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HOME FIELD ADVANTAGE: SPRINT SENSITIVITY TO ECOLOGICALLY 

RELEVANT SUBSTRATES IN LIZARDS 

by 

 

CLINT EDWARD COLLINS  

 

(Under the Direction of Lance McBrayer) 

ABSTRACT 

Effectively moving across variable substrates is important to all terrestrial animals. Much 

attention has been given to the effects of different substrates on locomotor performance 

in an attempt to link ecology and morphology. Sprint sensitivity is the decrease in sprint 

speed due to change in substrate. This study measures sprint sensitivity to substrate 

rugosity among six lizard species that occupy rocky, sandy, and/or semi-arboreal habitats. 

Lizards that use rocky habitats are less sensitive to changes in substrate rugosity, 

followed by arboreal lizards, and then by lizards that use sandy habitats. Phylogenetic 

analysis suggests that using rocks is highly correlated with decreased sprint sensitivity, 

long toes, and wide bodies. These results are discussed in the context of the adaptive 

significance of substrate selection, stability, and the evolution of sprint speed. 
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INTRODUCTION 

 

 Effectively moving across variable substrates is important to all terrestrial 

animals. Animals ameliorate substrate incline, viscosity, obstacles, unsteadiness, and tree 

limb angles by kinematic adjustments, decreasing velocity, and jumping (Clark and 

Higham, 2011; Daley et al., 2006; Higham and Biewener, 2008; Higham et al., 2001; 

Higham and Jayne, 2002; Jayne and Irschick, 1999; Jayne and Irschick, 2000; Kohlsdorf 

and Biewener, 2006; Korff and McHenry, 2010; Luke, 1986; McElroy et al., 2007; 

Olberding et al., 2012; Spezzano and Jayne, 2004). Such variation suggests adaptation to 

varying substrate types among species (Arnold, 1983; Bock and Von Wahlert, 1965; 

Calsbeek, 2008; Hespenheide, 1973; Ricklefs and Miles, 1994). 

 Sprinting is partly dependent on effectively applying force to the substrate 

(Kerdok et al., 2002; Korff and McHenry, 2010; Lejeune et al., 1998). This relationship is 

defined by how viscous a substrate is, substrate rugosity (the amount of unevenness), and 

friction, as well as organismal traits related to locomotion. Because lizards sprint to 

escape predators and catch prey, and they use many types of habitats, they are a model 

system for tests of adaptation to substrate. Many lizards exhibit adaptations in toes, feet, 

limbs, and tails to specific substrates. A classic example of this type of ecomorphological 

relationship is the repeated independent evolution of toe fringes in sand dwelling lizards 

(Carothers, 1986; Luke, 1986). Toe fringes are laterally projecting, elongated scales 

occurring on the toes of some lizards that inhabit sandy substrates. It is widely believed 

that fringes increase the toe surface area, and thus traction, on substrates such as sand 

(Korff and McHenry, 2010; Luke, 1986). Another example occurs in the Tropidurus 
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lizards. Tropidurus species that live on sand have long feet relative to those that live in 

trees, which have short tails and short legs (Grizante et al., 2009; Kohlsdorf et al., 2001). 

Substrate complexity varies tremendously in terrestrial environments from soft sand to 

increasingly rigid and rugose rocky habitats including rock faces, boulders, and 

paleoclastic lava fields. Although substrate complexity varies seemingly ad infinitum in 

terrestrial environments, some of the best work relating morphology, habitat, and 

performance has been on tree dwelling lizards. 

 Caribbean Anolis lizards partition the arboreal habitat relative to sprint sensitivity 

i.e. the decrease in sprint speed from a perch of large diameter to a perch of smaller 

diameter (Losos and Sinervo, 1989). Anolis with higher overall sprint speeds and longer 

legs exhibit greater sprint sensitivity (i.e. greater loss of performance on smaller diameter 

perches) and avoid perches where sprint performance is submaximal (i.e. smaller 

perches) (Irschick and Losos, 1999). However, Anolis with shorter limbs and slower 

overall sprint speeds exhibit lower sprint sensitivity values. These Anolis utilize a broad 

range of perches in the arboreal habitats (Irschick and Losos, 1999). 

 In rocky habitats, the distance an animal has to run to escape predation is 

comparatively greater than in other terrestrial habitats because vegetation and other 

refuges are farther apart (Goodman, 2009; Revell et al., 2007; Vitt et al., 1997). 

Furthermore, rocky habitats are challenging for animals to run across because they 

include inclines and unsteady surfaces (Goodman et al., 2008; Revell et al., 2007). 

