
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Spring 2017 

Reliability and Validity of the GWalk for Use in Postural 
Control 
Megan Mormile 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Sports Sciences Commons 

Recommended Citation 
Mormile, Megan, "Reliability and Validity of the GWalk for Use in Postural Control" (2017). 
Electronic Theses and Dissertations. 1562. 
https://digitalcommons.georgiasouthern.edu/etd/1562 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. 
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229061603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/759?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1562?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


 

RELIABILITY AND VALIDITY OF THE GWALK FOR USE IN POSTURAL 

CONTROL 
 

by 

 

MEGAN ELIZABETH EVELYN MORMILE  

 

(Under the Direction of Nicholas Gerald Murray) 

ABSTRACT 

Introduction: Clinical examinations are highly subjective when compared to the more 

sensitive and robust measures observed with force platform assessment. Currently, few 

methods exist to quantify objective postural control deficits in an easier and more 

accessible way for clinicians. Purpose: The purpose of this study was to examine the 

reliability and validity of a wireless inertial sensing device, the BTS GWalk, during 

postural control assessment. Methods: Fifty-six participants (27 male, 22 ± 1.9 years, 29 

female, 21 ± 0.9 years) performed three trials each of quiet standing with eyes open (EO) 

and eyes closed (EC) on a force platform (FP). Participants were fitted with the BTS 

GWalk, which was placed on the lower back. To establish reliability, trials were 

administered over two time points approximately 48-72 hours apart. Raw center of 

pressure (COP) data from the FP and GWalk were exported and further analyzed using 

Excursion (ExcML/ExcAP) in the mediolateral and anteroposterior directions. Reliability of 

both devices was determined using a repeated measures ANOVA and corresponding ICC 

values. Criterion validity was determined using Pearson’s correlations in SPSS v 23.0 

Results: Repeated measures ANOVAs showed no significance for time or device. In the 

EO condition, the GWalk demonstrated excellent reliability in the ExcML (ICC=.929) 

and ExcAP (ICC=.791) directions. In the EC condition, the GWalk showed excellent 

reliability in ExcML and AP (ICC=.909, .781). However, the repeated measures ANOVA 



showed significant differences for device (p <.001 for EO and EC, respectively). 

Pearson’s correlations showed strong likeliness across each variable for both eyes open 

and closed conditions (ExcML (EO r= .703, EC r= .703), ExcAP (EO r= .732, EC r= .736). 

Discussion: Results of the current study indicate the GWalk is a reliable and moderately 

valid measurement of postural control in healthy populations, but currently is not 

recommended for comparison against COP parameters. Further research should examine 

the use of the GWalk against a measure of center of mass, to potentially provide an 

objective postural control assessment in clinical settings.  

INDEX WORDS: Postural control, Balance assessment, Reliability, Validity, GWalk 
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CHAPTER 1.  

INTRODUCTION 

 

Postural control is defined as the ability to maintain a postural orientation in response to 

external or volitional perturbations.1 Postural control is largely based on innate neural 

mechanisms,2 which attain afferent information from three main sensory systems (visual, 

vestibular, and somatosensory) and execute efferent responses in the form of muscular 

contractions.3,4 The visual system is used primarily for movement planning and avoiding 

obstacles. The vestibular system obtains information about acceleration, balance, and 

coordination. Lastly, the somatosensory system senses kinesthetic information, highly useful for 

determining individual motor outputs to navigate in an environment. A marked deficiency in any 

one of these mechanistic properties may interfere with the nervous systems’ ability to process 

and integrate sensory information, thus affecting balance.2,5 The theory of postural control is 

complex, and many methods of assessment have arisen over time to determine the source and 

trajectories of sway in both healthy and pathological populations. These assessments have taken 

the form of both accessible and user-friendly clinical assessments, as well as more advanced 

laboratory assessments. 

Many current clinical balance assessment methods have high levels of subjectivity. 

Though commonly used, these assessments typically lack the objectivity and sensitivity of more 

refined laboratory assessments, and have thus shown to be incapable of measuring more long-

term balance deficits, especially with regards to pathology.6 Clinical balance assessments such as 

the Balance Error Scoring System (BESS) test have shown a noteworthy discrepancy between 

the scoring systems used in comparison to more sophisticated laboratory assessments6. The 

BESS test involves three stances (feet together, single leg non-dominant, and tandem) on both a 
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firm and a compliant surface. If a participant steps out of static stance, takes their hands off their 

hips, opens their eyes, or performs any other gross motor movement, it is counted as an error. 

The number of errors made by the participant are counted to provide an overall score, which is 

used as a hallmark to determine the overall effectiveness of the postural control system. Though 

commonly used, the BESS test has shown inconsistent intrarater reliability.7 Administration with 

multiple raters increases the variability in scoring, which may change how the results are 

interpreted. This misinterpretation can be a genuine issue when making clinical decisions, as 

return to play decisions are based on scoring. Additionally, the BESS has also shown a 

significant learning effect when used at multiple time points, which can also affect interpretation 

of results.8,9  

Contrastingly, laboratory assessments can identify postural control deficits by way of 

center of pressure data. Center of pressure (COP) is defined as the point location of the vertical 

ground reaction force vector, or a weighted average of the pressure over surface area in contact 

with the ground.10 Center of pressure is an extremely sensitive measure, using pressurized 

sensors that identify even the slightest of movements. Usage of the center of pressure metric may 

prove useful in that subtle movements indicative of pathology may be unnoticed by the 

clinicians’ eye. The parameters derived from center of pressure data have shown to be a powerful 

measure of postural control, as they are able to track subtle movements previously unidentified 

by clinical assessments.6 Due to this high sensitivity, force platforms are considered to be the 

gold standard of postural control assessment. Variables such as excursion provide information 

regarding the amount of movement occurring over a time course during assessments such as 

quiet standing.11  
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Excursion is highly utilized in the literature to quantify the total amount of COP 

movement throughout static stance. Total excursion is defined as the total distance the center of 

pressure travels over the duration of the trial. Excursion can also be delineated into both 

anteroposterior and mediolateral directions, which is calculated as the sum of distances between 

consecutive points in the COP time series.12,13 Excursion is often analyzed to determine the 

deficits in pathological populations because it is a simplistic measure of the total movement 

throughout a time series. The interpretation of excursion pertaining to stability is relatively 

simple: a larger excursion value will typically indicate lesser stability of the postural control 

system, while smaller excursion values would indicate less movement and therefore more 

stability.  

In short, center of pressure data has shown to be a valuable indicator of the acute and 

lingering scarcities following pathology and neural dysfunction, as well as data pertaining to 

healthy individuals.6 However, though the utilization of center of pressure data is advantageous, 

it is also a very costly method of assessment that requires great depth of understanding in 

postural control biomechanics. Currently, the use of this method proves neither a cost-effective 

or clinically feasible option in a clinical setting.  

Recently, portable and cost effective inertial sensor devices have been developed to 

measure spatial-temporal parameters to quantify acceleration information during locomotion. 

These walking spatial-temporal parameters include time, speed/velocity, and distance, which 

have been previously validated in healthy populations.14,15 

Usage of these devices provide a cordless and portable option to collect acceleration data, 

thus increasing potential clinical applicability for postural stability assessment. Inertial sensor 

devices contain a single accelerometer located at the L4-L5 joint space to collect data in the 
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mediolateral and anteroposterior axes. The use of these accelerometer-based devices may help to 

bridge the gap between more objective laboratory measures and subjective clinical measures, as 

they provide a less expensive way to obtain quantitative information outside the laboratory. 

The BTS GWalk (BTS Bioengineering, Brooklyn, NY) is a relatively new piece of 

technology that utilizes a small rectangular device containing a wireless network of inertial 

sensors designed to analyze human movement.15 The sensor contains a 3-axis accelerometer, 

gyroscope, and magnetometer sampling at 100Hz to determine planes and axes of movement 

along with relative angles. To accurately represent acceleration data, the sensor is attached to an 

elastic belt placed across the subject’s lower back at the L4-L5 intervertebral disk space. The 

data resultant from the GWalk is assessed in terms of acceleration in the anteroposterior and 

mediolateral axes, which exists in the same theoretical construct as acceleration from ground 

reaction forces. Thus, excursion data obtained from the GWalk should presume to be similar to 

force platform assessment, which would identify postural stability changes. 16,17 However, 

reliability and validity of the GWalk has not been established during postural stability 

assessment, particularly static stance. 

Validity is defined as “the degree to which the test in question measures what it is 

supposed to measure”, also referred to as the soundness of the interpretation of scores. 18 

Multiple types of validity exist in the literature; for the purposes of this study, criterion validity 

and concurrent validity will be discussed. Criterion validity is defined as the degree to which 

scores on a testing measure are related to some organized standard or criterion.18 Concurrent 

validity, a subset of criterion validity, is defined as the validity measurement of a device that is 

being measured simultaneously with its criterion. Establishing validity evidence in a testing 

environment is essential to ensure a testing measure is psychometrically sound.18  
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Reliability is an integral part of validity testing, and measures the extent of which a 

testing measure is consistent and repeatable. A type of reliability testing is test-retest reliability, 

which involves validation of an assessment over multiple time points.18 Reliability can be 

calculated as the ratio of a true score variance to an observed score variance.18 Reliability is often 

expressed using a correlation coefficient, which ranges from 0-1.18 The closer the coefficient is 

to 1, the more reliable a testing measure is considered to be, implying that the true score is 

assessed with little error variance. Sources of measurement error include participant, testing, 

scoring, and instrumentation.18 However, these errors can be minimized as much as possible 

through careful methodological considerations and scorer expertise.18  

Few clinical measures are able to identify initial or lasting deficits of the human postural 

control system in an inexpensive and objective manner. Technology such as the BTS GWalk ® 

may be able to provide clinicians with postural control information in a clinically applicable 

fashion. However, the GWalk needs to establish validity and reliability during static stance 

postural stability assessment before it can be used clinically. Therefore, the purpose of this study 

is to examine the test-retest reliability of the BTS GWalk as well as examine its criterion validity 

with the COP data measured by laboratory force platform. It is the aim of this research to 

determine if the GWalk can be used as an objective and inexpensive alternative to more 

traditional laboratory measures.  
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CHAPTER 2 

METHODS 

2.1 Study Design 

This study was a cross-sectional design using a healthy collegiate cohort. 

2.2 Research Setting 

All research for the current study was conducted in the biomechanics laboratory of a 

single university. The biomechanics laboratory is a spacious, multi-purpose area that provides 

room for a multitude of varied testing and projects taking place at the university.  

2.3 Participants 

Fifty-six healthy individuals (27 male, 22 ± 1.9 years, 180.48 ± 5.48 cm, 85.43 ± 17.82 

kg, 29 female, 21 ± 0.9 years, 165.45 ± 7.37 cm, 67.44 ± 12.56 kg) enrolled in classes at the 

university participated in this study. To determine the most accurate reliability and validity data, 

a healthy cohort of individuals were used in lieu of pathological participants. 

