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ABSTRACT 

The electric power grid is a complex, non-linear, non-stationary system 

comprising of thousands of components such as generators, transformers, transmission 

lines and advanced power electronics based control devices, and customer loads. The 

complexity of the grid has been further increased by the introduction of smart grid 

technologies. Smart grid technology adds to the traditional power grids advanced 

methods of communication, computation and control as well as increased use of 

renewable energy sources such as wind and solar farms and a higher penetration of plug-

in electric vehicles among others. The smart grid has resulted in much more distributed 

generation, bi-directional powerflows between customers and the grid, and the semi-

autonomous control of subsystems. Due to this added complexity of the grid and the need 

to maintain reliable, quality, efficient, economical, and environmentally friendly power 

supply, advanced monitoring and control technologies are needed for real-time operation 

of various systems that integrate into the transmission and distribution network. 

In this dissertation, the development of computational intelligence methods for 

on-line monitoring of voltage stability in a power system is presented. In order to carry 

out on-line assessment of voltage stability, data from Phasor Measurement Units (PMUs) 

is utilized. An intelligent algorithm for optimal location of PMUs for voltage stability 

monitoring is developed. PMU information is used for estimation of voltage stability load 

index in a power system with plug-in electric vehicle and wind farm included. The 

estimated voltage stability index is applied in the development of an adaptive dynamic 

programming based optimal secondary voltage controller to coordinate the reactive 

power capability of two FACTS devices. 
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1. INTRODUCTION 

1.1. BACKGROUND 

 

The electric power grid is a highly complex, non-linear, non-stationary system 

consisting of different components that are spatially distributed over hundreds of miles or 

even more in some cases. Since the advent of the electric grid over a century ago, there 

have not been many changes in the way the system has been operated. Recently however, 

developments in Smart grid technologies hope to make the grid ultimately as flexible as 

the internet. The term “energy internet” has been used to describe the smart grid. The 

main changes involved with making the grid smart is the implementation of cyber 

technologies to the grid. Cyber-physical systems refer to the tight coupling between 

computational and physical resources [1, 2]. Developments in information technology 

will enable exchange of information between the main domains of the smart grid to 

enable intelligent decisions by computing applications so that the system is operated in a 

more energy efficient, environmentally friendly, reliable and cost effective manner. The 

smart grid proposes to increase the use of renewable energy sources, and more plug-in 

electric vehicles, thus contributing to reduction on the dependence on oil and reduced 

emissions [3]. However, these changes have resulted in not only new opportunities but 

challenges for modeling and control of the smart grid. Most smart grid technologies have 

added to the complexity and non-linearity of the grid.  In order to assure reliability and 

power quality of the 21
st
 century, new and advanced intelligence based methods will be 

required for monitoring and control of the smart grid.  

Measurement based intelligent methods of monitoring developed based on phasor 

measurement units and other fast communication devices, and new techniques based on 

computational intelligence are very attractive for improved stability control and have 

much potential to realize a truly smart grid. Measurements of system states in 

transmission system such as bus voltage magnitudes and angles can be obtained in real-

time using phasor Measurement Units (PMUs), and facilitate implementation of control 

strategies using Wide Area Control Systems [4]. The bi-directional powerflows between 

customers and the distribution network provide means for rapid control of voltage in the 

distribution network. Information exchange with the customer through smart meters 
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empowers customers with the ability to participate in electricity markets and thus pose a 

different challenge during peak demands when the system is more prone to experience 

instability. In this study intelligent techniques have been developed for monitoring 

voltage stability in the smart grid.  The study considers the optimal placement of phasor 

measurement units for complete system observation for voltage stability monitoring and 

control. The information captured with PMUs is used for computing a voltage stability 

index.   

 

1.2. RESEARCH OBJECTIVES 

 

The specific objectives of this dissertation are: 

 Develop an intelligent approach for monitoring voltage stability load index. 

- Use computational intelligence methods (neural networks) to estimate the Voltage 

Stability Load Index in a power system using PMU measurements 

- Evaluate the performance of the VSLI monitoring technique for islanded power 

systems. 

 Apply the VSLI technique for monitoring voltage stability in a power system with 

including wind farm and FACTS devices. 

- Study the effect of SmartParks charging and discharging modes on the voltage 

stability of the smart grid. 

- Demonstrate the scalability of the VSLI approach for monitoring voltage stability 

using echo state networks on the IEEE 14 bus, IEEE39 bus, and IEEE 68 bus test 

systems. 

 Development of an Adaptive Dynamic Programming controller for optimal 

voltage control in power system is presented. 

 

1.3. RESEARCH CONTRIBUTIONS 

 

The contributions in this dissertation are in four main areas: 

 Development of an intelligent technique for estimation Voltage Stability Load 

Index in a power system. 
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 Development of an algorithm for optimal PMU placement to ensure complete 

observability under normal and islanded operating conditions. 

 Demonstration of the scalability of the VSLI approach in voltage stability 

monitoring and its performance in a power system. 

 Development of adaptive dynamic controller based on VSLI information for 

voltage stability control in smart grids. 

 

1.4. ORGANIZATION OF THE DISSERTATION 

 

The work presented in this dissertation is organized in seven sections as follows: 

Section 2 is an introduction to voltage stability assessment and computational 

approaches. The impact of smart grid technologies on traditional power systems is 

discussed. Classical computation methods used for monitoring voltage stability are 

compared with computational approaches and the advantages of the later approaches are 

discussed. 

Section 3 presents the development of Voltage Stability Load Index and 

estimation using a multilayer perceptron. An application of the technique in a power 

system with plug-in electric vehicles is discussed. A comparative study of the 

performance Echo State Networks (ESNs) and multilayer perceptron (MLP) for 

estimation of VSLI is presented is section 4. 

In Section 5 Phasor Measurement Unit (PMU) information is used to estimate 

voltage stability index in a power system during normal and islanding operating 

conditions. The assessment of the scalability of the computational approach developed in 

this dissertation as the power system becomes realistically sized is demonstrated.  

Finally section 6 presents the development an adaptive dynamic controller based 

computational methods for and adaptive dynamic control is developed and Section 7 is a 

summary of the main conclusions of the dissertation. 

 

1.5. SUMMARY 

 

Advancements in power systems due to the advent of smart grid technologies has 

brought about new opportunities for improved communications, computations, and 
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control techniques as well as challenges for control of voltage stability. Particularly the 

development of phasor measurement units makes it possible for voltage phasor 

information in the power system to be available at fast enough speeds for real-time 

applications of monitoring and control.  

This dissertation presents development work for a novel intelligent technique for 

monitoring of voltage stability in real-time using phasor measurement unit information. 

The dissertation also presents the application of the voltage stability load index for 

development of an adaptive dynamic controller for secondary voltage control. 
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2. BACKGROUND AND LITERATURE SURVEY 

2.1. INTRODUCTION 

 

The advent of smart grid technologies in modern power systems has brought 

about new opportunities for use of cleaner renewable energy sources on one hand, and 

also new monitoring and control requirements on the other. Increased penetration of 

renewable energy sources such as wind farms in the smart grid is desirable because of 

many reasons: Wind is an abundant, low cost energy source; it is clean and inexhaustible. 

However, wind turbines can cause voltage stability problems due to their reactive power 

consumption [5]. The use of more Plug-in Electric Vehicles (PEVs) has many benefits. 

Among other benefits PEVs can serve as a source of additional power during critical peak 

periods. Reference [6] presents a study that shows the potential for PEVs to help in 

improvement of system voltage stability in a similar way a STATCOM can provide 

reactive power support. Voltage stability monitoring in a system with these technologies 

is thus of great importance in order to ensure improved control and coordination with 

other reactive power devices in the system such as FACTs devices. This dissertation 

develops intelligent algorithms for monitoring and control of voltage stability in electric 

grids. 

IEEE Smart grid describes “Smart grid” to be the next generation electrical power 

system that is typified by the increased use of communications and information 

technology in the generation, delivery and consumption of electrical energy. The Smart 

grid will promote among other things customer participation through exchange of 

information that will allow consumers to make decisions on usage, and in some cases 

selling electricity to the grid in the most efficient and economic manner. Plug-in electric 

vehicles will be able to charge and discharge electrical energy with the aim of making use 

of the extra capacity of plug-in electric vehicles in improving the system reliability.  



 6 

A Smart grid or sometimes referred to as an intelligent grid, is an electric grid that 

attempts to intelligently respond to the behavior and actions of all electricity sources and 

loads connected to it, in a manner that enables the grid to deliver reliable, economic and 

sustainable electric services. According to the Energy Independence and Security Act of 

2007, a smart grid must: 

 Have a self-healing capability 

 Be fault tolerant by resisting attacks 

 Allow the integration of a wide range of energy generation and storage options 

including plug-in electric vehicles 

 Allow for dynamic optimization of grid operations and resources 

  Allow for incorporation of demand response, demand-side resources and energy-

efficient resources 

 Allow electricity clients to actively participate in the grid operations by providing 

timely information and control options 

 Be more environmentally responsive through reduction of emissions 

 Improve reliability, power quality, security and efficiency of electric 

infrastructure. 

The above list entails that in order for the electric grid to be truly a Smart grid, 

intelligence at various levels both distributed and coordinated is inevitable in facilitating 

processing of field data, fast and adaptable control of power system elements. 

The increased penetration of renewable sources of energy and use of more plug-in 

electric vehicles necessitates the need for coordinating these energy sources with existing 

traditional energy sources so as to achieve optimal use of infrastructure and ensure higher 

reliability. Plug-in electric vehicles coordinated with wind farms can act as a sources of 

improving performance of wind farms. Coordination of plug-in electric vehicles with 

existing Flexible AC Transmission devices can result in improved supply of reactive 

power and thus better voltage control [7]. During peak loads plug-in electric vehicles in 

the discharge mode can help stabilize the power grid thus improving reliability and self-

healing capabilities of the grid. 
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2.2. VOLTAGE STABILITY AND ASSESSMENT 

 

Voltage Stability can be defined as the ability of the power system to maintain 

acceptable levels of voltage at all system buses during normal operation and regain an 

acceptable operating point after being subjected to a disturbance. Voltage stability is 

classified as “small signal” voltage stability or “large signal” or transient voltage stability 

depending on the nature of system disturbance being considered. Small signal voltage 

stability refers to the system remaining voltage stable following relatively small changes 

in operating conditions such as the natural increase in load demand, or change in power 

output of a wind farm, whereas large signal voltage stability considers contingencies that 

result in major events taking place in the system such as loss of a transmission line or 

generating unit [8,9]. In this dissertation both small signal and transient voltage stability 

have been studied. 

The stability of a power system however is impacted by the new smart grid 

technologies that are introduced to traditional power grids. In this dissertation the impact 

of smart grid technologies on power system voltage stability has been considered. In 

Figure 2.1 key aspects of the smart grid that play important roles in voltage stability of a 

power system are depicted [7]. 

Renewable energy sources and energy storage devices have a great impact on the 

voltage stability of the power system. References [10-13] have investigated the impacts 

of renewable sources namely, solar farms and wind farms on system stability. The 

intermittent nature of renewable sources cause voltage fluctuations in the system and may 

result in power oscillations. Smart grid technologies offer new solutions for monitoring 

and controlling the grid’s transmission network. Phasor Measurement Units are capable 

of taking measured samples of voltage and current, that are time synchronized via global 

positioning system to the Universal Time, in as many as sixty time frames per second, 

giving a snapshot of the smart grid in real time [14]. Through smart grid communication 

technologies measurements are obtained and made available much quicker than in 

traditional power systems, and thus the dynamics of the system can be observed and  
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Fig. 2.1 Power System Voltage Stability in a Smart Grid Environment 

 

controlled in timely manner and with high precision. Voltage Stability phenomena in a 

smart grid can occur in time frames ranging from a few seconds to minutes thus, with 

smart grid technologies offering very fast measurements the both voltage stability 

monitoring and control can be enhanced in the power system [15,16]. 

Smart grid technologies offer new means of controlling the transmission system 

in an intelligent manner [4]. By using advanced intelligent controllers such as Adaptive 

Programming based controllers, the ability of the system to maintain voltage stability is 

enhanced and the system can be operated with much greater voltage stability margin. The 

combination of communication and computation techniques offers the smart grid better 

chances of maintaining system voltage stability during normal operations or during 

transient conditions. This offers an automated way of monitoring and controlling the grid. 

In events of severe disturbances computational techniques utilizing available system 

measurements can be used to route power from other sources [7]. The amount of reactive 

power available in the network can be rapidly provided from available sources as well as 
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reducing on reactive power demand so as to limit the effects of a voltage stability 

incidence. This is referred to as the self-healing capability of the smart grid. 

Finally voltage stability of the power system will be greatly influenced by plug-in 

electric vehicles that will help in balancing the energy on the grid by serving as 

distributed sources of stored energy, this concept is referred to as “vehicle to grid” 

(V2G). Reference [6] shows that plug-in electric vehicles connected to the grid can act as 

a virtual STATCOM and thereby contribute to enhancing of system voltage stability. 

During critical peak periods, the energy stored in plug-in electric vehicles is injected back 

into the grid thus averting voltage instability. By carefully coordinating plug-in electric 

vehicles with existing reactive power sources, the size and amounts of expensive FACTs 

devices needed in the system can be reduced and thus providing a more cost effective 

means of maintaining voltage stability. 

 

 2.3. PRIMARY VOLTAGE CONTROL 

 

Primary Voltage Control (PVC) refers to the control of voltage at a local bus 

using a controller installed at that bus. Examples of primary voltage control in power 

systems are Automatic Voltage Regulators (AVRs) installed at the synchronous machines 

to control the terminal voltage of the generator at a specified set point. Generally PI 

regulators that use measured terminal voltage of the machine as the feedback signal to 

regulate the generator field voltage are used for primary voltage control. Figure 2.2 

shows a PVC loop for a synchronous generator for the IEEE 68 bus system [17-19]. 

 

 
 

Fig. 2.2 Primary voltage control: Generator AVR system with a PI controller. 
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local bus. Flexible AC Devices such as Static Var Compensators (SVCs) and Static 

Synchronous Compensators (STATCOM) installed in the distribution and transmission 

systems are also used for control of voltage at the substation bus at which these devices 

are installed [20]. 

 

2.4. SECONDARY VOLTAGE 

 

While primary voltage control focuses on control of voltage at the bus at which 

the control equipment such as an AVR, LTC, SVC nor STATCOM is installed, 

secondary voltage control aims to control the voltage profile of an area or region of the 

power system. Feedback voltage signals not only from the local bus, but also from buses 

in the area that are remote to the voltage control device. Such remote buses that are 

controlled by a device located remotely are referred to as pilot buses. Thus secondary 

voltage control allows coordinating of reactive power resources to control the voltage 

profile of an area. The use of a FACTs device for secondary voltage control is shown in 

Figure 2.3 [21-22]. In Figure 2.3, measurement of voltage magnitudes and angles at buses 

35, 39, and 50 are used to provide auxiliary voltage control signals for both STATCOMs. 

  

 

Fig. 2.3 Power System Secondary Voltage Control with a FACTs device 
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Secondary voltage control also allows power system equipment in the area to operate at 

their maximum efficiencies, since reactive power resources are better utilized and the 

voltage profile of the area is improved. 

 

2.5. POWER SYSTEM ISLANDING 

 

Power system islanding entails the separation of the power system into smaller 

groups of synchronous generators and buses operating at reduced capacity. In the 

controlled self-healing islanding approach the aim is to separate the system into groups of 

coherent machines and buses that avoids system-wide catastrophic failure events [23]. 

Controlled islanding can result in significant benefit to the corrective actions that follow 

system islanding. The islands are determined in advance using off-line studies and are 

assumed to be independent of the size of the disturbance. Following islanding, optimal 

power flow can be used to obtain generation-load balance in each of the resulting islands. 

The islands with excessive generation compared to the load usually will curtail 

generation in order to match the total generation within the Island with the demand. On 

the other hand the islands with higher demand that the available generation go through 

the process of load shedding in a controlled manner, starting with the least critical loads 

until generation-load criteria is met [24-26 ]. Figure 2.4 illustrates the case of the IEEE68 

bus system divided into five islands. 

 

 
Fig. 2.4 IEEE 68 bus power system divided into five islands 
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2.6. PHASOR MEASUREMENT UNITS AND OPTIMAL PLACEMENT 

 

New smart grid technologies for on-line measurement of the system state, known 

as Wide Area Monitoring Systems implemented using Phasor Measurement Units 

(PMUs) are used to capture the snap shot of the state of the entire power system system 

in the time frame of a few milliseconds [6-7].  

Historically, power system state estimation algorithms used measurements of line 

flows, both active and reactive power (P and Q), to estimate the bus voltage angles (θ in 

radians) and magnitudes (V in per unit). The measurements were unfortunately not time 

synchronized, and compromises were made in estimating system sate from the various 

power flow measurements. The measurements of Supervisory Control and Data 

Acquisition (SCADA) system composed of remote terminal units were used for obtaining 

system state. Data acquisition in this case took too long, and in most cases the state of the 

system had already changed before the algorithm computed the estimated system state of 

bus voltages and angles [7]. The advent of phasor measurement units has made it possible 

for direct states to be obtained as measurements at a sampling rate in the order of a few 

microseconds. 

In the smart grid the transmission network, powerflow, and voltage control 

strategies make use of the communication and control devices such as Wide Area 

Monitoring Systems (WAMS), PMUs, and Wide Area Monitoring Systems (WACS) [9]. 

Electrical flow between the distribution and customer loads can be bi-directional as 

opposed to the general practice of one direction flow in traditional power networks. The 

cyber domain of the smart grid consist of communications which have increasingly less 

latency, and this speed of communication has a great impact on system stability. 