Therefore, using rocks may depress locomotor performance and thus exert a strong 

selection pressure on locomotor morphology and performance (Farley and Emshwiller, 

1996; Goodman et al., 2008; Taylor et al., 1972). Increased leg length and greater 
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locomotor performance is tightly linked to using rocks in Lygosominae skinks (Goodman 

et al., 2008). In Anolis species, shorter limbs are needed on narrow perches to lower the 

center of mass and maintain balance. But specialization for climbing on narrow perches 

requires tradeoffs for movement on broader perches (Irschick and Losos, 1999). 

However, in Lygosomine skinks, there was no tradeoff between climbing on rocks and 

sprinting (Goodman et al., 2008). It is likely that climbing on rocks and climbing on trees 

impose similar physical constraints on locomotion (e.g. incline). Therefore, similar 

morphological and performance traits that enhance sprinting might be expected (Farley 

and Emshwiller, 1996; Higham and Jayne, 2002; Irschick and Jayne, 1999; Jayne and 

Irschick, 1999; Taylor et al., 1972). However, this pattern has not been observed 

(Goodman et al., 2008; Revell et al., 2007).  In Liolaemus lizards, for example, there are 

no differences in sprint speeds among species that use trees, rocks, or sand (Tulli et al., 

2012). Another characteristic of rocky habitats, substrate rugosity, may impose greater 

physical constraints than climbing. Hence, the more rugose a substrate is, the more 

difficult it is to run across. Here I hypothesize that living on highly rugose surfaces is 

correlated with the evolution of sprint performance and morphological differences 

between species of lizards that use different substrates.  

 This study quantifies differences among tree dwelling, rock dwelling, and sand 

dwelling lizards in sprint performance and morphology. Rock dwelling was equated to 

living on highly rugose substrates and thus I focused my analysis on sprint sensitivity to 

an increase in substrate rugosity. Increased rugosity was mimicked by increasing 

substrate particle size from sand to pebbles to cobbles. Sprint sensitivity was defined as 

the difference in sprint speed on a more rugose substrate (e.g. cobbles) compared to a less 
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rugose substrate (e.g. sand). It was hypothesized that as substrate rugosity increased, 

sprint speed would decrease. Rock dwelling lizards should exhibit lower sprint sensitivity 

values than their sand dwelling counterparts. Tree dwelling lizards should be intermediate 

along a continuum of sprint sensitivity with sand dwelling lizards at one extreme and 

rock dwelling lizards at the other. It is predicted that each lizard will attain its highest 

sprint speeds on the substrate that is uses most often; hence, each lizard should exhibit a 

“home field advantage”. 

 Differences in morphology and relationships between morphology and habitat use 

were also quantified. It was hypothesized that rock dwelling lizards would exhibit 

relatively longer limb segments as was seen in Lygosominae skinks. This is logical 

because longer legs could be used to increase stride length and hip height, which would 

help move over highly rugose substrates (Biewener, 1990, 1991; Russell and Bels, 2001). 

It was also hypothesized that rock dwelling lizards would have longer tails, which aid in 

stability (Gillis et al., 2009; Jusufi et al., 2008; Libby et al., 2012). 

 To test for the adaptive significance of having different morphotypes relative to 

different substrates, sprint sensitivity and morphology were quantified in six species of 

lizards: Aspidoscelis tigris, Crotaphytus bicinctores, Gambelia wislizenii, Sceloporus 

occidentalis, Sceloporus undulatus, and Sceloporus woodi. These species were chosen 

because their relative phylogenetic positions are well known, we were able to replicate 

sand and rock dwelling in the phylogeny, and these species represent different body 

plans. Crotaphytus bicinctores and G. wislizenii represent ideal study species because 

they are closely related (family: Crotaphytidae), they are broadly sympatric, and they 

share a similar body plan (McGuire et al., 2007). However, G. wislizenii uses sandy 
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habitats and C. bicinctores uses rocky habitats (Pianka, 1967; Pianka, 1966). Therefore, 

differences in performance and morphology may represent adaptations to differential 

habitat use between these species. Aspidoscelis tigris is useful as an outgroup because it 

represents a different body plan, is distantly related to the other focal species in the study, 

and uses sandy substrates (Estes et al., 1988; Pianka, 1967; Pianka, 1966). Sceloporus 

occidentalis live in rocky habitats throughout much of its range and is also broadly 

sympatric with C. bicinctores. Sceloporus woodi is a small lizard that uses sandy 

substrates similar to A. tigris and G. wislizenii (Branch et al., 2003). Sceloporus 

undulatus is arboreal, though they also use rocks and other perches in portions their range 

(Pounds and Jackson, 1983). The population sampled for this study occurs in a locality in 

southeast Georgia where rocks do not occur. All S. undulatus were collected on the boles 

of pine and oak trees. The three Sceloporus species were chosen because they use 

different habitats, share a similar body plan, and are closely related. Therefore, 

differences in performance among these species may represent adaptations to different 

habitats.  

