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MONITORING THE PROCESS MEAN OF AUTOCORRELATED DATA 

by 

JESSE D. KING 

(Under the Direction of Dr. Charles W. Champ) 

ABSTRACT 

When modeling the stochastic behavior of a sequence { }tX  of the quality measurement 

X  on the output of a production process, it is usually assumed the measurements taken 

over time are independent and identically distributed. Multiple authors have pointed out 

that significant autocorrelation can affect the performance of traditional control charting 

procedures. One family of models for time series data are the autoregressive integrated 

moving average (ARIMA) models. These models are well suited to model production 

processes, in which the observations are autocorrelated. It is our interest to examine these 

models. Meaning is given to the process being in-control and out-of-control in terms of 

the parameters of the model. The performance of the Shewhart X  chart and CUSUM 

X chart are compared. This includes determining the number of unobserved values 

between samples for the charts to perform as they would be expected if the samples were 

independent. Some recommendations are given. 

 

INDEX WORDS: ARMA, ARIMA, Autocovariance, Autocorrelation, Shewhart, 

CUSUM, Control Charts, Gapping, Simulation 
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CHAPTER 1 

INTRODUCTION 

Several authors have studied control charts for monitoring a process in which the 

quality measurements of the output are autocorrelated. These include, among others, 

Alwan (1992), Alwan and Roberts (1988), Box and Luceño (1997), Lu and Reynolds 

(1999), Montgomery and Mastrangelo (1991), Runger and Prabbu (1996), Runger and 

Willemain (1995), Runger, Willemain, and Prabbu (1995), Wardell, Moskowitz, and 

Plante (1994), and Zhang (1998). 

It would be useful to develop a method that would allow the practitioner to use 

well known control charts and procedures on autocorrelated processes. We believe this 

may be easily accomplished when gapping between samples is practical that is often the 

case in industry. It is the purpose of this thesis to develop a method for designing a 

CUSUM X  chart for monitoring the mean of an autocorrelated process. 

In Chapter 2, we discuss the autocorrelated data model both when the process is 

in- and out-of-control. A method is given for simulating a time series from an 

ARIMA(p,0,q) data model. CUSUM X  charts are discussed in Chapter 3. In the case the 

practitioner chooses to use periodic sampling, a method is given in Chapter 4 for 

designing a CUSUM X  chart. A concluding chapter follows which gives several areas 

for further research. 
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CHAPTER 2 

MODEL, SAMPLING PROCEDURES, AND APPROXIMATION METHODS 

 

2.1. INTRODUCTION 

When modeling the stochastic behavior of a sequence { }tX  of the quality 

measurement X  on the output of a production process, it is usually assumed the 

measurements taken over time are independent and identically distributed. Multiple 

authors have pointed out that significant autocorrelation can affect the performance of 

traditional control charting procedures. One family of models for time series data are the 

autoregressive integrated moving average (ARIMA) models. These models are well 

suited to model production processes, in which the observations are autocorrelated. It is 

our interest to examine these models. The general form of the model is described in the 

next section. In Section 3, we examine the autocovariance and autocorrelation functions 

and show how these functions can be obtained as functions of the parameters of the 

model. Models for in-control and out-of-control are developed in the fourth section. A 

method is given in Section 5 for simulating an ARIMA(p,0,q) time series both when the 

process is in- and out-of-control. Sampling procedures are outlined in Section 6. While 

we are only interested in the case where the parameters are known, we provide in Section 

7 some discussion of methods for estimating the parameters of an ARIMA(p,0,q) model. 

Some concluding remarks are given in the last section. 

 

2.2. ARIMA(p,d,q) MODEL 

The general form of the ARIMA(p,d,q) model is given by 
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tqt

d

p aBXB )()( 0 θφφ +=∇ , 

where dd B)1( −=∇ . The backward shift operator B, the autoregressive operator, )(Bpφ  

and the moving average operator )(Bqθ  are defined, respectively, by  

BBBBBBXXB qq

p

ppktt

k θθθφφφ −−−=−−−== − ...1)( and ,...1)( , 11 . 

The values p, d, and q are nonnegative integers. The sequence { }ta , referred to as 

“shocks,” is assumed to be a sequence of independent and identically distributed random 

variables each with mean 0 and common variance 2

aσ . The ARIMA(p,d,q) models are 

discussed in Box and Jenkins (1994) and Wei (1990), among others. 

Our study of the performance of various quality control charts will be limited to 

ARIMA(p,0,q) models. These models are a special sub-family of ARIMA models that are 

known as autoregressive moving average (ARMA) models. These models have the form 

qtqttptptt aaaXXX −−−− −−−++++= θθφφφ KK 11110 . 

We assume the stochastic process { }tX  is stationary. Box and Jenkins (1994) show that 

an ARIMA(p,0,q) process is stationary if the roots of 0)( =Bφ  are outside the unit circle. 

It follows that )()( ktt XEXE +=  and ),cov( kttk XX −=γ  holds for all values of t. 

Further, we assume that any collection of n random variables in the sequence { }tX  

follows an n-variate (multivariate) normal distribution. 

 

2.3. AUTOCOVARIANCE AND AUTOCORRELATION FUNCTIONS 

To determine the mean of the distribution of tX , we observe that 

)()()()()()( 11110 qtqttptptt aEaEaEXEXEXE −−−− −−−++++= θθφφφ KK  
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Under our assumptions, we have that 

0)()()( and )()()( 11 ======= −−−− qtttpttt aEaEaEXEXEXE KK . 

It then follows that 

p

tXt XE
φφ

φ
µ

−−−
==

K1

0

,
1

)( . 

As we see here, the mean Xt ,µ  is not a function of t. This is due to the stationary 

assumption and the assumption that 0)( =taE  for all t. Note that 

.)1( ,10 Xtp µφφφ −−−= K  

To obtain the autocovariances, we define 

Xttt XX ,

* µ−=  

and observe that 

.11

**

11

*

qtqttptptt aaaXXX −−−− −−−+++= θθφφ KK                    (2.3.1) 

It is not difficult to show that 

)(),cov(),cov( ****

kttkttkttk XXEXXXX −−− ===γ . 

Now, multiplying the Equation (2.3.1) by *

ktX −  and taking expectations, we have 

 
)()()(                        

)()()(

**

11

*

****

11

**

ktqtqkttktt

ktptpkttktt

XaEXaEXaE

XXEXXEXXE

−−−−−

−−−−−

−−−+

++=

θθ

φφ

K

K
         (2.3.2) 

It will be convenient to let 

. if ,0       

; if ),(

ik

ikXaE ktitik

>=

≤= −−+ξ
 

Equation (2.3.2) gives us a system of equations of the form 

qqppppp ξγγ ,,2,1 B)AA( ++= . 
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The vectors T

10 ],,,[ pp γγγγ K=  and T

10 ],,,[ qq ξξξξ K=  have dimensions 1)1( ×+p  

and 1)1( ×+q , respectively. The matrix pA  has dimensions )1()1( +×+ pp  with the 

thji ),(  component ),(,1 jia p  given by 

otherwise. ,0              

;20or  10 if ,),( 2,1

=

+−≤<+≤<= −+ ipjpijia jip φ
 

The matrix p,2A  has dimensions )1()1( +×+ pp  with the thji ),( component ),(,2 jia p  

given by 

otherwise. ,0               

;2 and ,12 ,2 if ,),(,2

=

>−≤≤≤<= − pijpijia jip φ
 

The matrix qp,B  has dimensions )1()1( +×+ qp  with the (i,j)th component 

),(, jib qp given by 

otherwise. ,0              

};,1min{2 ;1 if ,              

;1 if ,1),(

2

,

=

−≤≤≤<−=

===

−+ qijpi

jijib

ji

qp

θ  

To determine kξ , we consider the sequence of equations 

)()()(                    

)()()(

11

**

11

*

qtktqtkttkt

ptktptkttkt

aaEaaEaaE

XaEXaEXaE

−−−−−

−−−−−

−−−+

++=

θθ

φφ

K

K
. 

