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EUCLIDEAN SPACE 

by 

ROCHELLE RANDALL 
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ABSTRACT 

This thesis deals with approximation of real valued functions.  It considers interpolation 

and numerical integration of functions.  It also looks at error and precision, the 

Weierstrass Theorem and Taylor’s Theorem.  In addition, spherical harmonics, the 

Laplacian, Hilbert spaces and linear projections are considered with respect to the unit 

sphere.  An example of distributing points equally on a sphere is illustrated and a 

covering theorem for a unit sphere is proved. 
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Chapter 1

Introduction

Interpolation is a technique for �tting a given function that passes through known

points or essentially "connecting the dots". There are various types of interpolation

from linear interpolation of functions to interpolation of operators. We will be

looking at interpolation of functions, speci�cally polynomial interpolation. First

with reference to Cheney [1] we will consider the existence and uniqueness theorem

for a polynomial of degree � n for both Lagrange and Hermite interpolation. We

also look at a theorem involving Tchebyche¤ norms which gives us a way of

measuring error. We then prove the Weierstrass Approximation Theorem which is

signi�cant in polynomial interpolation as it tells us that any continuous function on

a �nite interval can be approximated as closely as desired by a polynomial.

Next, we take a brief look at numerical integration, considering some of the

quadrature rules and error and precision as well as Taylor�s theorem. We look at an

example of using Taylor�s theorem to approximate ex and then determine the error.

Finally, we consider the unit sphere and spherical harmonics, the Laplacian, Hilbert

spaces and linear projections. As part of Hilbert spaces and linear projections, we

also look at Reimer�s [14] de�nition and proof of the existence and uniqueness of a

reproducing kernel function. We look at an example of distributing points equally

about a sphere and �nally we look at a covering theorem for a unit sphere.
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Chapter 2

Approximation of real valued functions

2.1 Interpolation

Interpolation is a technique for �tting a given function that passes through known

points. For example, given two points, x1 6= x2; there exists a unique straight line

of the form y = mx+ b that passes through those two points. In a similar fashion,

given three points, x1 6= x2 6= x3; there exists a unique parabola of the form

y = ax2 + bx+ c passing through those points. Interpolation is a generalization of

this idea. [1]

Theorem 1 Let n � 1: There exists a unique polynomial of degree � n which

assumes prescribed values at n+ 1 distinct points.

We present three di¤erent proofs for the above theorem.

Proof. 1. Let there exist points x0; x1; : : : ; xn and let y0; y1; : : : ; yn be the

prescribed values. We seek a polynomial P such that P (xi) = yi (i = 0; : : : ; n) :

This polynomial may be expressed as

P (x) =
nP
j=0

cjx
j; for some constant c0; : : : ; cn: (2.1)

It is of degree � n: Combining these statements allows us to write

nP
j=0

cjx
j = yi (i = 0; : : : ; n) (2.2)

and to express equation (2:2) in matrix form as

266664
1 x0 x20 : : : xn0

� � � � � � � � � � � � � � � � � � � � �

1 xn x2n : : : xnn

377775
266664
c0

� � �

cn

377775 =
266664
y0

� � �

yn

377775 :

10



This is a square Vandermonde matrix and its determinant is

Q
0�j<i�n

(xi � xj) : (2.3)

From equation (2:3) it can be seen that the determinant does not equal zero if and

only if the points are distinct.

Proof. 2. In the second proof, we construct polynomials l i with the property that

li (xj) = �ij: (2.4)

Note that �ij is known as the Kronecker delta which denotes a function of two

variables satisfying the following equation

�ij =

8><>: 1; i = j

0; i 6= j

9>=>; : (2.5)

We can then write P (x) =
P
j

yilj (x) ; x 2 R and

P (xi) =
P
j

yilj (xi) =
P
j

yi�ij = yi. It can then be seen that

li (x) =
nQ
j=0
j 6=i

x� xi
xi � xj

, i = 0; : : : ; n; x 2 R: (2.6)

It is still necessary to show that P is unique. Consider two polynomials, P and Q,

both of degree � n which have the property Q (xi) = P (xi) = yi: Then P �Q is of

degree � n and vanishes at the n+ 1 distinct points xi: Thus P �Q � 0:

Proof. 3. Our third proof begins by attempting to determine a polynomial of the

form

P (x) = a0+a1 (x� x0)+a2 (x� x0) (x� x1)+� � �+an (x� x0) � � � (x� xn�1) : (2.7)

11



If we set x equal to x0; P (x0) = a0: Since P (x0) = y0; a0 = y0: It then is possible

to solve for each succeeding coe¢ cient with the following results.

a0 = y0

a1 =
y1 � y0
x1 � x0

=
y1 � a0
x1 � x0

a2 =
y2 � a0 � a1 (x2 � x0)

(x2 � x0) (x2 � x1)

a3 =
y3 � a0 � a1 (x3 � x0)� a2 (x3 � x0) (x3 � x1)

(x3 � x0) (x3 � x1) (x3 � x2)

a4 =
y4 � a0 � a1 (x4 � x0)� a2 (x4 � x0) (x4 � x1)� a3 (x4 � x0) (x4 � x1) (x4 � x2)

(x4 � x0) (x4 � x1) (x4 � x2) (x4 � x3)

� � �

an =

yn � a0 �
n�1P
j=1

aj
n�2Q
j=0

(xn � xj)

n�1Q
j=0

(xn � xj)

We can see that the denominators do not vanish, thus P exists.

Hermite interpolation generalizes Lagrange interpolation given that it also uses

values of derivatives. The existence theorem follows.

Theorem 2 Let n � 1. There exists a unique polynomial P of degree � 2n� 1

such that P and its derivative P 0 take on prescribed values at n points.

