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MULTIPLE PATERNITY OF CARETTA CARETTA WITHIN THE NORTHWESTERN 

ATLANTIC OCEAN POPULATION ON WASSAW ISLAND, GA 

 

by 

 

JACOB LASALA 

 

(Under the Direction of David C. Rostal) 

ABSTRACT 

Characterizing the mating system of a species is important for understanding demography 

and population dynamics and can contribute information to conservation efforts. Mating 

systems can impact the ecology, evolution, effective population size and genetic 

variability of a species. Polyandry, resulting in multiple paternity can influence the 

maintenance of genetic variation within a population. Within Testudines, the frequency of 

multiple paternity varies extensively among species (0-100% of nests). Previous studies 

on the loggerhead turtle (Caretta caretta) have shown that within the large management 

unit of peninsular Florida, multiple paternity occurs in approximately 30% of nests. This 

study examines nests from the smaller and more endangered northern management unit. 

The primary objectives of this study are to determine if multiple paternity exists in 

Georgia‟s smaller nesting population and determine if the percentage of nests with 

multiple fathers differs significantly from previous studies. Secondary objectives are to 

compare the incidence of multiple paternity over multiple years, determine if multiple 

paternity varies over the course of the nesting period. Our final objectives were to 

determine the relationship between the number of fathers per nest and female size 

(straight carapace length), as well as hatching success and to determine how many males 

are actually contributing to this nesting population. Mothers and offspring (up to 20) were 

initially sampled from more than 90 nests over three nesting seasons on Wassaw Island, 
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GA (2008-2010). We found that multiple fathers contribute to 75% of nests over the three 

years. There is a difference in number of fathers per nest with relation to the year, but 

there is no relationship between the number of fathers per nest and the nesting period. 

There is a positive relationship between female size (SCL) and the number of fathers per 

nest. There is no relationship between the number of fathers contributing to a clutch and 

hatching success. Finally I found a total of 195 male genotypes over the course of the 

study, resulting in a sex ratio of 2.7 males per 1 nesting female. Every male genotype that 

I discovered only contributed to one nest over the three years samples, indicating there is 

a large number of males contributing to this nesting population. 

 

INDEX WORDS: Caretta caretta, Mating system, Multiple paternity, Georgia, Barrier 

islands, Genotypes, Straight carapace length, Hatching success, Nest size, Sex ratio 
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MULTIPLE PATERNITY OF CARETTA CARETTA WITHIN THE NORTHWESTERN 

ATLANTIC OCEAN POPULATION ON WASSAW ISLAND, GA: 

 A LONGITUDINAL STUDY (2008 – 2010) 

 

Written with intent to submit as a manuscript to: 

Molecular Ecology 

 

ABSTRACT 

 

 

Characterizing the mating system of a species is important for understanding demography 

and population dynamics and can contribute information to conservation efforts. Mating 

systems can impact the ecology, evolution, effective population size and genetic 

variability of a species. Polyandry, the occurrence of a single female mating with multiple 

males can result in the multiple paternity of progeny arrays.  Previous studies on the 

loggerhead turtle (Caretta caretta) have shown that within the large nesting population of 

peninsular Florida, multiple paternity occurs in approximately 30% of nests. This study 

tested nests from the smaller and more endangered northern nesting population for the 

presence of multiple paternal contributions. Mothers and up to 20 offspring were sampled 

from more than 90 nests over three nesting seasons on Wassaw Island, GA (2008 – 2010).  

We found that 75% of nests sampled had multiple fathers with an average of 2.65 fathers 

per nest. We determined that there was a difference in the number of fathers per nest with 

relation to the year, but not to the period the nest was laid. There was a positive 

relationship between the number of fathers per nest and female size (SCL), but there was 

no relationship between number of fathers and hatching success. Finally we found 195 

paternal genotypes and determined that each individual only contributed to one nest over 

all three years. 

 

 



   

12 

 

INTRODUCTION 

 

 The study presented here is the first examination of multiple paternity within 

loggerhead sea turtles (Caretta caretta) nesting on Georgia beaches. This is also the first 

study to look at the frequency of multiple paternity on a small nesting beach and  will be 

the first study to examine the “full” nesting potential of this nesting beach: this research 

covers three years of nesting data, allowing for an assessment of the whole nesting 

population on this beach. 

 Loggerheads reach sexual maturity between 20 and 35 years of age (Federal 

Register, 2011). Every three years, females will travel to their mating sites between late 

March and early June, males are not restricted and can mate every year (Conant et al., 

2009). Mating occurs in offshore wasters near to the nesting beaches several weeks 

before nesting (Limpus, 1985, Conant et al. 2009, etc). Males will occasionally fight one 

another for access to females (Schofield et al., 2006) and females can mate with more 

than one male and then store the sperm for up to a year (Uller and Olsson, 2008). Males 

return to their foraging grounds after mating, females will remain in the vicinity of the 

nesting beach (Limpus and Reed, 1985; Dodd, 1988, etc). Between late April and early 

September, females return to their natal nesting beaches. Females nest on continental 

beaches and barrier islands close to continental land masses (Dodd, 1985) Females will 

lay their first clutch and leave the beach, approximately two weeks (14 days) later the 

females return to nest again (Dodd, 1988; Conant et al., 2009 etc.); this process can be 

repeated for up to 7 (Dodd, 1988) or 8 (observed) clutches per female. 

 Determining how mating systems impact population ecology, genetics and 

evolution has long been of interest to ecology and evolutionary biologists (Wright, 1931; 
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Bjorndal et al. 1983; etc.). Direct observation of marine turtles mating has been a difficult 

task to accomplish in the wild, and has had limited success in closed and controlled 

settings (Moore et al., 2008). Advances in genetic techniques and analytical methods 

permit allow scientists to infer turtle mating systems that may be relevant to conservation 

policy. 

 In 1978 the loggerhead sea turtle was first listed as threatened in its circum-global 

distribution (Federal Register, 1978). In 2007 a petition circulated to ask that the Western 

North Atlantic Loggerhead  be listed as endangered. In 2008, the “Recovery Plan for the 

Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta caretta)” 

highlighted five specific recovery units from Virginia to the Caribbean, including the 

Northern Gulf of Mexico (NMFS and USFWS, 2008). The primary goal of this recovery 

plan was to determine if the Northwest Atlantic loggerhead population was declining 

enough to warrant endangered status.   

 Currently there are 9 distinct population segments worldwide as defined by the 

National Marine Fisheries Service and the United States Fish and Wildlife Service 

(Federal Register, 2011). A distinct population segment is the smallest partition of a 

species allowed to be protected under the U.S. Endangered Species Act. A distinct 

population segment is granted to a population if it is both discrete and significant in 

relation to the rest of the species (Federal Register, 2011). Five of these 9 distinct 

population segments are now considered endangered, the remaining 4 distinct population 

segments are now considered threatened (including the Northwest Atlantic population). 