It follows that 
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.for  ,11

011

0111

2

011

2

1011

2

0

pkpkpkk

ppp

qqq

aqqqq

a

a

>++=

++=

++=

−++=

−=

=

−−

−

++

−

ξφξφξ

ξφξφξ

ξφξφξ

σθξφξφξ

σθξφξ

σξ

K

K

M

K

K

M

                                    (2.3.3) 

The values of kξ  can be obtained iteratively from the equations in (2.3.3). Further, kξ  

can be expressed as a function kς  of the autoregressive parameters pφφ ,,1 K  and the 

moving average parameters qθθ ,,1 K  times the variance 2

aσ  of ta . That is, 

2

11 /),,,,,( akqpkk σξθθφφςς == KK                           (2.3.4) 

To solve our system of equations, we express our model in the form 

rtrttrtrtt aaaXXX −−−− −−−++++= θθφφφ KK 11110 , 

where r = max{p,q}. For the case in which r = p > q, the parameters rq θθ ,,1 K+  are zero; 

and for the case in which r = q > p, the parameters rp φφ ,,1 K+  are zero. The system of 

equations can be expressed in matrix form as 

rkpkpkk

arrrrrrrrrrrrr

>++=

++=++=

−− for  

and C)BA(C)BA(

11

2

,,

γφγφγ

σςγξγγ

K
,       (2.3.5) 

kξ  is determined by the equations in (2.3.3), and T

10 ],,,[ rr ςςςς K= . 

The results in (2.3.5) are a special case of the results derived by McLeod (1975) which 

also includes the seasonal model. Ansley (1980) extended the results of McLeod (1975) 

to the multivariate ARIMA(p,0,q) (MARIMA(p,0,q)) model. A FORTRAN program is 
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given by Pate and Davies (1988) implementing, with some modifications, the method of 

Ansley (1980). 

It will be useful to define the transformed stochastic process { }tW  by 

aXttt XW σµ /)( ,−= .                                           (2.3.6) 

For the ARIMA(p,0,q) model, we have that 

qtqttptptt bbbWWW −−−− −−−+++= θθφφ KK 1111 , 

where att ab σ/= . It is easy to see that )1,0(~ Nbt . 

The following two theorems hold for the stochastic process }{ tW . 

 

Theorem 2.3.1: 22 //),cov(),cov( and 0)( akakttkttkt XXWWWE σγστ ==== −−  for 

K,2,1,0=k . 

Proof of Theorem 2.3.1: If follows that 

0/))((]/)[()( ,, =−=−= aXttaXttt XEXEWE σµσµ  

since XttXE ,)( µ= . Using Equation (2.3.6), we have 

222

,,

,,

//),cov(/)))(((     

)()(),cov(

akakttaXktktXtt

a

Xktkt

a

Xtt

kttkttk

XXXXE

XX
EWWEWW

σγσσµµ

σ

µ

σ

µ
τ

==−−=

−−
===

−−−

−−
−−

 

The autocorrelation function kρ  is defined by 0/ γγρ kk = . Using the results in Theorem 

2.3.1, yields the following results. 
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Theorem 2.3.2: 0/ττρ kk =  for K,2,1,0=k . 

 

By dividing Equation (2.3.5) by aσ , we have the system of equations 

rrrrrrr ςττ ,,1,1 B)AA( ++= , 

where T

10 ],,,[ rr ττττ K= . 

For most of our analyzes, we will be considering ARMA(p,0,q) models in which 

both p and q are less than or equal to 2. For these cases, our system of equations can be 

written as 

( )

2

22111

11

2

21

21

2

1

0

12

21

21

2

1

0

1

00

0

1

               

00

000

000

00

0

0

aσ
θφθφφ

θφ
θ

θθ
θθ

γ
γ
γ

φφ
φφ

φφ

γ
γ
γ

















−+−

−

















−

−−

−−

+

















































+

















=

















                   (2.3.7) 

with 
2211 −− += kkk γφγφγ  for k > 2. The solution T

2102 ],,[ γγγγ =  can be expressed as 

( )

2

22111

11

2

21

21

1

12

21

21

2

1

0 1

00

0

1

0

01

1

aσ
θφθφφ

θφ
θ

θθ
θθ

φφ
φφ

φφ

γ
γ
γ

















−+−

−

















−

−−

−−

















−−

−−

−−

=
















−

 

Completing these computations in symbolic form gives expressions that are quite messy. 

In general, the results are determined numerically for given model parameters. However, 

some special cases lead to simple closed form expressions for the autocovariance 

function. 

For example, the case in which p = 1 and q = 1, equation (2.3.7) reduces to the 

system 
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( )

2

111

111

1

2

1

0

1

1

1

2

1

0 1

000

00

01

00

000

000

000

00

00

aσ
θφφ

θφθ
θ

γ
γ
γ

φ
φ

φ

γ
γ
γ


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













−

−
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
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
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



−

−

+
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
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






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












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






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





+










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





=


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












.      (2.3.8) 

Equation (2.3.8) follows directly from Equation (2.3.7) by setting 022 == θφ . The 

solution is given by 

( )( ) 2

2

1

1111

1

12

2

1

2

111
0

1

1
 and 

1

21
a

k

ka σ
φ

θφθφφ
γσ

φ
θθφ

γ
−

−−
=

−

+−
=

−

                      (2.3.9) 

for 1≥k . Further, setting 01 =θ  in equations (2.3.7, 2.3.8, and 2.3.9) yields the results 

for the ARIMA(1,0,0) and setting 01 =φ  in equations (2.3.7, 2.3.8, and 2.3.9) yields the 

results for the ARIMA(0,0,1) model. 

 

2.4. COMMON AND ASSIGNABLE CAUSES OF VARIABILITY 

Shewhart (1931) introduced the ideas of common and assignable causes of 

variability for industrial processes. Basically, one can view a common cause of variability 

as one that can be removed by redesigning the process whereas an assignable cause is one 

that can be removed when discovered and the quality of the process improved. In order to 

provide the practitioner with an analysis of a control charting procedure, both common 

and assignable causes must be interpreted in terms of the parameters of the data model. 

In general, it is assumed that if the process is in-control it follows a given ARIMA 

model; and when the process changes to an out-of-control state it follows another 

ARIMA model. Runger (2002) discusses in-control and out-of-control in terms of the 

parameters of a simple dynamic model. In this section, we will examine what is meant by 

the process being in- and out-of-control in terms of the parameters of ARIMA(p,0,q) 
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models. In particular, we look at out-of-control scenarios that are changes in the 

distribution of the shock, ta . 

Under the independent normal data model, it is typically assumed the process is 

in-control if XX ,0µµ =  and XX ,0σσ = , for fixed values X,0µ  and X,0σ . Thus when the 

process is in-control, we can express our model as 

tXt aX += ,0µ , 

where ),0(~ 2

,0 at Na σ . In this case, the variability of the distribution of the random 

variable ta  is due a natural (common) cause(s). Note that under this model that 

2

,0

2

,0 Xa σσ = . 

