 LetX be a variety in (K∗)n), of some ideal I . then, the tropicalization

ofX is trop(X) :=
∩
f∈I trop(V (f)). That is, the intersection of the tropical hypersurfaces

of the tropicalizations of polynomials in the ideal of X .

We conclude this section with some examples of tropical hypersurfaces and basic the-

orems.

4.3 Examples and tropical structure theorems

Example 3.1 A very simple, yet interesting tropical curve is the tropicalization of f ∈

K[x±1, y±1] where f is defined by the equation f = x + y + 1. That is, f is an ele-

ment of the field of bivariate Laurent polynomials. With a tropicalization defined by the

valuation sending coefficients to the lowest power of t. So under the valuation we get

min{val(t0) + (w1, w2) · {1, 0}, val(t0) + (w1, w2) · {0, 1}, valt0 + (w1, w2) · (0, 0)

since,

val(t0) = 0

We have that this simplifies to

trop(V (f)) = min(w1, w2, 0).

As a set, this is {w1 = w2 ≤ 0} ∪ {w1 = 0 ≤ w2} ∪ {w2 = 0 ≤ w1}

Example 3.2: For a more complex tropical curve:

Let f = t2x2 + xy + (t2 + t3)y2 + (1 + t)x + t−1y + t3, then trop(V (f)) =

min(2 + 2w1, w1 + w2, 2 + 2w2, w1,−1 + w2, 3). The hypersurface is shown above:
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Figure 4.1: The tropicalization of f(x, y) = x+ y + 1[5]

Figure 4.2: The tropicalization of f(x, y) = f = t2x2 + xy + (t2 + t3)y2 + (1 + t)x +

t−1y + t3[5]

To get an idea of what higher dimensional tropical varieties look like, we state a result

and give an example of a higher dimensional tropical variety

Theorem 3.1 Let f be a Laurent polynomial in n-variables. The tropical hypersurface

trop(V (f)) is the support of a a pure Γval-rational polyhedral complex of dimension n− 1

inR⋉. It is the (n−1)-skeleton of the polyhedral complex dual to the regular subdivision of
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the Newton polytope of f =
∑

u∈Zn cux
u given by the weights val(cu) on the lattice points

of Newt(f).

Example 3.3 LetK = Q with the 2−adic valuation. Then

f = 12x2 + 20y2 + 8z2 + 7xy + 22xz + 3yz + 5x+ 9y + 6z + 4

defines in a smooth surface in T 3
K . The newton The newton polytope of this variety is

exceptionally simple, being the convex hull of the points (2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 0, 0).

Then, the 2-skeleton of
∑

trop(f) is the tropical quadric surface pictured below:

Figure 4.3: The tropicalization of f in Example 3.3[5]

Let f ∈ K[x±1 ...x
±1
n ] then we can define

inw(f) =
∑

u:val(cu)+w·u=trop(f(w))

t−val(cu)cux
u

Kapranov’s Theorem Let K be an algebraically closed field with a nontrivial valua-

tion. Fix a Laurent polynomial f =
∑

u∈Zn cux
u inK[x±1

1 , ..., x±1
n ] then the following three

sets coincide:
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1) The tropical hypersurface trop(V (f))

2) The set {w : inw(f) is not a monomial}

3) The closure in Rn of {(val(y1), ...val(yn)) : (y1, ..., yn) ∈ V (f)}[5]

There are actually multiple ways of defining tropical varieties. To see this, we consider

tropical curves as varieties in the min-plus algebra.

Definition 3.4 Consider the set R∪{∞} with the operations⊕,⊗ defined by x⊕ y =

min{x, y} and x ⊗ y = x + y. This is a structure called a semi-ring. Furthermore, Then,

a tropical polynomial is a map of the form p(x, y) : R2 7→ R2, p(x, y) =
⊕

u∈Zn cu ⊗ xu

and we can define a tropical curve to be the set of points in R2 such that the minimum is

achieved twice.

We introduce one more way of defining tropical curves using weighted graphs.

Definition 3.5 A graph, in this context is a collection of points in R2 called vertices,

V , along with a collection of line segments connecting them, denoted E. The pair (V,E)

is said to be a graph in R2. A graph is a weighted graph if there is a map from E to Z+.