 Bowen et al. (2005) examined mitochondrial DNA, typically maternally inherited, 

suggested that nesting colonies across the southeastern United States had a strong 
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population structure (each beach was genetically distinctive when compared to one 

another). However, nuclear DNA  (microsatellite markers: inherited from both parents) 

did not show a strong population structure on those same nesting beaches (Bowen et al., 

2005). Bowen et al. suggested that the species mixed in the ocean and then as individuals 

grew, juveniles would group together depending on where they were initially hatched (ie. 

Western/Eastern North Atlantic etc.). In this model, adults would separate further, such 

that the loggerheads along the southeastern United States are all one population, but that 

breeding/nesting populations are distinctive nearer to shore. 

 Bowen et al.'s data indicates that this species' genetic structure along the 

Northwest Atlantic coast is driven by natal nesting (Bowen et al., 2005). Natal nesting is 

the process of nesting  females returning to their natal nesting beaches to lay their eggs. 

In this model, gene flow is attributed to males, as they will move along the coast and not 

be restricted to the beaches they hatched on (Bowen et al., 2005, Federal Register, 2011). 

The Northwestern Atlantic population is genetically distinct from populations elsewhere 

in the Atlantic Ocean (Bowen et al., 2005; NMFS and USFWS, 2008; Federal Register, 

2011; Richards et al., 2011). Thus NMFS and USFWS recently determined that a loss of 

this population would mean a loss of genetic diversity to the species as a whole (Federal 

Register, 2011). 

 The recovery plan of 2008 highlights two recovery units along the coast of the 

Northwestern Atlantic Ocean: The Northern (Virginia – North Florida) and the 

Penninsular Florida Recovery Unit (NRU and PRFU respectively) (NMFS and USFWS, 

2008). From 1989-2008, annual nest totals of the NRU averaged 5,125 nests and from 

1989-2007, annual nests totals of the PFRU average 64,513. Loggerhead nests have 
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decreased 1.3% annually since 1983 in the NRU; overall the unit has experienced a 

“long-term decline” (NMFS and USFWS, 2011). PFRU nesting has decreased as well by 

1.6% annually in the last 20 years. However, NMFS and USFWS suggest that recent 

abnormally high nesting years (2008-2010) represent a positive trend for the NRU 

(Federal Register, 2011). The nesting data suggests that the Northwestern Atlantic 

population is declining, but there could be signs for recent recruitment. 

  NMFS and USFWS determined that the Northwestern Atlantic discrete 

population segment should be considered threatened as opposed to endangered in 2011 

(Federal Register, 2011).  The factors cited were population abundance and trend: they 

suggested that the adult population (over 60,000 by conservative estimate) exceeds those 

of other endangered species in the Atlantic. Furthermore, while acknowledging that the 

population is experiencing decline, NMFS and USFWS stated that recent nesting events 

appear to be positive and could stabilize the region. NMFS and USFWS estimate that the 

nests in Florida comprise approximately 87% of all nesting effort in the Northwest 

Atlantic population.  Subsequently, the majority of the research concerning this discrete 

population segment has occurred in Florida regarding nesting counts and female 

characteristics (Bjorndal et al., 1983; Bollmer et al., 1999; Bowen, 2004; Caldwell, 1962; 

LeBuff and Beatty, 1971; Dodd et al., 2003; Hanson et al., 1998; Moore and Ball, 2002; 

Steinitz et al., 1998 etc.). 

  Our understanding of this discrete population segment is incomplete: there is 

little information available about the mating males as we cannot obtain a reliable sex ratio 

because males rarely leave the ocean. Without knowledge of male contribution, the 

effectiveness with which we manage designated populations will always be limited 
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(Wibbels et al., 1991;Hanson et al., 1998, Casale et al., 2005, Casale et al., 2011 etc.) 

 Examining paternity of hatchlings we can evaluate the number of contributing 

males indirectly (ie. without physically counting each individual). Using genetic 

techniques we can determine how many males sired a nest, even if we are not able to 

observe mating behavior. Exclusion paternity analysis can estimate the potential 

genotypes of contributing fathers, allowing an estimate of how many individuals 

contribute to nesting sites to be calculated. NMFS and USFWS estimate that there are 

30,000 nesting females in the Northwest Atlantic discrete population segment and in 2011 

Richards et al. Used models to conservatively estimate that there was just over 38,000 

females contributing to the discrete population segment from 2001 - 2010. The current 

approximation of adult sex ratios are 1:1 suggesting there are 60,000 – 75,000+  adult 

loggerheads in this discrete population segment over the course of this last decade 

(Federal Register, 2011; Richards et al., 2011 ). The problem with this approximation is 

that it assumes that all males are reproducing and does not assess the number of males 

that are actually contributing to this discrete population segment. By looking at the 

number of genotypes through paternity, we can approach the sex ratio from a different 

angle and perhaps determine a more robust population estimate. 

 Previous studies of multiple paternity in sea turtles are summarized in Table 1. 

These studies indicate that multiple paternity occurs in sea turtle nests (Moore & Ball, 

2002; Zbinden et al., 2007; Fitzsimmons, 1998; Crim et al., 2002; etc.) but varies across 

populations within a species (Jensen et al., 2006, Zbinden et al. 2007; etc.). It is  

interesting to note the difference between nesting sites regarding Lepidochelys olivacea: 

in a regular rookery, only 30% of nests have multiple paternal contributions, but within 
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an arribada nesting site (mass mating) the frequency rises significantly to 92% (Jensen et 

al., 2006). Jensen et al. attributed the difference in sites due to the abundance of 

individuals in the mating system, suggesting that as the number of nesting females rise, 

so does the chance of multiple mating. Following this assessment, larger nesting beaches 

(more nesting females) should have a higher percentage of nests with multiple paternity. 

Do smaller nesting beaches (ie. less nesting females) follow this model? 

 This study examined the occurrence of multiple paternity over the full nesting 

interval (three years) on Wassaw Island, GA. Loggerheads from the Northwestern 

Atlantic distinct population segment, return once every three years (Conant et al., 2009), 

by analyzing 92 non-repeating mothers and 72 nests we are essentially examining a 

snapshot of the nesting population on Wassaw Island, GA. During the three years, we 

sampled 19.5% of the nests laid in that time period. 