It is typical to assume that when an assignable cause(s) affects the process it is reflected 

in a change in the distribution of ta  from ),0(~ 2

,0 at Na σ  to ),(~ 2

,0

2

,0 aat Na σλδσ , 

where 0≠δ  or 10 ≠< λ . It then follows that 

),(~ 2

,0

2

,0,0 XXXt NX σλδσµ +  

with the process being in-control if 0=δ  and 1=λ . For autocorrelated data following 

an ARIMA(p,0,q) model, we can make the same assumptions about the distribution of the 

random variable ta  (often referred to as a shock) as we did in the independent data 

model. That is, a process change occurs when the distribution of the random shocks 

changes from ),0(~ 2

,0 at Na σ  to ),(~ 2

,0

2

,0 aat Na σλδσ  for 0≠δ  or 10 ≠< λ . We will 

refer to this as the out-of-control shock (OCS) model . 
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2.5. SIMULATION METHOD 

We are interested in simulating time series from a univariate ARIMA(p,0,q) 

process with given parameters pφφφ ,...,, 10 , qθθθ ,...,, 21  and 2

aσ . Anderson (1979), Beall 

(1982), and Burn (1986) discuss methods for “warming-up” a time series. Basically, in 

warming-up a time series, the initial values 01 ,, XX p K−  are set to given values, say for 

example the mean of the process and then N values are generated. For large enough N, it 

is assumed that the time series from the N+1 value of X have approximately the stochastic 

properties of the desired time series. 

McLeod (1975) alludes to a method for simulating an ARIMA(p,0,q) time series. 

He states that his method for obtaining the autocorrelation function “is useful in 

simulating initial values of a time series in simulation studies … .” He provides no further 

guidance in simulating these initial values. In this section, we discuss a method for 

simulating these initial values, 01 ,, XX p K−  given in Kreiger (1992). This method treats 

the initial values 01 ,, XX p K−  as a 1×p  vector T

01 ],,[ XX p K− . Under the normality 

assumption, we have that 

X =
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


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


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The covariance matrix Σ  is positive definite and hence has positive real eigenvalues. We 

define C to be a diagonal matrix of the eigenvalues of Σ  and V the matrix whose 

columns are the associated normalized eigenvectors of Σ . The transformation of X to 

)X()VC(Z 12/1

Xµ−= −  
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gives a 1×p  vector Z = T

01 ],,[ ZZ p K−  with 






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To initialize our time series generator, we generate the observed values of the p 

independent standard normal random variables 01 ,, ZZ p K−  and transform these values by 

Z)VC(X 2/1+= Xµ  

yielding the simulated values of the p initial values 01 ,, XX p K−  for the simulated time 

series. Next the observed values of the independent normal random variables qaa −10 ,,K , 

are generated from a ),0( 2

aN σ  distribution while ta  is generated from a 

),( 2

,0

2

,0 aaN σλδσ . The first value of the simulated time series is then calculated by 

qqpp aaaXXX −− −−−++++= 101110101 θθφφφ KK  

The tth value of the simulated time series is then generated iteratively by simulating 

independently the observed value of the random variable ta  from a ),( 2

,0

2

,0 aaN σλδσ  

distribution and calculating the simulated value of tX  as 

qtqttptptt aaaXXX −−−− −−−++++= θθφφφ KK 11110 . 

A similar method could be used to simulate values from a multivariate 

ARIMA(p,0,q) (MARIMA(p,0,q)). The method of Ansley (1980) implemented by Pate 

and Davies (1988) in FORTRAN would be used to calculate the autocorrelation matrices. 

These results would then be used in the procedure to simulate the initial values of the 

multivariate time series. Other authors have given methods for generating multivariate 
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time series. These include Krogstad (1989) and Mastrangelo and Forrest (2002) who give 

a FORTRAN program to generate the series. These methods are only useful for 

generating in-control data whereas our method generates out-of-control data assuming 

that ),(~ 2

,0

2

,0 aat Na σλδσ . In the APPENDIX we provide a MATLAB program that 

implements the method outlined in this section for generating both in- and out-of-control 

ARIMA(p,0,q) time series.  

 

2.6. SAMPLING PROCEDURES 

It is typical for a practitioner to periodically take the quality measurements on a 

sample of items from the output of the process to monitor for a change in quality. Under 

the correlated data model, it will be important to maintain the order of the output relative 

to these measurements. A simple sampling procedure is one in which the practitioner 

selects, in the order of output, a sample of size n and waits to take the next sample after m 

items have been produced. It will be convenient to represent the quality measurements on 

the items in the ith sample as the vector 

[ ]TX miinmnimnii XXX )1(2))(1(1))(1( ,...,, −+++−++−=  

and the unobserved measurements of the next m items in the order of output by the vector 

[ ]TG )()2())(1()1())(1( ,...,, mninmninmnii XXX ++++−+++−= . 

These items and/or their measurements will be referred as the ith “gap.” When every item 

from the output of the process is measured, this is referred to as 100% sampling. For this 

sampling procedure, 100% sampling occurs when n = 1 and m = 0. 

Another sampling method presented by Apley and Tsung (2002) takes as the ith 

sample as the vector 
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[ ]T11211 ,...,, −+−+−+ += iniii XXXX . 

Clearly, these samples overlap. Using this sampling method, every item of the output of 

the process is measured; consequently, this is a 100% sampling procedure. 

 

2.7. ESTIMATING THE PROCESS PARAMETERS 

It is of importance to have estimates of the in-control parameters of the process 

when they are not available. We assume that we will have available N quality 

measurements NXXX ,,, 21 K  on items from the output of the process in the order of 

production from an in-control process. Various methods have been proposed for 

estimating the autocorrelation function. Jenkins and Watts (1968) concluded the most 

satisfactory estimate for kρ  is 

0

ˆ
c

c
r k

kk ==ρ  

where 

∑ −

= + −−=
kN

t kttk XXXX
N

c
1

00 ))((
1

 

is the estimate for kγ , k = 1, 2, …, K, and 

∑ =
=

N

t tX
N

X
1

0

1
. 

The values kc  and kr  are called the sample autocovariance and autocorrelation functions, 

respectively. 

The mean and variance of 0X  are given by 
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For kc , we have that 

 ∑ −

= + =−−=
kN

t kttk XXXXE
N

cE
1

00 )])([(
1

)(  

As we will see, we will be interested in the time series based on the transformed 

stochastic process, { }tW . The estimate of the autocorrelation function of the transformed 

stochastic process { }tW  is the same as for { }tX . The estimate of the autocovariance 

function kτ  of the stochastic process { }tW  is given by 

∑ −

= + −−=
kN

t kttk WWWW
N 1

00 ))((
1

τ̂  

for k = 1, 2, …, K, with ∑ =
=

N

t tW
N

W
1

0

1
. We note here that 0X  provides an estimate for 

X,0µ  while 0W  provides an estimate for 0. 

The mean iX  and the variance 2

iS  are two statistics that are often used to 

summarize the information found in the sample measurements. For the ith sample, we 

have 

∑∑ = ++−= ++− −
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Theorem 2.7.1. If ARIMA(p,0,q) process is in-control, then 
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Proof of Theorem 2.7.1: In the case of the mean, we have 
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For the variance, it can be seen that 
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 It is not our interest to study in this thesis the performance of control charts for 

autocorrelated data when the process parameters are estimated. This will be a topic for 

later research. 

