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ABSTRACT 

The results of corrosion survey for stainless steel tanks used in water storage at various 

areas are presented. More severe corrosion is observed for the area with higher airborne salinity. 

Damages are revealed at both outer and inner surfaces for tanks made of Type 304 and 201 

steels exposed in coastal conditions.  Corrosion products examined by visual inspection and 

SEM-EDX technique showed relatively distinctive characteristics for the outer and inner tank 

surfaces which are attributed to different corrosion mechanisms initiated by corrosive chloride 

accumulated on steel surfaces. Airborne salinity is considered the main source causing corrosion 

of Type 304 and 201 stainless steel tanks. 
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1. INTRODUCTION 

Stainless steel is a widely used material for water storage due to its high corrosion 

resistance in natural environments. Depending on application conditions, various types of 

stainless steel have been recommended for water tanks. Currently, tanks made of Type 304 steel 

are the most popular, gradually replacing traditional means of water storage. Type 304 and 201 

steel coils are commonly used to manufacture separate or coupled tank constructions. In fact, 

corrosion remains a main concern and its causes are not fully clarified. 

Fundamentally, corrosion resistance of stainless steels in nature is due to the formation of 

passive films on the surface. The passive films are influenced by environmental factors, such as 

temperature, relative humidity (RH) and chemicals occurring in the atmosphere, including 

airborne salts and other pollutants. Jung R.H. et al. defined the nature of passive film to the 

corrosion process and confirmed that the cation ratio of chromium ([Cr]/{[Cr] + [Fe]}) in 

passive films formed under 30–70 % RH was similar to the alloy composition of Grade 304 

steel. As proven, airborne salts play an important role in corrosion initiation by breaking passive 

film at certain RH and chloride concentration values [1]. According to Tsutsumi and coworkers, 
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the RH is determined to be 35–75 % for progressive corrosion of Type 304 steel in marine 

atmosphere and at RH above 75 % no corrosion is detected, even if a large amount of airborne 

salts is deposited, except for the initial stage of exposure [2]. In laboratory test, the critical 

concentration of chloride in water droplet for initiation of corrosion is evaluated at about 5-6 M 

[3]. Furthermore, Jung R.H. et al. reported that [1], the presence of chloride in the thin water 
layer facilitated selective dissolution of iron as Fe(Cl)aq, resulting in chromium enrichment in the 

passive film, which favors the increase of chromium ratio in the film up to 40 %. Meanwhile, 

chloride concentration is increased due to the water layer drying up, and a critical value is 

reached to generate pitting corrosion [1]. This issue is also reported in other works [4-8]. It is 

noted in [8], that the RH for pitting during drying (RHpit) and repassivation during wetting 

(RHrep) are correspondingly equal to 56 % and 65 %; the average chloride concentration for 

pitting initiation is recorded at 7.3 M.  

The above described corrosion mechanism of stainless steel may typically occur in coastal 

humid tropical atmosphere like Vietnam conditions, where the combination of high salinity and 

changing temperature regime can lead to a critical chloride value on exposed surface of steel. 

For a better understanding of the corrosion behavior of stainless steel water tanks in practical 

application, a field survey has been conducted for several areas of Vietnam; the selected survey 

results and laboratory corrosion investigation of coupled Type 304/201 steel tanks are reported 

in this paper.  

2. MATERIALS AND METHODS 

2.1. Methods of field survey and corrosion evaluation 

2.1.1. Survey locations and sampling method 

The field survey for water storage tanks exposed under natural conditions was conducted in 

two areas of northern Vietnam, characterized by distinctive features in the context of 

atmospheric corrosion: the coastal urban district of Hai Phong (within 1 km from coastline) and 

the mountain Son La city located 430 km westward. The climatic and environmental 

characteristics of the survey areas were summarized in Table 1. The values of climatic 

parameters were obtained from local weather stations. Time-of-wetness (TOW) was calculated 

based on annual temperature and RH data, using an empirical equation described in [9].  