 I will quantify the occurrence of multiple paternity within this nesting population 

and how it relates to what we know about the whole discrete population segment 

(specifically with respects to Florida findings). Using genetic data I will estimate how 

many males are contributing to this nesting beach. Finally I will assess the relationship 

between the number of fathers per nest and female size, nest hatching success and the 

timing of the nesting event. 

 

MATERIALS AND METHODS 

Field Methods 

Samples were obtained on the Wassaw National Wildlife Refuge (WASI, 

31 54‟1.08” N/ 80 58‟55.92”) for three summer nesting seasons (2008-2010). Female 

loggerheads nest on this 11.3 km beach from May until early August and nests hatch from 
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late June until early October. 

During nightly patrols with the Caretta Research Project adult nesting females 

were identified from their crawls up the beach (sea turtles all have distinctive crawls, see 

Figure X). Female sampling was divided into three periods of the nesting season in 

correspondence to reproductive hormone levels (Drake, 2001): early nests from May 15 – 

June 10; middle nests from June 11 – July 8 and late nests from July 9 – August 4. 

 Drake (2001) determined that nesting female testosterone levels peaked at the 

beginning of the nesting season and would drop (step wise) with each subsequent nesting 

event. Using this step down pattern as a model, we can estimate when nesting events will 

occur according to our calendar. The first two nesting events roughly from April 30- June 

9 (Early Nesting Period), the next two nesting events occur from June 10- July 9 (Middle 

Nesting Period) and the final nesting events occur from July 10 – August 18 or until the 

end of the nesting season (Late Nesting Period). There is some overlap between nesting 

events and this time scale, but if we assume nesting events occur randomly throughout 

the nesting season, then independent females could be collected in sampling were 

distributed throughout each nesting period. 

  Ten individual females from each nesting period (resulting in 90 females) were 

tagged and measured according to U.S. Fish and Wildlife protocols (Barnard and Keinath, 

1999; Williams and Frick, 2000; Drake, 2001). Blood samples were taken from the 

cervical sinus using a 21Gx1-1/2” needle and retained in a 5ml Sodium Heparin 

vacutainer. No individual was sampled more than once. 

 Nests of these females were promptly caged to prevent predation as well as the 

escape of hatchlings. A GPS reading was taken to mark the location of each nest. Stakes 
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were also added at the dune line to approximate location of nest from the water line, to 

document the date the nest was laid and to also designate what kind of turtle laid the nest: 

Caretta caretta (CC); Chelonia mydas (CM); Dermochelys coriacea (DC) were the three 

typical species. At  hatching,  20 random hatchlings were removed from each loggerhead 

nest, weighed, measured and sacrificed. Residual yolk sacs were removed from these 

hatchlings, weighed and placed in Whirl-Paks® and stored at -20°C. 

Molecular Techniques 

 Maternal DNA was extracted by adding 2 µL of  blood to a lysis buffer (10mM 

Tris pH 8.3, 50mM KCl and 0.5% Tween 20) and the mixture was incubated with 

proteinase K (20 µL, >600 mAU/ml)  at 65
o
C for one hour followed by 100

o
C for 15 

minutes. Hatchling DNA was extracted from residual yolk sacs using the DNeasy blood 

and tissue kit (QIAGEN) following manufacturer protocol.  Polymerase chain reaction 

(PCR) amplification was carried out using primers for five microsatellite loci (CcP7E05, 

CcP2F11, CcP7D04, CcP7C06, CcP8D06) designed for Caretta caretta (Shamblin et al., 

2009). PCR reactions were carried out as a multiplex reaction in 25 µL  volumes, 

consisting of 2 µL  of extracted DNA, 10 µL  of Apex Taq Master Mix (150 mM Tris-

HCl pH 8.5, 40 mM (NH4)2SO4, 3.0mM MgCl2, 0.2% Tween 20; 0.4 mM dNTPs; 0.05 

units/µL  Apex Taq DNA polymerase & stabilizer), 3µL H2O,  2 2 µL P7E Forward and 

Reverse,  1 µL P2F F&R, 0.5 µL P7D F&R, 1 µL P7C F&R and 0.5 µL P8D F&R (10 

µM). Thermocycling protocol was as follows: 95
o
C for 5 min; 40 cycles of 95

o
C for 20s; 

60
o
C for 30s and 72

o
C for 30s; and 72

o
C for 10 min. 

 PCR products were analyzed using an ABI 3500 Genetic Analyzer.  Alleles were 

sized at each locus in relation to an internal size standard using GeneMapper 3.0 software; 



   

20 

 

also, sizing was checked by eye. Microsatellite loci were checked for null alleles using 

Micro-Checker 2.2.3 (Van Oosterhout et al., 2004). Probability of Identity (PI) values and 

probability of exclusion “when only one parent is known” were determined using 

GenAlEx 6.41 (Peakall and Smouse, 2006).  Observed and expected heterozygosity, 

linkage equilibrium and deviations from Hardy-Weinberg Equilibrium were calculated 

and assessed using GenAlEx and GDA (Lewis and Zaykin, 2000) (Table 1). 

Paternity Analysis 

 Analysis of paternity was evaluated with an exclusion paternity analysis. Each 

hatchling was determined to have its own multilocus genotype.  When known maternal 

alleles were subtracted from each locus, the remaining paternal alleles formed suspected 

paternal genotypes. This analysis was performed using the programs GERUD 2.0 and 

COLONY 2.0. GERUD 2.0  assesses the minimum number of fathers per nest. GERUD 

2.0 has been employed in a variety of paternity studies (Jones, 2005; Jones et al., 2010, 

Yue and Chang, 2010, Zbinden et al., 2007) and can be conservative in its estimates of 

the number of paternal contributions.   COLONY 2.0 is a likelihood-based program that 

determines the maximum number of fathers per clutch. GERUD 2.0 fails if there are 

more than 6 fathers, so COLONY 2.0 was used to repeat the analysis on nests that 

GERUD 2.0 could not evaluate because more than 6 fathers were detected. Using both 

programs we approximated a range, where GERUD 2.0 was the minimum and COLONY 

2.0 was the maximum. 

 COLONY 2.0 was also used to compare sibling relatedness for all the nests (Jones 

and Wang, 2010). In this analysis, the error rate of genotyping was set to 0.025 as 

suggested by Wang (Wang, 2004). The determination of multiple paternity within a nest 
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was established by the occurrence of more than two paternal alleles over at least two 

loci–this allowed for the possibility of a mutation at one locus (Yue and Chang, 2010). To 

determine whether paternal contributions were significantly different from equality in 

each nest, goodness-of-fit 
2
-tests were run on all three years of data. When running 

2
-

tests, the years were separated as we assume that each year is independent of one another. 

 The “Probability of Identity” (PI) was estimated using the method employed by 

GenAlEx within our three year data set. 