Proof. Let P (xi) = yi and P 0 (xi) = y0i for i = 1; : : : ; n: We can express this

polynomial explicitly as

P (x) =
nP
i=1

[yiAi (x) + y0iBi (x)] (2.8)

noting that Ai and Bi are polynomials of degree � 2n� 1 with the properties

Ai (xj) = �ij; Bi (xj) = 0, A0i (xj) = 0 and B
0
i (xj) = �ij. Expressing Ai and Bi in

12



terms of li (x) ; we have

Ai (x) = [1� 2 (x� xi) l
0
i (xi)] l

2
i (x) (2.9)

Bi (x) = (x� xi) l
2
i (x) (2.10)

Then it is clear that li (xj) = �ij and that Ai and Bi satisfy equation (2:8)

Before beginning the next theorem, the Tchebyche¤ norm, also called the supremum

norm needs to be de�ned. Generally we de�ne this norm as

kfk1 = sup fjf (x)j : x is in domain of fg. When f is continuous and on a

compact set, it is bounded and the supremum can be replaced by the maximum.

Theorem 3 If f possesses n continuous derivatives on [a; b], P is the polynomial of

degree <n which interpolates to f at n nodes xi in [a; b] ; and if W (x) =
Q
(x� xi),

then in terms of the Tchebyche¤ norm,

kf � Pk � 1

n!

f (n) kWk : (2.11)

Proof. We seek to prove that for each x in [a; b] there is a corresponding � 2 (a; b)

such that

f (x)� P (x) =
1

n!
f (n) (�)W (x) : (2.12)

If x is one of the nodes, the formula follows from expanding f � P in Taylor series

and noting that the nth derivative of P � 0. If x is not one of the nodes, we let

� = f � P � �W , Choose � so that � (x) = 0; thus � = f�P
W
: We can see that �

also vanishes at the nodes xi; thus, � vanishes in at least n+ 1 points of [a; b]. We

know by Rolle�s theorem that �0 vanishes at least once between any two zeros of �,

and therefore vanishes in at least n points. We can thus see that �(n) has at least

one root on the interval, we can say at the point �. However, since P is a

13



polynomial of degree < n and W (z) = zn + : : :, �(n) = f (n) � �n!: Hence,

f (n) (�) = �n!: But the value of � = f(x)�P (x)
W (x)

:

This gives us a way of measuring the error.

The following theorem presents where to locate the nodes in order to minimize the

norm of W:

Theorem 4 The uniform norm of W (x) =
nQ
i=1

(x� xi) is minimized on [�1; 1]

when xi = cos [(2i� 1)�=2n] :

Proof. We know that cosn� can be expressed in the form
nP
k=0

ak cos
k �: Letting

Tn (x) =
nP
k=0

akx
k gives us T (cos �) = cosn�: Thus the n roots of Tn are the points

xi as given in the theorem. Consider the polynomial W = 21�nTn which has a

leading coe¢ cient of unity. The maximum of jW (x)j on [�1; 1] occurs at the points

yi = cos(
i�
n
) since Tn (yi) = cos i� = (�1)i : Now let V be another polynomial of the

same form as W for which kV k < kWk. Then V (y0) < W (y0), V (y1) > W (y1),

and so on, from which it follows that w � v must vanish at least once in each

interval (y1;y0) ; (y2; y1) ; : : : for a total of n times. But this is not possible because

both V and W have leading coe¢ cient unity, and their di¤erence is therefore of

degree < n.

2.2 Weierstrass Theorem

We now consider some general results of approximation of functions. The main aim

of this section is to prove the Weierstrass Theorem.

Theorem 5 (Weierstrass) Lef f be a continuous function de�ned on [a; b] : Then

for each � > 0 there is a corresponding polynomial P such that kf � Pk < �: Thus

jf (x)� P (x)j < � for all x 2 [a; b] :

This theorem tells us that any continuous function on a �nite interval can be

approximated arbitrarily closely by polynomials, i.e. polynomials are dense in the
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space of continuous functions on [a; b]. Various extensions of the Weierstrass

Theorem are true on other sets.

In order to prove the Weierstrass Theorem, we want to consider Bernstein

polynomials and the Theorem on Monotone Operators. First, here and throughout

C [0; 1] denotes the class of real valued continuous functions on [a; b]. For a given

f 2 C [0; 1] ; Bernstein constructed a sequence of polynomials (which today are

called Bernstein polynomials) using the formula

(Bnf) (x) =
nP
k=0

f

�
k

n

��
n

k

�
xk (1� x)n�k : (2.13)

Note that
�
n

k

�
is the binomial coe¢ cient n!

(n�k)!k! : Additionally, the formula de�nes

for each n a linear operator, Bn so that to each element f in C [0; 1] there is a

corresponding element Bnf of C [0; 1] such that the condition of linearity is met.

This is expressed as

Bn (af + bg) = aBnf + bBng: (2.14)

The operators Bn also have the property espressed below as

f � g =) Bnf � Bng: (2.15)

An operator for which the above is true is called a monotone operator. The f � g

means that f (x) � g (x) for all x in the domain of f .

Theorem 6 (Korovkin�s) For a sequence of monotone linear operators Ln on

C [a; b] the following conditions are equivalent:

(i) Lnf �! f (uniformly) for all f 2 C [a; b]

(ii) Lnf �! f for the three functions f (x) = 1; x; x2

(iii) Ln1 �! 1 and (Ln�t) (t) �! 0 uniformly in f where �t (x) � (t� x)2.