Airborne salinity and sulfur dioxide concentrations were taken from Lien L.T.H. work [9]. The 

reported salinity values were converted from results determined by “dry gauze” method into 

respective “wet candle” method with twofold multiplier. 

Table 1. Climatic and environmental characteristics of the survey areas. 

 

Survey 

area 

Climatic and environmental parameters 

Tempe-

rature 

(
o
C) 

RH 

(%) 

TOW 

(h) 

Precipi-

tation 

(mm) 

Evapo-

ration 

(mm/d) 

Wind 

speed 

(m/s) 

Prevail. 

wind 

direction 

Salinity 

(mg/m
2
.d) 

Sulfur 

dioxide 

( g/m
3
) 

Hai Phong 24.0 85.5 6,406 2,307 709 0.1-8.9 E 17.5 8.0 

Son La 21.1 81.0 5,171 1,473 800 0.8-2.0 S, N 1.86 0.69 
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Corrosion appearance was checked by visual observation with common optical devices for 

the outer and inner surfaces of combined Type 304/201 steel tanks. Two groups of outdoor 

exposed tanks at various buildings were selected for evaluation. The tanks were grouped by 

building ownership: private residential and public civil. At least ten tanks with minimum two 

years of usage were checked in each group. Tank surface was cleaned from dust, degreased 

before detailed checking; detected corrosion damages were recorded by photography and 

selective tank areas were cut off for further examination in laboratory.  

2.1.2. Analysis of steels and corrosion products 

The chemical compositions of selected steel cut-off taken from corrosion-damaged tanks 

were analyzed by Spectro Metal Analyzer (Ametek, USA) at Lab. of Materials Technology 

(MTLAB, HCMUT) to verify the assigned steel types used for tank construction.  

The elemental compositions of corrosion products were revealed in-situ by SEM-EDX 

methods. JSM 6510LV (Jeol, Japan) and X-act EDX (Oxford Instrument, UK) of Institute for 

Tropical Technology (VAST) were used for SEM-EDX analysis. Single EDX spectra were 

selected for determining the corrosion product composition at the outer or inner tank surfaces. 

The elemental contents were taken from analyzed results of “Spectrum 2” and “Spectrum 12” 

spots at SEM images for the outer and inner Type 201 steel tank surfaces respectively. 

The corrosion products were also analyzed using wavelength-dispersive spectroscopy 

(WDS) with pentaerythritol (PET), lithium fluoride (LiF) and thallium acid phtalate (TAP) 

diffracting crystals to detect their chemical composition and inclusion of environmental 

pollutants such as chlorides into rusting spots. SXFive electron probe micro-analyzer (EPMA) 

serial 962 of Cameca Co. (France) at Institute of Geological Sciences (IGS, VAST) was 

operated in this experiment with following working parameters: 20 kV voltage and 24 nA beam 

current, 1,000 points with 1,000 ms/point. 

2.2. Electrochemical measurements 

As-received Type 201 and 304 stainless steel coils with passive films were taken for 

conducting open-circuit potential (OCP) and cyclic potentiodynamic polarization measurement.  

The tested samples were prepared from the coils with dimensions 75×50×0.5 mm and  

degreased with ultrasonic stirring at 60 
o
C for 5 min. After degreasing, the samples were soaked 

in acetone and given to dry, then set to conduct electrochemical measurement in 3.56 % (by 

weight) sodium chloride (EMSURE@ACS, p.a. Sigma-Aldrich) aerated solution, following 

procedures described in ASTM G 61-86 (2014) on Solartron SI 1280B Galvanostat/potentiostat 

(UK) at Lab. of Materials Technology (MTLAB, HCMUT). The open-circuit potentials (OCP) 

were recorded in the conventional three-electrode cell using sat. calomel electrode as reference. 