Smart grid technologies can influence the system stability in many ways, for 

example with improvement communication achieved with PMUs, accurate actual 

measurements of the system are available at control centers in a very short time frame of  

few milliseconds for decision making to avert potentially unstable situations. Intelligence 

based controllers acting on the measurements can provide control actions fast enough to 

prevent instability. The types of actions might be isolating a section of the system that is 
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under an emergency, through the process of defensive islanding thus preventing system-

wide black out. Actions of smart grid actors and applications that affect voltage stability 

are the direct measurements of voltage phasor measurements using PMUs that enable 

real-time monitoring and control. Feedback control using the output of computing 

domain of the smart grid results in faster control actions such as adjusting the reference 

of reactive power support devices or control of SmartPark converters that allows the 

SmartPark to operate as a virtual STATCOM [6].  

Optimal PMU location for a given application is the process of determining the 

smallest number of PMUs and their locations in the power system in such a manner that 

the system is completely observable. Optimal PMU placement aims to use the smallest 

number of PMUs for a given application without sacrificing critical information, ensuring 

power system observability, increasing measurement redundancy, monitoring voltage 

stability, and increasing the state estimator accuracy among other applications.  

Several techniques for optimal PMU placement have been studied and reported in 

the literature. Among the algorithms that have been used for optimal PMU locations are: 

the bisecting search method, simulated annealing, integer programming, and the genetic 

algorithm [27]. 

 

2.7. COMPUTATIONAL APPROACHES  

2.7.1. Classical Computational Approaches. Classical computation methods 

employed for voltage stability analysis can be classified into two main approaches: static 

analysis methods and time domain methods. The former methods assume that the 

problem of voltage stability can be treated as a static phenomenon; such methods have 

been used in identifying voltage-weak areas and to measure proximity to instability [15, 

28]. On the other hand, time domain simulations, in which appropriate modeling is 

included, capture the actual events and their chronology that lead to instability. 

References [29, 30] review the main methods that are used for voltage stability analysis 

in traditional power systems. The references also describe the use of PV and QV curves 

plotted from load flows by varying a parameter for demand and solving the load flow 

equations for values of P, Q and V. Such P-V and Q-V curves can provide insight into the 

distance from the stability limit for a given operating point.  Some drawbacks of using P-
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V and Q-V curves for voltage stability analysis are that the method generally requires 

executing a large number of load flows, which is thus time consuming, and P-V and Q-V 

curves do not readily provide information useful in gaining insight into causes of stability 

problems. Voltage stability analysis using PV and QV curves is illustrated in Figure 2.5 

and 2.6 respectively. 

 

 
Fig. 2.5 PV curve at a load bus 

 
Fig. 2.6 QV curve at a load bus 
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In addition, the procedure focuses on stressing individual buses independently, 

which may result in unrealistically distorting the stability information of the system [28]. 

The main draw-backs of the forgoing computation methods to meet the demands of a 

power system are time requirements for analysis. Static methods based on load flow 

analysis are time consuming and therefore have limitations for real-time application. The 

methods also really on static models of the power system at specified operating points. 

Time domain simulations on the other hand require detailed mathematical models of the 

power system, and thus are computationally burdensome if the voltage stability of the 

power system is to be accurately analyzed. 

Traditional methods of modeling and control, and optimization of power systems 

are in many cases based on linear, static models of power systems. PI controllers tuned to 

operate around a specified point have satisfactory performance around the specified 

operating points. When system conditions change the performance of such linear 

controllers degrades. Intelligent and adaptable methods however, have the potential to 

provide optimal performance in dynamical environments. Computational methods 

making use of real-time measurements can be effectively used in monitoring system 

operation conditions, predicting system variables and performing of control functions that 

ensure an efficient and robust system. 

2.7.2. Classical Neural Networks. In this dissertation novel measurement based 

intelligent approaches for monitoring (using echo state networks) and adaptive control for 

power system voltage stability are presented. Computational intelligence is the study of 

adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing 

environments. These mechanisms include paradigms that exhibit an ability to learn or 

adapt to new situations, to generalize, abstract, discover and associate [31]. The main 

computational Intelligence paradigms include neural networks, swarm intelligence, 

evolutionary computing, immune systems and fuzzy systems.  

A neural network has been defined as a massively parallel distributed processor 

made of simple processing units, and has the propensity for acquiring experiential 

knowledge and making it available for use. Neural networks aim mimic biological 

neurons and resemble the human brain in the three distinct aspects: 

 Acquiring knowledge from the environment through a learning process – training, 
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 Interneuron connection strengths known as synaptic weights, are used to store 

acquired knowledge and, 

 Capable of solving a problem using the knowledge acquired. This process is 

referred to as inference.  

A wide range of neural network architectures have been developed for a variety of 

applications and purposes. Although the different architectures of neural networks may 

differ in their structure, implementation, and principle of operation, they all share the 

common features discussed above. Moreover, connection weights (synaptic strengths) of 

neural networks are adaptive, meaning that the synaptic strengths change during the 

learning process. Since the weights associated with any of the neurons in the structure 

can be adapted, neural networks are said to have distributed memory. 

In this dissertation two kind of neural networks have been used for monitoring 

VSLI in a power system. The echo state neural network (ESN) is a recurrent neural 

network and consists of a rich dynamic reservoir of neurons that are sparsely connected. 

Figure 2.7 shows a diagram of the general structure of a multilayer perceptron consisting 

of input layer and hidden layer and output layer neurons.  

 

 

 
Fig.2.7. The general structure of a multilayer perceptron with n neurons in the   

input    layer, m neurons in the hidden layer and r output layer neurons 
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The multilayer perceptron, which is a feedfoward neural network, which has been 

successfully applied for Dynamic Security Assessment (DSA) and FACTs devices 

controller implementation [70]. 

The structure of an Echo State Network (recurrent neural networks) with a rich 

dynamics reservoir is shown in Figure 2.8. The ESN has memory since it has feedback 

between the output and dynamic reservoir. 

 

    
Fig.2.8. The general structure of an Echo State Network with K inputs, N units in 

the dynamic reservoir, and L output units 
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reward or punishment depending on whether the agent is successful or not. Problems of 

reinforcement learning can be solved using two main strategies namely search in the 

space of behaviors to find the best behavior performing well in the environment or 

statistical techniques and dynamic programming methods to estimate the utility of taking 

actions in states of the plant.  

Dynamic programming is an approach developed to solve sequential, or multi-

stage, decision problems. Dynamic programming relies on the principles of optimality 

given by Bellman: 

“An optimal policy has the property that whatever the initial state and initial 

decisions the remaining decisions must be optimal with respect to the state resulting from 

the first decision.” 

The family of adaptive critic designs was proposed by Werbos in 1977 consists of 

three main types of adaptive critic designs varying in both complexity and power. The 

three main families of ACDs are: Heuristic Dynamic Programming (HDP), Dual 

Heuristic Programming (DHP), or Global Dual Heuristic Programming (GDHDP). In 

HDP the ACD learns to approximate the cost-to-go function J, while in the HDP family 

the derivative of the cost-to-go is approximated. The GDHDP adaptive critic design 

approximates both the cost-to-go and its derivative. The Action Dependent forms of each 

type of ACD have no model of reality between the action network and the critic network 

[33,35].  

Adaptive Critic Designs have been demonstrated successfully for a number of 

challenging non-linear control problems. The potential application areas include among 

others: power system control and optimization, FACTS devices control, and distributed 

parameter system (DPS) applications such as chemical reactor control, ecology 

management, and flight control. 

The Action Dependent Heuristic Dynamic Programming (ADHDP) is used in this 

dissertation for secondary voltage control using STATCOMs. The design of the ADHDP 

controller used in this dissertation is shown in Figure 2.9. The flowcharts used in training 

the ADHDP based controller in this dissertation are shown in Figures 2.10 and 2.11.  
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Fig.2.9. Structure of the ADHDP based secondary voltage controller 

 

2.8. DFIG WINDFARMS 

 

Doubly Fed-Induction Generator (DFIG) wind turbines are the most commonly 

used wind turbine generator. DFIGs consist of a rotor supplied with three symmetrical 

a.c. power at variable frequency and a stator that is supplied at the power system 

frequency (typically 60Hz and 50Hz a.c. power supply) [28].  

Two back to back convertors are used to supply the rotor, with the rotor side 

convertor used for controlling the speed while the grid side convertor is used to keep the 

D.C. voltage constant. The advantages of using DFIG wind turbines as compared with 

variable speed wind turbines is that only a fraction of the power passes through the 

converters (typically 30 %) thus lower rated and thus cheaper convertors can be used in 

the construction of the wind turbine. During low system voltages DFIGs can draw a large 

amount of reactive power and further increase the possibility of voltage instability [29, 

30]. 
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Fig 2.10 ADHDP training flowchart showing the alternate critic and actor training 

cycles. 
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Fig 2.11 ADHDP training flowchart showing the critic and training. 

 

 

 

 

 

 



 22 

2.9. SMARTPARKS 

 

Smartparks consistsing of plug-in Electric Vehicles (PEVs) in the power systems 

have resulted in new challenges for both analysis and control of system stability [58,59]. 

The amount of PEV load at any instant of time depends on the number of vehicles 

connected to the grid and state of charge of the battery. PEVs can both provide active 

power to the system when the battery is discharged or draw power from the system 

during charging operation. When PEVs discharge energy into the grid, they serve as an 

additional source of power and hence help to improve the stability margin of the grid. 

Particularly additional reactive power support can be realized from PEVs that improves 

voltage stability of the system [42]. 



 

 

3. VOLTAGE STABILITY LOAD INDEX AND ESTIMATION USING 

MLP 

3.1. INTRODUCTION 

 

Power system voltage stability has become an issue of great concern for both 

power system planning and operation in recent years, as a result of a number of major 

black outs that have been experienced in many countries due to voltage stability problems 

[12, 18]. This has been mainly due to power systems being operated closer to their 

stability limits because of increased demand for electricity [12]. Many studies have been 

carried out to determine voltage stability indices in order to take necessary action to 

preclude eminent instability and thereby improving voltage stability in a power system. 

References [25, 26] present comparative studies and analysis of six different voltage 

stability indices, while [27] introduces the voltage stability L-index to be a simple but 

effective means of measuring the distance of a power system to its stability limit. The 

disadvantage of using the L-index, is that its calculation depends upon the no-load 

voltage phasor at the load bus for a given topology of the system. Since the no-load 

voltage is dependent upon the system topology and operating point, it varies as the 

system topology or operating point changes. In practice it is difficult to obtain no-load 

voltage at a bus. The proposed Multilayer Perceptron (MLP) approach capable of 

estimating the L-index without directly obtaining the no-load voltage overcomes this 

limitation and facilitates on-line determination and use of the L-index.  

The electric power grid is rapidly growing and demanding new technologies for 

efficient and rapid control in order to ensure reliable and secure power networks [6]. 

Reference [28] carries out a study of the impact of Plug-in Electric Vehicles (PEVs) 

parking lots (SmartParks) on the stability of a power system. In particular, the study 

shows voltage characteristics following changes in power demand of PEVs. When PEVs 

discharge into the power network, system voltage support is enhanced, while charging 

action is accompanied by voltage drop in the load area.  The method for estimation of 

voltage stability L-index developed in this study is applied for monitoring voltage 

stability in a power system with SmartParks included. 
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3.2. FORMULATION OF VSLI 

 

The voltage stability load index used in this dissertation is calculated from PMU 

measurements of voltage magnitudes and angles at load buses. PMUs can provide real-

time measurements of voltage phasors and incident current phasors. This information can 

be adequately used to detect voltage stability margin directly from the measurements and 

in real-time [40, 41]. The minimum number of PMUs that make the system observable 

are placed at pre-determined buses to take direct measurements while voltage phasor 

information at the remaining buses is calculated from these measurements and known 

system transmission line impedances.  

The mathematical formulation of VSLI used in this dissertation is presented in 

Appendix A [42]. The voltage stability load index used is derived from voltage equations 

of the Thevenin equivalent representation of the system at the load bus (Figure 3.1).  The 

voltage stability load index in terms of voltage phasors at the load bus can be derived as 

the following: 

 

                                           (1) 

 

 

 

 

Fig.3.1. Thevenin equivalent representation at a load bus 
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Where V0 and VL are the no-load and load voltage magnitudes at the load bus and 

θ0 and θL are the no-load and load voltage phase angle measurements respectively. The 

value of voltage stability load index varies from zero at no-load to one at the point of 

voltage stability limit or collapse. The point of voltage stability limit corresponding to 

VSLI value of one is the point at which the load factor is maximum (Figure. 3.2). 

 

              

 

                                     
 

Fig. 3.2. P-V curve at a load bus showing VSLI of one at the maximum load factor. 

 

3.3. VOLTAGE STABILITY LOAD INDEX ESTIMATION 

 

Reference [42] presents the formulation of a voltage stability load index at a load 

bus using voltage equations (appendix A). The technique uses measurements of voltage 

phasors and no-load voltage at the bus to calculate the voltage stability L-index. The 

complete mathematical derivation of the Voltage Stability L-index in (1) is presented in 

Appendix A. The index gives the distance of the bus to the voltage stability limit. 
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3.4. VSLI ESTIMATION USING A MULTILAYER PERCEPTRON 

 

A feed forward multilayer perceptron neural network can be used to estimate 

voltage stability L-index at a bus. Equations (11) to (15) in Appendix A show that voltage 

stability L-index is a function of real power (P), reactive power (Q), and voltage 

magnitude (V) and phase (θ) at the bus. The quantities are selected as input variables in 

the estimation of L-index using the MLP neural network as shown in Figure 3.3. The 

MLP consists of four neurons in the input layer, 35 neurons in the hidden layer and a 

single neuron in the output layer.  

The inputs to the neural network are active and reactive power (P, Q) and voltage 

magnitude and angle (V, θ) measurements at the concerned load bus. The output of the 

neural network is the estimated voltage stability L-index at the load bus. Activation 

functions in the input and output layers are linear activation functions while the hidden 

layer uses sigmoidal activation functions. 

 

 
Figure 3.3. Multilayer perceptron structure for L-index estimation. 
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The process followed in development of the MLP, described in section 2, 

involved two phases shown in a flowchart in Figure 3.4. In the development phase, 

training data was obtained, with no plug-in electric vehicles connected. Values of real 

power and reactive power at non generator buses as well as voltages at the load buses 

were taken with the load at bus 7 and bus 10 varied simultaneously from 0.8 to 1.2 load 

factor in small steps to obtain one hundred sets of data. Voltages at bus 7 and bus 10 were 

used to calculate voltage stability L-indices for bus 7 and 10 respectively were used in the 

MLP training process as target values for corresponding sets of real and reactive power. 

Sixty input output patterns were selected at random and used as training data. Particle 

swarm optimization training algorithm [32] was used to train the multilayer peceptron. 

Training was carried out for the number of iterations that resulted in acceptable mean 

square error. Training data input output sets used are shown in appendix B. 

 

 

Figure 3.4. Development and operation phases for VSLI. 

 

In the second phase, the operation phase, the trained MLP was applied in the 
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successfully training and validating the MLP neural network was used for estimation of 

voltage stability L-index of the test system with Smart Parks included. Evaluation of L-

index was carried out with all five transmission lines in the system available, and then the 

contingency of the outage of one transmission line was also evaluated. 

 

3.5. RESULTS AND DISCUSSION 

 

Figure 3.5 shows the 10 bus voltage stability test system with plug-in electric 

vehicle parking lot models included. The power system consists of two generators, G1 

and G2 supplying the load area through five long (200km) parallel transmission lines, and 

one local generator, G3 providing voltage support in the load area. Bus 10 is a voltage 

controlled bus using an on-load transformer tap changer.  System parameters and loading 

conditions of the system used in this dissertation are those given in Appendix E of 

reference [9]. The original system with 10 buses was modified by adding two SmartPark 

buses 11 and 12. 

 
Figure 3.5 Power System with plug-in electric vehicle parking lots (SmartParks). 

 

4

Infinite Bus

G1

13.8 kV

1

500 kV

G2

13.8 kV

2

G3

13.8 kV

3

8
5

500 kV500 kV

11
9

Residential load

115kV

115 kV

6

200 km transmission lines

7

3000MW, 

1800MVAr

13.8  kV

PL7 PL8 PL9 PL10 PL11 PL12

SmartPark bus  12

2200MVA

5000MVA 1600MVA

13.8kV

P
L

1
P

L
2

P
L

3
P

L
4

P
L

5
P

L
6

3000MW 

S
m

ar
tP

ar
k

b
u

s 
1

3

Industrial

load

10

12



 29 

The nominal (industrial) load at bus 7, load is 3000MW, 1800MVAr modeled as a 

constant power load, while load (residential) at bus 10 is 3000MW modeled as constant 

power load. Plug-in electric vehicle parking lots represent six SmartParks at bus 11 and 

12 with capacity +/-180 MW each. Bus 7 is a load bus located in an industrial area and 

bus 10 is a load bus in a residential area. 

As described in the preceding section, the process of developing and 

implementing an MLP for estimation of voltage stability L-index involved two phases; 

development phase and the operation phase. In the development phase the MLP is trained 

for accurate estimation of voltage L-index. Performance of the MLP is then validated 

using patterns of input output data sets to test its performance. 

The first set of results for the development phase that show that the MLP was 

successfully trained for estimating voltage index to a high degree of accuracy. On-line 

application of the trained MLP is then carried out by applying the MLP to estimate the 

voltage stability L-index of the power system with SmartParks. Voltage index target and 

MLP output values used in the testing phase are shown in Tables 3.1 and 3.2. The table 

shows that the MLP output values are very close to the target values at both bus 7 and 10. 

Figures 3.6 and 3.7 show plots of bus voltage and L-index against real power and 

reactive power at bus 7. In Fig. 3.6 increasing load demand at the load buses results in 

increasing voltage L-index and thus approaching the limit. Voltage decreases with 

increasing load. After 3200 MW bus 10 is the critical bus. Testing results have validated 

the MLP in accurately estimating voltage stability L-index of the power system. MSE 

obtained using an MLP: 8.75 × 10
-5

.  