15



Proof. Since f (x) = 1; x; x2 are all 2 C [a; b], the implication that (i) =) (ii) is

obvious. For (ii) =) (iii), let fi (x) = xi: Since �t (x) = (t� x)2 = t2 � 2tx+ x2,

we can see that �t = t2f0 � 2tf1 + f2 and Ln�t = t2Lnf0 � 2tLnf1 + Lnf2: Then

(Ln�t) (t) = t2 [(Lnf0) (t)� 1]� 2t [(Lnf1) (t)� t] + [(Lnf2) (t)� t2]

� t2 kLnf0 � f0k+ j2tj kLnf1 � f1k+ kLnf2 � f2k :

As t2 and j2tj are bounded on [a; b], we can see that (Ln�t) (t) converges uniformly

to zero, thus proving (iii) :

To prove that (iii) =) (i), we let f be an arbitrary element of C [a; b] : Given

" > 0, choose � > 0 such that

jx1 � x2j < � =) jf (x1)� f (x2)j < ":

Now let � = 2kfk
�2
, and let t be an arbitrary �xed point of [a; b] : If jt� xj < �, then

jf (t)� f (x)j < ", but if jt� xj � �, then

jf (t)� f (x)j � 2 kfk � 2kfk(t�x)2
�2

= ��t (x). So for all x, the following is satis�ed

�"� ��t (x) � f (t)� f (x) � "+ ��t (x) : (2.16)

Now if we want to express the above inequality on the functions, we let f0 = 1

with the resulting expression

�"f0 � ��t � f (t) f0 � f � "f0 + ��t: (2.17)

Now because Ln is linear and monotone, we have

�" (Lnf0) (t)� � (Ln�t) (t) � f (t) (Lnf0) (t)� (Lnf) (t) (2.18)

� " (Lnf0) (t) + � (Ln�t) (t)

16



which gives

jf (t) (Lnf0) (t)� (Lnf) (t)j � " kLnf0k+ � (Ln�t) (t) : (2.19)

But Lnf0 �! f0 and (Ln�t) (t) �! 0: One last thing to do is consider just how

large n must be. To do this we show

jf (t)� (Lnf) (t)j � jf (t)� f (t) (Lnf0) (t)j+ jf (t) (Lnf0) (t)� (Lnf) (t)j

� jf (t)j j1� (Lnf0) (t)j+ " kLnf0k+ � (Ln�t) (t)

� kfk kf0 � Lnf0k+ " (1 + kf0 � Lnf0k) + � (Ln�t) (t)

We can see that we should choose N so that when n � N we get

(kfk+ ") kf0 � Lnf0k < " and � (Ln�t) (t) < ":

We now want to prove the Weierstrass Approximation Theorem.[2]

Proof. Without loss of generality we prove the theorem for the interval [0; 1].

Indeed, once we have the theorem for the interval [0; 1], we can extend to an

arbitrary interval [a; b] by making the change of variable x = a+ t (b� a). By

theorem (6), it will be su¢ cient to show that Bnhk ! hk for k = 0; 1; 2 where

hk (x) = xk. We use the Binomial Theorem to write

(Bnh0) (x) =
nP
k=0

gnk (x) =
nP
k=0

�
n

k

�
xk (1� x)n�k = (x+ (1� x))n = 1 (2.20)

For h1 we can write

(Bnh1) (x) =
nP
k=0

�
k

n

��
n

k

�
xk (1� x)n�k =

nP
k=0

�
n� 1
k � 1

�
xk (1� x)n�k

= x
n�1P
k=0

�
n� 1
k

�
xk (1� x)n�1�k = x (2.21)
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and for h2, we have

(Bnh2) (x) =
nP
k=0

�
k

n

�2�
n

k

�
xk (1� x)n�k =

nP
k=1

�
k

n

��
n� 1
k � 1

�
xk (1� x)n�k

=
nP
k=1

�
n� 1
n

k � 1
n� 1 +

1

n

��
n� 1
k � 1

�
xk (1� x)n�k

=
n� 1
n

x2
nP
k=2

�
n� 2
k � 2

�
xk�2 (1� x)n�2 +

x

n

=
n� 1
n

x2 +
x

n
! x2: (2.22)
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Chapter 3

Numerical Integration of real valued functions

3.1 Some Quadrature Rules

There are various numerical (quadrature) rules of integration. Newton-Cotes

formulas use values at equally spaced points. There are two types of Newton-Cotes

formulas. The open formulas do not use the end points of the interval, but the

closed formulas do use the endpoints. An open formula is the midpoint rule. An

example of closed Newton-Cotes is the trapezoid rule. The idea for the trapezoid

rule is to draw a straight line between the end points of the interval and then use

the formula for the area of a trapezoid. This formula can be derived by using the

Lagrange interpolating polynomial to approximate the function and then

integrating.

Let f(x) be the function and a and b the endpoints of our interval. Then

a = x1 and b = x2 and h = b� a = x2 � x1: Using the Lagrange interpolating

polynomial we have:

P (x) =
(x� x2)

(x1 � x2)
f (x1) +

(x� x1)

(x2 � x1)
f (x2) : (3.1)

Then,
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Z b

a

f (x) dx t
Z b

a

�
(x� x2)

(x1 � x2)
f (x1) +

(x� x1)

(x2 � x1)
f (x2)

�
dx

=
1

h

Z b

a

[� (x� x2) f (x1) + (x� x1) f (x2)] dx

=
1

h

Z b

a

[(x2 � x) f (x1) + (x� x1) f (x2)] dx

=
1

h

Z b

a

x2f (x1)� xf (x1) + xf (x2)� x1f (x2) dx

=
1

h

�
xx2f (x1)�

x2

2
f (x1) +

x2

2
f (x2)� xx1f (x2)