Tropical curves in the euclidean plane can also be defined as follow, let Γ ∈ R2 be a

graph with the following properties:

(a)Every edge is a line segment with rational slope

(b)Γ has d ends each in the directions (−1, 0), (0,−1), (1, 1) where an end of weight w

counts w times.

(c)The balancing condition: At every vertex v of Γ, the weighted sum of the primitive in-

tegral vectors of edges around v is zero.
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Given the already presented number of working definitions of tropical varieties, and

the differing construction of classical algebraic varieties, we might want a mathematical

framework that encapsulates both of these structures! And in fact, this framework exists,

and it is the construction of varieties over fuzzy rings.
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CHAPTER 5

FUZZY RINGS

5.1 The min-plus algebra and fuzzy rings

Defintion 4.1 A quasi-fuzzy ring, K = (K; +; ·;K0; ϵ is a set K together with two binary

operations.

+ : K ×K → K : (k, λ) 7→ k + λ

And

· : K ×K → K : (k, λ) 7→ k · λ

Alongwith a distinguished element ϵ and subset 0 ⊂ K that obey the following axioms:

(FR0) (K,+) and (K, ·) are abelian semi-groups with identities 0 and 1 respectively.

(FR1) 0 · k = 0, ∀k ∈ K

(FR2) α · (κ1, κ2) = α · κ1 + α · κ2 ∀κ1, κ2 ∈ K, α ∈ K∗ where K∗ is the group of units

in K.

(FR3) ϵ2 = 1;

(FR4) K0 +K0 ⊂ K0 andK ·K0 ⊂ K0, 0 ∈ K0, 1 /∈ K0

(FR5’) 1 + ϵ ∈ K0

(FR6) κ1, κ2, λ1, λ2 ∈ K and λ1 + κ1, λ2 + κ2 ∈ K0 implies that κ1 · κ2 + ϵ · λ1 · λ2 ∈ K0

(FR7) κ, λ, κ1, κ2 inK and κ+ λ · (κ1 + κ2) ∈ K0 implies that κ+ λ · κ1 + λ · κ2 ∈ K0

We call a quasi-fuzzy ring a fuzzy ring if a stronger version of (FR5’) holds

(FR5) α ∈ K∗ implies that 1 + α ∈ K0 if and only if α = ϵ

Intuitively, a fuzzy ring K can be thought of like a ring without additive inverses,



30

where instead of −1 we have a special element ϵ. The reader should notice thatK0 is a set

of elements that act very similar to zero. The elements of K0 will be called null and the

set K0 will be called the null-set. These can be considered heuristically as ”extra-zeros.”

Finally, elements that are units behave like traditional ring elements except for the lack of

unique inverses. We consider some examples to elucidate the differences between fuzzy

and traditional rings.

Example 4.1 Commutative unitary rings are a in a one-to-one correspondence with

fuzzy rings for whichK0 = {0} and ϵ = −1

Example 4.2More interesting is whenwe consider a commutative unitary ring (R; +; ·)

and an ideal N ⊂ R then (R; +; ·;−1;N) is a quasi-fuzzy ring if and only if N is a

proper ideal. If N is not proper, we would have 1 ∈ N which would imply that 1 is in

the null set. Which contradicts (FR4). If N is proper, then we get that (FR6) holds since

κ1+N ≡ −λ1+N and κ2 ≡ −λ2+N so then κ1 ·κ2+N ≡ λ1 ·λ2+N by the definition of

multiplication in factor groups, and so κ1 ·κ2+−1(λ1 ·λ2) ∈ N and thus (FR6) is satisfied.

All other axioms are fairly easy to verify. Furthermore, (R; +; ·;−1;N) is a fuzzy ring if

and only if 1 + x ∈ N implies that x = −1.

To proceed with constructing tropical varieties in the context of fuzzy rings, we must

introduce the notion of a linear ordering on an abelian group:

Definition 4.2 An abelian group with group operation ∗ and an ordering (Γ,≤) is lin-

early ordered if it is totally ordered and if α, β, γ ∈ Γ and α < β then γ ∗ α < γ ∗ β.