All participants were screened using a medical history form (Appendix B) to exclude 

muscular and neurological pathologies that would hinder performance on a postural sway 

assessment. Participants who met criteria for inclusion (Table 1) were healthy individuals, ages 

18-25 that did not participate in intercollegiate or varsity sports at the university. 
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Table 1. Criteria for Inclusion and Exclusion of Healthy Participants for the Current Study 

Inclusion Exclusion 

Healthy as determined by self-report 

College-age (18-25 years of age) 

 

Lower extremity musculoskeletal injury 

Surgery within the past year 

Neuromuscular injury 

Traumatic brain injury (within past year) 

Psychiatric illness 

History of seizures 

History of Attention deficit disorder (ADD) 

History of Attention deficit hyperactivity disorder 

(ADHD) 

History of Learning Disorder 

 

Participants that met inclusion criteria were enrolled in the study. The primary researcher 

recruited participants through both undergraduate and graduate classes within the department, 

and provided an in-depth explanation of the study including methods of data collection, 

expectations of participants, and inclusion/exclusion criteria. All methods were approved by the 

Institutional Review Board at the university prior to all data collection.   

2.4 Instrumentation 

Center of Pressure 

Ground reaction forces were investigated using an in-ground strain gauge AMTI force 

platform (1000 Hz, AMTI OR6 Series, Watertown, MA, USA) measuring 20 in (length) x 18.25 

in (width). Center of Pressure (COP) data was calculated from the ground reaction forces 

recorded from the force platform.  
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Acceleration  

Acceleration data was collected using an inertial wireless sensing device (100 Hz, BTS 

GWalk BTS Bioengineering Corporation, Brooklyn, NY, USA). The GWalk was placed at the 

approximate L4-L5 intervertebral space, palpated mid-way between the posterior superior iliac 

spines (PSIS) to ensure accurate placement. Acceleration in the anteroposterior (AP) and 

mediolateral (ML) axes was then determined from signals sent via Bluetooth to a corresponding 

computer software program (G-Studio, BTS Bioengineering).  

2.5 Variables 

 Variables examined included excursion and root mean square in the AP and ML 

directions. All variables were derived from both raw COP data from the force platform as well as 

acceleration information from the GWalk. A custom code was used within the MATLAB 

software to further analyze these variables. 

Excursion in the AP and ML directions (ExcAP and ExcML) was defined as the sum of the 

distances between consecutive points in the AP or ML COP time series (Figure 1).12 

ExcML = ∑ |

𝑁−1

𝑛−1

ML[𝑛 + 1] − ML[𝑛]| 

Figure 1. Mediolateral Excursion Equation 

For the purposes of this study, excursion was chosen as a way to quantify the total 

movement of the individual being tested in multiple directions. Thus, differences in hip and 

ankle postural stability strategies would be defined by the GWalk and force platform. 
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2.6 Procedures  

 Upon arrival at the first test session, participants filled out an informed consent and 

medical history form (Appendix B) that included demographic information such as height (cm), 

weight (kg), and age, as well as questions determining inclusion/exclusion criteria for the study.  

After completion of the paperwork, participants then performed six trials of quiet 

standing. Participants were asked to stand as still as possible for thirty seconds with their bare 

feet placed together in the middle of the force platform. Keeping the feet together decreases the 

base of support, thereby allowing more movement to occur. Currently, there is no 

recommendation for the most reliable foot position; however, it is suggested that trials are 

standardized.19 Previous literature has determined that a sampling duration of 90 seconds can be 

expected to yield good reliability for traditional COP measures; however, due to time 

constrictions and scheduling, a sampling duration of 30 seconds was used. Thirty seconds has 

shown to yield acceptable reliability when combined with multiple trials.19 A successful trial was 

characterized by the participant completing the thirty seconds on the force platform without any 

voluntary or involuntary movement. Gross movements such as movement of the extremities, 

chewing gum, sneezing, or moving the head deemed the trial unsuccessful, and thus was 

repeated and overwritten. 

Participants performed three trials each of eyes open and eyes closed quiet standing. 

Previous literature has determined three trials to be sufficient in trials of less than one minute, 

and yield acceptable reliability for most center of pressure parameters when averaged.19 Use of 

both eyes open and eyes closed trials are a way to challenge the integration of visual and 

proprioceptive input.19 Participants were tested a second time with approximately 48-72 hours 
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(average 52.82 hours) between time points. Retest with longer periods of time in between is able 

to determine variability within trials, and may reflect stability of COP parameters.18 

2.7 Data Analysis 

 Raw COP data from the force platform and acceleration data from the GWalk were both 

filtered using a fourth order, zero phase Butterworth low-pass filter with a cutoff frequency of 

12Hz. To compare likeliness of values for both COP and GWalk data, EXCML and EXCAP were 

further analyzed using a custom code in MATLAB software (MathWorks® Inc, USA). 

Excursion was chosen as the primary variable, due to it being one of the most commonly used 

and reliable COP parameters19 

Table 2. Independent and Dependent Variables 

Independent Dependent 

Time Point #1 (Initial Assessment) Variables Calculated from GWalk and COP Data 

Time Point #2 (24-48 Hours Post Initial Assessment) ExcML/ExcAP 

 Condition 

 Eyes Open 

  Eyes Closed 
Note: COP=center of pressure, ExcML= Mediolateral Excursion, ExcAP= Anteroposterior Excursion 

 

2.8 Statistical Analysis 

 Reliability was established using multiple 2x2 repeated measures ANOVAs to determine 

the presence of significant main effects at two separate time points (T1 &T2) during the eyes open 

(EO) and eyes closed (EC) conditions. Additionally, intraclass correlations (ICCs) were run to 

quantify the relative reliability of each variable. ICC values were adhered to as follows: poor 

(0.0-0.39), fair (0.40-0.59) good (0.60-0.74) and excellent (0.75-1.0).20 These values are highly 

utilized in the literature, and thus were chose as a measure of consistency. To establish criterion 
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validity, Pearson’s correlations were run to determine similarity of excursion values between 

COP and GW in the AP and ML directions. A Pearson’s r value > 0.75 indicated good reliability 

(> 0.90 excellent), r=0.50 to 0.75 moderate to good validity, and < 0.50 poor validity.21,22 Alpha 

level was set at p < .05 a priori. All statistical analyses were conducted using SPSS version 23.0 

(IBM, Chicago, IL, USA). 

 

 

 

 

 

 

  



19 

 

 

CHAPTER 3.  

RESULTS 

3.1 Eyes Open Condition 

 Results from the repeated measures ANOVA determined no significant differences for 

time using the force platform in the EO condition (EO ExcML (F(1,55)=.259, p=.613), EO ExcAP 

(F(1,55)=.001, p=.981). Results from the GWalk determined similar findings, with no significant 

differences for time in the eyes open condition (EO ExcML (F(1,55)=.259, p=.613), EO ExcAP 

(F(1,55)=.001, p=.981). When measured between devices, the repeated measures ANOVA 

determined significant differences between GW and FP in the eyes open condition (EO ExcML 

(F(1,55)=646.32, p <.001), EO ExcAP (F(1,55)=611.24, p <.001), with the FP showing 

significantly more movement in both directions compared to GW (Figure 2). Means and standard 

deviations for all variables for both conditions and time points can be found in Table 3. 

3.2 Eyes Closed Condition 

Results from the repeated measures ANOVA determined no significant differences for 

time using the force platform in the EC condition (EC ExcML (F(1,55)=.152, p=.698), EC ExcAP 

(F(1,55)=.176, p=.677). Results from the GWalk determined no significant differences for time 

in the eyes closed condition (EC ExcML (F(1,55)=.152, p=.698), EC ExcAP (F(1,55)=.176, 

p=.677). When measured between devices, the repeated measures ANOVA determined 

significant differences between GW and FP in the eyes closed condition (EC 

ExcML(F(1,55)=481.32, p <.001), EO ExcAP (F(1,55)=402.51, p <.001), with the FP showing 

significantly more movement in both directions compared to GW (Figure 3). Means and standard  
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deviations for all variables for both conditions and time points can be found in Table 3. 

 

Note: ExcML= Mediolateral Excursion, ExcAP= Anteroposterior Excursion. All values derived from Repeated 

Measures ANOVAs in EC and EO conditions. 

 

Note: FP= Force Platform, GW= GWalk, AP= anteroposterior direction, ML= mediolateral direction 
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Table 3. Means, Standard Deviations, and Significance Values for GWalk and Force 

Platform in Eyes Open and Eyes Closed Conditions 

 

Eyes Open 

Gwalk 

Mean (SD) (m) 

Force Platform 

Mean (SD) (m) 

p-value 

ExcML .0013 (.0003) .1669 (.0516) .001 

ExcAP .0013 (.0003) .1659 (.0521) .001 

Eyes Closed 

Gwalk 

Mean (SD) (m) 

Force Platform 

Mean (SD) (m) 

 

ExcML .0014 (.0003) .1821 (.0587) .001 

ExcAP .0013 (.0003) .1798 (.0586) .001 
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Note: FP= Force Platform, GW= GWalk, AP= anteroposterior direction, ML= mediolateral direction 

 

3.3 Intraclass Correlations (ICCs) 

Force platform variables for the eyes closed condition consistently demonstrated 

excellent reliability across variables in the EO (ExcML (ICC=0.904), ExcAP (ICC=0.915)) and EC 

(ExcML: ICC=0.945, ExcAP: ICC=0.951) conditions (Table 4). Additionally, the GWalk showed 

excellent reliability in the EO condition for both ExcML (ICC=0.937) and ExcAP (ICC=0.817). In 

the EC condition, the GWalk showed excellent reliability in ExcML (ICC=0.909) and ExcAP 

(ICC=0.781) (Table 4).  
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Note: ExcML= Mediolateral Excursion, ExcAP= Anteroposterior Excursion 

 

3.3 Pearson’s Product Correlations 

Pearson’s correlations revealed a moderate to good correlation between GWalk and force 

platform for both Exc AP and ML during both conditions (Table 3). In the EO condition, 

Pearson’s correlations showed moderate to good correlations between GWalk and force platform 

in ExcML and ExcAP directions (r= 0.703, r= 0.751). Similar values were observed during EC 

conditions for ExcML and ExcAP (r= 0.722, r=0.752). 

Table 5. Pearson's Correlations for GWalk and Force Platform Variables. 

 EO (r) EC (r) 

ExcML 0.703 0.722 

ExcAP 0.751 0.752 

   
Note: ExcML= Mediolateral Excursion, ExcAP= Anteroposterior Excursion, r= Pearson’s product correlation  

 

 

 

 

Table 4. Intraclass Correlation Coefficient (ICC) Values (Time) for Excursion Variables 

in Eyes Open and Eyes Closed Conditions 

Eyes Open Gwalk Force Platform 

ExcML 0.937 0.904 

ExcAP 0.817 0.915 

Eyes Closed Gwalk Force Platform 

ExcML 0.909 0.936 

ExcAP 0.781 0.945 
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CHAPTER 4. 