 

2.8. CONCLUDING REMARKS 

The ARIMA(p,0,q) model was studied in its use as a model for process data. A method 

for simulating both in- and out-of-control ARIMA(p,0,q) time series does not exist in the 

literature. We have outlined a method for simulating a time series from an ARIMA(p,0,q)  

model under the assumptions the process is stationary and any finite collection of the 

random variables follow a multivariate normal distribution. Further, we provide a 

MATLAB program implementing this method. Some sampling methods found in the 

literature were discussed along with methods for estimating the parameters of an 

ARIMA(p,0,q) model. 
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CHAPTER 3 

QUALITY CONTROL CHARTS 

 

3.1 INTRODUCTION 

The quality control chart introduced by Walter A. Shewhart in the 1920’s (see 

Shewhart (1931)) is a statistical method that has been found useful by practitioners in the 

production of quality goods and services. Duncan (1986) pointed out that there are three 

uses of the quality control charts. First, it aids the practitioner in bringing a process into a 

state of statistical in-control. Secondly, it may be used as an aid in establishing the 

meaning of the process being in a state of statistical in-control. Thirdly, the control chart 

in used to aid the practitioner in monitoring the process for a change in the process from a 

state of statistical in-control to a state of statistical out-of-control. Charts used in the first 

two cases are referred to as retrospective or Phase I control charts. Using a set of data 

initially collected on the output of the process, they help answer the question “were these 

items produced by an in-control process.” In the latter case, these charts are used to 

monitor for a change in the process and are referred to as prospective or Phase II charts. 

For a continuous quality measurement, the most commonly recommended charts 

for monitoring the process mean are the Shewhart X  chart (see Shewhart (1931) and 

Montgomery (2001)), Shewhart X  chart with runs rules (see Champ and Woodall 

(1987)), the cumulative sum (CUSUM) X  chart of Page (1954), the CUSUM X  chart of 

Crosier (1986), and the exponential weighted moving average (EWMA) X  of Roberts 

(1959) (see Lucas and Saccucci (1990)). A family of cumulative sum type charts was 

introduced by Champ, Woodall, and Mohsen (1991) that includes as members the 
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Shewhart, CUSUM, and EWMA X  charts. Discussions of the parameters estimated 

versions of these charts can be found in Bagshaw and Johnson (1975), Ghosh, Reynolds, 

and Hui (1981), Ng and Case (1992), Burrough (1993), Burroughs, Rigdon, and Champ 

(1993, 1995), Quesenberry (1993), Chen (1997), Jones, Champ, and Rigdon (1999), 

The Hotelling’s 2T  chart (see Hotelling (1947)), the multivariate CUSUM X  

charts of Crosier (1988), Healy (1987), and Pignatiello and Runger (1990), and the 

multivariate EWMA chart of Lowry, et al (1992) are commonly discussed charts for 

monitoring the mean vector of the distribution of a vector of quality measurements. 

Champ and Jones-Farmer (2007) give the estimated parameters version of these charts 

and equivalent forms of these charts that are useful in analyzing the run length properties 

of these charts. 

In this chapter, we discuss the univariate charts for monitoring the mean of the 

quality measurement under an ARMA(p,0,q) data model. Also, we examine how one 

could use various multivariate charts to monitor the mean of the process. In the next 

section, we discuss the Shewhart X chart, followed by the CUSUM X  chart in section 

three. Section four includes some concluding remarks.  

 

3.2. SHEWHART X  CHART 

One of the most commonly recommended charts for monitoring the mean of a 

quality measurement is the X  chart introduced by Dr. Walter A. Shewhart in the early 

1920’s. The chart is a plot of the means of the quality measurements taken on the items in 

a sample from the output of the production process verses the sample number. Letting 

iX  be the mean of the ith sample, the Shewhart X  chart is a plot of the points ),( iXi  



 

 

27 

for i = 1,2,3, … . We first consider the case in which our data are measurements on the 

samples of n items in order of output of the form 

[ ]TX mmnimnimnii XXX ++−++−++−= ))(1(2))(1(1))(1( ,...,,  

followed by a gap of m items that are not measured. The mean of the ith sample is then 

given by 

∑ = ++−=
n

j jmnii X
n

X
1 ))(1(

1
. 

The control limits are functions of the in-control values of the mean and standard 

deviation of the sample mean. Letting 
X,0

µ  and 
X,0

σ  represent the mean and standard 

deviation respectively of the distribution of the sample when the process is in-control, the 

lower (LCL) and upper (UCL) control limits of the X  chart are given by 

XXXX
kUCLkLCL

,0,0,0,0
 and σµσµ +=−= . 

The chart signals at the first sample i in which LCLX i <  or UCLX i > . The value k is a 

chart parameter that is selected by the practitioner. 

The in-control mean and variance for the sample mean are given by 
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If the measurements are stochastically independent, then 

.)( and ; 0
0
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σµµ ===  

It now follows that the control limits for the Shewhart X  chart can be expressed as 
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under the autocorrelated data model. Under the independent data model, the control limits 

are 

n
kUCL

n
kLCL II

0
0

0
0  and 

γ
φ

γ
φ +=−=  

since 0,0 φµ =X . If the values of Ik  and Dk  are related by 

Dj
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jI k
n

jn
k ρ∑
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=
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+=

1

1
21 ,                                        (3.2.1) 

then the two charts are using the same control limits. 

We observe that the sample mean can be expressed as 

iaXi WX σµ += ,0 , 

with 

∑ = ++−=
n

j jmnii W
n

W
1 ))(1(

1
 , 

where the stochastic process { }tW  is defined by aXtt XW σµ /)( −=  (see Section 2.3). It 

then follows that the event described by the inequality 

UCLXLCL i <<  

can be described by the inequality 

D

j

n

j
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D k
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jn
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W
k <

−
+
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∑
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=
)21(

1

1

0 ρ
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when the process is in-control. For the independence data model, inequality (3.2.2) can 

be written as 

D

i

D k
n

W
k <<−

/0τ
                                               (3.2.3) 

Note the two charts are equivalent if Ik  and Dk  are related by equation (3.2.1). 

Inequalities (3.2.2) and (3.2.3) will be useful in simulating estimates for various run 

length parameters for both the in- and out-of-control cases. 

 

3.3 CUSUM X  CHARTS 

Page (1954) introduced the cumulative sum (CUSUM) X  control chart. A tabular 

form of this chart was given by Ewan and Kemp (1960). The plotted statistic +
iC  at time i 

for the upper one-sided CUSUM X  chart is defined by 


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10 ,0max and 0
σ

. 

The upper one-sided CUSUM X  chart signals at sampling stage i if ++ > Di hC . The values 

0>+
Dk  and 0≥+

Dh  are referred to as the (upper) reference value and the (upper) control 

limit (UCL), respectively. For the lower one-sided CUSUM X  chart, the plotted statistic 

−
iC  is defined by 




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+== −−
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. 

A signal is given at time i for the lower one-sided CUSUM X  chart if −− < Di hC . The 

values of 0>−
Dk  and 0≤−

Dh  are the (lower) reference value and (lower) control limit 
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(LCL), respectively. The values −
Dk , −

Dh , +
Dk , and +

Dh  are known as chart parameters 

which are selected by the practitioner. The two-sided CUSUM X  chart of Page (1954) 

plots on the same time plot the points ( )−
iCi,  and ( )+

iCi,  for . ,3 ,2 ,1 K=i  The chart 

signals at the first sampling stage t if  −− < hCi  or ++ > hCi . Note that the Shewhart X  

chart is a special case of the two-sided CUSUM X  chart of Page (1954). This is seen by 

setting 0 and ==== +−+−
DDDD hhkkk . 