Let γ0 /∈ Γ, then define Γ by Γ∪̇{γ0}, and write γ0∗α = α∗γ0 = γ0, ∀α ∈ Γ. Furthermore,

let us extend the ordering on Γ by writing γ0 < α for all α ∈ Γ. Then, we can define a
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valuation on a field K in a way similar to before, we say that v : K → Γ is a valuation if

the following axioms hold:

(V0) v(x) = γ0 ⇔ x = 0

(V1) ∀x, y ∈ K, then v(x · y) = v(x) ∗ v(y)

(V2) ∀x, y ∈ K, v(x+ y) ≤ max{v(x), v(y)}

The astute observer will notice that in this valuation, the element γ0 is taking place that

−∞ would in a valuation that maps to the real numbers, and for this reason this element is

often denoted −∞.

Defintion 4.3 If v : K → Γ is a valuation, then the valuation ring is defined as

R := {x ∈ K|v(x) ≤ e}

where e is the identity in Γ. We claim that this is a ring.

Proof: All the ring operation axioms are inherited from the field K. All that remains

is to check closure and the existence of identity elements. But, if x, y ∈ R we have that

v(x + y) ≤ max{v(x), v(y)} ≤ e} and thus v(x + y) ∈ R. Then v(x · y) = v(x) ∗ v(y)

but then v(x) ∗ v(y) ≤ v(x) ∗ e since the ordering is linear, applying linearity again we

obtain: v(x) ∗ v(y) ≤ e and thus x · y ∈ R. By (V0) and (V1) we have that 0 ∈ R and

that v(1) = e and thus R has the identity elements. Finally, if x ∈ R then −x ∈ R since

v(x) ∗ v(−1) ≤ e ∗ v(−1) = v(−1) ≤ e}. We also note that the group of units is then

simply R∗ := {x ∈ K : v(x) = 1} ■

Assume thatK is a field with a surjective valuation v : K → Γ we have thatK/R∗ is

a fuzzy ring using the following construction:
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Let K = (K; +; ·; ϵ;K0) be a (quasi)-fuzzy ring, then if U is a subgroup of the group

of units, we may a construct a new quotient (quasi)-fuzzy ring by

K/U := (P (K)U ; +; ·; ϵ · U ;P (K)U0 )

Where P (K)U is the collection of subsets, {F ⊂ K : F ̸= 0, U ·F = F} that is, the subsets

invariant under multiplication by U . And similary, P (K)U0 is {F ∈ P (K)U : F ∩K0 ̸= ∅}

and where sets in P (K)u are added and multiplied as complexes.

Note: In the rest of this paper, we let ∪̇ be the disjoint union operation.

The fuzzy ring L := K/R∗ has the property that L∗ is canonically isomorphic to

the valuation group. Since, K∗/R∗ = L∗ which is isomorphic to Γ under the map v ◦ ϕ

where ϕ is the natural projection and v is the valuation applied to any representative of

K∗/R∗. We also assume that the index of [R : m] ≥ 3, where m is the maximal ideal

{x ∈ K : v(x) < e}. Writing L̊ to be the smallest subset of L such that L∗ ∪ {0} ⊂ L̊ and

L̊+ L̊ ⊂ L̊ and L̊ · L̊ ⊂ L̊ That is, the smallest subset closed under the fuzzy ring operations

that contains both the group of units and 0. Define F := L̊ then we have that

F = {{0}}∪̇{x ·R∗ : x ∈ K∗}∪̇{x ·R : x ∈ K∗}

Since F clearly would contain L̊, and by definition L̊ must contain {0} and {x · R∗ :

x ∈ K∗} since these are all the units in L. Finally, {x · R : x ∈ K∗} must be in F since

because [R : m] > 2, where m is the maximal ideal {x ∈ K : v(x) < e}, we have that

x ·R∗ + x ·R∗ = x ·R for all x ∈ K∗. We also mention that {x ·R : x ∈ K∗} = F0 along

with the following

x ·R∗ + yṘ∗ = y ·R∗ whenever v(x) < v(y)
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x ·R + y ·R = y ·R whenever v(x) ≤ v(y)

x ·R + y ·R∗ = y ·R∗ whenever v(x) < v(y)

x ·R∗ + y ·R = y ·R whenever v(x) ≤ v(y)

Intuitively, this tells us that elements with greater valuation are absorptive under the

addition operation in F . Next, define

γ̃ := {γ′ ∈ Γ : γ′ ≤ γ} for γ ∈ Γ

And

KΓ := Γ∪̇{γ̃ : γ ∈ Γ}

Given the way our elements act as absorptive elements under addition, it is natural to

make the following identifications of cosets of the form x ·R∗ with the image v(x) = γ ∈ Γ

and the cosets x ·R with the subsets γ.