DISCUSSION 

4.1 Overview 

The purpose of this study was to examine the test-retest reliability of the BTS GWalk as 

well as examine its criterion validity with the COP data measured by laboratory force platform. 

Previous literature has shown usage of the laboratory force platform to be the gold standard in 

postural stability assessment. The hypothesis for this study was partially met, as the GWalk and 

force platform collected similar movement patterns as shown by moderate to excellent ICC 

values but did not output similar results. Previous literature regarding inertial sensors has 

determined that the technology may offer accurate and reliable methods to assess human motion; 

however, the degree of accuracy is highly dependent on the site of contact and task at hand.15 

Overall, the GWalk showed moderate to excellent reliability in both eyes closed and eyes open 

conditions with regards to parameters commonly used in the assessment of postural control. 

Pearson’s correlations showed moderate correlations between the GWalk and force platforms; 

however, when analyzed between devices, the GWalk and FP were significantly different. 

Therefore, though the GWalk was shown to be reliable within device, it may not be the most 

reliable method when compared to typical COP parameters.  

4.2 Reliability: Force Platform 

For the current study, reliability values were determined from force plate variables ExcML 

and ExcAP in both eyes open and eyes closed conditions. In eyes open quiet stance, reliability of 

the excursion variables in the ML and AP directions were found to be within the excellent range, 

with ICCs of .904 and .916, respectively.  These numbers are consistent with previous 



24 

 

 

literature,22 which has demonstrated ICCs for excursion in the excellent range (Santos et al.: 

0.75-0.79, Li et al. 0.79-0.81).22,23 This finding further affirms that the force platform is an 

excellent and reliable tool for postural control assessment. 

In the eyes closed condition, ICC values for excursion demonstrated excellent reliability. 

Similar to eyes open stance, values for ExcML and ExcAP (Table 4) were consistent with Santos et 

al., who reported excursion values of 0.77 and 0.75 over 2-3 trials.23 The absence of a main 

sensory system may play a role in the consistency of trials; in the eyes closed condition, there 

may be less external distraction playing a part into the ability to maintain postural orientation. 

Thus, trials across time may display higher reliability. The numbers found in the current study 

closely resemble those determined by Santos et al., who over 2-3 trials observed ICC values of 

0.79 and 0.77 in ExcML and ExcAP in the eyes closed condition.23 Results from the current 

study suggest that excursion variables show to be consistently reliable across time; though 

already commonly used, the eyes closed condition is one that should continue to be utilized as a 

determinant of fluctuations in the postural control system.   

Reliability values obtained from force platform data in the current study were higher in 

eyes closed quiet standing than eyes open stance, which contradicts previous literature.23 

Previous findings of lower reliability during eyes closed conditions in certain conditions has 

been attributed to the role the visual system plays in the maintenance of optimal postural control. 

Absence of visual cues along with lack of distractions in the testing setting during eyes closed 

stance may play a role in the consistently excellent reliability values observed in this condition. 

Additionally, the movement strategies displayed in the eyes closed condition may be similar 

across the sample population, as humans do not typically observe their surrounding environment 
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deprived of a major sensory system. Therefore, it is understandable to see more consistent 

reliability values across parameters in the eyes closed condition.  

4.3 Reliability: GWalk 

Results determined from a repeated measures ANOVA found no significant differences 

for time using the GWalk; however, the degree of reliability varied slightly regarding excursion 

variables in both eyes open and eyes closed conditions. Overall, the GWalk demonstrated 

excellent reliability regarding excursion in eyes open and eyes closed quiet stance. ICC values 

presented similarly between visual conditions (Table 4).  

Though there are few studies outlining the reliability of the GWalk in particular, recent 

studies have explored the reliability of other types of wireless inertial sensing devices.24 In a 

study by Sankarpandi et al., the Mobility Lab System was used to assess patients with vestibular 

disorders. The Mobility Lab System contains a three-axis accelerometer, gyroscope, and 

magnetometer, much like the GWalk. Results from the study determined excellent reliability in 

AP/ML path length (ICC=0.87 and 0.92 respectively).24 These results are similar to the findings 

of the current study, and thus affirm that the GWalk is a reliable device over time. With regards 

to trial number and duration, the methodology used by Sankarpandi et al. similarly reflected the 

methodology of the current study, with three trials each on the iSway balance assessment tool.24 

Lower reliability demonstrated in iSway parameters compared to the gait analysis in 

Sankarpandi’s research was attributed to the shorter trial duration of the test, which was set at 

thirty seconds.24 Previous literature has determined that for acceptable reliability, quiet standing 

trials should be set at 60-90 seconds19. It is possible that the ICC values obtained within the 

current research may change with a higher trial frequency and duration, and is an inherent 

limitation of the current study that should be explored in the future.  
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Results comparing the amount of movement between GWalk and FP may be attributed to 

the movement strategies displayed in quiet upright stance; during quiet standing, there are more 

degrees of freedom (DOF) in the AP direction than in the ML direction due to increased range of 

motion at the ankle joint. Typical postural control strategies displayed at the ankle joint may 

translate to lesser movement in the ML direction at the trunk, as shown by the smaller means and 

standard deviations observed by the GWalk (Table 3). This may be a direct reflection of the 

miniscule amounts of overall movement observed at the trunk during both eyes open and eyes 

closed quiet standing, as the movement itself may not be enough for accurate recording. 

When considering for condition, reliability values determined from force platform data 

were higher in eyes closed quiet standing than eyes open stance. However, this finding was the 

opposite when considering reliability of the GWalk. Previous literature23 has attributed higher 

reliability in certain conditions to the role the visual system plays in the maintenance of optimal 

postural control. Santos et al discovered lower ICC values in the eyes closed condition during 

quiet stance on a force platform, suggesting that the strategies used to compensate for a lack of 

visual information in eyes closed stance may account for such differences. However, the results 

of the current study determined the opposite. Higher ICC values in the eyes closed condition may 

be attributed to equality of an eyes closed environment across all participants; conversely, 

movement strategies while in the eyes open condition may differ with each participant and thus 

determine more or less movement and greater variability between time points, as suggested by 

the findings of the current study.  

4.4 Between Device Repeated Measures ANOVAs and Pearson’s Correlations 

 Results of current study found significant differences between devices using a repeated 

measures ANOVA. This finding suggests that though the GWalk and FP both show reliable data 
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across multiple time points, the data measured itself is significantly different. This conclusion is 

highly dependent upon the amount of movement observed between devices; as shown when 

placed at the trunk, the GWalk exhibited significantly less movement than COP, which was 

collected at the ground. Values derived from the raw data showed the signals between both 

devices to be similar; however, due to massive difference in amount of movement a fair 

comparison was unable to be made.  

 Location of the GWalk itself during data collection may play a significant role in the 

results observed, as well as explain the discrepancy in amount of movement seen in the means 

and standard deviations across device metrics. The GWalk is placed at the participant’s lower 

back, emulating the theoretical center of mass. Therefore, data from the GWalk regarding 

acceleration may be a truer comparison to center of mass (COM) than to COP. Models of 

postural control in the literature have suggested that the body works as an inverted pendulum, 

with the axis of motion below the center of mass.25 In quiet stance, this translates to increased 

motion at the ankle joint, with lesser motion at the hip and trunk. Though comparisons were able 

to be made using identical parameters derived from raw data, results were consistent with the 

aforementioned model. This finding is reasonable when considering the relationship between 

COM and COP. Humans account for sway in multiple directions by activating lower extremity 

musculature to keep the body’s center of mass within the base of support.26 This results in the 

COP revolving around the COM, much like a sheepdog herding sheep. Therefore, it is 

understandable that higher means with COP were discovered when compared to means from 

GWalk. However, COP has been found to be proportional to the acceleration of the COM, which 

may explain the similarity in raw signals between devices despite significant differences in 

means.27 
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Though the means and standard deviations of the variables measured by each device 

varied by amount of movement over time, Pearson’s correlations run for each condition between 

devices showed moderate correlations for ExcML and ExcAP. Table 5 delineates the results 

observed with Pearson’s correlations across devices. These correlations may be ascribed to the 

similarity of data during simultaneous collection, but do not take into consideration the 

magnitude of difference. Therefore, though moderate to good correlations were observed 

between the two devices, results displaying significant differences between devices should be 

taken into consideration. 

4.5 Limitations 

Though the current study partially met the hypotheses set, it is not without limitations. 

The location of the GWalk presents a potential for increased noise during data collection, due to 

the layers of clothing separating the device from the patient’s skin. Accurate placement of the 

GWalk at the L4-L5 intervertebral space along with tightening the elastic band as snug as 

possible aimed to combat this limitation. Further research using the GWalk may take this into 

consideration, to obtain a sensitive measurement of acceleration data. 

All testing of participants took place in the Biomechanics Laboratory at Georgia Southern 

University. The laboratory is a large, multidisciplinary space used for a variety of projects taking 

place at the university. Though the primary researchers of the current study attempted to 

minimize distractions during quiet stance assessment, it was impossible to provide a completely 

silent and distraction-free environment. Future studies should aim to eliminate distractions that 

may affect the quality of postural control assessment.  
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4.6 Conclusion 

Wireless inertial sensing devices provide a portable yet quantifiable way to determine 

deficits in both gait and postural control due to a multitude of factors. However, more research 

should be done to help irrevocably determine the validity of such devices so that they may have a 

steadfast role in clinical settings. The current study found that within certain parameters, the use 

of a wireless inertial sensing device was a reliable and moderately valid device for use in 

postural control. Assessments that require lesser amounts of trials with a shorter trial duration, 

root mean square may not be the most accurate or identifying parameter. However, excursion 

showed to be a valid and reliable parameter for use in quiet stance with eyes open and eyes 

closed.  

Future work regarding the use of this type of device in postural control assessment should 

aim for validation against a full body marker set, to more accurately measure acceleration 

information at the trunk and center of mass. Though results reasonably defined accurate 

reliability and validity values, the current study found significantly lesser amounts of movement 

at the trunk as compared to ankle strategies on a force platform. Therefore, future studies should 

take into consideration these factors if using a wireless inertial sensing device for use in postural 

control.  
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APPENDIX A.  