 This project is significant because previous research has focused on the locomotor 

strategies of crossing one obstacle in one or two species (Kohlsdorf and Biewener, 2006; 

Olberding et al., 2012) and only one other study characterized how lizards sprint over 

three ecologically similar substrates (Tulli et al., 2012). This study will shed light on the 

adaptive significance of using substrates that vary in rugosity among several species.  
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MATERIALS AND METHODS 

Lizard Searches and Capture 

 Performance and morphology measurements for A. tigris, C. bicinctores, G. 

wislizenii, and S. occidentalis were collected in the Alvord Basin in southeastern Oregon 

(N 42.296097°, W 118.656414°). The Alvord Basin is characterized by sandy flats, 

hardpan, and dunes; common vegetation includes Artemesia tridentata and Sarcobatus 

vermiculatus (Steffen and Anderson, 2006). The Alvord Basin is surrounded by boulder 

fields, rocky cliff faces, and paleoclastic lava flows. Sceloporus woodi were collected 

from Longleaf Pine (Pinus palustris) forests and Sand Pine (Pinus clausa) scrub in the 

Ocala National Forest (N 29.257726°, W 81.778702°) and S. undulatus were collected 

from Longleaf Pine and American Turkey Oak (Quercus laevis) scrub in George L. 

Smith state park Georgia (N 32.559930°, W 82.113771°).  Lizards were found by 

walking haphazard transects in suitable habitats for each respective study species. 

Sampling occurred between 830 hours and 1230 hours and between 1400 hours and 1800 

hours from June 1 – July 25, 2010 for A. tigris, C. bicinctores, and G. wislizenii, from 

June 1 – July 25, 2011 for S. occidentalis, and September 5th – September 20
th

 2011 for 

S. woodi and S. undulatus.  Lizards were captured by noose or hand. If possible, the 

temperature of each lizard was taken with a rapid reading cloacal thermometer 

immediately upon capture to determine field active body temperature. This was done to 

ensure body temperature for each species during performance trials was similar to those 

experienced naturally. Only adult males were used in this study to reduce the variability 

associated with gravidity (females) and development (subadults/juveniles). Lizards were 

placed in individual cloth bags and the GPS coordinates of the capture site was recorded. 
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Lizards were released at the point of capture after all data collection. Lizards were 

captured and maintained according to IACUC protocol I09009.  

Performance Trials 

Maximal sprinting ability in A. tigris, C. bicinctores, G. wislizenii, and S. 

occidentalis, was measured in the field. Three straight, level runways (5 m long x 0.25 m 

wide x 0.4 m high) were constructed using aluminum flashing. The first runway 

contained coarse sand particles ranging from 0.5 – 2.0 mm diameter. The second runway 

contained pebbles ranging from 10.0 – 15.0 mm diameter. The third runway contained 

cobbles ranging from 200 – 250 mm diameter. Substrate particles were discriminated 

visually according to the Wentworth particle scale. Substrates were collected from nearby 

areas after observing the species of lizards moving across them. Sand was collected from 

sites used by A. tigris and G. wislizenii. Cobbles were collected from sites used by C. 

bicinctores and S. occidentalis. Pebbles were used as an intermediate substrate because 

they are seen in both sandy and rocky habitats. Vegetation was placed at one end of each 

runway to serve as a refuge that could be detected by the lizard during its escape down 

the runway. Each quarter meter of the runway was marked to estimate distance in video 

recordings. For A. tigris, C. bicinctores, G. wislizenii, and S. occidentalis sprinting ability 

was tested 24 - 48 hours after capture. The 24 - 48 hours before trials allowed the passage 

of gut contents and recovery from handling stress. 