Where pi is the frequency of the ith allele at a locus 

PI provides an estimate of the average probability that two samples will have the exact 

same genotype given the estimated allele frequencies of the loci used.  The Probability of 

Exclusion (when only one parent is known) was also determined using GenAlEx to 

estimate the statistical power of our individual loci and our combined loci (Table 1).   

Where pi is the frequency of the ith allele at a locus 

Finally each paternal genotype was compared using COLONY 2.0 and GenAlEx to 

determine if any of the the estimated paternal genotypes were sampled more than once; 

furthermore using COLONY we could compare all the nests to these genotypes and 

determine how many nests an individual male contributed to. 

Statistical Analysis 

 All three years were analyzed together (2008-2010).  Every test that was 

performed using data from GERUD was also performed using data from COLONY. All 

analyses were carried out using the program SAS 9.3 (SAS Institute Inc). 

 The original assumption was that female characteristics should vary randomly by 
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year and nesting events should be independent of one another: no repeat nesters were 

analyzed. We ran a generalized linear model with a gamma distribution. As our data was 

skewed to the left, the gamma distribution was the best model to compare variability 

within number of fathers due to year, season and female size. The model was run twice 

(once for each paternity program), with the number of fathers per nest as the dependent 

variable.  Female size (Straight Carapace Length measured in centimeters), the period  

the nest was laid (early, middle or late), the Julian Date the nests were laid and the year 

the nest was laid (2008-2010) were all defined as independent variables. Initially I ran the 

model with all the variables and then removed the independent variable with the highest 

p-value, determining that it had no effect on the number of fathers per nest. Then I reran 

the model, removing the next highest and repeated until the only independent variable 

that remained had p-value less than 0.05. 

 I ran another generalized linear model (gamma distribution) to determine if the 

number of fathers per nest affected hatching success of each nest (percent of nest that did 

not  emerge). Again, I ran two separate tests, the hatching success was defined as the 

dependent variable and the number of fathers per nest was defined as the independent 

variable. 

 Separately using the program JMP 9.0 (SAS Institute Inc) I performed a 

Wilcoxon/Kruskal-Wallis test to determine if there was a difference in the number of 

fathers between nesting periods.  The nesting period (early, middle and late) was defined 

as the independent variable and the number of fathers as the dependent variable. This 

separate test was performed to determine the difference within years, whereas the model 

examined all nests over all years. 
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RESULTS 

 All five loci amplified consistently over the 92 mothers sampled. The program  

Pedant determined that the combined allelic dropout rate of the samples was 0.0254 and 

the false allele rate was 0.1070 (Johnson and Haydon, 2007). Allele number ranged from 

12 for the locus CcP7C06 to 27 for the locus CcP8D06  (Table 2). Deviations from 

Hardy-Weinberg were not found. Combining all five loci produced an expected exclusion 

probability of 99.64%, assuming only one parental genotype is known. The combined 

probability of identity using the five loci (the likelihood that one independent individual 

will have the exact same genotype as another) was 1.5x10
-6 

(Table 2). 

 Of the original 92 mothers, 72 nests survived: 23 from 2008, 21 from 2009 and 28 

from 2010. If we separate by nesting period, there are 23 early nests, 26 middle nests and 

23 late nests. Nests were laid from as early as May 25 to as late as July 17. A total of 

1282 hatchlings were sampled and analyzed. The average number of hatchlings 

genotyped per nest was 18.2 (SD = 4.3). Six nests had less than 10 hatchlings genotyped. 

Over the three-year period the average nest size was 114.7 (SD = 23.9) and the average 

percentage of a nest sampled from the nesting beach was 16.5% (SD = 5.7). The average 

percentage of hatchlings that did not emerge from a nest was 21.7% (SD = 13.7).   

Average female size (straight carapace length) over the three years was 98.6 cm (SD = 

6.5). 

 In 2008, using both GERUD and COLONY multiple paternal contributions were 

found in 19 of 23 nests (82.6%), with an average of 3.00 (± 0.23) males per nest. In 2009, 

using GERUD multiple paternal contributions were found in 15 of 21 nests (71.4%) with 

an average of 2.62 (± 0.38) males per nest (COLONY: 18/21, 85.7%, 2.8 (± 0.35)), 
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averaging 78.6% with 2.71 (± 0.25) fathers per nest. In 2010, using GERUD multiple 

paternal contributions were found in 18 of 28 nests (64.3%) with an average of 2.20 

males per nest (COLONY: 19/28, 67.9%, 2.32 (± 0.25)). When all three years are 

combined, using GERUD multiple paternal contributions were found in 52 of 72 nests 

(72.2%) with an average of 2.58 (± 0.17) males per nest, 95% CI: 2.24 -2.93 (COLONY: 

56/72, 77.8%, 2.72 (± 0.18), 95% CI: 2.36 – 3.09) (Figure 1). 

Fathers per Nest 

Our conservative estimate (GERUD) illustrated that over all three years 20 nests 

had 1 father,  17 nests had 2 fathers, 21 nests had 3 fathers, 7 nests had 4 fathers, 3 nests 

had 5 fathers, 2 nests had 6 fathers and finally 2 nests had more than 6 fathers (GERUD 

could not handle these data sets). Overall, 22 of 52 (42.3%) of nests with multiple fathers 

deviated significantly from equality. In 2008, 6 nests deviated significantly from equal 

contribution among fathers (χ
2
- tests, p = 0.0001 – 0.0253), 13 nests with multiple fathers 

did not deviate significantly (p = 0.1651 – 0.9284) (Figure 2a). In 2009, 6 nests deviated 

significantly from equal contribution among fathers  (χ
2
- tests, p = 0.0006 – 0.0379), 9 

nests with multiple fathers did not deviate significantly (p = 0.1651 – 0.9486) (Figure 3a). 

In 2010, 10 nests deviated significantly from equality  (χ
2
- tests, p = 0.0001 – 0.0492), 8 

nests with multiple fathers did not deviate significantly (p = 0.0736 – 0.7212) (Figure 4a). 

The upper range estimate of COLONY indicates 16 nests had 1 father, 23 nests 

had 2 fathers, 16 nests had 3 fathers, 7 nests had 4 fathers, 4 nests had 5 fathers, 4 nests 

had 6 fathers and finally 2 nests had 7 fathers. Overall, 23 of the 56 (41.1%) nests with 

multiple fathers deviated significantly from equality. In 2008, 9 nests with deviated 

significantly from equal contribution among fathers (χ
2
- tests, p = 0.0001 – 0.0253), 10 
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nests with multiple fathers did not deviate significantly (p = 0.1189 – 0.9735) (Figure 2b). 