�b
a

=
1

h

�
xbf (x1)�

x2

2
f (x1) +

x2

2
f (x2)� xaf (x2)

�b
a

=
1

h

�
b2f (x1)�

b2

2
f (x1) +

b2

2
f (x2)� baf (x2)� abf (x1) +

a2

2
f (x1)�

a2

2
f (x2) + a2f (x2)

�
=

1

h

�
f (x1)

�
2b2

2
� b2

2
+
a2

2
� 2ab

2

�
+ f (x2)

�
b2

2
� 2ab

2
� a2

2
+
2a2

2

��
=

1

2h

�
f (x1)

�
b2 + a2 � 2ab

�
+ f (x2)

�
b2 + a2 � 2ab

��
=

1

2 (b� a)

�
(b� a)2 (f (x1) + f (x2))

�
=

1

2
(b� a) (f (x1) + f (x2)) :

Looking at Figure 1, it can be seen that (b� a) is the height of the

trapezoid and f (x1) and f (x2) are the two bases.
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Figure 1 Trapezoid Rule

Composite rules can be obtained by partitioning the interval into n subintervals and

then applying the simple rule (trapezoid, et al.) to each subinterval. For example,

with equal subintervals, the composite trapezoid rule can be expressed as

Z b

a

f(x)dx t
h

2

"
f(a) + 2

n�1X
i=1

f (a+ ih) + f (b)

#
(3.2)

where h = b�a
n
and xi = a+ ih; see [8].

Gaussian quadrature rules can be expressed as
Z b

a

f (x)w (x) dx t
nX
i=0

Aif (x) where

w (x) is a positive weight function.
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3.2 Error and Precision

The precision of an integration rule is the highest degree of polynomial for which

the method exactly integrates that polynomial as noted by Fausett in Numerical

Methods [7]. When considering the error involved in numerical integration, we can

use the error term in polynomial interpolation. There is a theorem which states

that given an interval I which contains n+ 1 interpolating points x0; x1; :::xn and

f (x) which is continuous and has continuous derivatives of order n+ 1 for all x in I

and if p (x) is the polynomial which interpolates at the points x0; x1; :::xn, then at

any point x on I, the following equation holds. [9]

f (x)� p (x) =
 (x) f (n+1) (�)

(n+ 1)!
(3.3)

where  (x) =
nY
i=0

(x� xi) and � is some point on the interval I:

3.3 Taylor�s Theorem

Let f be n+ 1 times continuously di¤erentiable on [a,b]. Then for each x; c 2 [a; b]

f (x) =
nX
k=0

f (k) (c)

k!
(x� c)k +

f (n+1) (�)

(n+ 1)!
(x� c)n+1 (3.4)

where � is in the interval (x; c) or (c; x) :

The Taylor polynomial can be expressed as

Tn (x) =

nX
k=0

f (k) (c)

k!
(x� c)k (3.5)

Two ways we can use Taylor�s theorem to obtain an error estimate are (1)

increasing the polynomial degree and (2) decreasing the width of the interval.[10]
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en = jf (x)� Tn (x)j

=

����f (n+1) (�)(n+ 1)!
(x� c)n+1

����
� M

(n+ 1)!
(b� a)n+1

where x; � 2 [a; b] and M =
f (n+1)1 ; [a; b] :

Instead of increasing the polynomial degree, the interval width can be decreased and

the error estimate would appear as:

en = jf (x)� Tn (x)j

=

����f (n+1) (�)(n+ 1)!
(x� c)n+1

����
� M

(n+ 1)!
hn+1;

which we can say because jx� cj � (b� a) = h:

Let us look at an example using ex about 0. Then

Tn (x) =
nP
k=0

xk

k!
: (3.6)
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Letting n = 5 we will look at Tn (x) and en:

T0 (x) =
x0

0!
= 1 (3.7)

T1 (x) =
x0

0!
+
x

1!
= 1 + x

T2 (x) =
x0

0!
+
x

1!
+
x2

2!
= 1 + x+

x2

2

T3 (x) =
x0

0!
+
x

1!
+
x2

2!
+
x3

3!
= 1 + x+

x2

2
+
x3

6

T4 (x) =
x0

0!
+
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
= 1 + x+

x2

2
+
x3

6
+
x4

24

T5 (x) =
x0

0!
+
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+

x5

120
:

Now let x = 1 and ex = e = 2:71828: We can see below that as n increases en

decreases.

e0 = j2:71828� 1j = 1:71828 (3.8)

e1 = j2:71828� 2j = 0:71828

e2 = j2:71828� 2:5j = 0:21828

e3 = j2:71828� 2:66667j = 0:051615

e4 = j2:71828� 2:70833j = 0:00995

e5 = j2:71828� 2:71666j = 0:00162

At T8 (x), e8 = 0:00000 with �ve decimal places. If we carry e to �fteen decimal

places (2:718281828459046), T17 (x) will give us an e17 that equals zero to �fteen

decimal places.
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Chapter 4

Unit Sphere

4.1 Spherical Harmonics and the Laplacian

Primarily we want to look at interpolation on the unit sphere. In Euclidean space

Rr; the unit sphere Sr�1 and the ball Br are de�ned in Reimer [3] as:

Sr�1 := fx 2 Rr: jxj = 1g

Br := fx 2 Rr : jxj � 1g

It can be seen that Sr�1 is essentially the boundary of Br:

The Laplacian is the divergence of the gradient of a function. In rectangular

coordinates it is expressed as

r � rf = r2f =
nP
i=1

@2f

@x2i
: (4.1)

In spherical coordinates we express the laplacian as follows.

r2f =
1

r2
@

@r

�
r2
@f

@r

�
+

1

r2 sin �

@

@�

�
sin �

@f

@�

�
+

1

r2 sin2 �

�
@2f

@�2

�
: (4.2)

As MacRobert [4] states, "Any solution Vn of Laplace�s Equation

r2V=
@2V

@x2
+
@2V

@y2
+
@2V

@z2
= 0: (4.3)

which is homogeneous, of degree n, in x, y, z is called a Solid Spherical Harmonic of

degree n. The degree n may be any number and the function need not be rational."