Sceloporus woodi and S. undulatus were captured and returned to a laboratory 

setting at Georgia Southern University. Sceloporus woodi and S. undulatus were tested 

over a 3 day period after capture. Lizards were maintained separately in glass terraria 

with sand substrate, a water bowl, and a hide. Each terrarium was heated by UV lamp at 
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one end to produce a thermal gradient similar to those preferred by each species 

(Andrews, 1998; Crowley, 1985). Terrariums were heated and lighted from 700 to 1800 

hours daily. Lizards were fed crickets to satiation every other day and were fasted 24 

hours prior to sprinting trials. Three straight, level runways (4 m long x 0.25 m wide x 

0.4 m high) were constructed using the same substrates described above. Similarly, each 

quarter meter was marked to calibrate distances in video recordings.  

Prior to each run, lizards were placed in a thermoelectric cooler in individual cloth 

bags until their core body temperatures reached their field active body temperatures (35° 

- 39°C for A. tigris, C. bicinctores, G. wislizenii, and S. woodi; 34° -  36°C for S. 

occidentalis and S. undulatus). Body temperatures were measured by cloacal 

thermometer. All performance trials were conducted during normal lizard activity hours. 

Substrate temperature in each runway was closely monitored so that it was not different 

from the temperatures the lizards experienced while active in their habitat (min: 21.5°C; 

max 57.5°C). Before the first sprint trial, non-toxic correcting fluid was painted on the 

occiput of each lizard to use as a tracking marker in video recordings. Lizards were 

placed at the zero meter mark at one end of the runway and coerced to run towards the 

darkened end five meters away. Lizards were chased down the length of each runway 

and, if necessary, were lightly tapped on the dorsum, tail, and legs in order to encourage 

them to run with maximal effort. Cameras filming at 30 frames / second were placed one 

meter apart along the raceway to film the lizards as each ran through the field of view. 

Each camera recorded a one meter segment of the raceway. The first three meters of each 

run for A. tigris, C. bicinctores, and G. wislizenii were filmed. Meters 1 – 5 were filmed 

for S. occidentalis, S. undulatus, and S. woodi. All velocity data presented here was taken 
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from the third meter because analysis of videos from meters 4 and 5 indicated lizards did 

not increase in speed after the third meter.  

Three to five trials per individual were conducted in each runway. Each individual 

was rested for one to three hours between trials to allow for recovery. Runs were graded 

on a scale of 1 – 5 with 1 being a “refusal to run”, 4 representing a straight, continuous 

quadrupedal run, and 5 representing a straight, continuous bipedal run. Runs rated 1 – 3 

were discarded; only runs rated 4 or 5 were retained to estimate maximal velocity. Only 

trials from lizards with at least one good run on all substrates were retained for further 

analysis. The fastest 0.25 meters were used for statistical analysis.  

Morphology 

 Twelve morphological measurements were taken on each individual following all 

performance trials on all substrates. The measurements were chosen because they reflect 

variation in body form and are relevant for locomotor performance. Measurements were 

taken using dial calipers (or a ruler where applicable) and included: tail length, width of 

the body at the chest, humerus length (shoulder to the elbow), antebrachium length 

(elbow to wrist), manus length, length of the longest finger (IVa) measured from the 

manus to the tip of the claw; femur length (hip to knee), tibia length (knee to ankle), pes 

length, length of the longest toe (IVb), and snout – vent length (SVL).  

Data Analysis and Statistics 

Sprint Sensitivity 

 Each run rated 4 or 5 was digitized, clipped, and converted to an AVI file with 

Adobe Premiere© software. DLTdv3 was used to manually digitize the white marker on 

the lizards’ occiput in each video fame (Hedrick, 2008). Velocity was estimated by 
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measuring the linear displacement of this marker in each frame. The x – y coordinates of 

the digitized marker were saved in Microsoft Excel©. Displacement was calculated by 

measuring the distance between each x – y coordinate. A scale bar of 50cm was digitized 

in each video to calibrate the distance traversed by the lizards in each frame. The effects 

of digitization error in DLTdv3 were minimized by fitting a quintic spline to the x – y 

coordinate data using the program GCVSPL (Walker, 1998; Woltring, 1986).  

 Sprint sensitivity was calculated by subtracting the sprint speed on a more rugose 

substrate from the sprint speed on a less rugose substrate (e.g. sprint speed sand – sprint 

speed pebbles = sprint sensitivity of sand - pebbles). Smaller values of sprint sensitivity 

indicated that an individual’s speed was affected less by the change in substrate. Large 

values indicate the individual was affected more by the change in substrate. A one-way 

ANOVA with Tukey-Kramer post-hoc tests was used to test for differences in sprint 

sensitivity among species.  

Morphology 

 To control for the size differences among and within species, a log – size 

component was derived by log10 transforming all morphological measurements, summing 

them, and dividing by the total number of measurements. This log – size component was 

then subtracted from each measurement (Mosimann, 1979). Each data point was centered 

by adding a value of two to each observation to create a new, size – adjusted 

measurement. 