In 2009, 5 nests deviated significantly from equal contribution among fathers  (χ
2
- tests, p 

= 0.0001 – 0.0384), 13 nests with multiple fathers did not deviate significantly (p = 

0.0736 – 0.9486) (Figure 3b). In 2010, 9 nests deviated significantly from equality  (χ
2
- 

tests, p = 0.0017 – 0.0423), 10 nests with multiple fathers did not deviate significantly (p 

= 0.0736 – 0.9402) (Figure 4b). 

Generalized Linear Model 

The conservative generalized linear model (Table 4a) shows that when all three 

variables (year, season and female size) are combined, the variation in the number of 

fathers per nest was not explained significantly by any of the independent variables (p = 

0.1303, 0.7410 - 0.8275, 0.2050 respectively). However when year and female size are 

run separately, both variables explained significant variation to the number of fathers per 

nest (χ
 2
 =4.05, p = 0.0441 and χ

 2
 = 5.02, p = 0.0251 respectively). The number of fathers 

per nest decreases as the years go on (2008-2010, Figure 5), as female size increases, the 

number of fathers increases (Figure 6). The number of fathers per nest does not explain 

variation in nest hatching success (χ
 2
 = 1.93,

 
p = 0.1645) (Figure 7).  

  The less conservative (COLONY) generalized linear model (Table 4b) shows that 

when all three variables (year, season and female size) are combined, the variation in the 

number of fathers per nest was not explained significantly by any of the independent 

variables (p = 0.1712, 0.6610 - 0.7981, 0.2091 respectively). However when year and 

female size are run separately, both variables explained significant variation to the 

number of fathers per nest (χ
 2
 =3.96, p = 0.0465 and χ

 2
 = 4.63, p = 0.0315 respectively).  

As year decreases, the number of fathers per nest increases (Figure 5) and as female size 
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increases, the number of fathers per nest increases (Figure 6). The number of fathers per 

nest explained no variation in nest hatching success (χ
 2
 = 0.97,

 
p = 0.3258) (Figure 7). 

 Qualitatively: there was a relationship between female size and nest size (r
2
 = 

0.419, F(1, 64)(0.05) = 46.26, p <0.0001) (Figure 8). 

Season 

When all three years were compared in the model, there was no variation in the 

number of fathers per nest due to the date the eggs were laid (nesting period: Julian Nest 

Date). A Wilcoxon/Kruskal-Wallis was performed to determine if the number of fathers 

per nest varied over the course of the nesting period within each year and between years 

(not over the course of all three years). Like the model however, there was no difference 

in the number of fathers due to the nesting period for any of the three years. In 2008: df 

=2, GERUD: χ
 2
 = 1.42,

 
p = 0.4911, COLONY: χ

 2
 = 0.48,

 
p = 0.7867) (Figure 9a); in 

2009: (df = 2, GERUD: χ
 2
 = 5.33,

 
p = 0.0696, COLONY: χ

 2
 = 3.43,

 
p = 0.1795) (Figure 

9b); finally in 2010: (df = 2, GERUD: χ
 2
 = 1.49,

 
p = 0.4726, COLONY: χ

 2
 = 0.72,

 
p = 

0.6976) (Figure 9c). When all three years were combined, there was no difference in the 

number of fathers per nest due to the nesting season (df = 2, GERUD: χ
 2
 = 1.75,

 
p = 

0.4174, COLONY: χ
 2
 = 2.12,

 
p = 0.3459) (Figure 9d). When comparing the number of 

fathers per nest directly to the Julian Nest Date (the date the nest was laid), there was no 

significant trend (Figure 10). 

Paternal Genotype Analysis 

 One hundred and ninety five (195) individual male genotypes were inferred using 

COLONY over all three years. Figure 12 shows the relationship between nests and 

fathers, there are no half-sibs, suggesting that every father only contributed to one nest 
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over all three years. 

 

DISCUSSION 

Multiple paternity has previously been documented in loggerhead sea turtles across the 

globe. Harry & Briscoe (1988) determined in Queensland, Australia that 8 of 21 nests 

samples (38%) had multiple paternal contributions. In Florida, two studies independently 

determined that just over 30% of nests showed multiple paternal contributions (Bollmer 

et al., 1999 and Moore & Ball, 2002). Lastly, in Greece, Zbinden et al. (2007) found 

multiple paternal contributions in 19 of 20 nests (95%) and found a maximum of 5 

fathers per nest. These studies were all conducted at large nesting aggregations (greater 

than 1000 nests per nesting season) and with the exception of the study in Greece, did not 

take samples from more than one nesting season. 

 In my study, over the course of the three year sampling period, the average nest 

size of C. caretta on Wassaw Island was 114.7 (SD = 23.9) and emergence success was 

0.773 (Caretta Research Project, personal correspondence). The average nest size is 

comparable to values suggested by NMFS and USFWS of 115, but is higher than those 

values for emergence of the Northwestern Atlantic Ocean DPS: 0.54 (Conant et al., 2009). 

It could be suggested that our presence on the small beach of Wassaw is positively 

influencing the emergence success (less predation due to patrols, caging of nests and 

people present on the beach). However this could just be a result of the smaller nesting 

count on a small island in relation to the rest of the DPS, as beaches throughout the more 

heavily nested areas (such as in Florida) would have more human traffic and lower 

percentages of nests caged. Also, emergence success of larger nesting aggregations are 

more likely to approach the mean. 
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 More than one male sired 75% (72.2 – 77.8%) of nests on Wassaw Island during 

the three year period studied. The average minimum number of fathers per nest was 2.65 

(2.58-2.72). Even though Wassaw is a much smaller nesting beach (less nesting females) 

than either Florida or Greece, this estimate is nearly double the findings in the large 

Florida rookery of 33% and 1.4 fathers per nest (Moore & Ball, 2002). But is less than 

estimates found in Greece of 95% and 3.5 fathers per nest (Zbinden et al., 2007) (Figure 

11). Previous studies have suggested that larger nesting aggregations should increase the 

likelihood of multiple paternity (Jensen et al. 2006; Uller and Olsson, 2008; etc.) as there 

is a positive correlation between multiple paternity and the probability of mate encounters. 

Regarding the Greece data, this theory makes sense, but there must be something else 

limiting this theory with regards to Florida (one of the largest nesting aggregations in the 

world). Perhaps because there are less females nesting in Georgia and Greece, males are 

able to mate with as many females as possible, but in Florida there are so many nesting 

females that there is a limit to how many females males can actually mate with 

(eventually with 30,000 females, a males sperm will run out). 