We note here that the statistic 
XXi uX

,0,0
/)( σ−  can be expressed as 
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when the process is in-control. For the case in which the data are independent and the 

process is in-control, we have 

n

WuX
i

X

Xi

/0,0

,0

τσ
=

−
.                                          (3.3.2) 

These expressions will be useful obtaining the run length properties of the chart via 

simulation. 

Lucas and Crosier (1982) proposed a head-start for the CUSUM X  charts. For 

the upper one-sided chart, the initial value of the CUSUM statistic is set to a value 

between 0 and +h , that is, ++ ≤< hC00 . Similarly, for the lower one-sided chart to have a 

head-start, the practitioner sets 00 <≤ +− Ch . 

Crosier (1986) developed a two-sided CUSUM X  scheme that is based on a 

single cumulative sum. The plotted statistic iC  is defined by 
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with 00 =C . The chart signals at time i if hCi −<  or hCi > . The values 0 and 0 ≥> hk  

will be referred to as the reference value and the control limit, respectively. A value of 

the CUSUM statistic greater than h gives evidence the mean may have shifted to the high 

side and less than –h that the mean has shifted to the low side. We will not consider 

further the CUSUM X  of Crosier (1986). 

 

3.4 CONCLUDING REMARKS 

It is our intent to study the family of two-sided CUSUM X  charts of Page (1954) 

for monitoring for a change in the mean of autocorrelated data. As is well known, the 

family of Shewhart X  charts is subfamily of this family and will be discussed as a 

special case. The members are indexed by the chart parameters. 
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CHAPTER 4 

DESIGNING A CONTROL CHART FOR AUTOCORRELATED DATA 

 

4.1. INTRODUCTION 

Methods for designing a control chart are typically based on the run length 

distribution of the chart. The run length is the number of samples taken until the chart 

first signals. The most commonly used criterion for evaluating the performance of a chart 

is based on the average run length (ARL). This method selects the chart parameters such 

that the chart has a specified in-control ARL and for some out-of-control scenario the 

ARL is minimized. 

We are interested in using the ARL performance of the chart for a different 

purpose. It is our interest to examine the ARL performance of the chart when the 

practitioner has decided to take the quality measurements on n  consecutive items from 

the output of the process, not measure the next m  consecutive items, measure the next n  

consecutive items, etc. It is these data that will be used to make a decision about the 

quality of the process. The question of interest is “What is the minimum value of m  for a 

given value of n  for which a chart will have the same in-control ARL performance as 

expected if there is stochastic independence between samples?” As will be seen, the gap 

size m  is a function of the process parameters. Hence, it will be desirable to determine 

the smallest gap size m  needed over a wide range of process parameters that may occur 

in applications. Once a chart has been defined for a given sample size and gap size with a 

given in-control ARL, the chart is examined to see how well it detects various out-of-

control scenario. 
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In this chapter, the design of the Shewhart and CUSUM X  charts based on 

samples of size n  with gaps between samples of size 0≥m  will be examined. As 

previously stated, it is of interest to determine the minimum gap size needed such that the 

ARL of the chart will be the same in-control ARL if the samples were in fact 

independent. Simulation will be used to study this problem. A MATLAB program, 

described in the next section, was written to carry out these simulations. In Section 4.3, 

the results of the simulation study to determine the gap size and chart parameters are 

reported. A performance study is reported in Section 4.4 for various out-of-control 

scenarios. Some concluding remarks are made in Section 4.5. 

 

4.2. SIMULATION PROGRAM 

A MATLAB program, which is included in the Appendix, was developed to 

determine each of the following for a given ARIMA(p,0,q) model, chart parameters, and 

sampling method. 

1. Determines the covariance and correlation functions for the given ARIMA(p,0,q) 

model in terms of the process parameters.  

2. Calculates the largest covariance between samples after gapping. 

3. Uses simulation to estimate the ARL of the chart(s). The program reports the 

results. 

4. Estimates, using simulation, the chart performance for shifts in the mean and/or 

variance of the shock model. 

In this section, we will give a discussion of the construction of the program followed by 

some examples of its use. 



 

 

34 

The program is constructed using the results in Chapters 2 and 3. The method of 

simulating the time series data is discussed in Section 2.5, the sampling method is 

discussed in Section 2.6, and the meaning of out-of-control can be found in Section 2.4. 

The CUSUM X  chart is described in Section 3.3 which has the Shewhart X  chart as a 

special case. 

The program prompts the user for the following input. Note that there are some 

limitations to the program. 

• p – the number of AR parameters (0, 1, 2, ... , 10) 

• φ ’s – the AR parameters 

• q – the number of MA parameters (0, 1, 2, ... , 10) 

•   θ ’s – the MA parameters 

• n  and m  of the sampling procedure 

• δ  - the number of in-control standard deviations the mean of the distribution of 

shocks has shifted with 0=δ  if process is in-control 

• 0>λ  - the ratio of the out-of-control standard deviation of the shocks to the in-

control standard deviation with 1=λ  if the process is in-control 

• The chart parameters h  and k  with 0≥h  and 0>k  

• The number of simulations 

The output of the program consist of 

• the covariance matrix of size nn×  

• 1+mγ  - the covariance of nmniX ++− ))(1(  and 1))(11( ++−+ mniX  

• simulated estimate of the ARL of the chart 
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For example, suppose the time series is modeled as an ARIMA(1,0,2) with 

parameters 2.01 =φ , 1.01 =θ , 3.02 =θ , and 1,0 =aσ . The sampling procedures sets 

the sample size to 5=n  and the gap size to 10=m . The CUSUM X  chart has 

500.1=k  and 2=h . The number of in-control standard deviations the mean of the 

distribution of shock has shifted is 2.0=δ . The process is considered to be in-control 

with respect to the variance of the distribution of the shocks, that is, 1=λ . The number 

of simulations is selected to be 10,000. Figure 4.2.1 shows the inputs to the program and 

the program’s outputs. 

 

 

 

Figure 4.2.1 

 

EDU>> ARMACUSUM 

Enter p (0-10): 1 

Enter next Phi value: .2 

Enter q (0-10): 2 

Enter next Theta value: .1 

Enter next Theta value: .3 

Enter Delta value: .2 

Enter Lambda value: 1 

Enter n: 5 

Enter m: 10 

Enter h: 2 

Enter k: 1.500 

Enter number of simulations: 10000 

Variance-Covariance Matrix n by n: 

    1.0417    0.2083    0.0417    0.0083    0.0017 

    0.2083    1.0417    0.2083    0.0417    0.0083 

    0.0417    0.2083    1.0417    0.2083    0.0417 

    0.0083    0.0417    0.2083    1.0417    0.2083 

    0.0017    0.0083    0.0417    0.2083    1.0417 

Gamma(m+1): 

  2.1333e-008 

Chart ARL: 

   71.8564 
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4.3 SIMULATION STUDY TO DETERMINE GAP SIZE 

It is well known that sample size n  affects the performance of a chart under the 

independent data model whereas the gap size has no affect. In this section, we will 

demonstrate that gap size also affects the performance of a chart when the data are 

autocorrelated. This will be illustrated through a series of examples. The simulation 

program described in Section 4.2 is used to estimate the ARL. In our first example, we 

give the design of a Shewhart X  chart under the independent normal data model and 

then examine how this chart performs under an autocorrelated normal data model with 

the same process variance as the independent data model. 