Principal components analysis (PCA) was used to ordinate the size – adjusted 

morphological variables into principal components. We determined the number of 

principal components to retain by carefully examining a scree plot and the eigenvectors 
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of each principal component (Jackson, 1993). A one-way ANOVA with Tukey-Kramer 

post-hoc tests was used to test for differences among species in principal components. To 

characterize relationships between substrate and morphology, principal components for 

each species were combined to form ecomorphs. Aspidoscelis tigris, G. wislizenii, and S. 

woodi were combined into the “sand” ecomorph; C. bicinctores and S. occidentalis were 

combined into the “rock” ecomorph; S. undulatus was used as the “tree” ecomorph. A 

one-way ANOVA with Tukey-Kramer post-hoc tests was used to test for differences 

among ecomorphs in principal components. 

Phylogenetic analyses 

 Morphology and sprinting of A. tigris, C. bicinctores, G. wislizenii, S. 

occidentalis, S. undulatus, and S. woodi was examined in a phylogenetic context using 

phylogenetic independent contrasts (PIC) (Blomberg and Garland, 2002; Felsenstein, 

1985; Harvey and Pagel, 1991; Martins and Garland, 1991). Relationships were gathered 

from a variety of sources to generate a composite phylogenetic tree suitable for this 

project. Branch lengths (indicated in millions of years before present) were estimated 

based on morphological and molecular data. Principal comparisons are among the two 

Crotaphytidae species and Scelporine species, with A. tigris as an outgroup. (Estes et al., 

1988; Leache and McGuire, 2006; McGuire et al., 2007; Townsend et al., 2011; Wiens et 

al., 2011) (Figure 1). We used PDAP:PDTREE in Mesquite to calculate phylogenetic 

independent contrasts (PIC) on all size - adjusted morphological and sprint speed data 

(Garland et al., 1992; Maddison and Maddison, 2006; Midford et al., 2005). Absolute 

values of the PIC were plotted against their standard deviations to ensure the branch 

lengths used adequately fit the tip data. There were no significant trends (r
2
 < 0.22, p > 
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0.30), so all branch lengths and tip data were retained for further analysis (Garland et al., 

1992). Principal Components PIC were then regressed on sprint speed PIC to characterize 

evolutionary relationships between morphology and performance (Garland et al., 1999). 

PIC regression lines were computed and mapped back onto the original data space. One-

tailed 95% confidence intervals were computed in PDAP:PDTREE. We constructed 

confidence intervals for all morphological and performance data to detect significant 

rates of evolutionary divergence in the phenotypic data (Garland and Ives, 2000).  

RESULTS 

Sprint Sensitivity 

 Overall, lizards in this study exhibited a decline in sprint speed as substrate 

rugosity increased. However, C. bicinctores got faster on pebbles compared to its 

velocity on sand. The decline in sprint speed from pebbles to cobbles in C. bicinctores 

was significant, but it was not between sand and cobbles (Table 1; Fig 2). The other rock 

dwelling lizard, S. occidentalis, did not decrease in sprint speed between substrates 

(Table 1; Fig 2). All other lizards exhibited a significant decrease in sprint speed between 

sand and cobbles as well as pebbles and cobbles, but not between sand and pebbles 

(Table 1; Fig 2).  

Morphology 

 The first two PC axes of the principal components analysis were most informative 

and explained 67% of the variation in morphology. Examination of a scree plot of 

eigenvalues indicated these two axes were most informative for interpretation. The first 

PC axis described 49% of the variation. High positive loadings were associated with 

longer tibia and feet while low loadings were associated with wide pelves and long front 
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toes (Table 2; Figure 3). Principal Component 2 described 18% of the variation; positive 

loadings were associated with species with wide chests and longer hind toes while 

negative loadings were associated with species with longer intergirdle length and long 

tails (Table 2; Figure 3).  

 Sceloporus species were statistically different from the remaining species on PC 

axis 1. Within Sceloporus, S. woodi was different from S. occidentalis, while S. undulatus 

differed from neither (Table 3). On PC axis 2, C. bicinctores and A. tigris were 

statistically different from all other lizards. Gambelia wislizenii, S. occidentalis, S. 

undulatus, and S. woodi were not statistically different (Table 3).  

 There were significant differences among rock, sand, and tree dwelling lizards on 

PC axis 1 (Table 4). For PC2, rock dwelling lizards were statistically different from sand 

dwelling lizards, but neither sand nor rock dwelling lizards were statistically different 

from tree dwelling lizards (Table 4). 