The trained neural network is used to estimate the voltage stability L-index of the 

10 bus test system with SmartParks included at bus 11 and 12. In Figures 3.8 and 3.9, 

negative values of power represent charging of electric vehicles where real power flow is 

from the grid to the SmartPark and positive values of power represent discharging action 

where power flow is from the SmartPark to the grid. Plots of the voltage stability L-index 

output of the MLP for a 24 hour period at bus 7 and bus 10 are shown in Figure 3.10 and 

3.11 respectively. 
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Table 3.1.  Bus 7 Load Flow and Calculated and Estimated Voltage Stability L-

index 

Bus 7 Voltage  
P(MW) Q(MVar) L-index (Calculated) L-index (estimated) 

(pu) (deg) 

1.0470 -27.49 2960 -197.4 0.6311 0.6251 

1.0444 -27.71 2971 -180.7 0.6381 0.6319 

1.0417 -27.93 2982 -164.2 0.6450 0.6388 

1.0365 -28.36 3004 -131.6 0.6587 0.6531 

1.0339 -28.57 3014 -115.6 0.6654 0.6603 

1.0313 -28.78 3025 -99.66 0.6720 0.6677 

1.0287 -28.99 3035 -83.92 0.6786 0.6750 

1.0235 -29.41 3055 -52.91 0.6915 0.6896 

1.0209 -29.61 3064 -37.63 0.6978 0.6967 

1.0183 -29.82 3074 -22.51 0.7041 0.7039 

1.0157 -30.02 3083 -7.536 0.7103 0.7108 

1.0106 -30.42 3101 21.95 0.7224 0.7242 

1.0081 -30.62 3110 36.48 0.7284 0.7308 

1.0055 -30.81 3118 50.85 0.7342 0.7370 

1.0030 -31 3126 65.08 0.7399 0.7431 

1.0004 -31.2 3135 79.16 0.7457 0.7492 

0.9979 -31.39 3143 93.1 0.7513 0.7549 

0.9954 -31.58 3151 106.9 0.7568 0.7605 

0.9929 -31.76 3158 120.5 0.7622 0.7658 

0.9903 -31.95 3166 134.1 0.7676 0.7711 

0.9878 -32.14 3173 147.4 0.7730 0.7762 

0.9853 -32.32 3181 160.7 0.7781 0.7811 

0.9829 -32.5 3188 173.8 0.7833 0.7857 

0.9804 -32.68 3195 186.7 0.7883 0.7903 

0.9779 -32.86 3202 199.6 0.7933 0.7946 

 

Two different operating conditions of the power system have been considered: the 

first case considers the system fully operational with no fault. In the second case the 

contingency with one of the five parallel transmission lines out of service is considered. 

The MLP estimated L-index outputs for these two cases are shown in Figures 3.8 and 3.9. 

At both bus 7 and bus 10, when the SmartParks are discharging, i.e. positive power, the 

voltage indices at the buses are lower. 
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Table 3.2.  Bus 10 Load Flow and Calculated and Estimated Voltage Stability L-

index 

Bus 10 Voltage  
P(MW) Q(MVar) L-index (Calculated) L-index (estimated) 

(pu) (deg) 

1.0530 -33.81 2980 -963.9 0.5716 0.5704 

1.0503 -34.08 2991 -959 0.5819 0.5810 

1.0450 -34.62 3013 -949.3 0.6022 0.6021 

1.0423 -34.89 3024 -944.4 0.6122 0.6124 

1.0396 -35.15 3035 -939.6 0.6218 0.6221 

1.0343 -35.68 3055 -930 0.6411 0.6417 

1.0317 -35.94 3065 -925.3 0.6504 0.6511 

1.0290 -36.19 3074 -920.5 0.6595 0.6603 

1.0237 -36.7 3093 -911.1 0.6774 0.6784 

1.0211 -36.96 3102 -906.4 0.6863 0.6873 

1.0184 -37.21 3111 -901.8 0.6949 0.6959 

1.0158 -37.46 3120 -897.1 0.7034 0.7045 

1.0105 -37.95 3137 -887.9 0.7199 0.7212 

1.0079 -38.19 3145 -883.3 0.7279 0.7292 

1.0053 -38.44 3153 -878.7 0.7359 0.7374 

1.0027 -38.68 3161 -874.2 0.7436 0.7452 

0.9975 -39.16 3176 -865.1 0.7588 0.7604 

0.9949 -39.39 3183 -860.7 0.7661 0.7675 

0.9923 -39.63 3190 -856.2 0.7733 0.7749 

0.9897 -39.86 3197 -851.8 0.7804 0.7817 

0.9846 -40.32 3210 -842.9 0.7941 0.7951 

0.9820 -40.55 3217 -838.6 0.8008 0.8016 

0.9794 -40.78 3223 -834.2 0.8073 0.8080 

0.9718 -41.45 3241 -821.3 0.8261 0.8255 

0.9693 -41.67 3246 -817 0.8321 0.8312 
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Figure 3.6. Plot of Bus voltage against real and reactive load for bus 7.

 

 

Figure 3.7. Plot of Bus voltage against real and reactive load for bus 10. 

 

This is when the SmartPark is providing power to the grid, hence helping to 

increase the system stability margin. The parking lot is supplying additional power to the 

system (generating). When the SmartPark is charging on the other hand, voltage stability 

index values are higher, indicating the system is less stable.  
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Figure 3.8. Smartpark power variation at bus 11. 

 

 

 

 

 

Figure 3.9. Smartpark power variation at bus 12. 
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the graphs of L-index corresponding to the system with all five transmission lines in 

service as lower L-index values than that corresponding to the system with one of the five 

transmission line out of service. 

 

 

 

Figure 3.10. Estimated voltage stability L-indices at bus 10 with Smartparks included 
 

 
 

Figure 3.11. Estimated voltage stability L-indices at bus 7 with Smartparks included 
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The presented neural network approach is independent of the no-load voltage at given 

load bus. Real power, reactive power and voltage at load bus are sufficient measurements 

to estimate the L-index. Results show that the MLP approach is able to estimate 

accurately the L-index even with changes in topology and operating conditions. 
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4. VSLI ESTIMATION USING ECHO STATE NETWORKS 

4.1. INTRODUCTION 

 

The development of an echo state network (ESN) for estimation of voltage 

stability index in a smart grid is presented. Assessment of the performance of the ESN 

neural networks in estimation of voltages stability load index (L-index) in a smart grid 

with plug-in electric vehicles has been made and comparison made with the performance 

of the MLP described in section 3.  

 

 4.2. DEVELOPMENT OF THE ESN FOR VSI ESTIMATION 

 

4.2.1. Echo State Networks. The general structure of an Echo State Network 

(ESN) is shown in Figure 4.1 below. The network consists of K input neurons, N neurons 

internal neurons and L output neurons. 

 

 

 
 

 

 

Fig.4.1. General Structure of an Echo State Network. 
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An Echo State network consisting of a Dynamic Reservoir (DR) with input, 

internal and feedback weight matrices (Win, W and Wback) respectively with the Echo 

State property was procured following the steps described in [31]. Ten input neural 

networks and two output neural networks with linear functions were used, while internal 

units consisted of sigmoid functions. Three cases were considered for 20, 50 and 100 

internal units. 

The untrained network was driven with the training data set consisting of real and 

reactive power values at five buses including load buses and three nearest buses as input 

data with the desired output data calculated L-index at bus 8 and bus 11. Internal states 

were calculated using equation 2. 

                                   

   (2) 

 

 

The network state x(n) and output d(n) were collected into a state collecting teacher 

matrix M and teacher collecting matrix T neglecting the first few term T allow for 

washout since the initial state x(0) and output d(0) are not defined and are both set to 

zero.  

 Output weights, W
out

 are computed by multiplying the pseudoinverse of the state 

collecting matrix M by the teacher forcing matrix T as given by the equation: 

  

                                                      (3) 

 

 Finally utilizing the trained output weight matrix and the DR the network is used 

for estimating the desired output when presented using equation (2) and (4): 

 

 

                 (4) 

 

The neural network used for estimating VSLI is a kind of recurrent neural 

network known as the echo state network. The ESN consisting of K input neurons, N 

internal neurons and L output neurons is shown in Figure 4.2.  The inputs are PMU 

measurements of voltage magnitude and phase angle at each bus equipped with a PMU. 
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An ESN consisting of a dynamic reservoir with input, internal and feedback weight 

matrices (Win and W) respectively with the echo state property was developed following 

the steps described in [32]. The ESN outputs are the estimated values of VSLI at each 

load bus. The input and output layer neurons have linear functions; while dynamic 

reservoir neurons have sigmoid functions. The untrained network was driven with the 

training data set consisting of PMU measurements of voltage magnitudes and phase 

angles at each bus equipped with a PMU. The target outputs are calculated VSLI at all 

load buses (Figure 4.2). The ESN internal states are calculated using (2).  

                                   

 

 

 

 

Fig. 4.2. Structure of ESN for VSLI estimation. 
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Figure 4.3. Development and operation phases for VSLI using an Echo State Network. 
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ensure variability of load, random values of load factor were used at each bus for each 

training set. Generator output was increased in proportion to the total system load 

increase. The load at each bus, PLi and generator output PGi are given by (10) and (11) 

respectively, and PL0i and PG0i are base case values of real power at load buses and 

generator buses, respectively.    

 

)λ*(PP iiLLi  10                                                       (10) 

 

)λ*(PP iiGGi  10                                                      (11) 

 

PMU measurements of voltage magnitudes and phase angles are obtained as input 

data for VSLI estimation for each load factor. A total of 250 inputs and output training 

data sets were obtained.  

The ESN structure developed for VSLI estimation in this dissertation is shown in 

Figure 4.4. The approach uses, m+1 number of ESNs where m is the number of islands in 

the system obtained using a defensive islanding method [49, 52]. Each ESN consists of a 

dynamic reservoir with input, internal and feedback weight matrices (W
in

, W, and W
out

) 

respectively with the echo state property was developed following the steps described in 

[53]. The output of the network is in position 1 (Figure 4.4) when the system is in the 

normal operating mode or position 2 during islanded system operation. The outputs of 

each ESN are estimated values of VSLI at load buses for whole system when switch is in 

position 1 or for each island when switch is in positions 2.  

The echo state network is used in this dissertation for estimating VSLI for the 

following reasons: Firstly, ESNs are recurrent neural networks with feedback connection 

between the readout units and the dynamic reservoir units; as such ESNs have memory 

and perform better in dynamic nonlinear systems. Secondly, the readout weights of the 

ESN NN are calculated rather that trained iteratively, thus the time needed to obtain 

readout weights is much smaller when compared to time taken for training a Feedforward 

NN such as an MLP.  
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Fig.4.4. Structure of ESN for VSLI estimation under normal and islanded 

operating conditions. 

 

4.3. TEST SYSTEM 
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lines, and one local generator, G3 providing voltage support in the load area. Bus 11 is a 

voltage controlled bus using an on-load transformer tap changer. System parameters and 

loading conditions of the system used in this dissertation are those given in appendix E of 

reference [9]. 

The nominal load at bus 8, industrial load is 3000MW, 1800MVAr modeled as a 

constant power load, while load at bus 11, represents residential load at 3000MW 

modeled as constant power load. Plug-in electric vehicle parking lots represent six 

parking lots at each load bus with capacity +/-180 MW each. Bus 8 is a load bus located 

in an industrial area and bus 11 is a load bus in a residential area. 

 

 4.4. RESULTS AND DISCUSSION 

 

As described in the preceding section, the process of developing and 

implementing an ESN for estimation of voltage stability L-index involved the 

development phase and the operation phase. In the development phase the ESN NN is 

trained for accurate prediction of voltage L-index. The performance of the ESN in 

estimation of VSLI is then validated using randomly selected patterns of input output 

data sets different from the training data set. The first set of results for the development 

phase that show that the ESN NN is successfully trained for predicting voltage index to a 

high degree of accuracy. On-line application of the trained ESN is then done by applying 

the ESN to predicting voltage stability L-index of the power system with plug-in electric 

vehicles. Voltage index target and ESN output values used in the testing phase are shown 

in Table 4.1. The table shows that the ESN output values are very close to the target 

values at both bus 8 and 11. 

Plots of voltage stability L-index at bus 8 and 11 are shown in Figure 4.5 below. 

Figure 4.5 shows calculated and estimated voltage stability L-index for the case of the 

MLP and the ESN. The estimated L-index approximates the target L-index more closely 

in the case of the ESN than the MLP. The MSE obtained using the MLP was 8.75 x10
-5

, 

the MSE obtained with the ESN is 1.075 x 10
-9

.
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Fig.4.5. MLP and ESN for VSLI Estimation: VSLI Estimation is obtained using a 

multilayer perceptron and an ESN in order to compare the performance 

of the two neural networks in estimate the calculated VSLI target 

 

The trained neural network is applied to predicting of voltage stability L-index of 

the 11 bus test system with plug-in electric vehicles included at bus 8 and 11. Values of 

L-index are obtained over a period of 24 hours with both parking lots at bus 8 (located in 

an industrial area) and bus 11, located in a residential area. Graphs showing typical power 

demand in a 24 hour period for the two parking lots used in this dissertation are shown in 

Figures. 4.6 and 4.7.  Graphs of Figures 4.6 and 4.7 show that the performance of the 

ESN for estimating VSLI in the power system has higher accuracy in the MSE than that 

of the MLP. The graph of L-index estimated using the ESN closely matches the 

calculated L-index. The calculated MSE using the ESN is 2.018 x 10
-12

 while the MSE 

for the multilayer perceptron is 6.34 x 10
-4

. 
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        Table 4.1. Voltage Stability L-index Prediction at buses 8 and 11 

Target Output 

Bus 8 Bus  11 Bus 8 Bus  11 

0.5404 0.4047 0.5428 0.4075 

0.8001 0.5076 0.8021 0.5075 

0.7332 0.5042 0.7350 0.4989 

0.7575 0.5017 0.7562 0.5008 

0.6051 0.4818 0.6096 0.4734 

0.5765 0.4466 0.5765 0.4492 

0.7231 0.5025 0.7265 0.4969 

0.5765 0.4466 0.5765 0.4492 

0.7575 0.5017 0.7562 0.5008 

0.6465 0.4927 0.6457 0.4921 

0.7434 0.5064 0.7450 0.5013 

0.6580 0.4936 0.6532 0.4964 

0.6346 0.4768 0.6301 0.4784 

0.5702 0.4414 0.5714 0.4445 

0.5469 0.4127 0.5451 0.4195 

0.5702 0.4414 0.5714 0.4445 

0.5296 0.3913 0.5271 0.3892 

0.7750 0.5037 0.7746 0.5036 

0.7926 0.5073 0.7932 0.5074 

0.6269 0.4825 0.6273 0.4792 

0.5909 0.4670 0.5959 0.4618 

0.7678 0.5051 0.7677 0.5029 

0.6011 0.4788 0.6082 0.4690 

0.7926 0.5073 0.7932 0.5074 

0.5702 0.4414 0.5714 0.4445 

 

 

 4.5. SUMMARY 

 

The development of an Echo State Network (ESN) based approach for estimation 

of VSLI has been presented. Simulation results of application of the ESN approach to a 

standard 10 bus system have been presented. A comparative study of the performance of 

the ESN and MLP for the estimation voltage stability loads index in smart grid.            
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Fig. 4.6. Estimated voltage stability L-indices at bus 11  

 

 

 
Fig. 4.7. Estimated voltage stability L-indices at bus 8 

 

 

The development of the MLP and ESN and compared the accuracy in estimating 

voltage stability indices at two load buses has been presented. Simulation results have 

demonstrated the application of the neural network in predicting voltage stability index in 

a power system with parking lot electric vehicles. In this section results show that the 

trained ESN performs better than the MLP in the estimation voltage stability index. 
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5. ONLINE VOLTAGE STABILITY LOAD INDEX ESTIMATION 

BASED ON PMU MEASUREMENTS 

5.1. INTRODUCTION 

 

In this section the VSLI algorithm is implemented using synchrophasor 

measurements as input information for the neural network. Reference [47] introduces a 

method of using multilayer perceptrons to predict the voltage stability margin of a power 

system based on continuation power flow using synchrophasor measurements of voltage 

magnitudes and phase angles. In this dissertation synchropahsor measurements are used 

to estimate VSLI as measure of the closeness of each load bus to voltage instability.  The 

VSLI estimation approach is not dependent on the loadflow solution of the system that 

relies on having detailed system parameters and iterative calculations to determine the 

measure of instability. The voltage stability margin gives the distance of the power 

system to the critical load at which the system becomes voltage unstable in a specified 

load direction. However for local monitoring it is helpful to have voltage stability index 

at individual load buses in the system [48].  

The estimation of the VSLI is carried out by an Echo State Network (ESN). A 

real-time model of the IEEE 14-bus test system simulated using the Real-Time Digital 

Simulator (RTDS) has been used to investigate the ESN based approach. Phasor 

Measurement Units (PMUs) are placed at pre-determined buses that ensure that the 

system is fully observable for voltage stability monitoring. Placement of PMUs for 

voltage stability monitoring is done is such a way as to ensure that voltage phasors at all 

load buses are either direct measurements form PMUs or calculated at first level of 

observability. The method for optimal PMU placement developed in this study ensures 

that the power system is fully observable during normal operation and under islanded 

conditions. Reference [40] presents a technique for splitting the system into smaller 

islands followed by load shedding for the purpose of preventing wide spread system 

failure and black out. During these instances monitoring and control of voltage stability 

remain critical for the system to survive the disturbance.  

It is desired in a power system with smart grid technologies, that monitoring and 

control strategies to enable adaptation to different contingencies are implemented. In the 
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present study, the possibility of continuously monitoring VSLI of the system for normal 

operation and when the system is islanded is considered. The ESN based method that 

enables monitoring of VSLI during normal operating conditions and during islanding is 

presented. The primary contributions of this section are the following:  

 An intelligent algorithm for optimal PMU placement in power system to 

ensure complete observability during normal operating conditions and when 

the system is islanded is developed and implemented on three test systems. 