Remark Assume m ∈ N and m ≥ 1, and that κ1, ...κm ∈ Γ, then we have that

κ1 + ... + κm ∈ Γ̃ := {γ : γ ∈ Γ} if and only if the maximum is attained twice. And

from here, as you might have guessed by comparing to the min-plus condition of tropical

varieties, we can construct the so-called tropical fuzzy ring, the ring used to build tropical

varieties as fuzzy varieties using these tools. Note, above we have used the identification

established before hand to write the group operation additively.

Consider the set,

SΓ := {0} ∪ {(γ1, ...γk) ∈ T (Γ) : k ≥ 2, γi ≤ max{γj|j ̸= i}∀1 ≤ i ≤ k}

Where T (Γ) is the set of tuples of elements in Γ. We also identify γ0 and 0.
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Definition 4.3 If K is a (quasi)-fuzzy ring, and there is a group isomorphism, ϕ : G→

K∗ then we say that the set

S(ϕ) :=
{
(g1, ..., gk) ∈ T (G) : k ≥ 1

i=k∑
i=1

ϕ(gi) ∈ K0

}
Conforms to K, relative to ϕ. Furthermore, S(ϕ) is not the only set that conforms to

KΓ. Relevant to our focus on tropical varieties, we have that the following set conforms to

KΓ; first note that ϕ−1
0 : Γ → Γ defined by ϕ0γ) = γ1 is an isomorphism, then we have:

S ′
Γ = {0} ∪ {(γ1, ..., γk) ∈ T (Γ : k ≥ 2, if γi > γ0 there exists aj ̸= i with γ0 < γj ≤ γi}

By construction we have that a tuple is in S ′
ϕ if and only if the minimum is achieved at

least twice! Hence, this conforms to KΓ relative to ϕ0 as we obtain that the sum of a tuple

is inKΓ0 if and only if the image of the elements of this tuple under ϕ0 meet the criteria for

being elements of S(ϕ)

Examining the above, morally we can see that what it means for a fuzzy ring to con-

form to a set is to say that the elements of the group are subject to certain constraints on

nullity that are imposed by the existence of the isomorphism onto the group of units. Es-

sentially, this allows to use the existence of sums of elements in G being in K0 to detect

when group elements meet certain criteria.

Example 4.3 Consider the semi-ring (R ∪ ∞,⊕,⊗) defined as in the section on the

min-plus algebra. Then, letting (R,+) be the group (Γ, ∗), we have R ∪ ∞ = Γ. Our

isomorphism corresponding to ϕ0 is ϕ0(x) = −x, taking∞ to −∞. We obtain

α + α = α̃ for α ∈ Γ

As opposed to α ⊕ α = α. Now, instead of checking whether or not the minimum occurs
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twice in our tropical operations, we can simply check to see that a sum of elements lands in

KΓ0, and so we come to the notion of fuzzy varieties.

5.2 Zariski Systems

In the setting of classical algebraic varieties, there are two topologies. The classical topol-

ogy, which we are not concerned with here, and the Zariski topology. The Zariski topology

is a unique topology with the property that the closed sets in it are exactly the algebraic

subsets of the variety on which it is defined.