Phylogenetic relationships between morphology and performance 

 The PIC analysis revealed a strong relationship between the use of rugose 

substrates, morphology, and sprint sensitivity in the six focal species. This trend was 

marked by species with wide chests and long toes.  

 The relationship between morphology and the decline of sprint speed on 

increasing rugose substrates was best described by PC 2. While a comparison of the 

contrasts of PC1, PC2, and sprint speed indicated no relationship with any substrate (p > 

0.25), a strong relationship is observed between the contrasts of PC2 and the increase in 

substrate rugosity from sand to pebbles (p = 0.008, r
2
 = 0.93) and from sand to cobbles (p 

= 0.032, r
2
 = 0.82) but not from pebbles to cobbles (p = 0.91, r

2
 = 0.003) (Fig. 4 - 6). 
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Thus, variation in aspects of body shape along PC 2 is correlated with the decline of 

sprint speed on rugose substrates. 

DISCUSSION 

 Sprint sensitivity was valuable in diagnosing performance capabilities among 

species. The lizards in this study exhibited a “home field advantage”; that is, they ran 

fastest on the substrate they use most often. Compared to the other species, rock dwelling 

lizards exhibited reduced sensitivity to increased substrate rugosity.  

Substrate rugosity and sand use 

 While G. wislizenii decreased in speed between sand and pebbles and pebbles and 

cobbles, the closely related C. bicinctores increased in speed between sand and pebbles, 

and was not significantly different between sand and cobbles, supporting the “home field 

advantage” hypothesis. Why would two lizards that are closely related and that share 

similar body plans show such dramatic differences? Rugose and sandy substrates impose 

different physical constraints on lizard sprinting. If gait and posture are different between 

species, then a fluid substrate such as sand and a rugose substrate such as rocks would 

affect each lizard differently. It is plausible that C. bicinctores, which run bipedally, slip 

or sink in the sand because they are heavier, or because the shape of the toe leads to 

better traction on pebbles than sand (Carothers, 1986; Glasheen and McMahon, 1996; Li 

et al., 2011; Luke, 1986). If G. wislizenii run quadrupedally and have different toe 

morphology, then the animals’ mass may be more distributed across the sand, preventing 

this lizard from sinking (Carothers, 1986; Glasheen and McMahon, 1996; Luke, 1986). 

The morphological analysis revealed C. bicinctores loads significantly higher than G. 

wislizenii on PC2 axis, indicating C. bicinctores have relatively stockier bodies than G. 
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wislizenii (Table 3). Since C. bicinctores have relatively wider chests and shorter limbs, 

then perhaps bipedal running serves two purposes for this species – raising center of mass 

while running, and increasing stride length; both could increase stability on rugose 

substrates by allowing C. bicinctores to contact the surface without destabilizing its 

center of mass and by allowing the lizards to contact the surface more efficiently 

(Biewener and Daley, 2007; Daley et al., 2006; Kohlsdorf and Biewener, 2006; 

Olberding et al., 2012). Furthermore, C. bicinctores are more territorial, and hence more 

conspicuous, than G. wislizenii (Cooper and Vitt, 1991; Macedonia et al., 2004). 

Therefore, C. bicinctores may live with higher predation risk than G. wislizenii. This 

increased conspicuousness and risk of predation likely plays an important role in the 

morphological and performance differences between these two species (Cooper and Vitt, 

1991; Goodman, 2009; Husak and Fox, 2006; Husak et al., 2006; Husak et al., 2008; 

Macedonia et al., 2004). 

Substrate rugosity vs. climbing 

 This study identified a positive relationship between using rugose substrates with 

increased body width, long toes, and reduced sprint sensitivity. Both C. bicinctores and S. 

occidentalis are sit - wait predators and may cling for long periods of time on relatively 

vertical surfaces. Since the lizards in this study lack specialized toe pads as seen in Anolis 

species, it is possible that C. bicinctores and S. occidentalis use muscular force to cling. 

The same muscles may be coadapted for sprinting and stability (Russell and Bels, 2001).  

 Differential sprint sensitivity between S. occidentalis and S. undulatus may be due 

to ecological differences including distance to refuge and predator evasion. If S. 
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undulatus rely more on crypsis, and/or escape by moving short distances around the bole 

of the tree, and are thereby less exposed to predation, then the ability to run across varied 

substrates may be more relevant for a rock dweller (S. occidentalis) compared to its 

arboreal counterpart (Cooper, 2009; Cooper et al., 2008). 