Records were carried out for a one-hour duration with OCP values fixed at the final 10 min. of 

the course. To reveal local corrosion and its potential (as Epit), the cyclic potentiodynamical 

polarization was performed by scanning from Ecor at a scan rate 0.6 V/h forward to maximum 

current of 0.5 mA or maximum potential of 1.6 V, following by backward scanning to the initial 

Ecor. The commonly accepted selection of sodium chloride concentration (3.56 wt.%) was used 

and records of electrochemical parameters such as OCP, Ecor, etc. were defined according to 

ASTM G 61-86 (points 6.2 and 6.8). 
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3. RESULTS AND DISCUSSION 

3.1. Corrosion of stainless steel tanks in outdoor application 

The results of corrosion survey for water storage tanks exposed in outdoor application were 

summarized in Table 2, where ratios of corrosion-damaged tanks to all tanks examined were 

recorded for duration of usage. 

Table 2. Ratio of corrosion-damaged tanks to all tanks examined for duration of usage. 

Duration (year) 

Survey area 
< 2 2 - 5 5 - 10 10 - 15 > 15 

Hai Phong 0/5 0/3 2/2 2/2 1/2 

Son La 0/5 0/5 0/5 1/3 0/0 

Table 2 shows a clear difference in survey results: corrosion was noticeably revealed for 

tanks examined in Hai Phong coastal conditions after 5 years of usage, compared to corrosion 

case occurred to a single tank in Son La. However, the last case was revealed for a tank installed 

in water treatment workshop, where various chemicals were used for a prolonged period. Other 

corrosion-damaged results recorded in the coastal area were entirely related to the water storage 

tanks used in private residential houses, where attack of natural environmental parameters may 

be considered as the main destructive factors.   

More detailed tank examination was summarized in Table 3 demonstrating corrosion 

behavior of the outer steel surface under constant aggressive atmospheric impact and of the inner 

side in contact with water as well as changing air/water service regime.  As above mentioned, in 

Son La area, corrosion on outer surface was observed for a single tank only; meanwhile, severe 

corrosion damages were revealed for both the outer and inner surfaces of the tanks used in Hai 

Phong. Corrosion developed to a larger extent on the outer surface, where metal was possibly 

affected by airborne salinity and other pollutants under changing temperature-humid conditions. 

With higher TOW values, water films easily formed on the metal surface and were gradually 

enriched with deposited chlorides in the coastal area of Hai Phong. Under seasonal or daily 

temperature-humidity regimes, the critical concentration of chloride was reached to initiate local 

corrosion [3]. In contrast, corrosion was rarely detected in Son La, where aggressive 

atmospheric chemicals were detected in very low concentration (Table 1). 

Table 3. Results of corrosion survey for water storage tanks. 

Location Son La Hai Phong 

Surface Outer  Inner Outer Inner 

Corrosion  

on surface 

Type 201 steel Slight damage No damage Severe damage Severe damage  

Type 304 steel  No damage No damage Slight damage Slight damage 

In fact, the vertical water tanks were for a long time designed with the upper part (usually 

above water level) made from Type 201 steel. The corrosion damages of both steels are 

demonstrated in field images of Figure 1 and Figure 2. It is clear that more extensive corrosion 

was registered for Type 201 compared to Type 304 steels when exposed in the atmospheric 
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conditions of Hai Phong. Specifically, different rust appearance in the outer and inner surface 

was exhibited: deep pits with red color corrosion products were formed in the first case and 

shallow spots with preferentially grey color in the latter case (Fig. 2). 

 

Figure 1. Field images of the outer (left) and inner (right) surface of Type 304 steel tank in Hai Phong. 

 

Figure 2. Field images of the outer (left) and inner (right) surface of Type 201steel tank in Hai Phong. 

3.2. Characterization of corrosion products 

Steel samples taken from corrosion-damaged tanks were analyzed and their chemical 

compositions shown in Table 4 proved that tanks were indeed constructed of Type 201 and 304 

stainless steel, compared to specifications widely reported in literature. 

Table 4. Chemical composition (wt.%) of corrosion-damaged steel tank. 