The Shewhart X  chart is discussed in Section 3.2. For the case in which 0
,0

=
X

µ  

and n
X

/3159.1 
,0

=σ . The control limits for the chart are 

n
kUCL

n
kLCL II

3159.1
 and 

3159.1
=−= .                                 (4.3.1) 

If 576.2005.0 == zkI , then the ARL of the chart under the independent normal model is 

100 regardless of the gap size m . While the out-of-control ARL is a function of the 

sample size n , it also does not depend on the gap size m . Further, it is not difficult to 

show that as the sample size n  increases the ARL for a given shift decreases. That is, the 

ability of the chart to detect a given shift in the mean requires, on average, fewer samples 

as n increases. 

The performance of the Shewhart X  chart defined in (4.3.1) is then examined if it 

were used to monitor an ARIMA(1,0,0) process with parameters 00 =φ , 65.01 =φ , and 
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1 ,0 =aσ . Under this model, the control limits for the Shewhart X  chart that are the same 

as the one defined in (4.3.1) designed under the independent data model are 

n
k

nn

jn
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n
k

nn

jn
kLCL

I

n

j

j
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n

j

j

D

3159.1
 

3159.1
65.021 

and 
3159.1

 
3159.1

65.021 

1

1

=
−

+=

−=
−

+−=

∑

∑

=

=
              (4.3.2) 

with 

∑
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65.021 .                                        (4.3.3) 

Note that 

2
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j
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is an increasing function of n  with limit 10 as ∞→n . Thus, for the charts whose control 

limits are defined in (4.3.1) and (4.3.2) to have the same control limits with Ik  fixed, then 

the chart parameter Dk  must be decreased as n  increases. It would then be expected that 

if the data are autocorrelated and the chart defined in (4.3.2) is used to monitor for a 

change in the mean, then the ARL would decrease as n  increases. This is illustrated in 

Table 4.3.1. with this example for a gap size of 0=m . The results are based on 10,000 

simulated time series using the program described in Section 4.2. 

 

Table 4.3.1: 65.01 =φ , 1 ,0 =aσ , 0=m , 575.2=k , 10000=simN  

n : 1 2 3 4 5 6 7 8 9 10 

ARL: 127 28 15 11 9 8 7 7 7 6 
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Similar results hold for other values of 11 1 <<− φ . 

 In the case that 11 1 <<− φ  for the ARIMA(1,0,0) model, it can be shown that the 

correlation between the thi  and the thri )( +  sample means is given by 

2

2

1

11)(

12 1

11
),( 









−
−

= −+
+

φ
φ

φ
n

mnr
rii

n
XXcorr .                                    (4.3.3) 

The correlation between the sample means is one measure of the dependence between 

samples. Another measure is the correlation between the thn  value of the thi  sample and 

the first value of the thri )( +  sample given by 

1)(

11))(1())(1( ),( +−+
++−+++− = nmnr

mnrinmni XXcorr φ                                 (4.3.4) 

for the ARIMA(1,0,0). We see that as n  (for 1>r ), m , and/or r  increases the 

correlation between the samples as measured by both the correlations in (4.3.3) and 

(4.3.4) decreases towards zero. In then follows that for a fixed value of n  the larger the 

gap size m  the weaker the correlation between the samples. In fact, it is not difficult to 

show that for ε  (small) there exist values of m  such that ε<+ ),( rii XXcorr  for fixed 

values of n  and r . A similar statement can be made for the correlation in (4.3.4). 

For example, for 2=n , 1=r , and 510−=ε , the values of m  in which 

ε<+ ),( rii XXcorr  are at least 26. While the sample means are not uncorrelated, under 

the normal model their joint distribution is approximately the product of their marginal 

when the correlation is relatively close to zero. Thus, with respect to the value of ε , the 

samples are approximately independent. Similarly, the values of m  that are solution to 

the inequality ε<++−+++− ),( 1))(1())(1( mnrinmni XXcorr  are at least 28. 
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Hence, for “relatively large” values of m , we would expect the ARL to be 

approximately the same. This is illustrated for this example with a sample of size 2=n  

by the results in Table 4.3.2 and Figure 4.3.1. As we see in this example, the in-control 

ARL  

 

Table 4.3.2: 65.01 =φ , 2=n , 575.2=Dk , 10000=simN  

m : 0 1 2 3 4 5 6 7 8 

ARL: 26.5 23.9 23.1 22.5 22.5 22.2 22.4 22.1 22.4 

 

 

Shewhart Chart Response to a Gap (m) 
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Figure 4.3.1: 65.01 =φ , 2=n , 575.2=k , 10000=simN  
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As illustrated in both Table 4.3.2 and Figure 4.3.1, the ARL begins to level off 

beginning with a gap of 6=m  (this is an estimated gap size since the ARL was 

determined using simulation). Thus, examining either ),( rii XXcorr +  or 

),( 1))(1())(1( ++−+++− mnrinmni XXcorr  for determining the gap size relative to the ARL may 

suggest much larger gap sizes than needed for the ARL to level off. Thus, the minimum 

gap size will be determined using the ARL. The aforementioned correlations will be used 

when necessary to place an upper bound on the minimum gap size. 

To determine the gap size for a chart that has an in-control ARL of 100, we use an 

iterative method. A control chart is selected and the minimum gap size is estimated for 

which the in-control ARL levels off. This procedure of selecting a chart and finding the 

minimum gap size for which the ARL levels off is repeated until a chart is found for 

which the estimated in-control ARL has leveled off at 100. Table 4.3.3 for the given 

process gives the illustrated how the ARL changes as the Dk  changes. It is interesting to 

note that in each case the value of minimum value of m  is 6. 

 

Table 4.3.3: 65.01 =φ , 2=n ,  6=m ; 10000=simN  

Dk : 3.285 3.295 3.3087 3.310 3.320 

ARL: 95 98 100 102 104 

 

 

Although the reported results in the previous example are for a sample size of 

2=n , results of simulation results not reported here suggest that the gap size m  does not 
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depend on the sample size n . On the other hand, the gap size is affected by the value of 

1φ . Figure 4.3.2 gives a plot of gap size m  versus 1φ  with 75.01 ≤φ . 

 

Necessary Gap (m) for ARL Independence

0

5

10

15

20

25

30

35

40

45

50

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0
.0
5

0
.1
5

0
.2
5

0
.3
5

0
.4
5

0
.5
5

0
.6
5

0
.7
5

Phi

G
a
p
 (
m
)

Series1

 

Figure 4.3.2: 75.01 ≤φ , ...3,2,1=n  

 

We include the results for 175.0 1 << φ . These results are reported in Table 4.3.5. 

 

Table 4.3.4: 175.0 1 << φ ; ...3,2,1=n  

1
φ : -0.99 -0.95 -0.90 -0.85 -0.80 0.80 0.85 0.90 0.95 0.99 

m: 1535 269 125 78 56 56 78 125 269 1535 
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It is apparent from Figure 4.3.2 and Table 4.3.5 the gap size m  is a function of 1φ . 