Some examples of spherical harmonics are x2 � y2 + yz and (z + ix)n :
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Yuan Xu [5] looks at the problem of interpolation at (n+ 1)2 points on the unit

sphere S2 = fx : kxk = 1g in R3, where kxk is the Euclidean norm in R3, by

spherical polynomials of degree at most n: Speci�cally, let

X =
�
ai : 1 � i � (n+ 1)2

	
be a set of distinct points on S2: Then what are the

conditions on X such that there is a unique polynomial T 2
Q
n (S

2) (whereQ
n (S

2) denotes the space of spherical polynomials of 3 variables) that satis�es

T (ai) = fi, ai 2 X, 1 � i � (n+ 1)2 ; (4.4)

for any given data ffig. We say the problem is poised and that X solves this

problem when there is a unique solution.

Now if we consider the space of all polynomials of the form
P
cnx

n; c is some

constant, and denote this space by Pr; we will denote the space of all polynomials

from Pr with total degree at most n to be Prn and the space of all polynomials from

Pr with total degree exactly equal to n will be denoted by POrn. We can denote the

space of all polynomials restricted to the unit sphere with total degree at most n as

Prn (Sr�1) and the space of all homogeneous polynomials restricted to the unit

sphere with total degree of exactly n to be POrn (Sr�1) : There are certain theorems

about the dimensions of these polynomial spaces which follow.

Theorem 7 The dimension of Prn is

dimPrn =
�
n+ r

r

�
: (4.5)

Proof. A basis for Prn can be constructed by selecting all monomials of the form

xm1
1 ; : : : ; xmr

r where

m1 +m2 + : : :+mr � n: (4.6)

For this inequality, the number of non-negative integer solutions is
�
n+ r

r

�
:
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Theorem 8 The dimension of POrn is

dimPOrn =
�
n+ r � 1
r � 1

�
: (4.7)

Proof. We �rst want to prove that the two spaces POrn and Pr�1n are isomorphic.

We will do this by de�ning the map

H : Pr�1n ! POrn (4.8)

p (x1; : : : ; xr�1) 7�! xnr p

�
x1
xr
; : : : ;

xr�1
xr

�
: (4.9)

Clearly, the map H is both linear and surjective. Moreover, if Hp = Hq;8x 2 Rr;

then if we let xr = 1; the result is p = q for all x 2 Rr�1; i.e. p � q. Hence, H is

bijective and the lemma is proved.

A theorem which shows an important property about the decomposition of

Prn (Sr�1) follows.

Theorem 9 For n 2 N+; r � 2

Prn
�
Sr�1

�
= POrn

�
Sr�1

�
� POrn�1

�
Sr�1

�
: (4.10)

Proof. First, de�ne the subspace Qrn (Sr�1) of Prn (Sr�1) as

Qrn
�
Sr�1

�
=
�
Q 2 Prn

�
Sr�1

�
: Q (�x) = (�1)nQ (x)

	
: (4.11)

Now, since a polynomial can be decomposed into even/odd or odd/even parts, we

can say

Prn
�
Sr�1

�
= Qrn

�
Sr�1

�
�Qrn�1

�
Sr�1

�
: (4.12)

Clearly, POrn (Sr�1) � Qrn (Sr�1) and POrn�1 (Sr�1) � Qrn�1 (Sr�1) : Also, each
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element of Qrn (Sr�1) is of the form

Q (x) =
jn=2jP
i=0

P
jmj=n�2i

cmx
m: (4.13)

Since x 2 Sr�1; jxj = 1 and

Q (x) = jxjnQ
�
x

jxj

�
=

jn=2jP
i=0

P
jmj=n�2i

cm
�
x21 + : : :+ x2r

�
xm: (4.14)

This is an element of POrn (Sr�1); thus Qrn (Sr�1) � POrn (Sr�1) : Hence we have

Qrn
�
Sr�1

�
= POrn

�
Sr�1

�
: (4.15)

Using similar arguments we can also obtain Qrn�1 (Sr�1) = PO
r
n�1 (S

r�1), thus

proving the theorem.

Now we will discuss some related concepts including zonal polynomials and

spherical harmonics per Reimer. [11]

Theorem 10 A polynomial P is called zonal with axis t 2 Sr�1 if

P (x) = f (t � x) ; 8x 2 Sr�1; f is univariate function [�1; 1]! R: (4.16)

Note: The notation x � y stands for the usual dot product in Rr:

Before the next theorem about zonal polynomials we want to de�ne a subgroup U rt

of the rotation group SO (r) to be

U rt = fA 2 SO (r) : At = tg : (4.17)

Theorem 11 Theorem 12 Let r � 3, then the polynomial P 2 Pr is zonal with

axis t 2 Sr�1 if and only if PA = P holds for all A 2 U rt :
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Proof. Let PA = P for all A 2 U rt . Then an element u 2Sr�1 exists such that

t � u = 0: Fix u and t, then we can express an arbitrary vector x as a linear

combination of two orthogonal vectors t and v where v is in the hyperplane

spanned by t and x as follows

x = (t � x) t+
q
1� (t � x)2v: (4.18)

Now we can �nd a rotation A 2 U rt so we have Av = u to result in

Ax =(t � x) t+
q
1� (t � x)2u: (4.19)