 Assessment of the scalability of the ESN based approach method using PMU 

information for monitoring voltage stability. The dissertation shows the 

performance of the technique as the system size is increased;   

 Demonstrates that the ESN based approach for VSLI estimation can be used 

during power system islanding; and,  

 Application of the new method for online voltage stability in a smart grid 

including wind generation and SmartParks. 

 

5.2. OPTIMAL PMU PLACEMENT 

 

Optimal placement of PMUs in power systems is done in a manner that ensures 

that all system bus voltages can be observed using the minimum possible number of 

PMUs. This is important from the economic and technical point of views. PMUs are used 

in power system for system monitoring, and state estimation that can facilitate on-line 

control and protection operations. However, during contingencies, the system may not be 

fully observable for example when measurements from one PMU are lost and there is not 

enough redundancy. Further, during emergencies, a power system may be operated in an 

islanded mode. In this case the system is separated into smaller islands at reduced load in 

order to avoid system wide failure or blackout. The algorithm for the optimal PMU 

placement that ensures that the system is fully observable during normal operating 

conditions and under conditions of islanding using the minimum number of PMUs is 

developed in this dissertation. Figure 5.1 shows the flowchart for optimal PMU 

placement using Genetic Algorithm (GA). Besides GA algorithm other methods are also 

applicable such as particle swarm optimization [50]. 
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Fig. 5.1. Flowchart for optimal PMU placement consideration islanding using GA. 
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PMUs is developed in this dissertation.  

The procedure for determining optimal PMU locations in a power system 

considering islanding can be summarized in the following steps: 

1. Obtain optimum PMU locations for normal operating conditions using GA. 

2. Split system into the desired set of islands and modify the system connectivity 

matrix. 

3. Use solution obtained in step 1 and test if islanded system (the islands are) is 

still observable. 

4. If islanded system is also observable, the solution in step 1 is the required 

solution. 

5. If islanded system is not observable with solution in step 1, identify buses not 

observed after islanding. 

6. Increase redundancy at each bus that becomes unobservable after islanding by 

one. 

7. Repeat steps 1 to 6 until the optimum solution that makes the system 

observable for both normal and islanded conditions is obtained. 

 

The following rules have been used for optimal PMU placement [51]: 

1. Assign a voltage measurement to a bus where a PMU is placed including a 

current measurement to each line incident at the bus (assuming that the 

number of channels of each PMU is at least one less than the maximum 

number of incident lines), the current in the remaining line can be obtained by 

Kirchhoff’s current law. 

2. Assign a pseudo-voltage measurement to each node reached by a node that 

has a PMU. The voltage measurement of such a bus is obtained from the 

known voltage of the bus with a PMU, line current and impedance of the line. 

3. Assign a pseudo-current to each line connecting two buses whose voltages are 

known. The current is such a branch is readily obtained from the two known 

voltages and line impedance using Ohm’s law. 
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4. Assign a pseudo-current measurement to an incident line where all other lines 

current measurements are known. The unknown current is obtained using 

Kirchhoff’s current law. 

Equations for evaluation of fitness function, F used with the GA algorithm to 

determine the optimal number and location of PMUs in the system are as follows: 

 

                                            (2)

 

                       

Where, 

 

                                                           (3) 

 

                                                      (4) 

 

And K is a large value assigned to the fitness function if the current solution x 

does not make the system fully observable; w1 and w2 are two user defined weights that 

ensure that the two parts of the fitness function F1 and F2 are comparable. The elements 

of the binary vector x are defined as follows: 

 










 otherwise

at bus i is place   if a PMU
xi

0

1
                                         (5) 

 

The connectivity matrix of the system, A is given by: 

 















 



 otherwise

ectedj are conn if i and 

j if i

A

0

1

1

                                               (6)

 

 












e, otherwisFwFw

observableK  if not 
F

2211

xxF T1

)()(2 X

T

X ANANF 



 51 

The vector N is chosen to give the desired level of measurement redundancy at a 

bus. For example if all entries of N are set to 2, the level of measurement redundancy at 

each bus is 1. 

 

5.3. REAL-TIME SIMULATION RESULTS 

 

Tables 5.1 – 5.3 show results for optimal PMU placement considering islanding 

conditions. The 14 bus system (Figure 5.2) has been split into two islands and the optimal 

locations of PMUs for complete observability both during normal operating conditions 

and during islanding conditions has been obtained. Results show that for the same level 

of redundancy, the system utilizes more PMUs when islanding operating conditions are 

considered. A total of four PMUs is required in order to ensure full observability during 

both normal operating conditions and during islanding conditions, whereas only three 

PMUs are needed if islanding is not considered.  

Three cases for VSLI estimation were considered for the IEEE 14 bus system. 

The first one being the normal operating condition, and the second and third cases were 

two N-1 contingencies involving the loss of lines 2-3 and line 2-4 respectively. 

Performance of the ESN for the estimation of VSLI is shown in Tables 5.1 – 5.4. 

The ESN training is implemented in a one-step calculation and carried out on a desktop 

computer (Processor speed 3.33GHz).  Table 5.4 shows that the training time was less 

than 0.1 second for an ESN. 

 

Table 5.1.  IEEE 14 Bus System Split into Two Islands 

 

No. Buses Lines opened 

1 1,5,6,11,12,13 
1-2,2-5,4-5,11-10, 

13-14 
2 2,3,4,7,8,9,10,14 
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Figure 5.2. IEEE 14-bus test system split into 2 islands 

 

 

Table 5.2. Optimal PMU Locations for IEEE 14 Bus Systems 

 

System Configuration 
Optimal PMU Locations 

Normal operating conditions 2,6,9 

Split into two islands 1,2,6,9 
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Table 5.3. VSLI Estimation for IEEE 14 Bus System 

 

ESN 

Number of 

Weights 

Training  

Time (sec) 

Mean square 

Error (%) 

IEEE 14 bus 

system 
1100 0.067 

4.31 x10
-5

 
 

 

 

 

The accuracy of the trained ESN in estimating the VSLI is shown in Table 5.4. 

The table shows that on average the mean square error on testing for the ESN was 4.31 

x10-5. System voltage profiles shown in Figure 5.3 show that as load factor is increased, 

voltage at load buses declined. Bus 14 has the lowest voltage profile while bus 2 is the 

strongest bus with a higher voltage profile. 

Graphs of VSLI compared with PV curve analysis for the IEEE 14 bus test system 

are shown in Figures 5.3 – 5.5. In Figures 5.3 and 5.4 a correlation between PV curve 

analysis and VSLI index is demonstrated. As shown with both the PV curves and the 

VSLI approach, bus 14 reaches the voltage stability limit before other buses, and bus 2 

has the greatest voltage stability margin shows that bus 14 has the highest value of VSLI 

and the value approaches one as the load factor approaches 0.62. This result is in 

agreement with the result found using P-V curve analysis in [50]. 

Finally, estimated VSLI of the system for the two N-1 contingencies are shown in 

Figures 5.5 and 5.6. In Figure 5.5, the system approaches voltage instability at load factor 

of nearly 0.45 while in Figure 5.6 the system approaches voltage instability at the load 

factor of nearly 0.5. The results show that the system has a lower voltage stability margin 

following the loss of line 2-3 than when line 2-4 was lost. 
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Fig. 5.3. Bus voltage profiles for the IEEE 14 bus system. The diagram shows P-

V curves at the different load buses. Bus 14 has the lowest voltage 

profile while bus 2 has the higher voltage profile compared with other 

load buses. 

               

 
 

Fig. 5.4. VSLI for the IEEE 14 bus system. VSLI results show that the bus with 

the lowest voltage profile has a higher VSLI compared with other load 

buses. Bus 2 with the higher voltage profile has the least VSLI. 
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Fig. 5.5. Estimated VSLI for the IEEE 14 bus system with the loss of line 2-3. 

When one transmission line is lost, the system is more stressed resulting 

in higher values for VSLI than those for the system with all lines in 

service. 

 

 

Fig. 5.6. Estimated VSLI for the IEEE 14 bus system with the loss of line 2-4. 

When one transmission line is lost, the system is more stressed resulting 

in higher values for VSLI than those for the system with all lines in 

service. 
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Table 5.4. ESN Performance at Each Load Bus 

Bus No. Mean Square Error 

2 4.27x10
-5

  

3 5.36 x10
-6

 

4 3.21 x10
-4

 

5 1.11 x10
-5

  

6 1.91 x10
-5

  

9 1.18 x10
-6

  

10 9.38 x10
-6

  

11 1.2 x10
-5

  

12 4.27 x10
-5

  

13 4.44 x10
-5

  

14 4.3 x10
-5

  

Ave MSE 4.31 x10
-5

  

Max MSE 3.21 x10
-4

 

Min MSE 1.18 x10
-6

  

Std dev 9.34 x10
-5

  

 

 

The proposed method for optimal PMU placement considering islanding was then 

applied on the IEEE 14 bus (Figure 5.2), and the IEEE 39 bus, and IEEE 68 bus test 

systems (Figures 5.7 and 5.8 respectively)  in order to evaluate its scalability as the size 

of the power system increases. Results of the algorithm for the three test systems are 

shown in Tables 5.5 and 5.6.  

For each system the islanding configuration is given for which the algorithm is 

used to determine the optimal PMU locations to ensure system observability both during 

normal operation and during islanded conditions. Results for optimal location of PMUs in 

each of the three systems show that the number of PMUs required for complete 

observation for both islanded and un-islanded is comparable.  Thus by applying this 

algorithm a minimum set of PMUs and their locations can be determined to assure 

voltage stability monitoring during defensive islanding. 

 Results of the performance of the ESN approach for estimating VSLI is presented 

in Figures 5.9 to 5.11. The plots show the accuracy of the ESN approach in estimating 

VSLI of the system buses. The ESN approach for the IEEE 14 bus test system is the most 

accurate while the accuracy of the ESN for the IEEE 39 bus is less that of the IEEE 14 

bus and that for the IEEE68 bus system has the least accuracy.       
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Figure 5.7. IEEE 39-bus test system split into 3 islands 

 

 

 

Figure 5.8. IEEE 68-bus test system split into 5 islands 
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            Table 5.5. Test Systems Split into Islands 

 No. Buses Lines opened 

14 bus 

system 

1 1,5,6,11,12,13 
1-2,2-5,4-5,11-

10,13-14 
2 2,3,4,7,8,9,10,14 

39 bus 

system 

1 
1,2,3,4,17,18,25,26,27 

28,29,30,37,38,39 

9-39,4-5,4-14 

16-17,16-19 
2 

5,6,7,8,9,10,11,12,13 

14,15,16,21,22,23,24 

3 19,20,33,34 

68 bus 

system 

1 42,67 

1-2,1-27 

8-9,1-47 

41-42,42-52 

50-51,46-49 

2 40,41,47,48,66 

3 49,50,52,68 

4 

2,3,4,5,6,7,8,10,11,12,13,14,15,16, 

17,18,19,20,21,22,23,24,25,26,27,28, 

29,53,54,55,56,57,58,59,60,61 

5 
9,30,31,32,33,34,35,36,37,38, 

39,43,44,45,46,49,51,62,63,64,65 

 

 

Plots of target VSLI against ESN estimated VSLI are shown in Figures 5.9 -5.11. 

The Figures show very close agreement between estimated and calculated values of 

VSLI. The 14 bus system has a determination coefficient 0.9971 and the 39 bus system 

has determination coefficient of 0.9956, while the 68 bus system has 0.9937. 

The performance of ESN approach is successful with a high level of accuracy in 

all the three tests systems with a slight decrease in determination coefficient as the test 

system size increases. The ESN used to estimate VSLI for the IEEE 14 bus has the 

highest accuracy of the three, followed by the 39 bus system and the 68 bus system 

respectively.  This observation points to the fact that as the size of the system increases 

the accuracy of the method is reduced. In all three cases the ESN had a dynamic reservoir 
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with 100 neurons in the dynamic reservoir. Table 5.7 shows the Mean Square Error and 

training time.  

 

Table 5.6. Optimal PMU Locations for Normal and Islanded System operation 

 
System 

Configuration 
Optimal PMU Locations 

14 bus 

system 

Normal 

operating 

conditions 

2,6,9 

Split into two 

islands 
1,2,6,9 

39 bus 

system 

Normal 

operating 

conditions 

2,6,9,10,13,14,17,19,20,22,23,25,29 

Split into 

three islands 

2,3,5,6,9,10,13,15,17,19,20 

21,22,23,25,29,39 

68 bus 

system 

Normal 

operating 

conditions 

1,8,11,14,18,19,22,23,26,29,33,37,40, 

45,46,52 

Split into five 

islands 

2,8,11,14,17,20,22,23,29,30,34, 

37,40,41,42,45,46,47,52 

 

 

 

Fig. 5.9. Plot of calculated VSLI against the ESN estimated value for IEEE 14 bus 

test system 
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Fig. 5.10. Plot of calculated VSLI against the ESN estimated value for IEEE 39 

bus test system 

 

 

Fig. 5.11. Plot of calculated VSLI against the ESN estimated value for IEEE 68 

bus test system 
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Fig. 5.12 Test system with wind farm and PEVs included. 

 

The load area considered has a net load capacity of 742MW. The wind farm is 

rated 585MW. The aggregated PEV load at bus 35 is 180MW.The performance of the 

ESN approach for estimating VSLI in the smart grid with a wind farm and plug-in 

electric vehicles is shown the in Figures 5.12 and 5.13. A three phase, 5 cycles ground 

fault is simulated at bus 45 in the load area with WF and PEVs. The output of the ESN is 

compared with calculated values of VSLI at three load buses in the area. 

The structure of the ESN used for monitoring VSLI in this test system is shown in 

Figure 5.13. The system consists of 5 PMU’s placed at the optimal buses for the system 

to remain observable during normal and islanded operating conditions. Six ESN NNs are 

needed to evaluate the VSLI in this system (Figure 5.13). 

For each island the average of the MSE’s at load buses was obtained. The results 

presented in Table 5.7 show the performance of the approach for each island to have 

better performance based on MSE when compared to that of the un-islanded system. 

Figure 5.12 shows the dynamic response of voltage, VSLI and active and reactive power 

at load buses 35, 39 and 44. Figure 5.13 shows very close agreement between the ESN 

output and the calculated VSLI at the three load buses.  
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Fig. 5.13. Structure of ESN for VSLI estimation under normal and islanded 

operating conditions for IEEE68 bus system. 

 

The results shown in Figure 5.12 and 5.13 demonstrate the dynamics of the WF 

and PEV during the three phase fault and their impact on system voltages. During the 
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Table 5.7. VSLI with Islanded Power System 

IEEE 68  

bus 

Using separate ESNs for each Island Using Single ESN for all Islands 

AVE MSE Max MSE St. Dev. AVE MSE Max MSE St. Dev. 

Island 1 8x10
-5

 1.09x10
-2

 7.5x10
-4

 2.0x10
-3

 6.1x10
-2

 4.6x10
-3

 

Island 2 2.96x10
-4

 3.5x10
-2

 2.41x10
-3

 5.9x10
-3

 1.0x10
-2

 4.0x10
-3

 

Island 3 2.26x10
-4

 2.8x10
-2

 1.86x10
-3

 5.9x10
-2

 8.8x10
-1

 1.3x10
-1

 

Island 4 2.1x10
-4

 1.2x10
-2

 1.4x10
-3

 2.2x10
-3

 3.2x10
-2

 1.1x10
-3

 

Island 5 1.3x10
-3

 7.5x10
-2

 7.5x10
-3

 2.3x10
-3

 4.2x10
-1

 2.6x10
-2

 

 

 

The PEV on the other hand has a steady reduction in real power as well as real 

power out. The impact of the event is reduced system voltages and oscillations in VSLI 

(Figure 5.14). Figure 5.15 shows the corresponding VSLI at the three load buses 

following the fault. The three phase fault results in increase in VSLI at the load buses as 

voltages decrease owing to the increase of reactive power drawn by the WF during the 

fault. 

 

 

Fig. 5.14. Real power, reactive power and system voltages after a three phase fault. 
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Fig. 5.15. ESN estimation of VSLI index during fault. 

 

5.4. SUMMARY 

 

An intelligent method for monitoring voltage stability in a smart grid using PMU 

information is presented in this dissertation. The method uses an Echo State Network to 
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placement of PMUs to ensure full system observability of the system both during normal 

and islanded operating conditions has been presented.   
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order to implement voltage stability monitoring of the complete system during normal 

operating conditions and during defensive islanding conditions. Scalability of the 

approached has been studied using three test systems. Results for the three test system 

show a very close fit between estimated VSLI and target VSLI. The method of islanded 

ESN shows that the performance of the ESN in individual islands is better than that of a 
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monitoring VSLI in a smart grid with WF and PEV is illustrated. Results show a very 

close fit between the output of the ESN and calculated values of VSLI. The most accurate 

is the case of the smallest system with accuracy getting less with increased system size. 
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6. ADAPTIVE DYNAMIC PROGRAMMING FOR SECONDARY VOLTAGE 

CONTROL IN A POWER SYSTEM  

6.1. INTRODUCTION 

 

Voltage stability control in a power system with variable loads and sources, such 

as wind farms (WFs), that are intermittent in nature, require coordinated control of 

reactive power in order to assure optimal use of existing reactive power sources for 

maximizing voltage stability.  The increased penetration of WFs and the use smart grid 

technologies such as plug-in electric vehicles have resulted in new challenges for power 

system stability control and opportunity for providing additional reactive power [55, 56]. 

Wind farms based on Doubly Fed Induction Generator (DFIG) can draw large amounts of 

reactive power during faults as the rotor side convertor terminals are short-circuited. 

During the fault duration, the wind turbine generator behaves like a squirrel cage 

induction generator and draws an increased amount of reactive power. The Static 

Synchronous Compensator (STACOM) is a power electronics based shunt FACTs device 

that can provide variable reactive power compensation needed to support system voltage 

and ensure adequate voltage stability margin both at the local and surrounding buses. 