LITERATURE REVIEW 

A.1 Introduction 

Postural control has previously been defined as “the ability to maintain a desired postural 

orientation in response to external or volitional perturbations”.1 An activity largely based upon 

innate neural mechanisms,2  the body must take afferent information from three main sensory 

systems and execute efferent responses in the form of muscular contractions.3,4 The visual 

system is used primarily for movement planning and avoiding obstacles, while taking in a 

multitude of information from the outside world. The vestibular system senses linear and angular 

accelerations, and uses this information to stay stable. Lastly, the somatosensory system senses 

kinesthetic information, or where the body is in space.4 Possessing good postural control is 

necessary for athletic activity; deficiencies in these sensory or motor mechanisms may interfere 

with the nervous systems’ ability to process and integrate sensory information, thus affecting 

balance.2,5 The theory of postural control is complex, and many methods of assessment have 

risen to determine the source and trajectories of sway in both healthy and pathological outcomes. 

General assessments of postural stability are implemented throughout varied populations, such as 

older adults, individuals with Parkinsons’ Disease, Multiple Sclerosis (MS), and athletes who 

have sustained a concussion.6,7  

 

A.2 Neuroanatomy  

 Four important components of the central nervous system play into the process of 

postural control.28 Descending motor pathways, spinal motor circuits, basal ganglia, and the 

cerebellum are all major contributors that play into maintaining posture through movement of the 
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limb and trunk muscles.28 Descending motor pathways utilize information from regions of the 

cerebral cortex and brainstem to send efferent signals to initiate both rapid postural adjustments 

and finite motor control, respectively.28 Spinal motor circuits comprise of motor neurons and 

interneurons, receiving signals from descending motor pathways as well as acting independently 

through reflexive motor actions.28 Spinal motor circuits are most commonly known for their role 

in reflexes, in which motor pathways synapse directly onto motor neurons and activate motor 

units to produce active muscular contraction.28 Reflexive movement is an important component 

of postural control, as seen with feed-forward and feedback control mechanisms. Both spinal 

motor circuits and the cerebellum associate with extensive signal processing in the form of feed-

forward and feedback control mechanisms.29 In a feed-forward control mechanism, the brain 

evaluates incoming sensory information and makes anticipatory adjustments to accomplish a 

desired output.29 In contrast, a feedback control mechanism produces postural adjustments in 

response to volitional or external stimuli. Both mechanisms of feed-forward and feedback 

control collaborate in the central nervous system to produce optimal human posture.29 

The cerebellum, located posteriorly in the brain, accounts for 10% of the volume of the 

brain and accounts for over 50% of the total number of neurons in the brain.29 The cerebellum is 

primarily responsible for motor learning and maintenance of balance and posture, coordinating 

voluntary movements by modifying afferent signals from the central nervous system to refine 

human movements.29 Together, the cerebellum and basal ganglia regulate motor behavior by 

acting on descending brain stem pathways and cortical pathways.28 Damage to the cerebellum 

results in impaired postural and motor control, as demonstrated by altered postural strategies in 

order to compensate.29  
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In humans, the thalamus is a functional center responsible for both sensory and motor 

functions, and is a critical component of balance.29 Though proprioceptive ability has been 

shown to relate to postural stability deficits,30 the integrity of the structural connectivity of 

proprioceptive pathways has not been studied in healthy or clinical populations.30 However, 

deficits in transmission and processing of sensory feedback have been estimated to result from 

damaged white matter pathways.31 Impaired vestibular and visual input to the central nervous 

system (CNS) due to injury or disorder may reflect increased measures of center of pressure 

displacement and velocity in aforementioned populations. Assessments that detect this finding 

may possibly indicate diminished postural control and loss of balance. Studies have shown 

neural components of proprioception to include activity in the primary sensorimotor cortex, 

thalamus, and basal ganglia, as determined by functional magnetic resonance imaging 

(fMRI).30,31 Disruption to white matter in the brain has recently been identified in the literature 

by way of  diffusion tensor imaging (DTI), a form of magnetic resonance imaging (MRI) that 

measures changes in the directionality of water diffusion.31 Results from DTI are analyzed with a 

variable known as fractional anisotropy (FA), which ranges from 0-1 and indicates more or less 

stable directionality, magnitude and thus a possibility of white matter injury, respectively.31 

Studies in populations with multiple sclerosis have found correlations between white matter 

integrity and overall balance performance, indicating that damage to white matter pathways in 

the brain may lead to decreased postural control.32 

 

A.3 Postural Control 

 Though commonly used interchangeably, balance and postural control are defined in 

different ways. Balance is defined as the ability to maintain and control the position and motion 
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of the body’s center of mass (CoM) relative to the base of support (BOS); in contrast, postural 

control requires coordination and integration of multiple sensory systems to maintain 

equilibrium, given the constant state of instability in bipedal stance.11  Trajectory of the center of 

mass is an essential part of modeling the postural control system,11 as instability of the body and 

often falls will occur if the center of mass deviates from the base of support.6 Over time, postural 

control models have been theorized regarding how the body adjusts and changes in response to 

its environment using feed-forward and feedback mechanisms. These models have allowed 

researchers to estimate internal joint forces, so that the kinematics influencing postural control 

can be measured in human subjects.33  

A long withstanding theory, the inverted pendulum model has been introduced in the 

literature to give researchers an understanding of how human movement occurs in upright 

stance.25 In the inverted pendulum model, both internal and external forces cause the body to 

pivot around the ankle joint to account for natural sway caused by the upper body’s two-thirds of 

total body mass (Figure 1).25 In quiet standing, humans account for sway in multiple directions 

by activating lower extremity muscles to keep the body’s center of pressure within range of the 

center of gravity. Loram and colleagues (2005) found that during forward sway, the lower 

extremity muscles contract eccentrically to increase tendon length and resist forward motion via 

series elasticity.26 These movements occur in both the anteroposterior and mediolateral direction 

and require a larger amount of range covered by the center of pressure, as it must control for 

changes in center of gravity to negate loss of balance.25 Using the inverted pendulum model, 

center of pressure and center of mass have been found to be proportional to the horizontal 

acceleration of the center of mass.25 However, the inverted pendulum model does not account for 
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central nervous system involvement with regards to postural control,6 and is thus a more simple 

approximation of the mechanism. 

 When considering multisystem 

integration, the sensorimotor model of 

postural control has been theorized to 

explain how the visual, proprioceptive, and 

vestibular systems synchronize with 

regards to their role in postural control. 

Additionally, the sensorimotor model 

explains how the brain regulates postural 

control through direct interaction with 

sensory systems.6  

To maintain upright stance, as 

described in the inverted pendulum model, the body must counter destabilizing forces with 

corrective ones. This is often thought to be the result of a feedback control system,26 as 

corrective torque is generated through sensory transduction, transmission, processing, and then to 

muscle activation.26 During the feed-forward postural control mechanism, depolarization of 

neurons and subsequent action potentials help to produce movement, uniting the control of 

posture and movement into a single scheme.27 Individuals with sensory loss have been found to 

demonstrate increased muscular stiffness and consequently lower center of pressure excursion in 

quiet stance, as compared to a healthy population.34 Integration of the visual, somatosensory, and 

vestibular systems are essential for posture, as they drive the proper feedback signals. 

Unavailability of feedback cues may result in increased reliance on the visual and somatosensory 
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systems, lessening the efficiency of the postural control system and increasing vulnerability to 

loss of balance and possible falls.34  

 Though the sensorimotor model provides an explanation for how the central nervous 

system regulates the postural control system, it does not consider for anticipatory postural 

adjustments (APAs). Anticipatory and early postural adjustments have been qualitatively 

measured, indicating that different neural mechanisms are involved in postural control.34 

Anticipatory postural adjustments are changes in activation levels of postural muscles that may 

be seen 100 milliseconds prior to initiation of action.34 These small contractions are controlled 

by the cerebral cortex, and are independent of voluntary motion.3 With regards to postural 

stability, APAs have found a purpose in the generation of forces to combat internal and external 

perturbations.34 For example, when the body prepares to take a step, the center of pressure shifts 

backwards from both feet to the supporting foot to avoid loss of balance when initiation occurs.34 

Anticipatory postural adjustments use feed-forward control to anticipate an event occurring, 

while using feedback signals to adjust to movements as they occur. Research has discovered that 

control of equilibrium may be based on predicted displacement of the center of mass that is 

learned, using integration of sensory information to predict future activity.3,26 APAs are heavily 

dependent on the task at hand, support provided by surroundings, and neurological status.3 This 

model incorporates both the pendulum model with sensorimotor regulation to explain how 

postural control in humans is regulated both physiologically and neurologically in response to 

environmental stimuli. In individuals with neurological dysfunction or pathology, these 

interruptions in feedback mechanisms may show deficits in postural control during post-injury 

assessment.  
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A.4 Static Assessment: Clinical Balance Measures  

As isolating the source of balance deficits due to pathology may prove challenging, many 

assessments have been developed over the course of the past decade with the intention of 

providing both sideline-friendly and objective measurements. Unfortunately, clinicians often do 

not have access to instrumented balance assessment techniques, and are forced to rely on more 

subjective measures to determine postural deficits post injury. A practical method developed in 

1853 for clinical balance assessment is the Romberg test.35 The Romberg test is a static balance 

assessment that aims to evaluate sensory impairment in individuals by inhibiting the visual 

system. Since its introduction, there have been many modifications to the test, mostly with 

varying foot positions to alter the patient’s base of support. In a study by Steffen in 2008, the 

Romberg test showed test-retest intraclass correlations of .84 and .86 in individuals with 

Parkinson’s disease during reduced-vision and normal-vision conditions, respectively.36 This 

indicates high reliability of the Romberg, with regards to identifying balance deficits in 

individuals with Parkinson’s. Sensitivity and specificity values of the Romberg are found to be 

slightly lower, showing that the test accurately identified balance deficits in individuals with 

vestibular dysfunction 60% of the time.36  

Another assessment, arguably one of the most common and cost-effective measures used 

clinically today, is the Balance Error Scoring System (BESS) test. Adapted originally from the 

Romberg Test, the BESS test consists of three stances (double leg, single leg, and tandem) on a 

firm surface and a foam surface. Participants are instructed to stand as still as possible with their 

hands on their hips and eyes closed for 20 seconds. Any errors in stance are recorded and 

compiled into a composite score. The BESS test is typically used in a baseline assessment battery 
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and as a post-injury assessment at multiple time points post-concussion, to determine an athletes’ 

recovery time to their baseline measure.7  

Though the BESS is widely used by clinicians nationwide, recent studies have 

determined that it may not be the most accurate assessment to identify more long-term deficits 

due to pathology.35 A 2010 study by Burk and colleagues looked at BESS scores at the pre and 

post season; the findings determined a significant improvement (p=.003) between the two time 

points, indicating that the BESS test provides a significant learning effect.9 Many studies have 

looked at inter and intra-relater reliability within the BESS test, along with sensitivity and 

specificity values.35,37 Finnoff et al. found the BESS test to be inadequate when using multiple 

scorers, as determined by a wide range of ICC values ranging from .50-.88.37,38 Sensitivity values 

in individuals with concussion were found to be around .34. Overall reliability of the BESS 

ranges anywhere from unacceptable clinical levels (below .75) to excellent (.96).35 These 

findings indicate that when considering administration of the BESS test, there are multiple 

factors to consider; firstly, reliability of the test is dependent on clinician consistency, as use of 

multiple clinicians may alter the scores collected over a period of time.  Secondly, the BESS has 

shown to have a learned practice effect; when used repeatedly over the course of up to 30 days, 

scores may decrease and stabilize even though more subtle deficits may still exist.7 In 2001, a 

validation study of the BESS by Guskiewicz and colleagues determined that when compared to 

the Sensory Organization Test (SOT), concussed athletes returned to baseline scores quicker than 

by use of the force platform.7 Additionally, a prospective study by McCrea and colleagues 

(2003) examined scores over a recovery period from concussion; similar to results from 

Guskiewicz, concussed athletes returned to baseline scores three to five days after injury.37 As 
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shown by these studies, the BESS has shown an inability to detect balance dysfunction past day 

7 post-injury,35 and may not be a truly sensitive measure for long-term postural deficits.  