 In our next example, we illustrate how the model affects gap size. Consider an 

ARIMA(1,0,1) model with parameters, 00 =φ , 80.01 =φ , 45.01 −=θ , and a sample size 

of 4=n . We have that the correlation ),( 1)())(1( ++++− mninmni XXcorr  between the last value 

in sample 1−i  and sample i  correlation 1+mρ  of the ARIMA(1,0,1) model. Using the 

covariances given in Equation (2.3.9) for the ARIMA(1,0,1) model, the correlations 

function 1+mρ  is given by 

( )( )
 

21

1
 

2

111

11111
1 θθφ

θφθφφ
ρ

+−

−−
=+

m

m  

for 0≥m . Solving the inequality 

ε<++−+++− ),( 1))(1())(1( mnrinmni XXcorr  

for m , we have 

)ln(

)ln()ln(
 

1

1

φ

ρε −
≥m . 

These results suggest that the minimum value of m  for this example is 52. 

On the other hand, the in-control ARL leveled off at an estimated gap size of 8=m . 

Using the method in the previous example, we found that for the Shewhart X  chart with 

estimated values of 682.4=k  and 8=m  the in-control ARL of leveled off at 100. This 

is significantly different from the necessary k  used in the previous example which 

supports that the chart and gap size are process dependent. 
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4.4 PERFORMANCE STUDY 

Having selected a charting procedure (sampling method and chart parameters) 

under a given ARIMA(p,0,q) model, it is of interest to study its out-of-control 

performance. We limit our study to only changes in the mean of the shocks beginning at 

time 1. This out-of-control scenario is discussed in Section 2.6. That is, we are assuming 

that the shock ta  follows a ),( 2

,0,0 aaN σδσ . The ARIMA(1,0,0) example in the previous 

section is used to illustrate the affect of a shift in the process. Table 4.3.6 gives the out-

of-control ARL for the described Shewhart X  chart. For example, we see from Table 

4.3.6 that the in-control ARL is 100 and the out-of-control ARL is 32 for a shift of 

a,03.0 σ . 

 

Table 4.4.1: 65.01 =φ , 2=n , 6=m , 3087.3=k , 10000=simN  

δ : 0 0.1 0.2 0.3 0.4 0.5 

ARL: 100 83 53 32 21 14 

 

 

A CUSUM X  chart was also designed to have an in-control ARL with a gap size 

of 6. The performance of this chart is illustrated in Table 4.3.7. We see that for a shift of 

a,03.0 σ  the out-of-control ARL of the chart is 15. 
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Table 4.4.2: 65.01 =φ , 2=n , 6=m , 4=h , 745.0=k , 10000=simN  

δ : 0 0.1 0.2 0.3 0.4 0.5 

ARL: 100 59 26 15 10 7 

 

It is clear in this example, that the CUSUM X  chart out performs the Shewhart X  chart 

for small to moderate shifts in the mean. In the independent data case, this is a well 

known result. However, it is not known if this holds in general in the dependent data 

case. Further study would be needed to answer this question. 

 

4.5 CONCLUDING REMARKS 

A program that was written to estimate the ARL of CUSUM X  chart for 

monitoring the mean of an ARIMA(p,0,q) process was discussed. A method for selecting 

a chart and the corresponding sampling method that was based on the ARL was outlined 

and illustrated using examples. 
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CHAPTER 5 

CONCLUSION 

 

5.1. GENERAL CONCLUSIONS 

There is a considerable amount of literature on the performance of various control 

charts when the data are independent. It has been shown that the data generated by some 

industrial processes do not follow the independent data model. We have examined a 

method for designing a chart, in particular, the CUSUM X  chart when the data are 

autocorrelated following an ARIMA(p,0,q) model assuming in-control parameters are 

known. This method is useful in designing a chart if the practitioner takes a sample from 

an autocorrelated process in the order of output and waits a period of time to take the next 

sample. 

 

5.2. AREAS FOR FURTHER RESEARCH 

A method was presented for simulating a time series of quality measurements on 

the output of a production process when the data are assumed to follow an ARIMA(p,0,q) 

data model . The initial values need to start the series are simulated. The method allows 

for the simulation of both in- and out-of-control process data. Other authors have 

discussed methods for “warming-up” the generator before simulating the time series. A 

comparison of these methods would be of interest. This would require programs that 

implement the competing methods. 

Little work has been done in the development of Phase I control charts for 

processes with autocorrelated quality measurements. Maragah and Woodall (1992) have 
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studied Phase I charts designed for independent data when in fact the data are 

autocorrelated. We would like to study Phase I charts that would be useful for 

autocorrelated data. 

The point in time at which the process changes from an in-control state to an out-

of-control state is of interest to the practitioner for determining the reason for the change. 

Various methods can be found in the literature for determining the change point for the 

independent data model. We are interested in examining the usefulness of these methods 

under the dependent data models. 

When the types of shifts we have studied occur, this affects the distribution of the 

quality measurement. The process mean and the process autocovariances become 

functions of time. It is our intent to give closed formed expressions for these functions as 

functions of time. 

It has been recommended that along with the ARL of the chart one should 

examine the standard deviation of the run length (SDRL) as well as percentage points of 

the run length distribution. Simulation can be used to obtain estimates of these 

parameters. As with the ARL, we plan also to examine how gapping affects these run 

length parameters. 

Each sample can be treated as an n -variate quality measurement. The various 

quality control charts for multivariate data can then be designed to monitor for a shift in 

the mean of the quality measurement. Similar questions can be answered about gap size 

and how well these charts perform when the process is out-of-control. 

Methods similar to those given in this paper could be developed for a multivariate 

quality measurement. A family of models useful in modeling multivariate time series data 
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is the multivariate ARIMA (MARIMA) models. These models are discussed by Box and 

Jenkins (1994), Brockwell and Davis (1987), and Wei (1990), among others. 

While simulation has been used to estimate the run length distribution, analytical 

methods based on integral equations have been developed for particular time series 

models. It is our interest to extend these methods to the more general ARIMA(p,0,q) 

models. 

As demonstrated in Section 4.3, the chart including the gap size is process 

dependent. It is our interest to study this relationship between a process and the charting 

procedure to be used for the purpose of selecting the chart given the process. 
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APPENDIX A 

MATLAB PROGRAM 

_____________________________________________________________________ 

%ARMACUSUM.m 
%This program prompts the user for process parameters, sampling 
procedure, 
%and CUSUM chart paramters. It outputs the Variance-Covariance matrix, 
%Gamma(m+1) and the estimated ARL. 
p=input('Enter p (0-10): '); 
clear phi 
for i=1:p 
    phi(p)=input('Enter next Phi value: '); 
end 
phi(1,p+1:10)=0; 
q=input('Enter q (0-10): '); 
clear theta 
for i=1:q 
    phi(q)=input('Enter next Theta value: '); 
end 
theta(1,p+1:10)=0; 
  
d=input('Enter Delta value: '); 
lam=input('Enter Lambda value: '); 
n=input('Enter n: '); 
m=input('Enter m: '); 
h=input('Enter h: '); 
ks=input('Enter k: '); 
sim=input('Enter number of simulations: '); 
  