Similarities and differences with other lizard clades 

 The hypothesis that rock dwelling lizards exhibit relatively longer limb segments 

and longer tails was accepted (Tables 2 & 4). However, the PCA analysis of the size – 

adjusted morphological measurements indicated that rock dwelling C. bicinctores 

exhibited short limb lengths and tail length compared to other the other focal species. If 

using rocks is correlated with the evolution of longer legs in Lygosominae skinks, then 

why would C. bicinctores exhibit short limbs? Short legs may lead to increased stability, 

which would be important for maintaining high speeds over rugose substrates (Channon 

et al., 2011; Demes et al., 1995; Irschick and Losos, 1999; Irschick et al., 2005; Kerdok et 

al., 2002).  

 In this study, either the highest speed for each species was attained on its native 

substrate, or there was no difference among substrates. Tulli et al (2012) found sprint 

speed in Liolaemini lizards was not the highest on each species’ native substrate. 

Furthermore, the rock dwelling C. bicinctores was the fastest lizard on cobbles and 

pebbles, and shared the highest speed with A. tigris on sand. Rock dwelling Liolaemini 

lizards attained the lowest speed (Tulli et al., 2012). This highlights a fundamental 

difference between Liolaemini lizards in South America and Iguanid lizards and A. tigris 

in North America. Where rock dwelling Liolaemini lizards have evolved wide and flat 

body forms to hide in crevices when faced with predation, the North American rock 
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dwelling species in this study have apparently evolved to sprint across open terrain, rather 

than hide in crevices (Bergmann et al., 2009; Revell et al., 2007; Tulli et al., 2012).  

Evolution of stability 

 In addition to sprint speed, dynamic stability is likely important in rugose habitats 

(Biewener and Daley, 2007; Revell et al., 2007; Russell and Bels, 2001). It is plausible 

that rock dwelling animals such as C. bicinctores evolved upright body postures and/or 

bipedalism to increase dynamic stability over rugose substrates (Biewener, 2003). Clark 

and Higham (2011), for example, found that postural changes accounted for reduced 

falling over slippery surfaces in helmeted guinea fowl. A careful analysis of kinematic 

data could reveal why C. bicinctores has exhibits greater sprint speeds on rugose 

substrates compared to G. wislizenii despite their similar body plan. Furthermore, using 

rugose surfaces may necessitate increases in intrinsic mechanical and behavioral stability 

control factors. The use of increasing muscle tension to absorb additional kinetic energy 

may aid in attaining high velocities (Biewener and Daley, 2007; Daley and Biewener, 

2011; Daley et al., 2006). Such postural, limb angle, and mechanical adjustments have 

been exhibited in guinea fowl and highlight the need for such kinematic data in other 

terrestrial vertebrates such as lizards (Daley et al., 2006). This type of data may be 

especially important for closely related species that use different habitats.  

 In summary, substrate rugosity plays an important, yet variable, role in terrestrial 

locomotion. Animals exhibit varied mechanisms that serve to increase sprint speed on 

their respective native substrates. This study reveals that there is much to be learned 

about how animals move over various substrates. More comparative data should be 
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collected to examine the evolutionary relationships between substrate, locomotion, and 

habitat selection in terrestrial animals. 
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Table 1: Sprint sensitivity values (+/- 1 SE) for each species and ANOVA summary statistics for each increase in substrate rugosity 

(df = 67). Each sprint sensitivity value equals the velocity attained by each lizard on a more rugose substrate subtracted from a less 

rugose substrate.  

 

Species 

(N): 

Aspidoscelis 

tigris  

(11) 

Crotaphytus 

bicinctores 

(14) 

Gambelia 

wislizenii 

(12) 

Sceloporus 

occidentalis 

(12) 

Sceloporus 

undulatus 

(10) 

Sceloporus 

woodi  

(9) 

F P 

Sand  

- Pebbles 

0.40 ± 0.19 - 0.46 ± 0.14 0.13 ± 0.19 0.35 ± 0.19 0.21 ± 0.20 0.08 ± 0.20 4.18 0.0024 

Sand  

- Cobbles 

1.54 ± 0.2 0.14 ± 0.14 0.76 ± 0.19 0.50 ± 0.19 0.75 ± 0.20 0.87 ± 0.20 7.70 0.0001 

Pebbles  

- Cobbles 

1.18 ± 0.17 0.71 ± 0.12 0.63 ± 0.16 0.15 ± 0.15 0.54 ± 0.17 0.79 ± 0.17 4.00 0.0032 
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Table 2: Principal components factor loadings for the 12 size – corrected morphological 

traits measured on each lizard. For PC1, the eigenvalue is 3.84 with 49% of the variation 

in morphology explained. For PC 2, the eigenvalue is 2.79 with 18% of the variation in 

morphology explained. Factor loadings greater than 0.5 are highlighted in bold. 