 Multiple paternity may be favored if it increases the variability of the offspring 

(Uller and Olsson, 2008, Olsson et al., 1994), but these are not necessarily related.  As  I 

cannot directly study the fitness of all the hatchlings, an easy way to assess variability is 

by looking at the how many hatchlings actually pip out of the egg. There was no 

relationship between hatching success and the number of fathers per nest. In other words, 

the number of fathers per nest did not directly skew the hatchlings to be more or less 

likely to survive. This could suggest that more fathers do add to the variability of 

hatchlings, but not to the viability of the hatchlings. We posit that with more fathers there 
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should be more variability, every additional male will have both “good alleles” and “bad 

alleles.” In this example, “good alleles” favor the hatchling survival (ie. pipping out of 

the egg) and “bad alleles” could hinder the hatchling survival.  By adding variation to a 

nest it is unlikely every allele passed along will be “good” for the hatchlings.  But 

because female turtles cannot prepare for what their young will face in their future, bet-

hedging against an unpredictable environment could still provide some benefits. 

A major goal of this study was to assess the full nesting population of Wassaw 

Island, GA in comparison to the distinct population segment as a whole. Previous studies 

within the distinct population segment have focused on the large rookery of Florida 

(Bollmer et al., 1999; Moore & Ball, 2002). These studies, as well as others outside of the 

distinct population segment, have focused on assessing how multiple paternity affects the 

nesting population directly. (Bollmer et al., 1999; Moore & Ball, 2002; Zbinden et al., 

2007; etc.).  None of these studies have looked at the trends of multiple paternity over the 

course of time. 

There were three major reasons for us to look at changes in the frequency of 

multiple paternity in this nesting population over time. First, female turtles return to nest 

once every three years (Conant et al., 2009); by looking at three years of data, we are 

essentially looking at a snapshot of the “whole” nesting population on this island. Second, 

there was a steady decrease of nesting numbers from 1970's until 2008, with a rise of 

nesting numbers from 2009 to 2011 (Federal Register, 2011), we wanted to see if  this 

sudden increase in nesting affect the number of nests with multiple fathers. Finally, there 

was an unseasonably cold and wet season in 2009 that invariably affected how many 

nests I could analyze (only 21 of 30 original nests). As females nest once every three 
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years on Wassaw, the number of nests per year should be random, allowing our 

assessment of the number of fathers per nest to be unbiased.  But in 2009 many nests 

were lost due to events outside of the experiment's control. By losing those nests, it is 

possible that my data has become skewed. There was significant variation in the number 

of fathers per nest due to the year: from 2008 – 2010, the number of fathers per nest did 

increase. However, this finding does not mean that the year caused this increase, the 

variation is only related to each year, suggesting that each year could affect the results (ie. 

the difference from 2009 could have been important, but I did not test for that 

specifically). 

We found that the number of fathers per nest did vary with regards to female size 

(straight carapace length, cm), such that as female size rose, so did the number of fathers. 

This is most likely attributed to larger females being older (Casale et al., 2011). Males 

probably favor older females because they are likely more fecund, they have lived long 

enough that they have reproduced more than once and if they are larger they can hold 

more eggs. It is also possible that larger females can swim faster to mating grounds  and 

would have a longer mating period (untested). The females varied significantly in 2010 in 

comparison to the other two years, the females were smaller, suggesting that these turtles 

were young. Regarding the difference in number of fathers per nest by year, this could be 

a difference in sample size: there are 5+ more nests analyzed in 2010 than from 2008 (23) 

or 2009 (21).  Or there might not be any trend at all and 2010 was just an anomaly; the 

only way to tell for sure would be to continue sampling. 

Coupled together, there was no difference in the number of fathers per nest in 

relation to year and female size. This could suggest that while the weather of 2009 might 
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have affected the nests on the beach, there was no connection between the climate and the 

mating offshore. This also suggests that while females in 2010 were smaller and there 

were less fathers per nest, there was no real difference in the number of fathers per nest 

because of the smaller females. 

There was no difference in the number of fathers per nest due to nesting period. 

This is consistent with significant sperm mixing at the beginning of the season. (Pearse et 

al., 2002; Uller and Olsson, 2008; etc.) Females store the sperm in their oviduct after 

mating and can potentially hold the sperm for at least a year.  (Uller and Olsson, 2008) If 

the sperm from male to male was being packed in one after another, it could be possible 

to see a skew in the number of fathers per nest over the course of the season. However, 

because there was no pattern of multiple fathers or single fathers, sperm must mix. 

Additionally, 21% of the nests sired by more than one male showed skewed 

paternal contributions (ie. proportions of the nest were biased to one of the fathers). 

When a nest is skewed to one father over another, it is typically hypothesized as evidence 

for cryptic female choice (allowing females to preferentially choose sperm) or for the 

promotion of “good alleles,” thus supporting sperm competition (Uller and Olsson, 2008). 

Furthermore, we found that there was no difference in hatching success due to the 

number of fathers per nest, suggesting that females do not mate repeatedly to guarantee 

fertilization. 

This study estimated 195 unique paternal genotypes. No male sired more than one 

nest throughout the three years, we posit that this nesting population's mating system is 

polyandrous and not polygynous. It is probable that males are contributing to other nests, 

but our data does not support this. 
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Counting males is difficult as males rarely return to the beach and they return to 

their feeding grounds immediately after the mating season. By comparing male genotypes 

we can “count” without having to witness the males or the mating itself. As hatchling sex 

ratios are becoming increasingly female biased (Hanson et al., 1998; Delgado et al., 2010 

etc.), it is important to determine how many males are actually contributing to this 

nesting population.  If we assume that each year in this study is independent of one 

another, that the females nesting in 2008 are not nesting in 2009 and females in 2009 are 

not nesting in 2010, then we have to look at the ratio of males to nests individually (3 

years, 3 sub-nesting-populations: 3.00, 2.71, 2.67). But because we didn't find any males 

that contributed to more than one year's nests we can take the average  number of males 

per nests over all three years (2.65 males to nests). 

The estimate in Florida, is that there is a 1:1 male to female  adult ratio mating 

and contributing to the nesting beaches, in other words if there are 30,000 females nesting 

per year in Florida then there are 60,000 active adults (Federal Register, 2011).  If the 

ratio of number of fathers to nests (ie. number of females) is correct and not just a 

remnant of  this experiment's small sample size, Northern nesting beaches could be 

essential to the continuation of a healthy nesting population of the Northwestern Atlantic 

distinct population segment. 
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Table 1 

 

Percentage of nests showing multiple paternity within sea turtles from previous studies 

using microsatellite markers. 