Definition 4.4 Let K = (K; +; ·; ϵ;K0 be a (quasi)-fuzzy ring, then an ideal in K, I

is a set in K such that the following hold:

(I1) 0 ∈ I

(I2) If x, y ∈ I then x+ y ∈ I

(I3) For a ∈ K and x ∈ I one has a · x ∈ I

Furthermore, we call an ideal proper if we also have that K0 ⊆ I ⊂ K

Then, a proper ideal is called prime if x · y ∈ I implies that xory ∈ I

We say K is a (quasi)-fuzzy domain if K0 is a prime ideal. And a (quasi)-fuzzy field

ifK = K0∪̇K∗

Definition 4.5 LetK be a (quasi)-fuzzy domain using the standard notation, letM ⊂

K be non-empty, andF be the set ofmaps fromM toK. Then the triple, (K,M,F) is called

a Zariski system if the following properties hold true: (Z1) If f, g ∈ F then f ·g = f(x)·g(x)

is also in F

(Z2) If a ∈M , we have that ∃fa ∈M with fa(a) /∈ K0
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If (K,M,F) is a Zariski system and T ⊂ F then we define:

Z(T ) := {a ∈M : f(a) ∈ K0,∀f ∈ T }

Z(f) := Z({f}), f ∈ T

V := {Z(T ) : T ⊂ F}

Proposition The Zariski system is a topology.

Proof First, note, Z{∅} ∈ V trivially. Thus, M ∈ V . Moreover, ∅ = Z(F)

and thus ∅ ∈ V . Next, let {Ti}i∈I be a collection of subsets of F , then we have that∩
i∈I Z(Ti) = Z(

∪
i∈I Ti) ∈ V holds by the defintion of Z(Ti). Finally, let T = T1 · T2 :=

{f1 · f2 : f1 ∈ T1, f2 ∈ T2}. By (Z1), we have T ∈ F . Let a ∈ T1, when f1 ∈ T then

f1(a) ∈ K0 and so f1 · f2(a) ∈ K0,∀f1 ∈ T1, f2 ∈ T2} therefore Z(T1) ⊂ Z(T ) and

Z(T2) ⊂ T by similar reasoning. Let a ∈ Z/Z(T ) then ∃f1 ∈ T1 with f1(a) /∈ K0, so

we must have that f1(a) · f2(a) ∈ K0 ∀f2 ∈ T2 and since K is a (quasi)-fuzzy domain, we

obtain that f2(a) must be in K0 for every f2 and so a ∈ Z(T2). ■

And thus, the sets defined above using a Zariski system satisfies all the axioms re-

quired for a topology of closed sets onM .

5.3 Fuzzy polynomials and tropical varieties

5.3.1 Construction: the tropical polynomial functions

LetL ⊆ K be non-empty. Then defineP 1
I (L,K) := {f : LI → K|f is a constant map or f =

Pj for some j ∈ I}. For n ≥ 1 set

P n+1
I (L,K) := {f + g : f, g ∈ P n

I (L,K)} ∪ {f · g : f, g ∈ P n
I (L,K)}
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Finally define PI(L,K) :=
∪∞
i=1 P

n
I

In the case of a field, the Zariski system (Kn, K, Pn(K,K)) recovers the classical

Zariski topology onKn and so we recover the classical theory of algebraic varieties over a

field.

Definition 4.6LetK be a (quasi)-fuzzy domain, andL amultiplicatively closed subset,

with K∗ ⊆ L. Assume there exists some n ∈ N with F ⊂ Pn(L,K) and (Ln, K,F) a

Zariski system. A fuzzy variety, or an F-fuzzy variety if context does not make it clear, is a

closed set in the Zariski system (Ln, K,F). With this we can finally introduce the tropical

Zariski topology.

5.3.2 Tropical Zariski Topology

Let (Γ, ·,≤) be a linearly ordered abelian group. We extend ≤ to a total ordering defined

onKΓ by writing:

0 ≤ γ1 ≤ γ̃ ≤ γ2 ≤ γ̃2 if γ1, γ2 satisfy γ1 < γ2

Then, for c ∈ KΓ put:

c∗ = c if c ∈ Γ ∪ {0} or c∗ = γ if c = γ̃ for some γ ∈ Γ

Denote by F = FΓ,n the set of functions defined by
∑

a∈A(ca ·
∏n

i=1 x
ai
i ), where A is

a finite subset of Nn
0 , and for a ∈ A then a = (a1, ..., an) and ca ∈ Γ

(*)RemarkWewish to show that this is Zariski system. To do this, we make two notes.