 

 

Morphological Trait PC1 PC2 

 

Chest Width  -0.27 0.56 

Humerus  -0.48 -0.31 

Antebrachium  -0.24 -0.60 

Manus  0.19 -0.20 

Front toe  -0.84 0.30 

Pelvis  -0.87 0.27 

Femur  0.24 -0.63 

Tibia  0.51 -0.39 

Pes  0.70 -0.39 

Hind toe  -0.17 0.54 

Intergirdle  -0.33 -0.69 

Tail -0.88 0.44 
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Table 3: Average principal component factor loadings (+/- 1 SE) for each species and 

connecting letters report (p < 0.0001, F > 59.00, df = 5, 1 – way ANOVA with Tukey – 

Kramer post hoc comparisons). Within each PC, a shared letter indicates no significant 

difference between species. 

 

Species PC1, letter PC2, letter 

Aspidoscelis tigris -0.83 ± 0.07, C -1.48 ± 0.12, C 

Crotaphytus bicinctores -0.82 ± 0.06, C 1.20 ± 0.11, A 

Gambelia wislizenii -0.97 ±0.08, C 0.22 ± 0.11, B 

Sceloporus occidentalis 1.17 ± 0.07, A -0.12 ± 0.11, B 

Sceloporus undulatus 1.06 ± 0.08, A, B -0.005 ± 0.13, B 

Sceloporus woodi 0.74 ± 0.08, B 0.01 ± 0.14, B 
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Table 4: Average principal components factor loadings (+/- 1 SE) for each ecomorph and 

connecting letters report (p < 0.001, F > 16.00, df = 2, 1 – way ANOVA with Tukey – 

Kramer post hoc comparisons). Within each PC, a shared letter indicates no significant 

difference between ecomorph. 

 

Ecomorph PC1, letter PC2, letter 

Sand 0.11 ± 0.13, C 0.59 ± 0.13, B 

Rock -0.42 ± 0.12, B -0.54 ± 0.12, A 

Tree 1.06 ± 0.22, A -0.005 ± 0.22, A,B 
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Figure 1: Phylogenetic relationships among focal species. Numbers indicate branch 

lengths in millions of years before present. Phylogenetic positions were derived from, and 

branch lengths were based on, Estes, de Queiroz et al. 1988, McGuire, Linkem et al. 

2007, and Wiens, J. J., C.A. Kuczynski, et al. 2011. 
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Figure 2: Mean values (+/- 1 SE) of sprint sensitivity between each substrate for each 

species. Crotaphytus bicinctores increased in velocity from sand to pebbles while all 

other lizards decreased in velocity. The two rock dwelling species, C. bicinctores and S. 

occidentalis did not exhibit a significant decline in velocity from sand to cobbles as in all 

other species did. Sceloporus occidentalis did not exhibit significantly lower sprint 

speeds from pebbles to cobbles although all other species did. Asteriks indicate a 

significant decline in sprint speed (p > 0.001, df = 5, two – way ANOVA with Tukey-

Kramer post hoc comparisons).  
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Figure 3: Scatterplot of PC1 scores vs. PC2 scores for 12 morphological variables across 

six species of lizards. Sceloporus species are characterized by having relatively long tibia 

and long feet. A. tigris is characterized as having long front toes, long antebrachium and 

femur as well as long bodies and tails. C. bicinctores is characterized as having wide 

chests and long hind toes. G. wislizenii occupies intermediate morphological space 

between C. bicinctores and A. tigris on PC component 2.  
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Figure 4: Correlation between Sand – Cobbles sprint sensitivity and PC2 (morphology). 

The figure shows the correlated evolution of sprint sensitivity contrasts with a wide chest 

and long hind toes phenotype. 
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Figure 5: Correlation between Sand – Pebbles sprint sensitivity and PC2 (morphology). 

The figure shows the correlated evolution of sprint sensitivity contrasts with a wide chest 

and long hind toes phenotype. 
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Figure 6: Correlation between Pebbles - Cobbles sprint sensitivity and PC2 

(morphology). The figure shows the correlated evolution of sprint sensitivity contrasts 

with a wide chest and long hind toes phenotype. 
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