 

A.5 Dynamic Assessment 

 Though typical measures of postural stability with regards to pathology have primarily 

focused on static stance, this type of assessment lacks the impulsive environmental stimulus that 

stresses the functional capacity of the postural control system.6 A dynamic assessment has the 

ability to target each the visual, vestibular, and somatosensory systems individually, by way of 

stressing the feedback and feed-forward mechanisms of postural control. This investigates the 

possibility of determining deficits not previously identified using traditional methods of static 

assessment.6 Interruptions in neurometabolic brain function, as described above, may be 

measured more finitely using dynamic methods.  

 Studying post-injury changes in the gait cycle has been studied for many years in various 

populations. Previous research has indicated that center of mass trajectory may provide a better 

insight into the dynamic balance control mechanism.39 This theory has been tested by using 

dynamic gait stability, or the ability to properly coordinate lower body segments with proper 

displacement and speed while maintaining upright stance.40 Dynamic gait stability, like static 

stance, involves maintaining the center of mass within the limits of support to avoid abnormal 

sway. Similar to static stance, if the center of mass falls outside the limits of stability, balance 

dysfunction and falls may occur.  

Literature regarding pathology effecting postural control has previously employed a dual-

task paradigm, in which participants walk while simultaneously performing a cognitive task.39,41 

Incorporation of a cognitive task tends to alter gait stability, forcing individuals to adopt a more 
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conservative strategy in order to  negate loss of balance.42 In a sample of 28 young adults, 

Cantena and colleagues (2008) collected CoM displacement data and peak velocity in the A/P 

and M/L directions along with gait parameters such as velocity, stride length, and stride time in 

both single and dual-task conditions. Results found that the concussed group elicited 

significantly slower gait velocities during all tasks (p=.003) than the control group, and 

significantly slower (p=.007) peak anterior velocities than controls in each task.39     

Incorporating a dual-task paradigm within concussed populations has also shown 

differences in time to complete as compared to single-task level walking (p<.001). Concussed 

athletes demonstrated a significantly smaller CoM-CoP separation distance (p=.038) in the 

anterior direction as compared to controls, and showed significantly greater sway in the coronal 

plane during the Q&A task (p=.045).39 Though this study found significance in acutely 

concussed populations, it did not further explore changes in gait stability over a recovery period 

from concussion.39 In 2008, a study by Parker and colleagues looked to determine long-term 

motor deficits in a sample of 28 concussed individuals. All subjects were tested within 48 hours 

of injury, and again at 5, 14, and 28 days after injury. Testing included both single-task and dual-

task conditions along a 10m walkway and force plates, while simultaneously measuring average 

gait velocity, maximum separation of CoM and CoP, and CoM displacement and peak velocity 

in the M/L direction. Repeated-measures ANOVAs found that in both concussed and non-

concussed individuals, dual-task walking resulted in significantly slower gait velocity and higher 

sway as compared to single-task (p=.003 and p=.002, respectively) for up to 28 days post-injury. 

Center of mass peak sway velocity in the M/L direction was also significantly greater in the dual-

task condition (p=.001), and concussed individuals demonstrated smaller CoM-CoP separation 

distance as compared to normal controls.41 The results from these studies implicate that a 
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dynamic attention test may be a more sensitive measure to determine postural deficits due to 

pathology.  

 

A.6 Center of Pressure and Assessment Methods 

Center of pressure is defined as the point location of the vertical ground reaction force 

vector, or a weighted average of the pressure over surface area.43 Collection of center of pressure 

data involves measurement of ground reaction forces using a force platform collecting at a base 

number of Hertz (Hz) per second.6,17,44 Raw CoP coordinates are typically analyzed and filtered 

using custom codes that determine variables such as excursion, mean and peak excursion 

velocity  and root mean square.6,45 Over time, assessments utilizing force plate technology have 

been developed to measure and quantify changes in balance control and identify fluctuations in 

the body’s CoP excursions.27 In more recent literature, it has been suggested that center of 

pressure trajectories may be a more sensitive and powerful measure of postural control 

impairments.46 Thus, theoretical models from non-linear dynamics focusing on patterns of CoP 

oscillation have recently emerged as an alternative assessment of postural control. Information 

obtained from CoP data, though not immediately applicable to clinicians in a sports setting, may 

be a valuable tool in tracking subjects with impaired postural stability. 

The measurement of Peak Excursion Velocity suggests a link between the neural and the 

motor mechanisms of postural control, and may be attributed to the sensory receptors related to 

the postural control system.11 These sensory receptors typically favor rate information rather than 

positional information.11 Though information about body position and subsequent changes 

results from the proprioceptive system, these small changes may not play a noticeable enough 

role in the obtainment of velocity information.11 Previous literature has suggested that the central 
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nervous system utilizes a velocity-dependent strategy reliant on multisensory integration to 

maintain postural control.47 Velocity provides an indication of direction and magnitude in a time 

series, and thus provides useful information regarding anticipatory movement and displacement 

of the postural control system.47 Some studies have utilized velocity information in aging 

populations, but it is a novel concept and requires more research.47  

Excursion is a variable highly utilized in the literature to quantify the total amount of 

movement of the postural control system over the duration of a single trial. Total excursion is 

defined as the total distance the center of pressure travels over the duration of the trial; 

additionally, excursion can be quantified into both anteroposterior and mediolateral directions, 

calculated as the sum of distances between consecutive points in the COP time series.12,13 Being 

a more simplistic way to measure the total movement of the time series, excursion is not often 

used to determine the more subtle deficits in pathological populations. The interpretation of 

excursion pertaining to stability is relatively simple: a larger excursion value will typically 

indicate less stability of the postural control system, while smaller excursion values would 

indicate less movement and therefore more stability. However, recent literature12 has indicated 

that the size of the excursions may not be the best way to define the “wellness” of the postural 

control system; rather, different training strategies adopted in athletics and extracurricular may 

influence the plasticity and fluidity of the neural networks, leading to the possibility of a large 

excursion and a more stable system, and vice versa.  

Due to this inequity, it is reasonable to use multiple variables to ensure a correct and 

comprehensible assessment. Root Mean Square is a value that represents the average absolute 

displacement around the average COP, and can be quantified into both anteroposterior and 

mediolateral directions.12,13 A lower RMS value indicates higher stability, whereas a higher value 
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indicates decreased stability. Root Mean Square can be used along with excursion as a more 

sensitive measure, and may provide a helpful determinant of validity and reliability information. 

Force plates measure vertical ground reaction forces within a fixed base of support produced by 

the body’s center of gravity.42,48 Typical postural assessment using force plates includes 

measurement of quiet stance, recording net center of pressure in the anteroposterior (AP) and 

mediolateral (ML) directions.25,49 An assessment technique called the Sensory Organization Test 

(SOT) has been used in many studies to determine differences in balance control post-injury. The 

SOT uses dual-force plates to alter orientation information while simultaneously measuring 

patients’ ability to stand quietly, assessing the integrity of the postural control system.7,50 It has 

shown to be a valid and reliable tool, with relatively high sensitivity and specificity (.128, .949 

respectively, 1.077 combined)50 values for measuring balance deficits after concussion.7 A study 

by Guskiewicz and colleagues (2001) found significant differences (p <.01) in SOT composite 

scores in a population of 36 Division I collegiate athletes with concussions on days 1, 3, and 5 

post-injury as compared to controls.48 In a 2000 study, Reimann and Guskiewicz evaluated both 

concussed and non-concussed groups using the BESS and the SOT over a ten-day period post-

injury.51 Findings found that scores for both measures were significantly different between days 

one and three post-injury, indicating that balance in both studies tends to improve over the course 

of 3-5 days. These findings described above implicate that postural stability deficits due to 

concussion typically resolve within five days, and are consistent with previous findings revealed 

with clinical balance tests.51 Unfortunately, though the SOT has shown validity and reliability for 

measuring postural control deficits, these values have been largely determined in healthy 

individuals.6 Additionally, it is an extremely expensive assessment (>$75,000) and is not a 

feasible option for clinical assessments.6 
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A.7 Center of Mass, Displacement, and Acceleration 

Postural sway is typically measured in terms of distance and area, and is defined as the 

movement of the CoM in a standing position.52 Postural sway velocity is defined by the average 

horizontal area (in both anteroposterior and mediolateral directions) covered by the center of 

pressure per second.52 Though increased postural sway may not be definitively associated with 

poor balance,52 both postural sway and sway velocity have been found to be higher in 

populations with balance deficits, indicating lesser postural control.52  

Recent literature has introduced the reasoning that body CoM may be a better indicator of 

body sway, rather than measurements of CoP.25,27 Center of mass references a point equivalent of 

total body mass in the global reference system, or space where movement occurs.25 It is typically 

imagined to be located just above the umbilical, and adjusts for all movement of the body. It has 

been found that the trajectory of the CoM provides an important measure of stability when 

considering the postural control system;10 thus, uncharacteristic trajectories of the CoM outside 

the normal base of support may lead to impaired balance and possible falls.10  

Several different methods of data collection have been proposed and attempted in the 

literature to propose an estimate of one’s center of mass. One such method is the usage of center 

of mass acceleration, which has been used in some postural control studies.17,44,53 Measurement 

of acceleration has previously been shown as an effective means of assessing standing balance, 

as it denotes the horizontal position of the CoM over the base of support and is theoretically 

proportional to the CoP-CoM position using an inverted pendulum model.17,44,53 This measure 

has been previously obtained in literature by using CoP data derived from a force platform and 

dividing horizontal ground reaction force by body mass.16 The dynamic response of CoM 
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acceleration serves as a whole body measure16 that is extremely sensitive to movement, along 

with age and disease-related postural changes.16,53 While keeping coordination and dynamic 

interaction among joints, the center of mass is able to facilitate action to correct for both 

volitional and subliminal perturbations should significant changes in posture occur.16,17  

Because center of mass of the human body is not a fixed measurement, another method of 

estimation has utilized reflective markers on bony landmarks of the body. This model uses linked 

segment models (LSMs) to model the body as a chain of rigid body segments connected by 

joints.54 Much of human movement analysis that has been previously explored in the literature 

has primarily utilized a two-dimensional markup. However, this method may miss certain 

aspects of general movement, as the human body moves in three different planes and axes. Now 

referred to as the statically equivalent serial chain (SESC), the LSM model method produces 

three-dimensional movement via a motion capture system,17,27,41,44 and estimates of position, 

magnitude, and mass distribution contribute to an estimation of center of mass.27 Previous 

studies using this method have found use of reflective markers to be a reliable method of 

assessing gait parameters, with the highest values (>.8) in the sagittal plane and lowest values 

(<.72) in the transverse plane.55 Unfortunately, this method of data collection is both costly and 

clinically restrictive, due to the necessity of equipment and trained personnel.10,27  

More recently, inertial sensor devices using spatial-temporal parameters have arisen in an 

attempt to quantify displacement in individuals based on pelvic movement during walking.14,15 

Wireless inertial sensing devices have recently gained popularity due to the ease of accessing 

spatial-temporal parameters in open and untethered environments.14 The use of these inertial 

sensing devices may also bridge a gap between more objective laboratory measures and 

subjective clinical measures, as they provide quantitative information in a more clinical setting. 
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Three-dimensional displacements of the lower body may be derived by the body’s center of mass 

trajectory. Amplitude and timing of this displacement has been correlated to spatial-temporal 

parameters as measured by these devices. 