%Solve equation 1-phi1*B-phi2*B^2..... to check for stationarity 
phi_check=['1-((' num2str(phi(1)) ')*x+(' num2str(phi(2)) ... 
    ')*x^2+(' num2str(phi(3)) ')*x^3+(' num2str(phi(4)) ... 
    ')*x^4+(' num2str(phi(5)) ')*x^5+(' num2str(phi(6)) ... 
    ')*x^6+(' num2str(phi(7)) ')*x^7+(' num2str(phi(8)) ... 
    ')*x^8+(' num2str(phi(9)) ')*x^9+(' num2str(phi(10)) ... 
    ')*x^10)=0']; 
sss=(solve(phi_check)); 
sss=double(sss); 
ssr=real(sss); 
ssi=imag(sss); 
%Check that solutions are outside of complex unit circle 
ggg=1; 
tf=1; 
[xx zz]=size(sss); 
while and(tf==1,ggg<=xx) 
    cir=((ssr(ggg))^2+(ssi(ggg))^2); 
    if cir>1   
    tf=1; 
        ggg=ggg+1; 
    else 
        tf=0; 
    end 
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end 
  
  
ss=1; 
%CREATE MATRIX Aa 
for j=1:p+1 
    for i=1:p+1 
        if and ((j==1),(i==1)) 
            aa(i,j)=0; 
        else 
         
        if i+j<=p+2 
            aa(i,j)=phi(i+j-2); 
        else 
            aa(i,j)=0; 
        end 
    end 
    end 
end 
  
for j=2:p+1 
    for i=3:p+1 
        if i>j 
            bb(i,j)=phi(i-j); 
        else 
            bb(i,j)=0; 
        end 
    end 
end 
  
if p>=3 
A=aa+bb; 
else 
    A=aa; 
end 
B=0; 
%CREATE MATRIX B 
for j=1:p+1 
    for i=1:p+1 
        if and ((j==1),(i==1)) 
            B(i,j)=1; 
        else 
         
        if i+j<=p+2 
            B(i,j)=-theta(i+j-2); 
        else 
            B(i,j)=0; 
        end 
    end 
    end 
end 
  
E(1)=ss; 
  
if p+1>1 
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E(2)=(phi(1)-theta(1)); 
end 
  
if p+1>2 
E(3)=(phi(2)-theta(2))+phi(1)*E(2); 
end 
  
if p+1>3 
E(4)=(phi(3)-theta(3))+phi(1)*E(3)+phi(2)*E(2); 
end 
  
if p+1>4 
E(5)=(phi(4)-theta(4))+phi(1)*E(4)+phi(2)*E(3)+phi(3)*E(2); 
end 
  
if p+1>5 
E(6)=(phi(5)-theta(5))+phi(1)*E(5)+phi(2)*E(4)+phi(3)*E(3)... 
    +phi(4)*E(2); 
end 
  
if p+1>6 
E(7)=(phi(6)-theta(6))+phi(1)*E(6)+phi(2)*E(5)+phi(3)*E(4)... 
    +phi(4)*E(3)+phi(5)*E(2); 
end 
  
if p+1>7 
E(8)=(phi(7)-theta(7))+phi(1)*E(7)+phi(2)*E(6)+phi(3)*E(5)... 
    +phi(4)*E(4)+phi(5)*E(3)+phi(6)*E(2); 
end 
  
if p+1>8 
E(9)=(phi(8)-theta(8))+phi(1)*E(8)+phi(2)*E(7)+phi(3)*E(6)... 
    +phi(4)*E(5)+phi(5)*E(4)+phi(6)*E(3)+phi(7)*E(2); 
end 
  
if p+1>9 
E(10)=(phi(9)-theta(9))+phi(1)*E(9)+phi(2)*E(8)+phi(3)*E(7)... 
    +phi(4)*E(6)+phi(5)*E(5)+phi(6)*E(4)+phi(7)*E(3)+phi(8)*E(2); 
end 
  
if p+1>10 
E(11)=(phi(10)-theta(10))+phi(1)*E(10)+phi(2)*E(9)+phi(3)*E(8)... 
    +phi(4)*E(7)+phi(5)*E(6)+phi(6)*E(5)+phi(7)*E(4)+phi(8)*E(3)... 
    +phi(9)*E(2); 
end 
  
g=(eye(p+1,p+1)-A)^-1*B*E'; 
G=0; 
p_st=0; 
%CREATE MATRIX G 
if  and(p==0, q==0) 
    check=0; 
else 
for j=1:p 
    for i=1:p 
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        if (j==i) 
            G(i,j)=g(1); 
        else 
         
        if i>j 
            G(i,j)=g(i-j+1); 
        else 
            G(i,j)=0; 
        end 
    end 
    end 
end 
G=G+G'-g(1)*eye(p,p); 
[V D]=eig(G); 
p_st=D^(1/2)*V; 
end 
  
%Generate Gammas to compute control chart variance 
bg(1:(n+m+1),1)=0; 
for i=1:(n+m+1) 
    if i<=p+1 
    bg(i)=g(i); 
    else 
        for i4=1:p        
        bg(i)=bg(i)+phi(i4)*bg(i-i4); 
        end 
    end 
end 
%Put Gammas in a MATRIX BG 
clear BG 
for j=1:n 
    for i=1:n 
        if (j==i) 
            BG(i,j)=bg(1); 
        else 
         
        if i>j 
            BG(i,j)=bg(i-j+1); 
        else 
            BG(i,j)=0; 
        end 
    end 
    end 
end 
  
%VARIANCE-COVARIANCE MATRIX 
BG=BG+BG'-bg(1)*eye(n,n); 
  
%SIMULATION LOOP 
%Standard deviation for stopping criteria: summed BG (variance-
covariance 
%matrix) 
ss=0; 
for i5=1:n 
    for j5=1:n 
       ss=ss+BG(i5,j5); 
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    end 
end 
ss=((ss)^.5)/(n); 
  
%USE THIS FOR INDEPENDENT CHART ASSUMPTION. If dependent assumption 
used, 
%put a % sign in front of the next line to comment the line out. 
ss=((BG(1,1)/n)^.5); 
  
for t=1:sim 
%Generate random z's for x1 and x2 jointly distibuted 
z_gen=randn(p,1); 
%Actual generation of x1, x2, ...,xp 
x_gen=p_st*z_gen; 
  
for i2=1:p 
    x(i2)=x_gen(i2,1); 
end 
a=0; 
%Generate random a_t's to use for generating series 
for i3=1:20%% 
    a(i3)=randn(1,1); 
end 
  
k=1; 
Cp=0; 
Cn=0; 
%Begin generating time series values 
while (k<25000) 
    for i=(k-1)*m+(k-1)*n+1:(k-1)*m+(k-1)*n+n+m 
        if (i<p+1) 
        a(i+10)=a(i+10); 
        x(i)=x(i); 
        else 
        a(i+10)=randn(1,1)*lam+d; 
    x(i)=0; 
        for i4=1:p 
        x(i)=x(i)+phi(i4)*x(i-i4); 
        end 
        for i4=1:q 
        x(i)=x(i)-theta(i4)*a(i-i4+10); 
        end 
  
        x(i)=x(i)+a(i+10); 
  
    end 
end 
  
MMM(k)=mean(x((k-1)*m+(k-1)*n+1:(k-1)*m+(k-1)*n+n)); 
%___________________________ 
     if or(Cp > h,Cn <-h)  
        kk=k; 
        k=1000000; 
        else 
        Cp=max(0,Cp+(MMM(k))/(ss)-ks); 
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        Cn=min(0,Cn+(MMM(k))/(ss)+ks); 
        k=k+1; 
        kk=k; 
end 
%___________________________ 
end 
arl(t)=kk; 
end 
  
%Calculate mean ARL 
ARL=mean(arl(1:t)); 
Gamma_gap=bg(m+2); 
  
%Output Variance-Covariance Matrix n by n 
display(' ') 
display('Variance-Covariance Matrix n by n:') 
BG 
%Output largest covariance in samples after gap 
display('Gamma(m+1):') 
Gamma_gap 
%Output ARL 
display('Chart ARL:') 
ARL 
_____________________________________________________________________ 
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