However such FACTs devices are expensive and cannot be extensively used in 

increasingly complex smart grids. In order to optimize the reactive power support and 

voltage control provided by FACTs devices, a nonlinear optimal controller that 

dynamically adjusts the set reference voltage values for the STATCOM is developed in 

this dissertation. 

Traditional linear PI controllers for STATCOM control are designed to operate 

optimally around specified operating points. As operating conditions change, the 

performance of these traditional controllers degrades, and is no longer optimal. To 

overcome this problem, an Adaptive Dynamic Programming (ADP) based controller is 

proposed. The proposed ADP controller is a non-linear optimal controller that is capable 

of optimal control for voltage stability through a wide range of system operating 

conditions. 
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To formulate the utility used in Adaptive Dynamic Programming, the Voltage 

Stability Load Index (VSLI) at load buses is estimated using the method of Echo State 

Network as described in section 5. The VSLI estimation approach is a Neural Network 

approach for determining the distance of the power system to instability. Reference [57] 

introduces a method of using an artificial neural network to predict the voltage stability 

margin of a power system obtained by continuation power flow based on synchrophasor 

measurements of voltage magnitudes and phase angles. In this dissertation, the VSLI 

approach developed uses voltage phasor information provided by PMUs in order to 

compute the voltage stability limit margin. The voltage stability margin gives the distance 

of the power system to the voltage stability limit. The technique uses local information at 

every load bus to obtain the Voltage Stability Load Index (VSLI) as a measure of the 

distance to instability in real-time. 

The modified IEEE 68-bus test power system including two STATCOMs and a 

WF is modeled in the PSAT/MATLAB simulation. A closed loop model of the controller 

is used to provide auxiliary voltage (reactive) power control signals for coordinated 

optimal control of reactive power reference settings of the STATCOMs.  

The rest of this dissertation is organized as follows: section II describes the smart 

grid model used for the development and testing of the ADP controller, while sections III 

and IV present the development of the training process. Simulation results showing the 

effectiveness of the proposed controller are presented in section V. Section VI is the 

conclusion. 

 

6.2. POWER SYSTEM MODEL 

 

Smart grids must be able to accommodate increasing penetrations of wind energy 

sources, and be able to support increased demand as the complexity of the electric grid 

continues to increase due to advances in use of smart grid technologies. Increased 

penetration of renewable energy sources such as wind farms have been driven by the 

need for more environmentally friendly energy sources and economic reasons [58]. Wind 

farms are intermittent in nature; and the power output of a wind farm is dependent on the 

wind speed and the control strategy for the wind generators such as that for DFIGs [59]. 
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During fault conditions the amount of reactive power demand of wind farms is increased. 

An intelligent control method based on voltage stability load index of the system and  

adaptive dynamic control of reactive power resources in the smart grid is proposed to 

dynamically vary the reference voltage set point of two STATCOMs in order to improve 

system voltage control is implemented in this dissertation. 

Figure 6.1 shows the Smart Grid model of modified IEEE 68 bus system with 

wind farm, and two STATCOMs included at buses 69, bus 70, and bus 50 respectively. 

The STATCOMs are used to perform secondary voltage control at buses 35, 39 and bus 

50.  Both the STATCOMs are first controlled using conventional PI controllers to 

perform voltage control for the load area and supply reactive power for voltage control.  

 

 

 

Fig. 6.1 Modified IEEE 68 bus system with WF, and STATCOMs included in 

addition to the normal PI controller used in the STATCOMs, the ADP 

controller provides auxiliary voltage signals that ensure optimal control 

of system voltages.  

 

6.3. PROPOSED CONTROLLER 

The advent of phasor measurement units has made it possible for voltage 

magnitude and phase angle information for the system to be readily measured and 

utilized for monitoring voltage stability of the system in real-time. The proposed 
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information in order to provide auxiliary inputs for two STATCOMs aimed at improving 

system voltage control. 

The ADP controller proposed is based on the Action Dependent Heuristic 

Dynamic Programming (AD-HDP) model of the Adaptive Critic Designs (ACD) family 

proposed by Werbos. The ADHDP is a model independent approach to the Heuristic 

Dynamic Programming (HDP) [33]. However, in the current application, the model is 

included to provide the estimated voltage stability load index of the system that is needed 

to provide the utility function used with the critic network of the  controller. Figure 6.2 

shows a schematic of the proposed controller interfacing with the plant where, 

Vref_STATCOM_1 and Vref_STATCOM_2 are auxiliary reference voltage signals for the two 

STATCOMs, and A(k) = [ΔVref_STATCOM_1, ΔVref_STATCOM_2] is a vector of the 

controller outputs. Since the approach does not require a model to predict plant variables, 

but uses actual measurements of plant variables, its operation is inherently faster and 

more suitable for on-line learning control applications.  

 

 

 

Fig. 6.2 Proposed AD-HDP based Secondary Controller. The ADP controller 

provides auxiliary voltage reference signals for two STATCOMs.  
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Adaptive Critic Design systems utilize concepts of reinforcement learning and 

dynamic programming in implementing the design of optimal control systems. ACDs 

have explored the possibility of designing systems in the continuous state space and 

addressing generalization and design robustness [33, 34]. There are three main 

components that and ACD consists of: the actor which is trained to dispense optimal 

control actions to the plant that maximizes/minimizes the cost to go function over time. 

The critic network approximates the cost to function of dynamic programming at each 

time step thus providing an evaluation of each control action. The model network is used 

to provide future states of the plant and is needed to estimate cost-to-go function over 

future time intervals.  

In the present application, the on-line plant information used in the approach 

consists of measurements of bus voltage magnitude and phase angles at three load buses. 

This information is also used as input for an ESN based estimator for Voltage Stability 

Load Index of the bus voltages used in the utility formulation. Thus input information to 

the controller consists of voltage magnitude and phase angles at the control buses and the 

utility.  

The critic network consists of a multilayer perceptron with three layers: the 

hidden layer neurons have sigmoidal activation functions while the input and output 

layers are linear function neurons. The Critic network learns to approximate the cost-to-

go function, J(t) using the measured plant outputs and the actor outputs and the utility 

U(t). The cost-to-go function J is given by: 

 







0

)()(
k

k ktUtJ                                                      (1) 

 

Where U(t) is the utility function which can be described by a linear combination 

of plant measurements of VSLI at the three load buses that are being controlled and γ is a 

discount factor for infinite horizon problems (0<γ<1). The value of γ used in this 

dissertation starts with a small value of 0 during training and increased gradually is small 

steps to 0.75. The small value of γ at the start assures that a smaller component of the 

utility future terms are used initially until the controller achieves stability, then the value 
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of γ is increased gradually to take into account future values of the utility. The utility 

function used in this dissertation is given in (2) and selection of the coefficients was done 

by testing different values experimentally. 
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                   (2) 

 

The actor network minimizes the cost-to-go function J(t) by providing inputs A(t) 

to the plant and the critic network, with utility function based on VSLI. The actor 

provides optimal control laws to the plant. The three neural networks together form the 

adaptive dynamic programming controller for voltage stability control. 

6.3.1. Model Network. The model network developed in this dissertation uses an 

ESN NN to estimate VSLI at three load buses. As given in equation (2) values of VSLI 

are used for computing the utility function measure. The ESN structure has six input 

neurons with linear functions, 100 internal neurons based on sigmoidal function and three 

linear neurons at the output.  Where the ESN inputs are measured values of voltage 

magnitude and phase angle at bus 35, bus 39, and bus 50. The ESN consisting of a 

dynamic reservoir with input, internal and feedback weight matrices (W
in

, W, and W
out

) 

respectively with the echo state property was developed following the steps described in 

[32]. 

The input and output layer neurons have linear functions; while dynamic reservoir 

neurons have sigmoid functions. The ESN outputs are the estimated values of VSLI at the 

three load buses for adaptive dynamic control (Figure 6.3). 

 

                   (3) 

 

 

Fig. 6.3 ESN Model Structure 
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The ESN is trained offline using data collected for a wide range of operating 

conditions. Training and testing data is collected for the system with: (i) uniformly 

increasing load from 0 to 5 load factor in the New-York Area (Buses 33, 35, 36, 39, 44, 

50, and 51), and (ii) with each of the three buses participating in VSLI monitoring (Bus 

35, 39, 50) stressed individually over a load factor of 0 to 5. A total of 1256 training and 

testing data sets are used to train the ESN for estimating VSLI. The large set of training 

data used assures that the ESN is trained for a wide range of operation conditions, in 

order to ensure that the ESN is successful when implemented for online estimation of 

VSLI. The inputs to the ESN are measurements of voltage magnitudes and angles at 

buses 35, 39, and 50 that are normalized in the range of -1 to 1 for better performance. 

The outputs are values of VSLI estimated at the three buses, 35, 39, and 50. Different 

sizes of the dynamic reservoir are used: 20 units, 50 units, and 100 units. The 

performance of each size ESN for estimating VSLI is shown in Table 6.1. 

 

 

Table 6.1 ESN Performance 

DR 

units 

Av. 

MSE 

Min. 

MSE 

Max. 

MSE 

Std. dev. 

20 3.2x10
-4

 4.8x10
-5

 9.4x10
-4

 2.8x10
-4

 

50 2.8x10
-4

 3.1x10
-5

 7.8x10
-4

 2.0x10
-4

 

100 1.5x10
-4

 1.4x10
-5

 4.5x10
-4

 1.3x10
-4

 
 

 

 

The performance of the ESN with 100 units in the DR is comparatively better 

than that of the ESNs with 50 and 20 units since it has the lowest MSE; it is thus used for 

the model network used in the rest of the work in this section. 

6.3.2. Utility Function Design. The objective of the adaptive dynamic 

programming controller developed in this dissertation is to minimize Voltage Stability 

Load Index (VSLI) deviations at buses 35, 39, and 50. Therefore the utility function 

utilizing VSLI deviations at the three load buses has been defined as given in equation (6) 

below.  

 



 73 

2

50503

2

39392

2

35351

))((

))(())(()(

tVSLIVSLIA

tVSLIVSLIAtVSLIVSLIAtU

SS

SSSS




                    (6) 

 

The subscripts ‘ss’ represent steady state values of VSLI. The coefficients A1, 

A2, and A3 are weighting factors with a total sum of 1 such that VSLI deviations at each 

bus contribute to the utility function proportionally to the voltage stability sensitivity of 

each bus (Table 6.2). QV sensitivity analysis of the system is performed to determine bus 

participation at each of three buses. Appendix C gives the QV sensitivity data for the 

system used to determine the utility function. 

 

Table 6.2 VSLI Coefficients 

Eigenvalue 

# 

Eigenvalue Bus 

# 

Participation 

Factor 

VSLI 

coefficient 

31 152.77 35 0.13237 0.36 

36 126.34 50 0.17925 0.4 

49 100.49 39 0.13543 0.24 

 

 

     Bus 39 has the highest Q-V sensitivity since its participation is higher in the 

smallest of the three eigenvalues. The second most sensitive is bus 50 then followed by 

bus 35. The coefficients of the utility function A1, A2, and A3 are chosen to give 

weighting factors of VSLI values at the three buses to take into account the eigenvalues 

and participation factors. The eigenvalue is multiplied by the participation factor and 

each coefficient is a fraction of the total of the three products. 

6.3.3. Critic Network. The critic network is implemented using a three layer 

multilayer perceptrom (MLP). The inputs to the critic are the measured plant states 

consisting of voltage magnitudes and angles at the three buses, 35, 39, and 50 and outputs 

of the action network along with their two time-delayed values. The output of the critic is 

the estimated cost-to-go function J(k) in (1).  
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The critic network learns the following error over time:  

 

                                                                   (4) 

where, 

 

               (5) 

 

and U(k) is a utility measure that serves as the performance measure for the ADP 

controller, and   is a discount factor between 0 and 1. Firstly, the critic network is pre-

trained using PRBS signals to provide auxiliary voltage reference signals for the 

STATCOM 1 and STATCOM 2  as well as input signals to the critic network together 

with measurements of voltage magnitude and angles at buses 35, 39, and 50. Two time 

delayed values for critic inputs are used during training as shown in Figure 6.4. 

 

 

Fig. 6.4 Critic Network Adaptation. The utility function is derived using equation 

(2). Critic network adaptation is done using backpropagation by 

minimizing the critic error in (5).  

 

The critic is trained to approximate the cost-to-go function J(t) of the Hamilton-

Jacobi-Bellman equation (1). The critic network training cycle is shown in the flow chart 

in Figure 6.5. During training, the discount factor is varied from 0 and increased 

gradually as the controller stabilizes to about 0.75. 
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Fig 6.5. Flowchart for the critic network training. 

 

6.3.4. Action Network. The objective of the action network is to optimize the 

system control trajectory so that the cost-to-go function J(t) is minimized over time. To 

achieve this objective the action network is adapted using the 

Start

Training for 

the first time?

Update critic weights 

form previous training cycle

1. Initialize critic weights to 

Small random values [-1,1]

2. Start with discount factor 

set to 0. Learn the critic network 

to approximate J(t) at three system

Loading conditions: base case, 

25% , and  50% load increase

3. Increment the discount factor by 

0.25 and repeat critic training for the

load conditions in step 2.

4. Repeat step 3 until a discount 

factor of  0.75.

Critic weights 

converged?

Stop

Yes

Yes

No

No

),(/)()( kAkJkEA 



 76 

error signal, obtained by backpropagating a constant, 1)(/)(  kJkJ  through the critic 

network (Figure 6.6).  

 After critic pre-training, the actor is pre-trained using the PRBS as input for the 

plant and the critic network. The actor error signal is obtained by backpropagating 1 

through the critic network. After the actor pre-training, the output of the actor is fed to the 

plant (STATCOM 1 and STATCOM 2 auxiliary voltage reference) and the critic 

network. The critic and the actor are then further trained alternately. During the critic and 

actor alternate training, critic weights are adapted while actor weights are kept constant 

and then critic weights are kept constant while actor weights are adapted. The alternate 

training cycles are repeated until there is no more change in both actor and critic weights 

(Figure 6.7). 

 

 

 

Fig. 6.6 Action Network Adaptation. The action network error is obtained by 

backpropagating a constant 1, through the critic network. 
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Fig 6.7. Flowchart for the actor and critic alternate training. 
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magnitudes and angles at buses 35, 39, and 50 are used as input signals for the critic 

network. After the critic pre-training is complete, critic weights are fixed, the action 

network is pre-trained using the PRBS signal as the inputs to the plant and resulting plant 

states as action network inputs. The action network learns to track the PRBS signal. The 

pre-trained critic and action networks are then trained one after the other using the output 

of the action network as input for the plant as described in the diagrams shown in Figure 

6.7 for a number critic network training cycles, NC and action network training cycles, NA 

respectively. The procedure of training the critic and action networks one after the other 

is repeated until accepted performance in achieved [64-66]. 

 The signal flow diagram for the Adaptive Dynamic Controller developed in this 

dissertation is shown in Figure 6.8 and the description is provided below: 

 

 

Fig.  6.8 Adaptive Dynamic Programming controller signal flow diagram. 
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(i) Path 1 represents the outputs of the plant fed into the model network, to 

provide the utility function. The outputs of the plant are: x(t), x(t-1), and x(t-

2). 

(ii) Path 2 represents the outputs of the plant fed into the Critic network #2. These 

outputs are: x(t), x(t-1), and x(t-2). 

(iii) Path 3 represents the outputs of the plant fed into the Action network. These 

outputs are: x(t), x(t-1), and x(t-2). 

(iv) Path 4 represents the outputs of the Action network fed into the Critic 

network. These outputs are: A(t), A(t-1), and A(t-2). 

(v) Path 5 represents the backpropagated signal of the output of the Critic network 

fed into the Action network, AJ  / . These outputs are the backpropagated 

signal on path 5 is obtained from: 

[ ] )(.))(1)(().(
)(

)(
tWtdtddiagtW

tX

tJ in

CCiCi

out

C

C





 

Where Cid are the decision vector elements, and out

CW and in

CW are the output 

and input weights of the critic network respectively. 

(vi) Path 6 represents the utility function:  

2

50

2

39

2

35

))(3505.0(*40

))(1930.0(*24))(2313.0(*36)(

tVSLI

tVSLItVSLItU




 

(vii) Path 7 represents the output of Critic network#2,J(t) 

(viii) Path 8 represents the output of Critic network#1,J(t-1) 

(ix) Path 9 is the product of the discount factor  and the path 7 signal, resulting in 

the term )(tJ

 . 

(x) Path 10 represents the Critic network error 6982 PathPathPathE jC   

)()()1(2 tJtUtJE jC 


 

(xi) Path 11 represents the output of the Action network which is fed to the plant: 

],[)( 2_1_ STATCOMrefSTATCOMref VVtA   

 

6.4. SIMULATION RESULTS 

The development of an adaptive dynamic programming controller for secondary 

voltage control in a smart grid is implemented for the modified IEEE 68 bus system. In 

order to evaluate the performance of the ADP controller, the modified IEEE68 bus 

system is simulated with the variation of load in the load area and evaluating the system 

response with and without the controller. Test results for each stage of the controller 

development are presented in this section. 
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6.4.1. Model Network. Simulation results in Figures 6.9 - 6.15 show the on-line 

performance of the model network for estimation of VSLI estimation. The impact of the 

WF on system voltages and estimated VSLI index are also. With no WF included, the 

system voltages have a flat profile at steady state (Figure 6.9) and the steady VSLI values 

(Figure 6.10). 

 

Fig. 6.9 Bus voltage at steady state with no wind farm included. 

 

 

Fig. 6.10 VSLI at steady state with no wind farm included. 
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 The effect of WF speed variation on system voltage and VSLI are shown in 

Figure 6.11 to 6.14. The plot of wind speed variation used in the simulation is generated 

randomly to model wind speed change in DFIG wind farms. As shown in Figures 6.11 

and 6.12, variations in wind speed result in the real power output of the DFIG fluctuating. 