The following relations hold from direct computation:

(i)If γ1, ...γm ∈ Γ with γ1 ≤ ... ≤ γm, then we have the absorption property:
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γ1 + ...+ γm = γm if γm > γm−1

Or:

γ1 + ...+ γm = γm if γm = γm−1

(ii) For γ1 ∈ KΓ and

γ2 ∈ Γ̃ with

γ1 ≤ γ2 we then have that

γ1 + γ2 = γ2

(iii) For γ1 ∈ Γ̃ and γ2 ∈ Γ we have γ1 · γ2 = γ1 · γ̃2

5.3.3 The Tropical Zariski System

Assume that P =
∑

a∈A(ca ·
∏n

i=1X
ai
i ) and that P =

∑
b∈B(db ·

∏n
i=1X

bi
i ). Where A and

B are finite subsets ofNn
0 with a = (a1, ..., an) and ca ∈ Γ,∀a ∈ A and that b = (b1, ..., bn).

Furthermore, for a suitable finite subset S ⊂ Nn
0 and s = (s1],..sn) as well as rs ∈ KΓ/{0}

we have that P ·Q =
∑

s∈S(rs ·
∏n

i=1X
si
i ) that We may assume that |A|, |B| ≥ 2. Suppose

that x1, ..., xn ∈ KΓ are fixed. Then, if P (x1, ...xn) ∈ Γ∪̇{0} and Q(x1, ...xn) ∈ Γ∪̇{0},

then one also has f(x1, ..., xn) ∈ Γ∪̇{0} where f = P ·Q = P ·Q and so from the relation

remark we obtain that f(x1, ..., xn) =
∑

s∈S(r
∗
s ·

∏n
i=1 x

si
i )∀x1, ..., xn ∈ KΓ. Again, from

the relation remark, we have that there exists a = (a1, ...an) and a′ = (a′1, ...a
′
n) both in A

with a ̸= a′ and similar b and b′ for B such that the following holds:

f(x1, ...xn) = P ·Q(x1, ...xn) =

= (ca ·
n∏
i=1

xaii ) + ca′
n∏
i=1

x
a′i
i ) · (db ·

n∏
i=1

xbii )

= (ca · db ·
n∏
i=1

xai+bii ) + ca′ · db ·
n∏
i=1

x
a′i+bi
i )
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≤
∑
s∈S

(r∗s ·
n∏
i=1

xsii )

≤ f(x1, ...xn)

Where our estimates follow from ca · db ∈ Γ and c′a · db ∈ Γ and the fact that a ̸= a′.

Finally, we have now that (Z1) is a consequence of the inequalities above, since then

f(x1, ...xn) =
∑

s∈S(r
∗
s ·
∏n

i=1 x
si
i ) and then (Z2) is true becauseFΓ,n contains the constant

functions. Thus, we have that (Γn, KΓ,FΓ,n) is a Zariski system.■

Theorem 4.1 This theorem allows us to establish the equivalence of the construc-

tion of tropical Zariski system using the max-plus or min-plus algebras. Let f ∈ FΓ,n

f =
∑

a∈A(ca ·
∏n

i=1 x
ai
i ), with ca ∈ Γ for all (a1, ...an) ∈ A. Then there exists g ∈ FΓ,n

written
∑

a∈A(da ·
∏n

i=1 x
ai
i ), with the terms of our series defined as before da ∈ Γ etc, such

that all x1, ...xn ∈ Γ satisfy the following:

(i)The maximum(or minimum) of the values (ca ·
∏n

i=1 x
ai
i ), a ∈ A occurs at least

twice if and only if the minimum(or maximum) of the values (da ·
∏n

i=1 x
ai
i ), a ∈ A at least

twice. In particular, this implies that the Zariski topology of (Γn, KΓ,FΓ,n) is invariant

under the group automorphism sending γ ∈ Γ to γ−1. ■

Definition(The tropical Zariski System):

Let Γ = (R,+,≤), then by the above for our f(x1, ...xn) ∈ FΓ,n we have that we may

assume the summands of this function(under our group operation), to be of the form:

ca + a1 · x1 + ...+ an · xn

Using ordinary multiplication and addition in R. But, this coincides with tropicalization

of our polynomial, that is, the minimum is achieved twice only when the above sum is
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an element of K0, and so we have recovered the tropical zariski topology on the min-plus

algebra!