Then we can de�ne f 2 C [�1; 1] as f (�) = P
�
�t+

p
1� �2u

�
for � 2 [�1; 1] so

that we obtain

P (x) = PA (x) = P (Ax) = f (t � x) ; x 2Sr�1: (4.20)

We can see that the other direction will come because for every orthogonal matrix A

we can say

At �Ax =(At)T Ax = tTATAx = tTx = t � x: (4.21)

Now we want to provide two theorems for zonal functions. [11]

Theorem 13 A function G 2 Pr (Sr�1 � Sr�1) for r� 3; is called a zonal function

if for any two arbitrary points x; y 2 Sr�1 the following is true for some univariate

function g : [�1; 1]! R

G (x; y) = g (x � y) : (4.22)

Theorem 14 For any arbitrary x; y 2 Sr�1; the function G 2 Pr (Sr�1 � Sr�1) is
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zonal if and only if

G (Ax;Ay) = G (x; y)8A 2 SO (r) : (4.23)

Proof. Let G (Ax;Ay) = G (x; y) for all matrices A 2 SO (r). Now �x y and let

A 2 Ur
y. We now have G (�; y) as a zonal polynomial with respect to the axis y.

Applying theorem 12 to G (�; y), we see that there exists a continuous univariate

function gy : [�1; 1]! R such that

G (x;y) = gy (x � y) ; x 2 Sr�1: (4.24)

We can see that gy does not depend on y since 8A 2 SO (r) and x; y 2 Sr�1

gAy (x � y) = G (Ax;Ay) = G (x;y) = gy (x � y) : (4.25)

Thus gy = g for some g : [�1; 1]! R independent of y: Since the rotation

preserves the dot product, the reverse direction is trivial.

At the beginning of this chapter we de�ned the unit sphere and the Laplacian

operator in both rectangular and spherical coordinates. We will use the symbol 4

to denote the Laplacian operator in Rr.

Now we can de�ne a spherical harmonic of order l. We let Hl (x) be an

homogeneous polynomial of degree l in Rr that satis�es

4Hl (x) = 0: (4.26)

We can then say that Yl = Hl jSr�1is a regular spherical harmonic of order l. Using

this de�nition and Green�s Theorem, we have the result that

0 =
R
jxj�1 (Hm4Hn �Hn4Hm) dV =

R
Sr�1Hm (x)Hn (x) (m� n) dS (4.27)

30



noting that

mHm (x) =
h
@Hm(rx)

@r

i
r=1

and nHn (x) =
h
@Hm(rx)

@r

i
r=1

:

Hence, we have
R
Sr�1Ym (x)Yn (x) dS = 0; m 6= n:

Now we can denote the space of all spherical harmonics of order l by HOrl (S
r�1)

and we will let Hr
l (S

r�1) denote the space of all spherical harmonics of degree � n.

We can then express the relation between the spaces as follows. [11]

Prn
�
Sr�1

�
= Hr

n

�
Sr�1

�
; (4.28)

Hr
n

�
Sr�1

�
=

nL
l=0

HOrl
�
Sr�1

�
: (4.29)

We know that HOrl (S
r�1) is rotation invariant because it is the eigenspace of the

Laplace-Beltrami operator on Sr�1: Now let A be an orthogonal matrix ,

Yl (Ax) 2 HOrl (Sr�1) and let the functions Ylj be an orthonormal set, i.e.

R
Sr�1Ylj (x)Ylk (x) dS = �jk: (4.30)

Now we can show Ylj (Ax) as a linear combination of N (r; l) spherical harmonics of

order l thus resulting in

Ylj (Ax) =
N(r;l)P
n=1

cljnYln (x) : (4.31)

The above two equations give the following result

R
Sr�1Ylj (Ax)Ylk (Ax) dS =

N(r;l)P
n=1

cljnc
l
kn: (4.32)

Now the orthogonal transformation A will leave the surface element dS unchanged

so that we get
N(r;l)P
n=1

cljnc
l
kn = �jk: (4.33)
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Thus cljn are elements of an orthogonal matrix such that

N(r;l)P
n=1

clnjc
l
nk = �jk: (4.34)

Now for any two points x; y we can de�ne the polynomial function

Gl (x; y) =
N(r;l)P
j=1

Ylj (x)Ylj (y) : (4.35)

Now because of (4:34) for any orthogonal matrix A we have

Gl (Ax;Ay) =
N(r;l)P
j=1

Ylj (Ax)Ylj (Ay) (4.36)

=
N(r;l)P
j=1

N(r;l)P
n=1

cljnYln (x)
N(r;l)P
m=1

cljmYlm (y)

=
N(r;l)P
n=1

N(r;l)P
m=1

�nmYln (x)Ylm (y)

= Gl (x;y) :

Applying theorems (13) and (14) we can say that Gl is a bizonal function.

Next, we want to look at the addition theorem.

Theorem 15 Let fYlkg be an orthonormal set of N (r; l) spherical harmonics of

order l on Sr�1, then

N(r;l)P
j=1

Ylj (x)Ylj (y) =
N (r; l)

$r�1
P
(r)
l (x � y) ; (4.37)

where x;y 2Sr�1, $r�1 is the total surface area of the sphere Sr�1 and P
(r)
l is the

Legendre polynomial of degree l in Rr:

Proof. Now we know from Muller [12] that the Legendre function is a

homogeneous, harmonic polynomial that is zonal with respect to a �xed axis. Thus
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the univariate function g : [�1; 1]! R in theorems (13) and (14) is clearly just a

multiple of the Legendre function so we can see that

N(r;l)P
j=1

Ylj (x)Ylj (y) = cP
(r)
l (x � y) ; where c is some constant. (4.38)

Let x = y and since Pl (1) = 1 we obtain

N(r;l)P
j=1

[Ylj (x)]
2 = cPl (1) = c: (4.39)

If we integrate over Sr�1 we get N (r; l) = c$r�1 which proves the theorem.