The effect of the fluctuations on system voltages and VSLI are captured in the plots in 

Figures 6.13 and 6.14 respectively. The results show that the ESN approach successfully 

estimates VSLI in the system with the WF model included. 

 

Fig. 6.11 Wind Speed 

 

Fig. 6.12 Wind Farm Power Output 
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Fig. 6.13 System voltages with wind farm included. 

 

 

Fig. 6.14 VSLI at steady state with wind farm included. 
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Fig. 6.15 Comparison of ESN VSLI estimation with and without the wind farm 

 

6.4.2. Utility Function. The utility function is derived from the Model network 

output of VSLI at three load buses using (2). Figure 6.16 shows the calculated utility for 

the base case system with a fault at bus 1 and the STATCOM auxiliary voltage reference 

using a PRBS respectively. The auxiliary reference PRBS for the STATCOM is shown in 

Figure 6.17. These results validate the performance of the utility function to accurately 

capture the system dynamics  

 

Fig. 6.16 Utility function during an 80ms three phase ground fault at bus 1 
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Fig. 6.17 Utility function Performance with PRBS Signal 
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Fig. 6.18. Base case with discount factor set to 0. Plot of utility function U(t), 

cost-to-go function, J(t). 

 

 

Fig. 6.19 Base case with discount factor set to 0. Plot of cost-to-go function, J(t) 

and its target. 
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Fig. 6.20 25% load increase with discount factor set to 0. Plot of utility function, 

U(t), cost-to-go function, J(t). 

 

Fig. 6.21 25% load increase with discount factor set to 0. Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.22 50% load increase with discount factor set to 0. Plot of utility function, 

U(t), cost-to-go function,J(t). 

 

Fig. 6.23 50% load increase with discount factor set to 0. Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.24 Base case with discount factor set to 0.25 Plot of utility function, U(t), 

cost-to-go function, J(t). 

 

 

Fig. 6.25 Base case with discount factor set to 0.25 Plot of cost-to-go function, 

J(t) and its target. 
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Fig. 6.26 25% load increase with discount factor set to 0.25 Plot of utility 

function, U(t), cost-to-go function, J(t). 

 

Fig. 6.27 25% load increase with discount factor set to 0.25 Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.28 50% load increase with discount factor set to 0.25 Plot of utility 

function, U(t), cost-to-go function, J(t). 

 

Fig. 6.29 50% load increase with discount factor set to 0.25, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.30 Base case with discount factor set to 0.5, Plot of utility function, U(t), 

cost-to-go function, J(t). 

 

Fig. 6.31 Base case load level with discount factor set to 0.5, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.32 25% load increase with discount factor set to 0.5 Plot of utility function, 

U(t), cost-to-go function, J(t). 

 

Fig. 6.33 25% load increase with discount factor set to 0.5, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.34 50% load increase with discount factor set to 0.5 Plot of utility function, 

U(t), cost-to-go function, J(t). 

 

Fig. 6.35 50% load increase with discount factor set to 0.5, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.36 Base case with discount factor set to 0.75, Plot of utility function, U(t), 

cost-to-go function, J(t). 

 

Fig. 6.37 Base case load level with discount factor set to 0.75, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.38 25% load increase with discount factor set to 0.75 Plot of utility 

function, U(t), cost-to-go function, J(t). 

 

Fig. 6.39 25% load increase with discount factor set to 0.75, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.40 50% load increase with discount factor set to 0.75 Plot of utility 

function, U(t), cost-to-go function, J(t). 

 

Fig. 6.41 50% load increase with discount factor set to 0.75, Plot of cost-to-go 

function, J(t) and its target. 
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Fig. 6.42 System voltages at bus 35, 39, and 50 during actor pre-training with 

PRBS signals injected to the STATCOMs at bus 35 and bus 50. 

 

Fig. 6.43 shows Actor error signal for STATCOM 1 during the actor pre-training. 

Feedback from critic network is used to provide the actor error signals by 

backpropagating a constant 1 through the critic network.  
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Fig. 6.44 Actor error signal for STATCOM 2 during the actor pre-training. 

Feedback from critic network is used to provide the actor error signals 

by backpropagating a constant 1 through the critic network.  

 

Fig. 6.45 Actor error signals during the actor pre-training. Feedback from critic 

network is used to provide the actor error signals by backpropagating a 

constant 1 through the critic network.  
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The weights of the critic network are kept constant during the actor training 

period, and PRBS signals are used to perturb the power system by providing auxiliary 

voltage reference input signals for the two STATCOMS. 

 

Fig. 6.46 PRBS signal used to perturb the power system during the actor pre-

training phase. 

 

 

Fig. 6.47 Output of the critic network, J(t) during actor pre-training with critic 

weights not fixed. 
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Fig. 6.48 Output of the critic network, J(t) during actor pre-training with critic 

weights fixed. 

 

6.4.5. Closed Loop Training of Actor and Critic Networks. The pre-trained 
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controller. A comparison of different approaches for performing closed loop training of 

the ADP controller is also discussed. In this dissertation, training of the ADP was 

performed initially by alternately training the critic and actor networks in epochs as 

described in section 6.3.2 were performed. Subsequently, the simultaneous training of the 

actor and critic network in closed loop was performed to obtain successful controller 

training. Additional steps taken in the training approach enable controller convergence 

include scaling of inputs to the controller by using deviations of bus voltages and angles 

scaled between -1 and 1 instead of actual p.u values. The actor network output is also 

scaled appropriately by initially operating the controller in open loop, with the plant at 
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steady state to obtain the actor output at steady state. The control signal feed to the plant 

accounts for the steady state output of the actor by using the deviation of the actor output 

from its steady state value to provide auxiliary controls for the two STATCOMs. 

The trained controller was tested using two cases for system load increase and 

decrease from the base case: Case I the load at the test buses is varied through a load 

factor of 1 p.u. from the base case load, and Case 2: the load at the test buses is varied in 

the range of 2 p.u from the base case value. Figures 6.49 through 6.60 show the response 

of system voltages at the controlled buses with and without the controller. The results 

show that the system voltage profile at the test buses is improved during the system load 

variations. With the controller in place, voltage deviations remain with 2% of the nominal 

voltage compared with 3.5% without the controller with a load variation at 1.0 p.u. For 

the load variation of 2.0 p.u, the deviations are 5% with the controller and 7% without the 

controller, which is significant in maintaining system voltage stability.  

 

Fig. 6.49. Plot of the voltage at bus 35 with load variation for the case of no 

controller compared with the case with the ADP controller. The graph 

shows plots of voltage profile at bust 35 with load varied by 1 p.u. First 

the load is reduced from the base case at time t=17 seconds followed by 

an increase of the same magnitude he load in increased by 1.p.u 

followed by a reduction of the load at 60 seconds.  

 

Similar voltage profiles at other system buses for case 1 are shown below: 
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Fig. 6.50. Plot of the voltage at bus 39 with load variation for the case of no 

controller compared with the case with the ADP controller for 1.0 p.u 

load variation. 

 

Fig. 6.51. Plot of the voltage at bus 45 with load variation for the case of no 

controller compared with the case with the ADP controller for 1.0 p.u 

load variation. 
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Fig. 6.52. Plot of the voltage at bus 50 with load variation for the case of no 

controller compared with the case with the ADP controller for 1.0 p.u 

load variation. 

 

Fig. 6.53. Plot of the voltage at bus 51 with load variation for the case of no 

controller compared with the case with the ADP controller for 1.0 p.u 

load variation. 
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Fig. 6.54. Plot of the voltage at bus 70 with load variation for the case of no 

controller compared with the case with the ADP controller for 1.0 p.u 

load variation. 

 

 

Fig. 6.55. Plot of the voltage at bus 35 with load variation for the case of no 

controller compared with the case with the ADP controller. The graph 

shows plots of voltage profile at bust 35 with load varied by 2 p.u. First 

the load is reduced from the base case at time t=17 seconds followed by 

an increase of the same magnitude he load in increased by 2.p.u 

followed by a reduction of the load at 60 seconds.  
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Similar voltage profiles at other system buses for case 2 (2.0 p.u load variation) 

are shown below: 

 

 

Fig. 6.56. Plot of the voltage at bus 39 with load variation for the case of no 

controller compared with the case with the ADP controller for 2.0 p.u 

load variation. 

 

Fig. 6.57. Plot of the voltage at bus 45 with load variation for the case of no 

controller compared with the case with the ADP controller for 2.0 p.u 

load variation. 
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Fig. 6.58. Plot of the voltage at bus 50 with load variation for the case of no 

controller compared with the case with the ADP controller for 2.0 p.u 

load variation. 

 

Fig. 6.59. Plot of the voltage at bus 51 with load variation for the case of no 

controller compared with the case with the ADP controller for 2.0 p.u 

load variation. 
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Fig. 6.60. Plot of the voltage at bus 70 with load variation for the case of no 

controller compared with the case with the ADP controller for 2.0 p.u 

load variation. 

 

 

The impact of the ADP controller on the system voltages in the load area is seen 

in Figures 32(a)-(f) and 33(a)-(f) above. During the duration of increased load (app 17 

seconds to about 40 seconds), system voltages decrease below nominal values, while 

system voltages increase with reduced loading (at 60 to 80 seconds). The graphs show the 

voltage profiles with the ADP controller (blue curve) and with the ADP controller (red 

dashed curve). It is seen from the plots that at each load bus, using the ADP controllers 

reduces the deviation of the voltage from nominal, pre-disturbance values, where as if no 

ADP controller is used the changes in voltage are much larger from their nominal values. 

Thus the results show that the ADP controller is successful in improving the system 

voltage profile during load variations. 

6.4.6. ADP Control with DFIG Wind Farm. The impact of the ADP controller 

on system voltage and reactive power control is evaluated with a 200 MVA DFIG wind 

farm machine at bus 70 injecting real power into the system. As before the system is 

perturbed by increasing load at seven buses in the load area by 0.25 load factor. 
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The ADP controller is further trained with the WF injecting real and reactive 

power into the system. The ADP training process followed is described in section 6.3. 

Test results for the ADP controller with the WF injecting real power turned on are shown 

in the graphs in Figure 6.61 to Figure 6.67. When load is increased, the STACOM 

provides reactive power support in order to maintain bus voltages close to the pre-

disturbance values. However, when the ADP is not used, the reactive power output of the 

STATCOM is lower than when the ADP controller is used (Figure 6.61 and 6.62). The 

real power draw by the DFIG WF shows little variation in the cases of using the ADP 

controller and with no ADP controller as shown in Figure 6.63. 

 

Fig. 6.61. Plot of STATCOM 1 current that is proportional to reactive power 

output following load variation. The solid line shows the response of 

the STATCOM with no ADP controller while the red dotted line shows 

the response of the STATCOM with ADP controller. 
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Fig. 6.62. Plot of STATCOM 2 current that is proportional to reactive power 

output following load variation. The solid line shows the response of 

the STATCOM with no ADP controller while the red dotted line shows 

the response of the STATCOM with ADP controller. 

 

Fig. 6.63. Plot of DFIG current that is proportional to real power output (with 

opposite polarity) following load increase. The solid line shows the 

response for the DFIG WF with no ADP controller while the red dotted 

line shows the response of the STATCOM with ADP controller. 
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Fig. 6.64. Plot of bus 35 voltage following load variation. The solid line shows the 

bus voltage with no ADP controller while the red dotted line shows the 

bus voltage with ADP controller. 

 

 

Fig. 6.65. Plot of bus 39 voltage following load variation. The solid line shows the 

bus voltage with no ADP controller while the red dotted line shows the 

bus voltage with ADP controller. 
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 Fig. 6.66. Plot of bus 45 voltage following load variation. The solid line shows 

the bus voltage with no ADP controller while the red dotted line shows 

the bus voltage with ADP controller. 

 

 

Fig. 6.67. Plot of bus 50 voltage following load variation. The solid line shows the 

bus voltage with no ADP controller while the red dotted line shows the 

bus voltage with ADP controller. 
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STATCOM is dynamically varied so as to compensate for reactive power flow thereby 

maintaining system voltage closer to their nominal values. 

 

6.5. SUMMARY 

Development of an Adaptive Dynamic Programming (ADP) based controller for 

secondary voltage control has been presented. The controller is based on the Action-

Dependent Heuristic Dynamic Programming (AD-HDP) model of the family of Adaptive 

Critic Designs (ACDs). A model network for the system based on the Echo State 

Network (ESN) is used for estimation of Voltage Stability Load Index (VSLI) at load 

buses that are used in the utility function formulation. The actor and critic networks are 

based on MLP neural networks that minimized the cost-go-function. The ADP provides 

auxiliary voltage reference values for two STATCOMs for voltage stability control. 

Simulation results have shown that by using the proposed ADP controller, the system 

voltage profiles in the load area and reactive power control of the STATCOM can be 

improved, thereby improving system voltage stability.  
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7. CONCLUSION  

 

7.1. INTRODUCTION 

 

Development of computational approaches for online monitoring and control of 

voltage stability in smart grids have been presented. The work presented in this 

dissertation focus on the development of a computational intelligence method for 

estimation of voltage stability load index that measures the distance of a power system to 

its voltage stability using phasor measurement unit information. Furthermore, the 

dissertation presents an online control approach for voltage stability based on adaptive 

dynamic programming. The development of the reactive power coordinating controller 

and its implementation in a smart grid has been presented. 

 

7.2. RESEARCH SUMMARY 

 

The outputs of the research work presented as dissertations in the Sections of this 

document can be summarized as follows: 

Section 3: A computational method using active and reactive power for estimation 

of voltage stability load index is developed. Voltage stability load index of at a bus can 

be obtained analytically provided that parameters of the Thevenin equivalent network can 

be obtained. In practice the no-load values of the Thevenin equivalent cannot be easily 

measured without disruption of load. A multi-layer perception is trained to estimate VSLI 

at load buses in a 14 bus power system using active and reactive power measurements of 

voltage magnitudes and phase angles. The approached is tested in power system that 

includes plug-in electric vehicles to test its performance during variation of charging and 

discharging cycles of PEV loads. 

Section 4: Estimation of VSLI in power system using two different types of 

neural networks with the aim of comparing their performance is presented. VSLI 

estimation using the procedure discussed in dissertation 1 is done using an MLP and as 

ESN. The performance of the two approaches form monitoring VSLI in smart grid is 

compared. Simulation results showing performance of both MLP and ESN by mean 
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square error show that the ESN outperforms the MLP in estimating VSLI in that the 

smart grid. 

Section 5: Phasor measurements units are costly equipment and their deployment 

is done in a manner that ensures the minimum units needed for complete observability for 

voltage stability monitoring are used. A method using a genetic algorithm for optimal 

location of PMUs to ensure complete observability of the power system is developed. 

PMUs have been more available with the advent of smart grid technologies. A 

computational approach for estimating VSLI using PMU voltage magnitude and angle 

measured is developed. The approach uses echo state networks for estimating VSLI using 

PMU measurements. Performance of the ESN approach for estimating VSLI is evaluated 

for a 14 bus system under two different operating contingencies. 

An intelligent algorithm for optimal PMU placement in power system to ensure 

complete observability during normal operating conditions and when the system is 

islanded developed is implemented on three test systems. Assessment of the scalability of 

the ESN based approach method using PMU information for monitoring voltage stability. 

The dissertation shows the performance of the technique as the system size is increased. 

Demonstrates that the ESN based approach for VSLI estimation can be used during 

power system islanding. Application of the new method for online voltage stability in a 

smart grid consisting including wind generation and SmartParks is done. 

Section 6: Section 6 presents the development of a proposed voltage stability 

controller based on Adaptive Dynamic Programming. The controller is a non-linear 

controller capable of dynamically adjusting the reference values of two STATCOMs in 

order to optimally control the system voltage profile. The ADP controller uses the voltage 

stability load index obtained on-line via the Echo State Network approach. Simulation 

results have showed that the ADP controller improves the voltage response of the system 

compared to the case where only a traditional PI controller is used. The advantages of 

using the ADP controller is that the reactive power output of the STATCOM is adjusted 

dynamically as the system operation conditions change, thereby ensuring that the 

controller performs optimally during system excursions. 
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7.3. MAIN CONCLUSIONS 

The study presented in this dissertation focuses on the development of 

computational approaches for monitoring and control power system voltage stability in 

smart grids using phasor measurement unit information. The need for intelligent methods 

for monitoring and control of power system voltage stability has become of significant 

importance as the power system evolves to incorporate smart grid technologies. The 

complexity of the system has increased not only due to renewable energy sources and bi-

directional flow of electric power between customers and the grid but also from the 

interactions of the cyber systems that play major roles of communication, computing and 

control. Traditional methods of voltage stability monitoring and control need to be 

supplement with fast intelligent methods in order to meet the challenges of implementing 

a true smart grid and meeting the challenges of electric energy supply of the 21
st
 century. 

In this research computational intelligence based methods for online monitoring of 

voltage stability have been developed. The approaches developed use high speed 

communication infrastructure (PMUs) in order to estimate voltage stability load index. 

Performance of the techniques development is tested on different test system to evaluate 

their performance. Finally the study focuses on use of estimated VSLI as a feedback 

control signal. The development of an ADP controller for Secondary Voltage Control 

using STATCOMs in a power system with wind farms modeled is presented.  

 

7.4. SUGGESTIONS FOR FUTURE WORK 

 

This dissertation has focused on the development of computational approaches 

monitoring and control of voltage stability in a smart grids. Studies conducted have led to 

the development of an echo state network approach for estimation of voltage stability 

load index using phasor measurement information. Given below are some suggested 

areas for future research for this work: 

Performance of the ESN approach was tested on three different test systems, 

however actual applications in real-life sized power systems; it is important re-evaluate 

the scalability of the approach and optimizes the ESN structure. 
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In this dissertation, a method for optimal PMU placement to ensure observability 

for voltage stability monitoring and control during normal operating conditions and 

during islanding conditions has been developed. The limitation of these techniques is that 

it is applicable only for the case of defensive islanding of the power system. It is 

suggested that such a system looking at islanding in a general case be researched. 