Element 

Tank part 
C Si Mn P Cu Ni Cr Fe 

Assigned 

Type 

Upper part 0.04 0.46 7.4 0.04 1.5 4.09 15.12 bal. 201 

Main part 0.05 0.41 1.03 0.03 - 8.03 18.8 bal. 304 

The corrosion products on the outer and inner surfaces of the tanks were characterized by 

SEM-EDX and selective data are presented in Fig. 3, Fig. 4 and Tab. 5. The EDX spectra clearly 

show the presence of atomic chlorine in corrosion product on the outer surface of the tanks; 

meanwhile, no atomic chlorine is detected in corrosion product taken from the inner surface. 
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The chemical composition of corrosion products taken from tanks exposed in Hai Phong 

shows some specific features: chlorine is detected in minute quantity of 0.24 % on the outer 

surface (Fig. 3, Tab. 5) and no chlorine is detected on the inner surface (Fig. 4, Tab. 4) of Type 

201 tank.  

 

Figure 3. SEM and EDX spectra (Spectrum 2) for corrosion product on the outer surface of Type 201           

steel tank exposed in Hai Phong. 

 

Figure 4. SEM and EDX spectra (Spectrum 12) for corrosion product on the inner surface of Type                   

201 steel tank exposed in Hai Phong. 

Table 5. Chemical composition of corrosion products (wt.%) on the outer and inner tank surfaces 

detemined by EDX method. 

Content (%) 

Tank surface 
O Al Si Cr Fe P Cu S C Cl N 

Outer 45.79 2.91 7.26 3.18 22.42 0.84 - 0.50 12.48 0.24 3.63 

Inner 42.70 0.18 0.39 6.60 39.21 - 0.66 0.10 6.09 0 2.13 

Other results analyzed for corrosion products by EPMA method are presented in Fig. 5 and 

Tab. 6, where data were recalculated to nominal values (to total 100 wt.%) without oxygen 

inclusive. The analytical results were extracted from the respective WDS spectra for the detected 

elements in relevant diffracting canal. 
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Figure 5. SEM image of analyzed areas for outer (left) and inner (right) steel surfaces. 

Similar to the results of EDX method, chlorine content was not detected for corrosion 

product taken from the inner tank surface, while a relatively small amount was revealed on the 

outer tank side (Tab. 6). It is necessary to emphasize that corrosion products were taken for 

analysis from the upper part and covered inside the tank; and chloride, if any occurred, could not 

easily be washed out by potable or rain water during application. 

Table 6. Chemical composition of corrosion products on outer and inner tank surfaces determined by 

EPMA method. 

Tank 

surface 
Position 

on Fig. 5 

Element composition (wt.%) 

Al Si Cr Fe P Ni S Mn Cl 

Outer 2 3.4 6.3 21.2 61.7 0.7 - 0.1 4.7 0.9 

3 0.7 0.6 20.3 64.1 0.1 - - 13.6 0.6 

Inner 2 0.3 0.3 72.3 23.4 - 2.7 - 3.1 - 

3 1.0 4.3 9.4 73.2 - - - 12.1 - 

Summarizing the results of analysis for corrosion products on Type 201 steel received by 

EDX and EPMA methods, the role of chlorine compound in atmospheric corrosion process on 

outer tank surface can be suggested. Severe corrosion damage on the outer tank surfaces is also 

demonstrated in Fig. 1 – Fig. 2 and this rust appearance in marine conditions is usually attributed 

to airborne salinity [2]. Meanwhile, generally occurred corrosion damage on the inner tank 

surface at the coastal Hai Phong area is hardly interpreted based purely on chloride attack due to 

constantly high RH (> 75 %) [3] inside the tank and undetectable chlorine content in corrosion 

product. This phenomenon requires more detailed examination. 

3.3. Electrochemical behavior of stainless steels in chloride solution 

To understand corrosion behavior of stainless steel and its passive film in chloride solution, 

an electrochemical examination was conducted. The OCP of both Type 304 and 201 steel 
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samples with passivation film were recorded for an hour duration are presented in Figure 6, 

when their potentiodynamic polarization curves in 3.56 % NaCl solution are featured by Figure 6. 

As clearly shown in Figure 6, the OCP potentials of Type 304 sample are more positively 

shifted than Type 201 steel, which showed more stable passive film in chloride solution. This 

output is commonly explained by higher chromium content in Type 304 alloy composition. 