Species # Clutches Analyzed % Multiple Paternity Citation 

Caretta caretta 70 31% (22/70) Moore & Ball, 2002 

C. caretta 20 95% (19/20) Zbinden et al., 2007 

Chelonia mydas 22 9% (2/22) Fitzsimmons, 1998 

C. mydas 18 61% (11/18) Lee & Hays, 2004 

Dermochelys coriacea 20 10% (2/20) Crim et al., 2002 

Lepidochelys olivacea 13 30% (4/13) Jensen et al., 2006 

L. olivacea 13 92% (12/13) Jensen et al., 2006 

Lepidochelys kempi 26 58% (15/26) Kichler et al., 1999 

 

 

 

Table 2 

 

Descriptive statistics of the five polymorphic microsatellite markers used Number of 

alleles (A), expected heterozygosity (HE) and observed heterozygosity (HO). 

 

Locus 

 

Size Range (bp) 

 

Dye 

 

A 

 

HE 

 

HO 

Expected 

Exclusion 

Probability 

CcP7E05 164 – 236 6FAM 18 0.920 0.978 0.695 

CcP2F11 252 – 308 6FAM 16 0.892 0.956 0.626 

CcP7D04 320 – 376 6FAM 14 0.907 0.913 0.669 

CcP7C06 256 – 296 HEX 12 0.864 0.858 0.541 

CcP8D06 256 – 376 TAMRA 27 0.941 0.956 0.792 
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Table 3 

 

Descriptive table of multiple paternity by year, using GERUD, COLONY and the average 

between the two programs. The percentage is determined by dividing the number of nests 

with multiple fathers by the total number of nests and multiplying by 100. The second 

number is the average number of fathers per nest and SE. 

Year GERUD COLONY Average 

2008 19/23 = 82.6% 

3.00 (±0.29) 

19/23 = 82.6% 

3.00 (±0.35) 

19/23 = 82.6% 

3.00 (±0.23) 

2009 15/21 = 71.4% 

2.62 (±0.38) 

18/21 = 85.7% 

2.80 (±0.35) 

16.5/21 = 78.6% 

2.71 (±0.25) 

2010 18/28 = 64.3% 

2.21 (±0.23) 

19/28 = 67.9% 

2.32 (±0.25) 

18.5/28 = 66.1% 

2.67 (±0.17) 

Average 52/72 = 72.2% 

2.58 (±0.17) 

56/72 = 77.8% 

2.72 (±0.18) 

54/72 =75% 

2.65 (±0.13) 
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Table 4a 

 

Generalized Linear Model for GERUD, distribution gamma. All variables have 1 degree 

of freedom, N = 72, Chi-square values are first, followed by the p-value. 

Parameter Initial Model Step 1 Step 2 Run Alone 

Year 

(2008-2010) 

2.29, 0.1303 2.34, 0.1259 2.18, 0.1394 4.05, 0.0441 

Straight Carapace 

Length (cm) 

1.61, 0.2050 2.17, 0.1408 3.34, 0.0676 5.02, 0.0251 

Season 

(Early – Middle) 

0.05, 0.8275 0.21, 0.6444   

Season 

(Middle – Late) 

0.11, 0.7410    

Julian Nest Date 0.09, 0.7656    

     

Hatching Success    1.93, 0.1645 

 

 

 

Table 4b 

 

Generalized Linear Model for COLONY, distribution gamma. All variables have 1 degree 

of freedom, N = 72, Chi-square values are first, followed by the p-value. 

Parameter Initial Model Step 1 Step 2 Run Alone 

Year 

(2008-2010) 

1.87, 0.1712 1.91, 0.1675 1.80, 0.1803 3.96, 0.0465 

Straight Carapace 

Length (cm) 

1.58, 0.2091 1.54, 0.2152 2.91, 0.0880 4.63, 0.315 

Season 

(Early – Middle) 

0.07, 0.7880 0.01, .9257   

Season 

(Middle – Late) 

0.19, 0.6610 0.31, 0.5801   

Julian Nest Date 0.07, 0.7981    

     

Hatching Success    0.97, 0.3258 
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Figure 1: Graph showing the relationship between the two programs used and the three 

years analyzed. (N2008 = 23, N2009 = 21, N2010 = 28). The gray bars are GERUD by year, 

the white bars are COLONY by year, G F/N represents the number of fathers per nest 

according to GERUD and C F/N represents the number of fathers per nest according to 

COLONY 
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(a) 
 

  

 
(b) 

 
Figure 2: Relative contribution of fathers to clutches sired by multiple fathers from 2008. 

(a): Data estimated using GERUD. (b): Data estimated using COLONY. Stars indicate 

nests that paternal contributions did deviate significantly from equality (goodness of fit 
2
-tests, P>0.05) in a nest. 
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(a) 

 
(b) 

 
 

Figure 3: Relative contribution of fathers to clutches sired by multiple fathers from 2009. 

(a): Data estimated using GERUD. (b): Data estimated using COLONY. Stars indicate 

nests that paternal contributions did deviate significantly from equality (goodness of fit 
2
-tests, P>0.05) in a nest. 
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 (a) 

 
(b) 

 
Figure 4: Relative contribution of fathers to clutches sired by multiple fathers from 2010. 

(a): Data estimated using GERUD. (b): Data estimated using COLONY. Stars indicate 

nests that paternal contributions did not deviate significantly from equality (goodness of 

fit 
2
-tests, P>0.05) in a nest. 
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Figure 5:  This graph shows the difference between the average number of fathers by year. 

There is a visually negative trend as the years increase and using the generalized linear 

model the trend is significant (G: χ
2
 =4.05, p = 0.0441; C: 

2
 =3.96, p = 0.0465). 
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Figure 6: The relationship between female size (Straight Carapace Length, cm) and the 

number of fathers per nest.  There is a significant difference in number of fathers due to 

female size: as female size increases, so does the number of fathers (G: 
2
 = 5.02, p = 

0.0251; C: 
2
 = 4.63, p = 0.0315). 
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Figure 7: The relationship between the number of fathers per nest and the hatching 

success (%) of each nest, using both programs. The generalized linear model determined 

there was no significant relationship. 
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Figure 8: Relationship between Female Straight Carapace Length (cm) and the number of 

eggs per nest (ie. nest size). There is a positive correlation between the two, as females 

get larger, the number eggs per nest increases (r
2
 = 0.419, F(1,64)(0.05)= 46.26, p<0.001) 
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(c) 
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Figure 9: Nesting period (early, middle and late) versus the average number of fathers, (a): 2008, 

(b): 2009, (c): 2010 and (d): all years combined. The bars represent +1 Standard Deviation. There 
is no significant difference in the number of fathers due to nesting period across all years. 
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Figure 10: Julian Nest Date compared to number of fathers per nest. There is a visual 

negative trend: as the nesting season progresses, the number of fathers decreases (not 

significant). 
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Figure 11: Relationship between location, percentage of nests sired by multiple males and 

the average number of fathers per nest by location. Adapted using data from Moore and 

Ball, 2002 and Zbinden et al., 2007. 
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Figure 12: Relatedness of siblings. Estimate of fathers contributing to each nest over all 

three years. Triangles above the transect represent individual nests (fully related siblings). 