Echo state networks are one kind in the family of recurrent neural networks, 

similar studies with other types of advanced neural network structures such as cellular 

neural networks is suggested. 

Voltage stability seldom happens in its pure form; in many events of catastrophic 

system failures leading to black-outs, the other two known types of power system 

stability: frequency stability and angle stability manifest in the same events. It is there 

desirable that the monitoring tool developed can be capable of providing frequency 

stability and angle stability information. 

Lastly, this dissertation has focused on the stability of the physical system (power 

system) of the smart grid, but as was discussed in the introduction, then two main aspects 

of the smart grid consists of the cyber system and the physical system. Thus in order to 

monitor and control the stability of the smart grid, the stability of both the cyber system 

and physical system need to be addressed. It is suggested that further research focused on 

the cyber system stability be considered.  

An alternative non-linear controller optimization method for training the ADHDP 

controller using – simulated annealing was explored while working this dissertation. The 

approach showed promising early results that are comparable to the actor – critic 

approach presented in this dissertation. The advantages of simulated annealing approach 

include the ability to finding the global optimum quickly, while avoiding getting trapped 

in local optimum points when compared with other methods of optimization. It is 

suggested that comparative studies to evaluate the performance of the simulated 

annealing algorithm and the approach of training the actor using the critic method can be 

made. 
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7.5. SUMMARY 

 

Summary of the chapters included in this dissertation is presented, their main 

conclusions have been summarized and suggestions for future research have been 

presented. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. 

VOLTAGE STABILITY LOAD INDEX CALCULATION 
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The mathematical formulation of the Voltage Stability L-index (VSLI) technique 

used in this dissertation is derived from voltage equations of a two bus network as shown 

in Figure 10. Consider a line connecting two buses bus 1 and bus  2 where P1 and Q1 are 

real and reactive  power injected into the line at bus 1 and P2 and Q2 are the real and 

reactive power at bus 2 as shown below. V1 and V2 are voltage magnitudes at bus 1 and 

bus 2 respectively and θ1 and θ2 and the corresponding voltage phase angles. The 

following equations can be derived: 

 

 

 
 

Figure 1. Two bus network 
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The voltage equation can be written as: 
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Which can be simplified to: 
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Therefore the voltage stability index is given by, 
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Substituting equations (14) and (15) into (13) gives: 

 

 

                                        (15) 

 

 

The equation for the voltage stability L-index is applied to the Thevenin 

equivalent circuit looking at the load bus as shown in Figure 2. 

 

The circuit shows the system equivalent Thevenin voltage and impedance. The steps used 

in obtaining the Thevenin equivalent are as follows: 

 

a) Load flow solutions are used to determine the voltage profile of the system at a 

given load condition 

b) Thevenin voltage is obtained by load flow of the system with the load at the 

concerned bus removed 

 

 
 

 

Fig. 2 Thevenin equivalent network 
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Applying equation (15) to the Thevenin equivalent circuit gives the equation for L-index 

as: 
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APPENDIX B. 

VOLTAGE STABILITY LOAD INDEX TRAINING DATA 
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10 Bus test system VSLI training data 

Bus11P Bus10P Bus9P Bus8P Bus7P Bus11Q Bus10Q Bus9Q Bus8Q Bus7Q L-bus8 L-bus11 

2.942 2.961 3.041 2.936 5.976 -0.8833 -0.7984 -0.8605 0.2421 -0.08654 0.63198 0.45024 

2.748 2.767 2.834 2.84 5.674 -0.8985 -0.8282 -0.9477 0.1044 -0.3813 0.579398 0.428892 

2.756 2.775 2.843 2.848 5.691 -0.8956 -0.8247 -0.9414 0.1148 -0.3608 0.582931 0.433251 

2.685 2.704 2.768 2.808 5.576 -0.901 -0.8348 -0.9706 0.06234 -0.4662 0.563789 0.425553 

3.027 3.046 3.133 3.023 6.156 -0.843 -0.7499 -0.7734 0.3628 0.1754 0.674994 0.508342 

2.98 2.999 3.082 2.975 6.057 -0.8659 -0.7775 -0.8232 0.295 0.0267 0.650732 0.475479 

2.942 2.961 3.041 2.936 5.976 -0.8833 -0.7984 -0.8605 0.2421 -0.08654 0.63198 0.45024 

2.817 2.836 2.907 2.877 5.785 -0.8928 -0.8176 -0.9175 0.1554 -0.2761 0.598321 0.437015 

2.712 2.732 2.797 2.837 5.634 -0.8916 -0.8236 -0.9504 0.09674 -0.3993 0.575412 0.439524 

2.959 2.978 3.059 2.953 6.012 -0.8757 -0.7893 -0.8442 0.2654 -0.037 0.640212 0.461303 

3.072 3.09 3.181 3.033 6.213 -0.8426 -0.7453 -0.754 0.3852 0.234 0.685149 0.508474 

2.715 2.734 2.799 2.839 5.638 -0.8908 -0.8227 -0.9489 0.09934 -0.3941 0.5763 0.440594 

2.77 2.789 2.858 2.863 5.721 -0.8904 -0.8185 -0.9304 0.1328 -0.3251 0.589069 0.440836 

2.869 2.889 2.963 2.896 5.859 -0.8927 -0.8137 -0.8992 0.1849 -0.2115 0.610157 0.436744 

2.685 2.704 2.768 2.808 5.576 -0.901 -0.8348 -0.9706 0.06234 -0.4662 0.563789 0.425553 

2.974 2.993 3.075 2.968 6.043 -0.8689 -0.7811 -0.8296 0.2859 0.00718 0.647517 0.471142 

2.871 2.89 2.965 2.898 5.863 -0.8919 -0.8128 -0.8976 0.1873 -0.2064 0.611011 0.437858 

3.07 3.089 3.179 3.031 6.21 -0.8434 -0.7462 -0.7556 0.3831 0.2293 0.684396 0.507422 

2.871 2.89 2.965 2.898 5.863 -0.8919 -0.8128 -0.8976 0.1873 -0.2064 0.611011 0.437858 

2.959 2.978 3.059 2.953 6.012 -0.8757 -0.7893 -0.8442 0.2654 -0.037 0.640212 0.461303 

2.71 2.73 2.795 2.835 5.63 -0.8923 -0.8244 -0.952 0.09412 -0.4044 0.574524 0.438456 

2.866 2.885 2.959 2.893 5.852 -0.8942 -0.8155 -0.9024 0.18 -0.2216 0.608444 0.434513 

2.712 2.732 2.797 2.837 5.634 -0.8916 -0.8236 -0.9504 0.09674 -0.3993 0.575412 0.439524 

2.991 3.01 3.094 2.986 6.08 -0.8607 -0.7712 -0.8119 0.3106 0.06067 0.656312 0.483016 

3.017 3.036 3.122 3.012 6.134 -0.8482 -0.7561 -0.7846 0.3478 0.1422 0.669616 0.501038 

2.856 2.875 2.949 2.883 5.832 -0.898 -0.82 -0.9105 0.1676 -0.247 0.604142 0.428913 

2.974 2.993 3.075 2.968 6.043 -0.8689 -0.7811 -0.8296 0.2859 0.00718 0.647517 0.471142 

2.811 2.83 2.901 2.871 5.772 -0.895 -0.8203 -0.9223 0.1478 -0.2913 0.595718 0.433713 

2.935 2.954 3.033 2.929 5.962 -0.8863 -0.802 -0.867 0.2327 -0.1065 0.628653 0.445777 

3.008 3.027 3.112 3.003 6.115 -0.8526 -0.7614 -0.7942 0.3348 0.1136 0.66496 0.494723 

2.952 2.971 3.052 2.946 5.998 -0.8787 -0.7929 -0.8507 0.2561 -0.05676 0.636933 0.456894 

2.823 2.842 2.914 2.883 5.797 -0.8905 -0.8149 -0.9127 0.1629 -0.2609 0.600915 0.440307 

2.811 2.83 2.901 2.871 5.772 -0.895 -0.8203 -0.9223 0.1478 -0.2913 0.595718 0.433713 

2.914 2.933 3.01 2.907 5.917 -0.8955 -0.8131 -0.8867 0.204 -0.1667 0.618558 0.432259 

2.877 2.896 2.971 2.904 5.875 -0.8897 -0.81 -0.8927 0.1947 -0.1913 0.613568 0.441191 

2.858 2.877 2.951 2.885 5.836 -0.8972 -0.8191 -0.9089 0.1701 -0.2419 0.605005 0.430035 

2.942 2.961 3.041 2.936 5.976 -0.8833 -0.7984 -0.8605 0.2421 -0.08654 0.63198 0.45024 

2.988 3.007 3.09 2.983 6.073 -0.8622 -0.773 -0.8151 0.3062 0.05099 0.654724 0.48087 

2.877 2.896 2.971 2.904 5.875 -0.8897 -0.81 -0.8927 0.1947 -0.1913 0.613568 0.441191 

2.908 2.928 3.004 2.901 5.906 -0.8978 -0.8158 -0.8916 0.1968 -0.1819 0.616007 0.428849 
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Bus11P Bus10P Bus9P Bus8P Bus7P Bus11Q Bus10Q Bus9Q Bus8Q Bus7Q L-bus8 L-bus11 

2.667 2.687 2.749 2.79 5.54 -0.9068 -0.8418 -0.9831 0.04084 -0.5078 0.556538 0.416857 

2.809 2.828 2.899 2.869 5.768 -0.8958 -0.8212 -0.9239 0.1453 -0.2964 0.594848 0.43261 

2.817 2.836 2.907 2.877 5.785 -0.8928 -0.8176 -0.9175 0.1554 -0.2761 0.598321 0.437015 

2.967 2.986 3.068 2.961 6.029 -0.8719 -0.7848 -0.8361 0.2768 -0.01241 0.644282 0.466783 

3.065 3.083 3.173 3.025 6.199 -0.8463 -0.7498 -0.7621 0.3748 0.2105 0.681372 0.503202 

3.061 3.079 3.169 3.021 6.19 -0.8486 -0.7525 -0.7669 0.3685 0.1963 0.67909 0.500021 

2.916 2.935 3.012 2.909 5.921 -0.8947 -0.8121 -0.8851 0.2065 -0.1617 0.619406 0.433393 

2.766 2.785 2.853 2.859 5.712 -0.8919 -0.8203 -0.9335 0.1277 -0.3353 0.587322 0.438675 

2.993 3.012 3.095 2.988 6.083 -0.86 -0.7703 -0.8103 0.3129 0.06551 0.657104 0.484087 

2.991 3.01 3.094 2.986 6.08 -0.8607 -0.7712 -0.8119 0.3106 0.06067 0.656312 0.483016 

2.988 3.007 3.09 2.983 6.073 -0.8622 -0.773 -0.8151 0.3062 0.05099 0.654724 0.48087 

2.988 3.007 3.09 2.983 6.073 -0.8622 -0.773 -0.8151 0.3062 0.05099 0.654724 0.48087 

2.693 2.713 2.777 2.817 5.594 -0.8981 -0.8314 -0.9644 0.07301 -0.4455 0.567388 0.429874 

2.974 2.993 3.075 2.968 6.043 -0.8689 -0.7811 -0.8296 0.2859 0.00718 0.647517 0.471142 

2.917 2.937 3.014 2.91 5.925 -0.8939 -0.8112 -0.8834 0.2089 -0.1567 0.620253 0.434525 

2.756 2.775 2.843 2.848 5.691 -0.8956 -0.8247 -0.9414 0.1148 -0.3608 0.582931 0.433251 

2.691 2.711 2.774 2.815 5.59 -0.8988 -0.8322 -0.9659 0.07035 -0.4507 0.56649 0.428796 

3.007 3.025 3.11 3.002 6.112 -0.8533 -0.7623 -0.7958 0.3327 0.1088 0.66418 0.493666 

2.717 2.736 2.801 2.841 5.642 -0.8901 -0.8218 -0.9473 0.102 -0.389 0.577187 0.441662 

2.712 2.732 2.797 2.837 5.634 -0.8916 -0.8236 -0.9504 0.09674 -0.3993 0.575412 0.439524 

2.969 2.988 3.07 2.963 6.033 -0.8712 -0.7838 -0.8345 0.2791 -0.00751 0.645092 0.467875 

3.023 3.041 3.128 3.018 6.147 -0.8452 -0.7525 -0.7782 0.3564 0.1612 0.672696 0.50522 

2.932 2.951 3.029 2.925 5.955 -0.8878 -0.8039 -0.8703 0.228 -0.1165 0.626983 0.443538 

2.979 2.998 3.08 2.973 6.053 -0.8667 -0.7784 -0.8248 0.2927 0.02182 0.64993 0.474397 

2.71 2.73 2.795 2.835 5.63 -0.8923 -0.8244 -0.952 0.09412 -0.4044 0.574524 0.438456 

3.065 3.083 3.173 3.025 6.199 -0.8463 -0.7498 -0.7621 0.3748 0.2105 0.681372 0.503202 

2.939 2.958 3.037 2.932 5.969 -0.8848 -0.8002 -0.8638 0.2374 -0.0965 0.630319 0.448012 

2.972 2.991 3.073 2.966 6.04 -0.8697 -0.782 -0.8312 0.2837 0.002289 0.64671 0.470054 

2.672 2.691 2.754 2.795 5.549 -0.9053 -0.84 -0.98 0.04622 -0.4973 0.558359 0.419039 

3.004 3.022 3.107 2.999 6.106 -0.8548 -0.7641 -0.799 0.3283 0.09923 0.662616 0.491547 

2.99 3.008 3.092 2.984 6.076 -0.8615 -0.7721 -0.8135 0.3084 0.05583 0.655518 0.481944 

2.7 2.719 2.783 2.824 5.608 -0.8959 -0.8288 -0.9597 0.08096 -0.43 0.570074 0.433103 

2.933 2.953 3.031 2.927 5.958 -0.8871 -0.803 -0.8687 0.2303 -0.1115 0.627819 0.444659 

2.819 2.838 2.909 2.879 5.789 -0.892 -0.8167 -0.9159 0.1579 -0.271 0.599187 0.438114 

2.939 2.958 3.037 2.932 5.969 -0.8848 -0.8002 -0.8638 0.2374 -0.0965 0.630319 0.448012 

2.869 2.889 2.963 2.896 5.859 -0.8927 -0.8137 -0.8992 0.1849 -0.2115 0.610157 0.436744 

2.875 2.894 2.969 2.902 5.871 -0.8904 -0.8109 -0.8943 0.1922 -0.1963 0.612717 0.440081 

2.748 2.767 2.834 2.84 5.674 -0.8985 -0.8282 -0.9477 0.1044 -0.3813 0.579398 0.428892 

2.77 2.789 2.858 2.863 5.721 -0.8904 -0.8185 -0.9304 0.1328 -0.3251 0.589069 0.440836 

2.667 2.687 2.749 2.79 5.54 -0.9068 -0.8418 -0.9831 0.04084 -0.5078 0.556538 0.416857 

3.058 3.076 3.165 3.018 6.184 -0.85 -0.7543 -0.7702 0.3642 0.1868 0.677562 0.497891 

2.967 2.986 3.068 2.961 6.029 -0.8719 -0.7848 -0.8361 0.2768 -0.01241 0.644282 0.466783 
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Bus11P Bus10P Bus9P Bus8P Bus7P Bus11Q Bus10Q Bus9Q Bus8Q Bus7Q L-bus8 L-bus11 

2.712 2.732 2.797 2.837 5.634 -0.8916 -0.8236 -0.9504 0.09674 -0.3993 0.575412 0.439524 

3.058 3.076 3.165 3.018 6.184 -0.85 -0.7543 -0.7702 0.3642 0.1868 0.677562 0.497891 

3.001 3.019 3.104 2.995 6.099 -0.8563 -0.7659 -0.8022 0.3239 0.08962 0.661047 0.489423 

2.947 2.966 3.046 2.941 5.987 -0.881 -0.7957 -0.8556 0.2491 -0.07163 0.634462 0.453573 

2.912 2.931 3.008 2.905 5.913 -0.8962 -0.814 -0.8883 0.2016 -0.1718 0.617709 0.431123 

2.77 2.789 2.858 2.863 5.721 -0.8904 -0.8185 -0.9304 0.1328 -0.3251 0.589069 0.440836 

2.99 3.008 3.092 2.984 6.076 -0.8615 -0.7721 -0.8135 0.3084 0.05583 0.655518 0.481944 

2.762 2.781 2.849 2.855 5.704 -0.8934 -0.8221 -0.9367 0.1225 -0.3455 0.585569 0.436509 

2.68 2.7 2.763 2.804 5.567 -0.9024 -0.8366 -0.9737 0.05699 -0.4765 0.561984 0.423386 

2.995 3.013 3.097 2.989 6.086 -0.8592 -0.7694 -0.8086 0.3151 0.07034 0.657895 0.485157 

2.971 2.989 3.071 2.965 6.036 -0.8704 -0.7829 -0.8329 0.2814 -0.00261 0.645902 0.468965 

2.982 3.001 3.084 2.976 6.06 -0.8652 -0.7766 -0.8215 0.2972 0.03156 0.651532 0.47656 

2.964 2.983 3.064 2.958 6.022 -0.8734 -0.7866 -0.8393 0.2723 -0.02223 0.642657 0.464595 

2.875 2.894 2.969 2.902 5.871 -0.8904 -0.8109 -0.8943 0.1922 -0.1963 0.612717 0.440081 

2.867 2.887 2.961 2.894 5.856 -0.8935 -0.8146 -0.9008 0.1824 -0.2165 0.609301 0.435629 

3.005 3.024 3.109 3 6.109 -0.854 -0.7632 -0.7974 0.3305 0.104 0.663399 0.492607 

2.817 2.836 2.907 2.877 5.785 -0.8928 -0.8176 -0.9175 0.1554 -0.2761 0.598321 0.437015 