The BTS GWalk ® (BTS Bioengineering, Brooklyn, NY) is a relatively new piece of 

technology that comprises of a small rectangular sensor that contains a wireless network of 

inertial sensors designed to analyze human movement.15 The sensor contains a 3-axis 

accelerometer, gyroscope, and magnetometer to determine planes and axes of movement. To 

accurately record pelvic displacement, the sensor is attached to a semi-elastic belt placed across 

the subject’s lower back, at the estimated L4-L5 intervertebral disk space. Pelvic acceleration 

and displacement in the anteroposterior and mediolateral axes is then determined from signals 

sent via Bluetooth to a corresponding computer software program.15 Previous literature involving 

use of the GWalk is slight, and has primarily focused on reliability and validity measures 

concerning dynamic gait parameters.14 These studies have shown the tool to be valid in a young 

and healthy population ages 20-35 years14 in measures such as walking speed, cadence, bilateral 

symmetry, stride length, stance time, swing time, single and double support times in the sagittal, 

coronal, and transverse rotation planes.14  

 

A.8 Reliability and Validity 

 For a testing measure to be acceptable for use in research, it must be considered a reliable 

tool. Reliability is an integral part of validity testing, and measures the extent of which a testing 

measure is consistent and repeatable.18 Reliability uses terms such as observed score, true score, 

and error score with the ultimate goal of removing error to observe a true score. Reliability can 

then be calculated as the ratio of a true score variance to an observed score variance.18  
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 Reliability is often expressed using a correlation coefficient, which ranges from 0-1.18 

The closer the coefficient is to 1, the more reliable a testing measure is considered to be, 

implying that the true score is assessed with little error variance. Researchers often come to 

terms with different sources of measurement error, such as participant, testing, scoring, and 

instrumentation error.18 These errors can be minimized as much as possible through careful 

methodological considerations and scorer expertise.18  

Multiple methods of establishing reliability exist and have been used in the literature.18 

For the purposes of a using a test-retest method for establishing reliability, the coefficient of 

stability is used. This method is frequently used with motor performance measures and is a more 

severe test of consistency.18 Using the coefficient of stability, the test or assessment is given on 

one day and then repeated within a day or so later.18 The coefficient of stability is then calculated 

using intraclass correlations, to determine amount of variance between days of testing and other 

errors as mentioned above.18  

A second method of establishing reliability is objectivity, or the degree to which the same 

or different testers can measure the same scores on the same subjects.18 Objectivity is preferred 

in reliability testing, due to ease of statistical analysis and comprehension. When multiple testers 

are used, an intraclass correlation is taken to determine an intertester reliability coefficient.18 

 Lastly, reliability coefficients can be obtained by multiple methods grouped into a 

common definition known as internal consistency.18 This method measures the consistency of 

parts of the measure, and will determine high or low consistency depending on which parts of the 

assessment measure the same idea.  

These multiple methods of reliability are an important part of establishing validity, as a 

test cannot be considered valid if it is not reliable.18 Validity refers to the degree to which a test 
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or assessment measures what it is supposed to measure.18 As many assessments are different, 

multiple types of validity have been determined, such as construct validity, logical validity, 

content validity, and criterion validity.18 Often, multiple tests or assessments are administered 

simultaneously to correlate a testing measure or instrument with a previously validated criterion; 

this method, called concurrent validity, helps to minimize error that may occur from multiple 

testing sessions and assessments.18  

 Construct validity determines the degree to which scores from a test measure a 

hypothetical construct, and is typically used to relate to a type of behavior. Construct validity 

may also be used when there is no universally accepted criterion for assessment, and the validity 

process itself establishes a criterion.18 Logical validity, or face validity, is established when a 

testing measure is valid by definition. In other words, an assessment or measurement obviously 

measures what it is supposed to measure. For example, a test that involves vertical jump would 

be measured by height of jump. This method, used rarely in research studies, lacks more refined 

objective evidence for measurement validity.18 Content validity is defined by how accurately a 

course or content matter applied to the testing measure.18 Typically used in educational settings 

or attitude instruments, content validity is used to measure a relative degree of emphasis on 

course or content objectives that a testing measure delegates to. Lastly, criterion validity involves 

a type of assessment that is compared to a well-known and validated, or gold standard, criterion. 

Criterion validity incorporates two subsets of validity, concurrent and predictive. Predictive 

validity determines the degree to which scores of predictor variables can predict criterion scores 

accurately.18 

 

A.9 Conclusion 
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As aforementioned, reliability and validity measures for the BTS GWalk ® have been 

explored predominantly with regards to gait analysis, and have not been explored in postural 

control assessments. The current aim of this study is to determine validity and reliability of the 

GWalk ® with the intent of expanding clinical applicability in an area that has previously relied 

on subjective assessments of postural control. Usage of the GWalk in a clinical setting may 

provide an objective measurement of acceleration, with the intention of assisting clinicians with 

the identification of postural control deficits pertaining to certain pathologies. Current clinical 

methods of postural control assessment are severely limited to subjectivity and potential errors of 

the clinician with regards to inter- and intrarater reliability. The gap between these expensive 

laboratory measures and clinical assessments is substantial; therefore, validating a tool such as 

the BTS GWalk may potentially provide a relatively inexpensive bridge between clinical and 

laboratory measures of postural control. 
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APPENDIX B.  

MEDICAL HISTORY FORM AND INSTITUTIONAL REVIEW BOARD DOCUMENTS 

 

B.1. Medical History Questionnaire 

 

  

MEDICAL HISTORY QUESTIONNAIRE 

 

Title of Project(s): Validity and Reliability of the GWalk for Use in Postural Control 

 

Subject ID ________________________    Date _____________________ 

Gender: Male       Female     Year in School:  FR     SO     JR       SR         Grad 

DOB: ________   Height: ________   Weight: ________ 

 

Please answer the following questions about your medical and injury history:  

1. Have you suffered a traumatic brain injury within the past year? YES        NO 

If yes, please provide a short description of the incident(s): 

_______________________________________________________________________________

_______________________________________________________________________________ 

2. Have you had any lower extremity injury (instability, strain, sprain, fracture, etc) within the past year that 

would affect your performance on a standing balance assessment?   YES           NO 

If yes, please provide a short description of the incident(s) (please include surgery): 

_______________________________________________________________________________

_______________________________________________________________________________ 

3. Do you have any known balance, metabolic, or neurological disorders? YES          NO 

If yes, please explain: _____________________________________________________________ 

4. Do you have a history of seizures?     YES        NO 

5. Have you ever been diagnosed with Attention Deficit Disorder (ADD) or Attention Deficit Hyperactivity 

Disorder (ADHD)?  YES        NO 
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6. Do you have a learning disorder?      YES        NO 

If yes, please explain: ____________________________________________________________________ 

7. Are you currently participating in a balance training program?    YES        NO 

Additional Notes: 

_____________________________________________________________________________________________

_____________________________________________________________________________________________

_____________________________________________________________________________________________ 

Primary Investigator: Megan Mormile, ATC 

Secondary Investigators: Cody Grotewold, ATC, Nicholas Murray, PhD 
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B.2 Informed Consent Form 

 

 

 

COLLEGE OF HEALTH AND HUMAN SCIENCES 

 

DEPARTMENT OF HEALTH AND KINESIOLOGY 

 

 

CONSENT TO ACT AS A SUBJECT IN AN EXPERIMENTAL STUDY 
 

1. Title of Project: Reliability and Validity of the BTS GWalk for Use in Postural Control 

Assessment 

2. Title of Project: Validity and Reliability of the Balance Tracking System During Static 

Stance. 
 

Investigator’s Name: Megan Mormile, ATC Phone: (607) 351-4131 

           Cody Grotewold, ATC Phone: (605) 413-5211 

 

Participant’s Name: _____________________________  Date: __________________ 

 

Data Collection Location: Biomechanics Laboratory, Georgia Southern University Campus 

 

3. We are current masters’ students at Georgia Southern University, developing this project 

in accordance with fulfilling the requirements for our masters’ theses.  
 

4. The purpose of the following studies is to determine the validity and reliability of the 

BTS GWalk ® and BTrackS Balance Tracking System for use in clinical postural control 

assessment. The result of these studies may assist to bridge the gap between clinical and 

laboratory measures of assessing postural control. 
 

5. You are being invited to participate in this study because you are a healthy, college-age 

control subject. Additionally, you have no muscular or neurological pathologies that may hinder 

performance on a postural control assessment, as well as no lower extremity musculoskeletal 

injury or surgery within the past year, neuromuscular injury, history of traumatic brain injury, 

psychiatric illness, history of seizures, attention deficit disorder, or learning disorder. 
 

Should you agree to participate in this study, you will be asked to attend three individual testing 

sessions within two weeks, each lasting approximately 20 minutes. Each testing time point will 

include two separate assessments of postural control. The first assessment includes four 30 

second trials of quiet standing on a force plate with eyes open and eyes closed. During this 

assessment, you will be wearing an elastic belt that contains an inertial sensing device. The 

second assessment includes six 20 second trials of quiet standing on a balance board with eyes 

open and eyes closed. 
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6. The risk assumed during this testing is no greater than you experience during normal 

daily activities. There is minimal risk of physical injury or mental discomfort while performing 

these assessments. Should there be a risk of falling during the balance trials, a member of the 

research team will be in close proximity. You understand that medical care is available in the 

event of injury resulting from this research but neither financial compensation, nor free medical 

treatment is provided.  You also understand that you are not waiving any rights that you may have 

against the University for injury resulting from negligence of the University or investigators. 