Meanwhile, the lower protective ability of Type 201 passive film is attributed to decreased 

nickel content and increased marganese inclusion, which deteriorate the surface oxide film in the 

test medium. However, due to the repassive nature of the films, the OCP are quickly restored 

after falling. With copper alloying component, the repassivation ability of Type 201 sample is 

higher expressed than Type 304 steel, but is not sustained and came to a sharp fall after 2500 s 

of immersion in chloride solution. Indeed, the film’s repassivation process is disturbed by the 

presence of chlorides which promotes the initiation of localized corrosion (e.g. pitting), thereby 

decreasing the durability of the self-protection provided to stainless steel [10]. Nevertheless, the 

passive films are still formed at this point and afterwards with more positive potentials 

comparing to Ecor of iron. 
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Figure 6. The OCP potentials of Type 304 and Type 201 steels in 3.56 % NaCl solution. 

Based on Figure 7, the course of forward scan indicated the higher susceptibility to pitting 

corrosion of Type 201 grade comparing to Type 304 grade steel. Furthermore, corrosion rate is 

anticipated to develop more intensively for Type 201 when its passive film is damaged. This is 

also demostrated by the course of backward scan to more negative potentials where the pits on 

Type  201 sample hardly repassivate (extremely slow decrease of current to reach passivation). 

Therefore, a distinctive behavior was revealed for two steel types due to clear differences in Epit 

despite the insignificant shift in OCP. 

All the above described results clearly show the strong influence of chloride on the 

corrosion process of Type 304 and 201 steels and explain chlorine presence in corrosion product 

on the outer side of the tanks. As discussed by Frankel G. [11], the three main mechanisms for 

passivity breakdown by chloride ions – passive film penetration, film breaking, and adsorption – 

can happen to bare stainless steel surface. However, in the case of metal with passive film, 

chloride ions initially located on the film/solution interface can either reach the metal/film 

interface through surface imperfections by penetration mechanism or can preferentially adsorb 
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on the film surface to reduce oxygen vacancies at the film/solution interface by adsorption 

mechanism. In the latter case, the oxygen vacancy reduction favors the increase of cation 

diffusion rate from the metal/film interface to the film/solution interface, which creates more 

metal vacancies at the metal/film interface to form a void and cause breakdown as pit initiation 

[12, 13]. That means, chloride’s role is decisive in passive film breakdown whether these ions 

penetrate or not through film and its presence is not always detected in the corrosion product. 
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Figure 7. Potentiodynamic curves of Type 304 and  Type 201steels in 3.56 % NaCl solution. 

Occasionally corrosion is detected on the inner surface of tank, where chloride ions occur 

in low concentrations due to closed space and water service regime. As it was found, corrosion 

damage happened to the tanks in long term usage (more than 10 years) and with grey 

appearance, visually different in color compared to common rust on steel in natural conditions. It 

can be assumed that corrosion was initiated by excessive residual chlorine concentration during 

water supply in the past. According to Tuthill A.H. and coworkers [14], chlorine corrosion may 

happen to Type 304 steel when its residual concentration reaches approx. 2 mg/L. This 

concentration is unacceptable and hardly detected under current strict Water quality rules; 

however, it might not have always been the case for tanks in long term service. Nevertheless, 

this assumption requires more detailed investigation relating tank’s service history and corrosion 

product analysis. 

4. CONCLUSIONS 

Field survey of Type 304/201 grade steel water storage tanks exposed in rural and coastal 

conditions shows strong influence of environmental parameters on corrosion. Severe damage 

was observed for the tanks in coastal conditions with high TOW and airborne salinity. Type 304 

steel grade was more corrosion-resistant than Type 201 steel grade and the outer surface suffered 

more damage than the inner surface of the tanks. Chlorides are considered the main chemical 

factor in destroying stainless steel passivity under coastal conditions. As a result, Type 304 and 

especially Type 201 stainless steel grades are not recommended for use as water storage tanks in 

coastal conditions. 
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