Delsarte, Goethals and Seidel [13] introduced the idea of a spherical t-design which

is a set of points � = ft1; : : : ; tmg on the sphere Sr�1 such that the equal-weight

quadrature rule based on these points is exact for all polynomials of degree � t:

$r�1

M

MP
k=1

p (tk) =
R
Sr�1p (x) dS; 8p 2 Prt

�
Sr�1

�
: (4.40)

Here $r�1 is the surface area of Sr�1: Delsarte, Goethals and Seidel [13] give the

following lower bounds for the cardinality of � in order for the quadrature rule to

be exact.

M �
�
r + n� 1
r � 1

�
+

�
r + n� 2
r � 1

�
; M � 2

�
r + n� 1
r � 1

�
(4.41)

for t = 2n and t = 2n+ 1 respectively. Note that a spherical t-design

� = ft1; : : : ; tmg is called a tight spherical t-design if the cardinality of � attains its

lower bound. [13]

4.2 Hilbert Spaces and Linear Projections

A Hilbert space is an inner product space that is complete, i.e. Cauchy sequences

will converge to point that is in that space. Reimer [14] de�nes and proves the

existence and uniqueness of a reproducing kernel function. Given a linear space of
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functions V with D ! R with the inner product h�; �i, a function G : D �D ! R is

called a reproducing kernel of V if the following are satis�ed.

(i) G (x; �) 2 V for all x 2 D;

(ii) G (x; y) = G (y; x) for all (x; y) 2 D2;

(iii) hG (x; �) ; F i = F (x) for all F 2 V;x 2 D:

Theorem 16 If V is �nite-dimensional, then a uniquely determined reproducing

kernel exists.

Proof. Let S1; : : : ; SN be an arbitrary orthonormal basis in V and de�ne

G : D �D ! R by

G (x; y) =
NP
j=1

Sj (x)Sj (y) for x; y 2 D: (4.42)

It is clear that G satis�es (i) and (ii) : Now let F 2 V and x 2 D: We then obtain

hG (x; �) ; F i =
NP
j=1

hSj; F iSj (x) = F (x) (4.43)

which shows the validity of (iii) : Thus, a reproducing kernel exists. Now assume

that H is an arbitrary reproducing kernel of V: Then we can say

H (x; �) 2 V;x 2 D is reproduced at y 2 D by G (y; �) ; and we get

H (x; y) = hG (y; �) ; H (x; �)i = hH (x; �) ; G (y; �)i : (4.44)

But H (x; �) reproduces G (y; �) 2 V at x, and thus we see that

H (x; y) = G (y; x) = G (x; y) (4.45)

Since x and y were arbitrary it implies that H = G proving uniqueness.
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Next we want to discuss linear projections.[15] If we let U be a normed linear space

and V be a �nite dimensional subspace of U , then for u 2 U; we de�ne the minimal

deviation of u in V as

E (u; V ) = inf fku� vk : v 2 V g : (4.46)

Then every element v in V with kv � uk = E (u; V ) is called a best approximation

to u in V: The existence of v is given by a fundamental existence theorem, but �rst

we need another theorem.

Theorem 17 Every closed, bounded, �nite-dimensional set in a normed linear

space is compact.

Proof. Let V be a closed, bounded, �nite-dimensional subspace of U and let

fv1; : : : ; vng be a basis for V . Then for each element v in V , there is a unique tuple

(a1; : : : ; an) so that v =
Pn

i=1 aivi: We can de�ne the map T : Rn ! V that maps

a 7�! v, where a = (a1; : : : ; an). Now if kak = maxi=1;:::;n jaij then T is continuous.

For example, if we let a; b 2 Rn, then

kTa� Tbk =
 nP
i=1

aivi �
nP
i=1

bivi

 � nP
i=1

jai � bij kvik � ka� bk
nP
i=1

kvik : (4.47)

To prove that V is compact, we can show that A = fa : Ta 2 V g is compact.

First, we will show that A is closed. If a(k) ! a, then

Ta = T (limk) a
(k) = limk T

�
a(k)
�
. Now since V is closed, Ta 2 V , a 2 A and this

shows that A is closed. Next, we will prove that A is bounded. Since the set

fa : kak = 1g is compact and T is continuous, the in�mum, �, of kTak is obtained

on that set. Now, since fv1; � � � ; vng is linearly independent, � > 0: Thus for any

a 6= 0, kTak =
T � a

kak

� kak � � kak. And since kTak is bounded on A, kak is

bounded on A:
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Theorem 18 (Existence) Let fv1; : : : ; vng be a basis for V and let u be an

element in U: Then the problem of �nding

min
ai
ku� (a1v1 + : : :+ an)k

has a solution.