Should medical care be required, you may contact Health Services at (912) 478-5641.  
 

7. You will likely receive no direct benefit from participating in this study; however, you 

may be provided your results upon request. The results of this study may be used to better 

understand the clinical application of the instruments in question for use in postural control 

assessments. 
 

8. You will be asked to attend three individual testing sessions over the span of two weeks. 

Each testing session will last approximately twenty minutes. Testing will comprise of two 

different assessments of postural control, including trials of quiet standing with eyes open and 

eyes closed. The first assessment will take place on a force plate using an inertial sensing device. 

The second assessment will take place on a balance board placed on a force plate.  
 

9. You understand that all data concerning your assessment will be kept confidential and 

available only upon your written request to Megan Mormile, ATC or Cody Grotewold, ATC. You 

understand that any information about your records will be handled in a confidential manner 

consistent with medical records. Deidentified or coded data from this study may be placed in 

a publically available repository for study validation and further research. You will not be 

identified by name in the data set or any published research using information obtained from this 

study, and your confidentiality as a participant in this study will remain secure. Subsequent uses 

of records and data will be subject to standard data use policies which protect the anonymity of 

individuals and institutions. 
 

10. Participants have the right to ask questions and have those questions answered.  If you 

have questions about this study, please feel free to contact Megan Mormile at (607) 351-4131 or 

Cody Grotewold at (605) 413-5211. For questions concerning your rights as a research 

participant, please contact the IRB Coordinator at the Georgia Southern University Office of 

Research Services and Sponsored Programs at 912-478-5465. 
 

11. You will not receive compensation for your participation in this project. You will not be 

responsible for any additional costs for your participation in this project.  
 

12. You understand that your participation in this study is purely voluntary. You may end 

your participation and withdraw from this study at any time by contacting the primary 

investigators, Megan Mormile or Cody Grotewold.  
 

13. You understand that you may terminate your participation in this study at any time 

without penalty or retribution. Owing to the scientific nature of the study, the investigators may in 

their absolute discretion terminate the procedures and/or investigation at any time.  
 

14. You understand that there is no deception involved in this project.  
 

15. You certify that you are 18 years of age or older and you have read the preceding 

information, it has been read to you, and you understand its contents. Any questions you have 
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regarding the research may be directed to the investigators listed at the beginning of this contact 

form. 
 

You will be given a copy of this consent form to keep for your records.  This project has been reviewed 

and approved by the GSU Institutional Review Board under tracking number H__________. 
 

 

   
 

  

 

Title of Project: Validation of the BTS GWalk for Use In Postural Control Assessment 

 

 

Principal Investigators:             Secondary Investigator: 

Megan Mormile, ATC             Nicholas Murray, PhD 

Biomechanics Lab, Hanner Building           0107B Hollis Building 

(607) 351-4131              (912) 478-5268 

mm11789@georgiasouthern.edu           

nmurray@georgiasouthern.edu 
 

 

______________________________________  _____________________ 

Participant Signature     Date 

 

I, the undersigned, verify that the above informed consent procedure has been followed. 
 

______________________________________  _____________________ 

Investigator Signature     Date 

 

 

 

 

Title of Project: Validity and Reliability of the Balance Tracking System During Static Stance 
 

 

Principal Investigators:       Secondary Investigator: 

Cody Grotewold, ATC       Barry Munkasy, PhD 

Hanner Building Office 1207      0107D Hollis Building 

(605) 413-5211        (912) 478-0985 

cg05473@georgiasouthern.edu           

 bmunkasy@georgiasouthern.edu 
 

 

______________________________________  _____________________ 

Participant Signature     Date 

 

I, the undersigned, verify that the above informed consent procedure has been followed. 
 

______________________________________  _____________________ 

Investigator Signature     Date 

 

 



54 

 

 

B.3 Compliance Cover Page 
 

Research Compliance Combined Cover Page 

Georgia Southern University  

Application for Research Approval  

Investigator Information: 

Name of Principal Investigator: 

Megan Elizabeth Evelyn Mormile 

Phone: (607) 351-4131 

 
For Office Use Only: 

 

Date Received:____________ 

 

Protocol ID 

 

 

Email: mm11789@georgiasouthern.edu 

 
(Note: Georgia Southern email addresses will be 

used for correspondance.) 

 Faculty   Doctoral  Specialist  

 Masters  Undergraduate 

 Other:       

Department Name and PO Box:  Health and 

Kinesiology, PO Box 8076 

 

 

Name(s) of Co-Investigators: 

Cody Lee Grotewold, ATC 

Dr. Nicholas Murray 

Dr. Barry Munkasy 

Katelyn Grimes, ATC 

Brian Szekely 

Phone: (912) 478-0203 

 

Email addresses: 

cg05473@georgiasouthern.edu M 

nmurray@georgiasouthern.edu F 

bmunkasy@georgiasouthern.edu F 

kg03893@georgiasouthern.edu M 

bs07343@georgiasouthern.edu M 

Faculty; Doctoral; Specialist; Masters  Undergraduate  
(If multiple: identify by initial letter behind name. E.g., F for faculty) 

Department Name and PO Box:  Health and 

Kinesiology, PO Box 8076 

 

 

Personnel and/or Institutions Outside of Georgia Southern University involved in this research (Attach training certification): 

N/A 

Project Information: (Note: funded project titles must match grant title) 

Title: Validity and Reliability of the GWalk for Use in Postural Control 

Validity and Reliability of the Balance Tracking System During Static Stance 

 

Brief (less than 50 words) Project Summary:  Current clinical methods of balance and postural control are subjective and do 

not provide optimal information about pathologies affecting the postural control system. The purpose of these studies is to 

determine the validity and reliability of the Balance Tracking System and BTS GWalk for use in postural control. 

 

Compliance Information: 

Please indicate which of the following will be used in your research: (application may be submitted simultaneously)  

  Human Subjects (Complete Section A:  Human Subjects below) 

  Care and Use of Vertebrate Animals (Complete Section B:  Care and Use of Vertebrate Animals below) 

  Biohazards (Complete Section C:  Biohazards below) 

  Do you or any investigator on this project have a financial interest in the subjects, study outcome or project sponsor .  (A 

disclosed conflict of interest will not preclude approval.  An undisclosed conflict of interest will result in disciplinary action.). 

Project Start Date: 09/2016 End Date:05/2017  (no more than 1 

year) Anticipated renewals  year 2  year 3 
Check one: 

New submission     Resubmission #H17022 
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Funding Source:  Federal           State             Private            Internal GSU                    Self-funded/non- funded 

Funding Agency:                                                                              Not Applicable 

 
Section A:  Human Subjects    Not Applicable 

Number of Subjects (Maximum) 200                      Date of IRB education completion: 05/2016   (attach copy of completion 

certificate) 

Purpose of Research: (Check all that apply) Please indicate if the following are included in the study (Check all that apply): 

 

  Publication/use in thesis/dissertation 

  Publication (journal, book, etc.) 

  Poster/presentation to a scientific 

audience 

  Completion of a class project  

  Presentation to GSU audience only 

  Presentation in outside of GSU 

  Results will not be published 

  Other 

     Human Subjects Incentives 

     Informed Consent Document  

     Greater than minimal risk  

     Research Involving Minors 

     Deception 

     Generalizable knowledge (results are intended to be published) 

     Survey Research 

     At Risk Populations (prisoners, children, pregnant women, etc) 

     Video or Audio Tapes  

     Medical Procedures, including exercise, administering drugs/dietary 

supplements, and other procedures 

 
Section B: Care and Use of Vertebrate Animals    Not Applicable 

Purpose of use/care of animals: Please indicate if the following are included in the study: 

  Research 

  Teaching 

  Demo only 

  Student participation in faculty work 

  Class Project  

  Exhibition 

  Display 

 

  Physical intervention with vertebrate animals 

  Housing of vertebrate animals 

  Euthanasia of vertebrate animals 

  Use of sedation, analgesia, or anesthesia 

  Surgery 

  Farm animals for biomedical research (e.g., diseases, organs, etc.) 

  Farm animals for agricultural research (e.g., food/fiber production, 

etc.) 

  Observation of vertebrate animals in their natural setting 

 
Section C:  Biological Research    Not Applicable              Submitted Separately 

Biosafety Level: Please indicate if the following are included in the study: 

 

  Exempt 

  BSL 1 

  BSL 2 

  BSL 3 

 

 

  Use of rDNA  

  Non native/invasive plant species 

  Last EHS lab safety inspection date: _Attach Report______________ 

  Last IBC biosafety lab inspection date: __Attach Report______ 

 
Signature of Applicant(s): (PI, CoPI)                                                                 Date:  07/26/2016 

 

X 

If student project please complete research advisor’s information below (note that advisor signature must be received 

before application will be reviewed.): 

Research Advisor’s Name:  Dr. Nicholas Murray Advisor’s E-mail:  nmurray@georgiasouthern.edu 

Advisor’s Phone:  (912) 478-0203 

 

Advisor’s Department:  Health and Kinesiology 

P.O. Box:  8076 

If student project - Signature of faculty member who is responsible for the student conducting research. 

If faculty project – Signature of department head or chair. 
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By signing this cover page I acknowledge that I have reviewed and approved this protocol for scientific 

merit, rational and significance.  I further acknowledge that I approve the ethical basis for the study. 
Signature of Committee Chair/Research Advisor (if student) Department Chair(if faculty):                           Date:        

 

X 

 

Please submit this protocol to IRB@georgiasouthern.edu in a single email; scanned signatures are accepted.  

Original signature pages may follow by mail or fax. Applications may also be submitted via mail to the Georgia 

Southern University Office of Research Integrity, P.O. Box 8005 or via fax to 912-478-0719. 

 

The application should contain all required documents specific to the committee to which you are applying.  

Questions or comments can be directed to (912)478-5465 or IRB@georgiasouthern.edu. 

 

 

  

mailto:IRB@georgiasouthern.edu
mailto:IRB@georgiasouthern.edu
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B.4 Proposal Narrative 

 
GEORGIA SOUTHERN UNIVERSITY INSTITUTIONAL REVIEW BOARD 

PROPOSAL NARRATIVE 

 

Personnel.  

Megan Mormile, ATC: Graduate Student (Principal Investigator) 

Cody Grotewold, ATC: Graduate Student (Principal Investigator) 

Nicholas Murray, PhD: Director of Concussion Research, Georgia Southern University (Secondary Investigator) 

Barry Munkasy, PhD: Director of Biomechanics Lab, Georgia Southern University (Secondary Investigator) 

Katelyn Grimes, ATC: Graduate Student 

Brian Szekely, B.S: Graduate Student 

 

Purpose.   
 The purpose of the following studies is to determine if the BTS GWalk and Balance Tracking System are 

valid and reliable tools that can be used for postural control assessment. We hypothesize that the GWalk and 

Balance Tracking System will provide a valid and reliable measurement of displacement and velocity in response to 

internal and external perturbations. Current clinical measures of postural assessment are highly subjective, and thus 

do not provide concrete evidence of long-term postural deficits due to pathology. The results from this study may 

assist in bridging the gap between clinical and laboratory measures, and provide a more objective measurement to 

identify potential deficits.  