3.005 3.024 3.109 3 6.109 -0.854 -0.7632 -0.7974 0.3305 0.104 0.663399 0.492607 

2.999 3.018 3.102 2.994 6.096 -0.857 -0.7668 -0.8038 0.3217 0.0848 0.660261 0.488358 

3.013 3.031 3.117 3.008 6.125 -0.8504 -0.7587 -0.7894 0.3414 0.1279 0.667294 0.497887 

2.928 2.947 3.026 2.921 5.947 -0.8893 -0.8057 -0.8736 0.2232 -0.1265 0.625308 0.441293 

2.962 2.981 3.063 2.956 6.019 -0.8742 -0.7875 -0.841 0.27 -0.02715 0.641843 0.463499 

3.064 3.082 3.172 3.024 6.196 -0.8471 -0.7507 -0.7637 0.3727 0.2057 0.680613 0.502143 

2.912 2.931 3.008 2.905 5.913 -0.8962 -0.814 -0.8883 0.2016 -0.1718 0.617709 0.431123 

2.68 2.7 2.763 2.804 5.567 -0.9024 -0.8366 -0.9737 0.05699 -0.4765 0.561984 0.423386 

3.017 3.036 3.122 3.012 6.134 -0.8482 -0.7561 -0.7846 0.3478 0.1422 0.669616 0.501038 

2.961 2.98 3.061 2.955 6.015 -0.8749 -0.7884 -0.8426 0.2677 -0.03208 0.641028 0.462402 

2.858 2.877 2.951 2.885 5.836 -0.8972 -0.8191 -0.9089 0.1701 -0.2419 0.605005 0.430035 

3.103 3.121 3.214 3.028 6.241 -0.8495 -0.7496 -0.7503 0.3865 0.2459 0.687768 0.49817 

2.76 2.779 2.847 2.853 5.7 -0.8941 -0.8229 -0.9382 0.12 -0.3506 0.584691 0.435424 

2.966 2.985 3.066 2.96 6.026 -0.8727 -0.7857 -0.8377 0.2746 -0.01732 0.64347 0.46569 

2.954 2.973 3.054 2.948 6.001 -0.878 -0.792 -0.8491 0.2584 -0.05181 0.637755 0.457998 

2.867 2.887 2.961 2.894 5.856 -0.8935 -0.8146 -0.9008 0.1824 -0.2165 0.609301 0.435629 

2.706 2.726 2.79 2.83 5.621 -0.8937 -0.8262 -0.9551 0.08887 -0.4146 0.572747 0.436318 

2.667 2.687 2.749 2.79 5.54 -0.9068 -0.8418 -0.9831 0.04084 -0.5078 0.556538 0.416857 

2.877 2.896 2.971 2.904 5.875 -0.8897 -0.81 -0.8927 0.1947 -0.1913 0.613568 0.441191 

2.748 2.767 2.834 2.84 5.674 -0.8985 -0.8282 -0.9477 0.1044 -0.3813 0.579398 0.428892 

2.984 3.002 3.085 2.978 6.063 -0.8644 -0.7757 -0.8199 0.2995 0.03643 0.652332 0.47764 

2.862 2.881 2.955 2.889 5.844 -0.8957 -0.8173 -0.9057 0.175 -0.2317 0.606727 0.432277 

3.011 3.03 3.115 3.006 6.122 -0.8511 -0.7596 -0.791 0.3392 0.1232 0.666517 0.496834 

2.987 3.005 3.089 2.981 6.07 -0.863 -0.7739 -0.8167 0.304 0.04614 0.653927 0.479794 

2.946 2.965 3.044 2.939 5.984 -0.8817 -0.7966 -0.8572 0.2468 -0.07659 0.633636 0.452464 
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Bus11P Bus10P Bus9P Bus8P Bus7P Bus11Q Bus10Q Bus9Q Bus8Q Bus7Q L-bus8 L-bus11 

3.065 3.083 3.173 3.025 6.199 -0.8463 -0.7498 -0.7621 0.3748 0.2105 0.681372 0.503202 

2.772 2.791 2.86 2.865 5.725 -0.8897 -0.8177 -0.9288 0.1353 -0.32 0.589942 0.441915 

3.058 3.076 3.165 3.018 6.184 -0.85 -0.7543 -0.7702 0.3642 0.1868 0.677562 0.497891 

2.76 2.779 2.847 2.853 5.7 -0.8941 -0.8229 -0.9382 0.12 -0.3506 0.584691 0.435424 

2.864 2.883 2.957 2.891 5.848 -0.895 -0.8164 -0.904 0.1775 -0.2267 0.607586 0.433395 

2.689 2.709 2.772 2.813 5.585 -0.8995 -0.8331 -0.9675 0.06768 -0.4558 0.565591 0.427716 

2.964 2.983 3.064 2.958 6.022 -0.8734 -0.7866 -0.8393 0.2723 -0.02223 0.642657 0.464595 

2.748 2.767 2.834 2.84 5.674 -0.8985 -0.8282 -0.9477 0.1044 -0.3813 0.579398 0.428892 

2.674 2.694 2.756 2.797 5.554 -0.9046 -0.8392 -0.9784 0.04892 -0.4921 0.559267 0.420127 

2.984 3.002 3.085 2.978 6.063 -0.8644 -0.7757 -0.8199 0.2995 0.03643 0.652332 0.47764 

2.856 2.875 2.949 2.883 5.832 -0.898 -0.82 -0.9105 0.1676 -0.247 0.604142 0.428913 

2.969 2.988 3.07 2.963 6.033 -0.8712 -0.7838 -0.8345 0.2791 -0.00751 0.645092 0.467875 

2.866 2.885 2.959 2.893 5.852 -0.8942 -0.8155 -0.9024 0.18 -0.2216 0.608444 0.434513 

2.961 2.98 3.061 2.955 6.015 -0.8749 -0.7884 -0.8426 0.2677 -0.03208 0.641028 0.462402 

2.667 2.687 2.749 2.79 5.54 -0.9068 -0.8418 -0.9831 0.04084 -0.5078 0.556538 0.416857 

3.026 3.044 3.131 3.021 6.153 -0.8438 -0.7507 -0.775 0.3607 0.1707 0.674229 0.507303 

3.002 3.021 3.105 2.997 6.103 -0.8555 -0.765 -0.8006 0.3261 0.09442 0.661832 0.490485 

2.988 3.007 3.09 2.983 6.073 -0.8622 -0.773 -0.8151 0.3062 0.05099 0.654724 0.48087 

3.004 3.022 3.107 2.999 6.106 -0.8548 -0.7641 -0.799 0.3283 0.09923 0.662616 0.491547 

2.866 2.885 2.959 2.893 5.852 -0.8942 -0.8155 -0.9024 0.18 -0.2216 0.608444 0.434513 

2.957 2.976 3.057 2.951 6.008 -0.8764 -0.7902 -0.8458 0.2631 -0.04194 0.639394 0.460203 

2.947 2.966 3.046 2.941 5.987 -0.881 -0.7957 -0.8556 0.2491 -0.07163 0.634462 0.453573 

2.935 2.954 3.033 2.929 5.962 -0.8863 -0.802 -0.867 0.2327 -0.1065 0.628653 0.445777 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C. 

UTILITY FUNCTION 
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QV SENSITIVITY ANALYSIS 

Eigenvalue # Most associate 

bus 

Real part Imaginary part 

Eig#1 Bus67 4611.8585 0 

Eig#2 Bus66 4579.6828 0 

Eig#3 Bus65 4381.8966 0 

Eig#4 Bus68 3982.0472 0 

Eig#5 Bus35 1965.2625 0 

Eig#5 Bus44 1846.6413 0 

Eig#6 Bus6 1033.0611 0 

Eig#7 Bus64 1013.79 0 

Eig#8 Bus10 784.6738 0 

Eig#10 Bus37 736.5289 0 

Eig#11 Bus63 700.2959 0 

Eig#12 Bus16 654.1467 0 

Eig#13 Bus42 604.6813 0 

Eig#14 Bus53 587.9127 0 

Eig#15 Bus41 551.2881 0 

Eig#16 Bus8 528.9415 0 

Eig#17 Bus61 509.1374 0 

Eig#18 Bus30 489.7563 0 

Eig#19 Bus62 424.1716 0 

Eig#20 Bus58 419.7676 0 

Eig#21 Bus13 408.4726 0 

Eig#22 Bus56 405.3253 0 

Eig#23 Bus34 390.6953 0 

Eig#24 Bus60 387.8334 0 

Eig#25 Bus60 374.4689 0 

Eig#26 Bus52 352.7511 0 

Eig#27 Bus55 345.1241 0 

Eig#28 Bus60 336.3313 0 

Eig#29 Bus55 319.6573 0 

Eig#30 Bus55 326.6141 0 

Eig#31 Bus59 326.894 0 

Eig#32 Bus31 301.9073 0 

Eig#33 Bus57 300.8495 0 

Eig#34 Bus59 287.3564 0 

Eig#35 Bus54 275.1794 0 

Eig#36 Bus45 272.0482 0 

Eig#37 Bus34 253.9617 0 

Eig#38 Bus3 227.0402 0 
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Eigenvalue # Most associate 

bus 

Real part Imaginary part 

Eig#39 Bus47 219.959 0 

Eig#40 Bus14 216.5113 0 

Eig#41 Bus26 203.493 0 

Eig#42 Bus19 204.6067 0 

Eig#43 Bus9 187.6103 0 

Eig#44 Bus29 181.6364 0 

Eig#45 Bus24 171.8244 0 

Eig#46 Bus12 9.5199 0 

Eig#47 Bus40 11.62 0 

Eig#48 Bus49 14.6342 0 

Eig#49 Bus21 145.7387 0 

Eig#50 Bus4 134.1794 0 

Eig#51 Bus38 132.0284 0 

Eig#52 Bus50 129.8033 0 

Eig#53 Bus28 19.7842 0 

Eig#54 Bus44 24.8402 0 

Eig#55 Bus28 29.8713 0 

Eig#56 Bus43 36.7316 0 

Eig#57 Bus12 40.2305 0 

Eig#58 Bus12 44.7102 0 

Eig#59 Bus28 50.1306 0 

Eig#60 Bus20 64.3044 0 

Eig#61 Bus70 65.6708 0 

Eig#62 Bus15 108.0808 0 

Eig#63 Bus33 102.447 0 

Eig#64 Bus39 99.5449 0 

Eig#65 Bus14 72.5249 0 

Eig#66 Bus40 76.2263 0 

Eig#67 Bus46 92.0915 0 

Eig#68 Bus27 81.1111 0 

Eig#69 Bus25 88.3988 0 

Eig#70 Bus69 999 0 
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BUS PARTICIPATION FACTORS 

Eigenvalue 

# 

Bus 31 Bus 32 Bus 33 Bus 34 Bus 35 Bus 39 Bus 50 

Eig#1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#5 0.000000 0.000000 0.000040 0.003390 0.539640 0.000000 0.000000 

Eig#5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000090 0.000000 

Eig#6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#7 0.000000 0.000000 0.000010 0.001870 0.000000 0.000000 0.000000 

Eig#8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#10 0.000010 0.000050 0.000120 0.013650 0.000020 0.000000 0.000010 

Eig#11 0.000000 0.027230 0.001160 0.000060 0.000000 0.000000 0.000000 

Eig#12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#13 0.000000 0.000000 0.000000 0.000040 0.000000 0.000000 0.000040 

Eig#14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#15 0.000010 0.000050 0.000060 0.000420 0.000000 0.000000 0.000020 

Eig#16 0.000060 0.000170 0.000020 0.000020 0.000000 0.000000 0.000000 

Eig#17 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#18 0.001160 0.009230 0.001610 0.001310 0.000020 0.000000 0.000000 

Eig#19 0.061480 0.000010 0.000000 0.000090 0.000000 0.000000 0.000000 

Eig#20 0.000000 0.000000 0.000000 0.000010 0.000000 0.000000 0.000000 

Eig#21 0.000000 0.000000 0.000000 0.000010 0.000000 0.000000 0.000000 

Eig#22 0.000000 0.000010 0.000060 0.000430 0.000010 0.000000 0.000000 

Eig#23 0.000120 0.008390 0.049320 0.304880 0.010280 0.000020 0.000160 

Eig#24 0.000640 0.002110 0.010600 0.059760 0.001990 0.000000 0.000130 

Eig#25 0.000120 0.000090 0.000460 0.002160 0.000080 0.000000 0.000000 

Eig#26 0.000020 0.001340 0.001840 0.004720 0.000030 0.000010 0.028430 

Eig#27 0.000080 0.000230 0.000190 0.000110 0.000010 0.000000 0.000150 

Eig#28 0.037720 0.003240 0.014910 0.028380 0.001900 0.000000 0.000060 

Eig#29 0.036890 0.060260 0.093180 0.046320 0.004080 0.000000 0.000560 

Eig#30 0.034800 0.025120 0.048200 0.040820 0.003180 0.000000 0.001210 

Eig#31 0.001160 0.000880 0.001230 0.000910 0.000070 0.000000 0.000350 

Eig#32 0.251010 0.154670 0.112500 0.002240 0.000330 0.000000 0.000200 

Eig#33 0.016500 0.009680 0.006910 0.000100 0.000020 0.000000 0.000010 

Eig#34 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Eig#35 0.000230 0.000020 0.000010 0.000030 0.000010 0.000000 0.000030 

Eig#36 0.028260 0.078440 0.053800 0.030750 0.026280 0.001410 0.019200 

Eig#37 0.111280 0.134480 0.055340 0.174320 0.011810 0.000800 0.008620 

Eig#38 0.000040 0.001610 0.000060 0.003400 0.000720 0.000010 0.000060 

Eig#39 0.065750 0.034810 0.008120 0.032720 0.008180 0.000100 0.000190 
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Eig#40 0.001920 0.000150 0.000260 0.000000 0.000000 0.000000 0.000010 

Eigenvalue# Bus 31 Bus 32 Bus 33 Bus 34 Bus 35 Bus 39 Bus 50 

Eig#41 0.001080 0.000420 0.000060 0.000360 0.000140 0.000000 0.000000 

Eig#42 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000010 

Eig#43 0.036670 0.023940 0.000020 0.021210 0.014350 0.000170 0.000160 

Eig#44 0.000010 0.000010 0.000000 0.000000 0.000010 0.000000 0.000010 

Eig#45 0.000500 0.000230 0.000030 0.000060 0.000070 0.000000 0.000000 

Eig#46 0.006120 0.001430 0.001820 0.000540 0.000050 0.000050 0.000150 

Eig#47 0.024860 0.004160 0.006050 0.000850 0.000010 0.000210 0.000050 

Eig#48 0.001270 0.000490 0.002250 0.000730 0.000710 0.000160 0.000520 

Eig#49 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000010 

Eig#50 0.000050 0.000090 0.000020 0.000060 0.000010 0.000050 0.001910 

Eig#51 0.037840 0.030050 0.001470 0.003590 0.026440 0.003690 0.139680 

Eig#52 0.010190 0.003760 0.008680 0.018780 0.013410 0.021000 0.428510 

Eig#53 0.000000 0.000050 0.000070 0.000030 0.000020 0.000030 0.000170 

Eig#54 0.001840 0.006150 0.013620 0.026040 0.044720 0.047130 0.022470 

Eig#55 0.000210 0.000080 0.000070 0.000010 0.000000 0.000200 0.000010 

Eig#56 0.024480 0.032090 0.055210 0.043180 0.053340 0.016510 0.021610 

Eig#57 0.027740 0.008410 0.007360 0.000090 0.008770 0.000810 0.059470 

Eig#58 0.044360 0.028640 0.039880 0.007450 0.000370 0.000040 0.031400 

Eig#59 0.000120 0.001820 0.003350 0.001770 0.000870 0.000030 0.001950 

Eig#60 0.002960 0.002580 0.007120 0.008470 0.009250 0.000050 0.008010 

Eig#61 0.039230 0.031630 0.082570 0.098520 0.107170 0.000790 0.090700 

Eig#62 0.024190 0.020800 0.031080 0.000020 0.003020 0.000700 0.005330 

Eig#63 0.045840 0.127970 0.179850 0.000130 0.025170 0.030380 0.026350 

Eig#64 0.003770 0.000430 0.000110 0.001460 0.002070 0.851750 0.015400 

Eig#65 0.002590 0.000210 0.000760 0.000480 0.000880 0.000030 0.000510 

Eig#66 0.010380 0.000700 0.003470 0.006470 0.014490 0.000030 0.009320 

Eig#67 0.004150 0.123620 0.098300 0.003980 0.064880 0.023650 0.080580 

Eig#68 0.000010 0.000040 0.000030 0.000020 0.000010 0.000010 0.000000 

Eig#69 0.000010 0.000050 0.000010 0.000100 0.000610 0.000080 0.000570 

Eig#70 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

 

Utility function design: 

The objective of the adaptive dynamic programming controller developed in this 

dissertation is to minimize Voltage Stability Load Index (VSLI) deviations at buses 35, 

39, and 50. There for the utility function is defined as: 
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The subscripts ‘ss’ represent steady state values of VSLI. The coefficients A1, A2, 

and A3 are weighting factors with a total sum of 1 such that VSLI deviations at each bus 

contribute to the utility function proportionally to the voltage stability sensitivity of each 

bus. QV sensitivity analysis of the system is performed to determine bus participation at 

each of three buses. 

 

Eigenvalue 

# 

Eigenvalue Bus 

# 

Participation 

Factor 

VSLI 

coefficient 

31 152.77 35 0.13237 0.36 

36 126.34 50 0.17925 0.4 

49 100.49 39 0.13543 0.24 

 

Bus 39 has the highest Q-V sensitivity since its participation is higher in the 

smallest of the three eigenvalues. The second most sensitive is bus 50 then followed by 

bus 35. The coefficients of the utility function A1, A2, and A3 are chosen to give weighting 

factors of VSLI values at the three buses according to take into account the eigenvalues 

and participation factors. The eigenvalue is multiplied by the participation factor and 

each coefficient is a fraction of the total of the three products. 
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