Proof. We can �nd the solution in the set M = fv 2 V : ku� vk � ku� wkg,

where w is an arbitrary �xed element in V: We know that M is compact by

theorem (17). Now let � = E (u; V ) and using the de�nition of an in�mum, we can

�nd a sequence of points in M; x1; x2:::with the property that ku� xnk ! � as

n!1: Because M is compact, we can assume that the sequence converges to a

point v of M: Now from the triangle inequality we can say

ku� vk � ku� xnk+ kxn � vk :

We know that as n!1; ku� vk � � and since v 2 V; ku� vk � �; hence

ku� vk = �:

Now we can de�ne a projection operator P if P is surjective and P 2 = P where

P 2 L (U; V ) and L (U; V ) denotes the set of all bounded linear operators from U to

V:

4.3 Polynomial Interpolation on Spheres

We want to brie�y look at interpolation on spheres considering it as a linear

projection from the space C (Sr�1) to a �nite dimensional space P � Pr (Sr�1) :

First, we need to consider the concept of the fundamental system. The set

ft1; : : : ; tNg is called a fundamental system if the evaluation functionals

ff ! f (tj)g for j = 1; : : : ; N and f 2 P, is a linearly independent set. Note that N

is the dimension of P. Many methods of interpolation have been developed. We

can de�ne the Lagrange interpolating polynomial where P (x) is of degree � (n� 1)
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to be:

P (x) =

NX
j=1

Pj(x) where Pj(x) = yj
Y
k 6=j

x� xk
xj � xk

: (4.48)

Although Lagrangian interpolation in a multivariate setting has been considered

problematic, Reimer [11] suggests using the theory of reproducing kernel Hilbert

space and the Addition Theorem of spherical harmonics to bring down the

dimension when studying multivariate interpolation on the sphere Sr�1: In order

for the Addition Theorem of spherical harmonics to be applied in this way P must

be a rotation-invariant subspace of Pr (Sr�1) :

4.4 Distribution of Points

One of the problems we encounter is distributing a large number of points equally

on a sphere. Sa¤ and Kuijlaars [6] suggest a construction of spiral points where the

�rst point is at a pole and then the sphere is intersected by N horizontal planes

which are spaced 2/(N-1) units apart. A point is placed on each latitude line.

Using spherical coordinates (�; �); where 0 � � � � and 0 � � � 2�; they set:

�k = arccos(hk); where hk = �1 +
2(k � 1)
(N � 1) ; 1 � k � N;

�k =

�
�k�1 +

3:6p
N

1p
1�h2k

�
(mod 2�) ; where 2 � k � N � 1; �1 = �N = 0:

Figure 1.shows the results of plotting 1,000 points on a sphere in MATLAB using

the above construction. The view is of the pole of the sphere which shows the

points as they begin spiral from the pole.
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Figure 2 Spiral Points.

4.5 Covering Theorem

In the theorem and proof below, xy denotes the inner product in Rd+1, � denotes

surface measure on Sd normalized to have total mass 1, P �n is the Gegenbauer

polynomial of degree n and parameter � and
Q
2n denotes the space of polynomials

of degree � 2n, n � 1:

Theorem 19 Let n � 1: Suppose we have a set of points Y � Sd, a set of numbers

Ay where y 2 Y , Ay > 0 and

X
y2Y

AyP (y) =

Z
Sd
P (y) d� (y) for P 2

Q
2n

�
Sd
�
; (4.49)
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then

Sd �
S
y2Y

B�(y); where � = cos�1
�
t�n
�
and t�n is the largest zero of P

�
n :

Proof

Fix x 2 Sd: Applying (1) we have the following

P
y2Y

Ay
(Pn (xy))

2

t�n � xy
=

Z
Sd

Pn (xy) � Pn (xy)
t�n � xy

d� (x) = 0: (4.50)

Equation 2 follows because:

(1) Gegenbauer polynomials are orthogonal to each other, i.e.hPn; Pmi = 0, n 6= m

(2) As t�n is the largest zero of P
�
n , a polynomial of degree � n, note that t�n is a

simple zero of P �n since P
�
n is an orthogonal polynomial and hence has n simple

zeros. Pn(xy)
t�n�xy

is well de�ned for every x and y because a polynomial

Pn(t)
(t�tn) = a (t� t0) (t� t1) : : : (t� tn�1), a is some constant.

There are only two ways in which Equation 2 can equal zero. One is if Pn (xy) = 0;

for all y 2 Y ; the other is if the numbers {t�n � xy : y 2 Y g are not all the same sign.

Let

d (x; y) = cos�1 (xy) ; y 2 Y: (4.51)

Suppose d (x; y) > 0; 8y 2 Y: Then d (x; y) = cos�1 (xy)() xy < t�n soP
y2Y

Ay
(Pn(xy))2

t�n�xy
> 0: This is a contradiction. Now consider

fty = xy : y 2 Y; ty 2 [�1; 1]g ; (4.52)

then d (x; y) = cos�1 (ty). But moving x will then produce an open set where

P �n (x) = 0 and so P
�
n=0: So again we have a contradiction. �
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Chapter 5

Conclusion and Future Work

In conclusion, we have looked at some aspects of approximation including

interpolation of real valued functions, speci�cally polynomial interpolation and a

theorem that gives us a way of measuring error. We considered theorems and

proofs for both the existence and uniqueness of Lagrange and Hermite interpolation.

We proved the Weierstrass Approximation Theorem which tells us that any

continuous function on a �nite interval can be approximated as closely as desired by

a polynomial. We considered some quadrature rules in numerical integration, error

and precision and then we used Taylor�s theorem to approximate ex and determine

the error. We moved on to consider the unit sphere and spherical harmonics. In

our consideration of Hilbert spaces and linear projections we looked at Reimer�s

de�nition and proof of the existence and uniqueness of a reproducing kernel

function. One of the problems encountered is how to distribute a large number of

points equally on a sphere and we looked at the suggestion Sa¤ and Kuijlaars [6]

make of constructing spiral points. We then proved a covering theorem for a unit

sphere.

Extending the proof of the covering theorem to two point space is a task for the

future, also perhaps attempting to extend to more general manifolds. As well as

looking at some hyperinterpolation problems, it is hoped that learning how to use

Lie algebras will increase the sophistication of investigating approximation problems.
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