 

Literature Review.  
Current clinical assessments of postural control, such as the Romberg Test and Balance Error Scoring 

System, can be administered quickly and require minimal equipment.1 However, these assessments are scored 

subjectively and have shown variable reliability.2 Due to their subjective nature and learning effects, it is often 

difficult to detect subtle or longer-lasting deficits in postural control as a result of pathology.3  

 The current gold standard with regards to postural control assessment is laboratory grade force plates, 

which are able to detect the subsequent muscular responses to internal and external forces acting upon the body. 

Force plate technology is expensive, and requires extensive training and resources to analyze raw center of pressure 

data. Center of pressure (CoP) is defined as the point location of the vertical ground reaction force vector, or a 

weighted average of the pressure over surface area.4 Collection of center of pressure data involves measurement of 

ground reaction forces using force platforms collecting at a base number of Hertz (Hz) per second.5 Raw CoP 

coordinates are typically analyzed and filtered using custom codes that determine common variables such as mean 

and peak velocity of sway5 and approximate and sample entropy.5 

 The NeuroCom Sensory Organization Test (SOT) is a postural control assessment used in laboratory 

research that is able to objectively evaluate postural control. The SOT uses laboratory grade force plates to measure 

anterior-posterior center of gravity sway.6 Postural sway is typically measured in terms of distance and area, and 

uses excursion values derived from raw center of pressure data. Though the SOT is a gold-standard assessment, it is 

difficult to use in clinical settings due to its size, expense, and extensive analysis that is required. 1, 7-10 Therefore, a 

more inexpensive, portable, and user-friendly method is warranted for use in clinical settings. 

Methods utilizing mobile technology have recently arisen to provide an alternative to more expensive 

laboratory measures, such as the SOT or traditional force plate assessment.8 These methods are relatively user-

friendly and inexpensive, with the ultimate goal of providing clinicians with limited resources a way to assess 

lingering deficits in postural control.8-9  

The Balance Tracking System (BTrackS) is a FDA approved mobile device used to quickly evaluate 

postural control, utilizing the BTrackS Balance Board.11 The BTrackS Balance Board includes four inertial sensors 

that measure raw center of pressure data.11 This data is immediately sent to a computer or tablet loaded with the 

BTrackS software via USB drive.11 Preliminary data has shown that the BTrackS can measure CoP with similar 

accuracy and reliability as laboratory-grade force plates.12 Validity of an 11x11 grid of points revealed a Pearson’s 

correlation coefficient greater than r=0.99 in both anteroposterior and mediolateral axes.12 Reliability between five 

equal pressures at 21 points differed by an average 1/10th of a millimeter.12 The Balance Tracking System is a 

relatively inexpensive, lightweight, commercially available, and portable mobile device.11 However, concurrent 

validity nor test-retest reliability has not been established in healthy subjects. 
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More recently, inertial sensor devices using spatial-temporal parameters have arisen in an attempt to 

quantify displacement in individuals based on pelvic movement during walking.13-14 Wireless inertial sensing 

devices have recently gained popularity due to the ease of accessing spatial-temporal parameters in open and 

untethered environments.14 Three-dimensional displacements of the lower body may be determined by the body’s 

trajectory, and this displacement has been correlated to spatial-temporal parameters as measured by these devices.14 

The BTS GWalk ® (BTS Bioengineering, Brooklyn, NY) is a relatively new piece of technology that 

comprises of a small rectangular sensor that contains a wireless network of inertial sensors designed to analyze 

human movement.13-14 The sensor contains a 3-axis accelerometer, gyroscope, and magnetometer to determine 

planes and axes of movement.14 To accurately record pelvic center of mass, the sensor is attached to a semi-elastic 

belt placed across the subject’s lower back, at the estimated L4-L5 intervertebral disk space.14 Pelvic center of mass 

acceleration and displacement in the anteroposterior, mediolateral, and vertical axes is then determined from signals 

sent via Bluetooth to a corresponding computer software program.13 Previous literature involving use of the GWalk 

have shown the tool to be valid in a young and healthy population ages 20-35 years14 in measures such as walking 

speed, cadence, bilateral symmetry, stride length, stance time, swing time, single and double support times in the 

sagittal, coronal, and transverse rotation planes.14 Thus, reliability and validity measures for the BTS GWalk ® have 

been explored predominantly with regards to gait analysis, and have not been explored in postural control 

assessments.  

The current aims of these studies are to determine validity and reliability of the GWalk ® and Balance 

Tracking Systems with the intent of expanding clinical applicability in an area that has previously relied on 

subjective assessments of postural control. Usage of these mobile assessments in clinical settings may provide an 

objective measurement to assist clinicians with the identification of postural control deficits pertaining to certain 

pathologies. There is a gap between standard clinical measures of balance and more refined and objective measures; 

therefore, validating tools such as the BTrackS and GWalk may potentially provide a relatively inexpensive bridge 

between clinical and laboratory measures of postural control. 

The methodology and research procedures used in this study have been used before, primarily with regards 

to obtaining center of pressure data to identify postural control deficits in individuals with pathologies such as 

Parkinson’s Disease and concussion. The current study is the first to validate usage of the BTrackS and GWalk ® 

for use in postural control. Due to validation purposes, this study will utilize a convenience sample of healthy 

control participants, and thus will not be generalizable to a pathologic population. 

 

 

Outcome.  

 We expect to find that the GWalk and Balance Tracking System provide both a valid and reliable measure 

of postural control, comparable to that of more refined laboratory equipment. The results from this study may be 

used to provide clinicians with a more objective method of assessing postural control deficits. 

 

Describe your subjects.  

 This study will require participation from a minimum of thirty healthy control subjects. Due to validation 

purposes, all participants will be screened using a medical history form to exclude muscular and neurological 

pathologies that would hinder performance on a postural sway assessment. Pathologies include lower extremity 

musculoskeletal injury or surgery within the past year, numbness or tingling in extremities, neuromuscular injury, 

traumatic brain injury within the past year, psychiatric illness, history of seizures, attention deficit disorder (ADD) 

or attention deficit hyperactivity disorder, or learning disorder. Participants must be 18 years of age or older, male or 

female.  

 

Recruitment and Incentives.  

 Participants will be recruited from both graduate and undergraduate classes within the School of Health and 

Kinesiology at Georgia Southern University, including biomechanics, structural kinesiology, and exercise science. 

The primary researcher(s) will attend classes and provide an in-depth explanation of the study, including methods of 

data collection, expectations of participants, and inclusion/exclusion criteria along with a sign-up form. Emails will 

be sent to participants who indicate willing involvement in the study. All participation in this study will be 

voluntary; no reward or compensation will be given upon completion of the study.  
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Research Procedures and Timeline.  

 All data collection for this study will be done in the Biomechanics Laboratory at Georgia Southern 

University. This study will include a minimum of thirty college-age participants, both male and female, recruited as 

healthy controls to participate in a validation study.  Data will be collected on each participant individually in the 

laboratory. Participants will be tested at three separate time points over the span of approximately two weeks in 

which they will perform a quiet standing task on a force plate and a balance board. Upon arrival at the first time 

point, participants will fill out an informed consent form and a medical history form that includes demographic 

information (height, weight, and age) as well as questions regarding inclusion/exclusion criteria for the study.  After 

completing paperwork, participants will perform two trials of eyes open and eyes closed quiet standing on the force 

plate for 30 seconds and six trials of eyes open and eyes closed quite standing on a balance board for 20 seconds. 

During quiet standing, participants will stand barefoot with their feet placed together in the middle of the force plate 

and balance board with their hands by their sides. Participants will be instructed to stand as still as possible for each 

trial with eyes open, looking straight ahead at a single crosshair on a blank surface, or eyes closed. Any outside 

movement by the participants, such as chewing gum, sneezing, or moving the head, deems the trial unsuccessful. At 

the completion of each trial, participants will be given rest as needed before beginning the next trial. During all 

trials, participants will be fitted with the BTS GWalk to record displacement and subsequent excursion. 

 

Data Analysis. 

 Raw data collected using both the GWalk and the Balance Tracking System will be run through a custom 

code using MATLAB and further inputted into a spreadsheet using Microsoft Excel. Statistical analysis will be 

conducted using Statistical Package for Social Sciences (SPSS) v23.0. Intra-class Correlation Coefficients will be 

used to determine test-retest reliability of the GWalk and Balance Tracking System at separate time points during a 

one-week period. To determine validity of the GWalk, separate Pearson’s correlations will be run to determine 

likeness between excursion of the GWalk and force plate center of pressure data. To determine validity of the 

Balance Tracking System, separate Pearson’s correlations will be run to determine likeness of center of pressure 

displacement and velocity between the Vicon force plate and Balance Tracking System balance plate. Results of this 

study will be handled in a confidential manner consistent with medical records. Deidentified or coded data from this 

study may be placed in a publically available repository for study validation and further research. Subsequent uses 

of records and data will be subject to standard data use policies which protect the anonymity of individuals and 

institutions. 

 

Special Conditions: 
 

Risk. The risk assumed during the testing is no greater than the risk of normal daily activities. There is minimal risk 

of physical injury, mental or social discomfort during this study. If at any time a participant feels unstable during 

data collection, a member of the research team will be within close distance to prevent falls.  

 

Research involving minors. This study will not include minors.   

 

Deception. This study does not involve deception.  

 

Medical procedures. This study does not include medical procedures.  
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APPENDIX C.  

ADDITIONAL INFORMATION 

Research Question 

The purpose of this study is to examine the test-retest reliability of the BTS GWalk as 

well as examine its criterion validity with the COP data measured by laboratory force platform. It 

is the aim of this research to determine if the GWalk can be used as an objective and inexpensive 

alternative to more traditional laboratory measures.  

 

Hypotheses 

 It was hypothesized that the GWalk would provide a reliable (ICC = >.75) and valid (r = 

>.75) measure of postural control as compared to the force platform when utilizing test-retest 

reliability. 

 

Assumptions 

 Data collection for the current study involved participants standing as still as possible on 

a force platform, following instructions provided by the testing administrators. It was assumed 

that all equipment was up to date and working properly, at the responsibility of the administrator. 

It was assumed that all participants were honest, provided an accurate medical history, and gave 

maximum effort on all testing sessions.  

 

 

Delimitations 
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 The sample of individuals utilized in the current study were selected of convenience from 

a single university. Appropriate exclusion criteria was noted and ensured over the course of the 

study (see Table 1). 
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