5.4 Fuzzy Rings and Projective Planes

As an addendum, we consider another structure called hyperrings that can also be used to

axiomatize tropical geometry. There is a natural correspondence between hyperrings and

projective geometry. We show how the embedding of the category of hyperrings can be

circumvented, and how projective planes can be generated on fuzzy rings.

Definition 4.7 A canonical hypergroup, is a set,H , with a binary operation, hyperad-

dition, + : H ×H → 2H∗ where 2H∗ is the non-empty elements of the power set of H. We

use the notation A+B := {∪(a+ b) : a ∈ A, b}. The hypergroup operation must obey the

following axioms:

(H1) x+ y = y + x if x, y ∈ H

(H2) ∀x, y, z ∈ H we have x+ (y + z) = (x+ y) + z

(H3) ∃0 ∈ H such that x+ 0 = 0 + x = x

(H4) ∀x ∈ H, ∃! y = −x ∈ H such that 0 ∈ x+ y

(H5) x ∈ y + z =⇒ z ∈ y − x

Definition 4.8 A hyperring is a set (R,+, ·) with a hyperaddition, + and multiplica-

tion operation, · satisfying the following axioms:

(HR1) (R,+) is a canonical hypergroup

(HR2) (R, ·) is a monoid with multiplicative identity 1.

(HR3) ∀r, s, t ∈ R : r(s+ t) = rs+ tr and (s+ t)r = sr + tr

(HR4) ∀r ∈ R we have 0 · r = r · 0 = 0

(HR5) 1 ̸= 0
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Defintion 4.9 If (R1,+1, ·1) and (R2,+2, ·2) then a map f : R1 → R2 is a hyperring

homorphism if:

(1) f(a+1 b) ⊆ f(a) +2 f(b), ∀a, b ∈ R1

(2) f(a ·1 b) = f(a) ·2 f(b), ∀a, b ∈ R1

A homormorphism is strict when we have that f(a+1 b) = f(a) +2 f(b) ∀a, b ∈ R1.

And if R1 ⊆ R2 are hyperrings and the inclusion is a strict homomorphism, we say that R2

is an extension of R1. Also, if (R− {0}, ·) is a group, then we call R a hyperfield.

Definition 4.10 We denote by K the object called the Krasner hyperfield, which is

the set ({0, 1},+, ·) with additive neutral element 0, satisfying the hyper-rule: 1 + 1 = 0

and the usual multiplication on the integers. We call extensions of this fieldK-vector spaces

Theorem 4.2 There is a fully faithful functor embedding the category of hyperrings

into the category of fuzzyrings. Let (R,+·) by a hyperring. Then the fuzzy ring F (R) has

the non-empty subsets ofR as its elements, andmultiplication is given byA×FB = {a×b :

a ∈ A, b ∈ B} and addition is given by A +F B :=
∪
a∈A,b∈B(a + b), with the following

identificationsK := 2R∗, F (0) = {0}, F (1) = {1},K0 := {T ∈ 2R∗ : 0 ∈ T}[8].

Theorem 4.3 LetR be a hyperring extension of the Krasner hyperfield,K. Then there

is a unique projective geometry P such that the set of points of P is R − {0} and the line

through two distinct points of x, y ∈ P , L(x, y) = (x + y) ∪ {x, y}. We recall that a pro-

jective geometry is any set of elements, called points, obeying the following axioms:

(P1) Two distinct points determine a unique line
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(P2) If a line, L, meets two sides of a triangle, not at their intersection, then it meets the

third side

(P3)Every line contains at least three points.

These projective geometries though, obey a stronger version of (P3), called (P3’) which is

that every line contains at least four points[7].

Theorem 4.4 A fuzzy ringK is an embedding of a hyperring extension of the Krasner

hyperfield if and only if the following conditions are met:

(i) For all x inK x+ x ∈ K0

(ii) There is a collection of independent elements, that is a set of elements, B, such that:

(B1) If x, y ∈ B and x ̸= y then x+ y /∈ K0

(B2) If w, v ∈ K ∃Bw ⊂ B, Bw ̸= ∅ such that b ∈ Bw implies b+w ∈ K0 and if Bw = Bv

then v = w.

(B3) If x, y, z ∈ B we have distributivity, that is z · (x+ y) = z · x+ z · y.
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