Triangles below the transect represent individuals who are related to each other (half-

siblings). 
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APPENDIX A: FULL NEST DATA 

Season 
Date 
Laid JND 

Nest 
# 

(CRP) Year 
Mother 

SCL 
Mother 

SCW N 
Nest 
Total 

% Nest 
Sampled 

Hatching 
Success HS% Gerud Colony 

Early 
28-
May 149 9 2008 111 99.5 20 147 13.60544218 91.16 0.9116 6 6 

Early 

30-

May 151 11 2008 106 97 20 136 14.70588235 63.97 0.6397 1 2 

Early 
30-
May 151 12 2008   20 149 13.42281879 44.3 0.443 4 4 

Early 
1-

Jun 153 15 2008 105 97 7 147 4.761904762 93.2 0.932 2 2 

Early 
1-

Jun 153 16 2008 104 99 9 132 6.818181818 84.85 0.8485 3 3 

Early 
2-

Jun 154 18 2008 103 95.5 12 127 9.448818898 81.1 0.811 3 3 

Middle 

15-

Jun 167 38 2008 94 83 11 101 10.89108911 88.12 0.8812 3 3 

Middle 
15-
Jun 167 39 2008 99 92 17 148 11.48648649 80.41 0.8041 5 6 

Middle 
16-
Jun 168 41 2008 96 95 20 133 15.03759399 90.98 0.9098 5 5 

Middle 

17-

Jun 169 43 2008 106 101 20 126 15.87301587 86.51 0.8651 3 3 

Middle 
17-
Jun 169 45 2008 95 91 20 117 17.09401709 84.62 0.8462 4 5 

Middle 
18-
Jun 170 46 2008 91 85 20 90 22.22222222 85.56 0.8556 3 2 

Middle 
19-
Jun 171 49 2008 102 94 21 108 19.44444444 84.26 0.8426 2 1 

Middle 
19-
Jun 171 50 2008   20 110 18.18181818 86.36 0.8636 2 1 

Late 7-Jul 189 86 2008 96 82 20 94 21.27659575 90.43 0.9043 1 1 

Late 7-Jul 189 88 2008 102 92.5 20 93 21.50537634 65.59 0.6559 5 6 

Late 8-Jul 190 91 2008 97 90 20 119 16.80672269 78.99 0.7899 2 2 

Late 
10-
Jul 192 94 2008 99 95 20 106 18.86792453 86.79 0.8679 3 4 
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Late 
11-
Jul 193 96 2008 108 97.5 21 132 15.90909091 85.61 0.8561 3 2 

Late 
14-
Jul 196 97 2008 89.5 79.5 20 106 18.86792453 91.51 0.9151 4 3 

Late 
14-
Jul 196 99 2008   20 113 17.69911504 61.95 0.6195 3 5 

Late 
14-
Jul 196 100 2008 105 95.5 21 105 20 84.62 0.8462 1 2 

Late 
16-
Jul 198 105 2008 105 99 20 92 21.73913044 63.04 0.6304 1 1 

Early 
26-
May 146 5 2009 108.5 93 20 130 15.38461539 85.38 0.8538 7 7 

Early 
26-
May 146 6 2009 103 97 20 153 13.07189543 80.39 0.8039 4 4 

Early 
27-
May 147 8 2009 106 94 20 148 13.51351351 88.51 0.8851 2 2 

Early 
29-
May 149 12 2009 105 99 19 143 13.28671329 95.1 0.951 7 7 

Early 
29-
May 149 13 2009 104 97 20 107 18.69158879 88.79 0.8879 4 4 

Early 
31-
May 151 17 2009 98.5 94.5 20 145 13.79310345 88.97 0.8897 1 1 

Early 

6-

Jun 157 22 2009 108 102 20 168 11.90476191 57.14 0.5714 3 3 

Early 
6-

Jun 157 23 2009 100 90.5 5 116 4.310344828 76.72 0.7672 3 3 

Early 
6-

Jun 157 24 2009 96 90 20 110 18.18181818 93.64 0.9364 2 2 

Middle 
17-
Jun 168 46 2009 89 84 19 75 25.33333333 88.67 0.8867 2 3 

Middle 
18-
Jun 169 47 2009 98 94 5 56 8.928571429 75 0.75 2 2 

Middle 
18-
Jun 169 48 2009 104 93.5 20 132 15.15151515 56.82 0.5682 2 2 

Middle 
23-
Jun 174 55 2009 94 86.5 20 137 14.59854015 69.34 0.6934 1 1 

Middle 
23-
Jun 174 56 2009 101 93 20 137 14.59854015 90.51 0.9051 3 3 
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Middle 
24-
Jun 175 58 2009 106.5 99.5 20 148 13.51351351 89.19 0.8919 1 2 

Late 1-Jul 182 63 2009 94 81 20 52 38.46153846 86.54 0.8654 2 2 

Late 1-Jul 182 64 2009 103 97.5 4 122 3.278688525 90.16 0.9016 1 1 

Late 7-Jul 188 74 2009   20 110 18.18181818 73.64 0.7364 1 2 

Late 9-Jul 190 77 2009 91 86 19 96 19.79166667 43.75 0.4375 3 3 

Late 

11-

Jul 192 78 2009   19 87 21.83908046 72.41 0.7241 3 3 

Late 
11-
Jul 192 79 2009   20 111 18.01801802 76.58 0.7658 1 2 

Early 
25-
May 145 6 2010 99 95 17 127 13.38582677 88.19 0.8819 2 2 

Early 
25-
May 145 8 2010 110 100 20 152 13.15789474 88.16 0.8816 3 3 

Early 
26-
May 146 10 2010 101 98 21 119 17.64705882 78.99 0.7899 4 4 

Early 

27-

May 147 11 2010 103 94 20 134 14.92537313 47.76 0.4776 2 2 

Early 
28-
May 148 13 2010 100 92 20 117 17.09401709 64.1 0.641 1 2 

Early 
29-
May 149 14 2010 94 89 20 124 16.12903226 79.03 0.7903 2 2 

Early 

29-

May 149 15 2010 105 94.5 20 134 14.92537313 71.64 0.7164 2 2 

Early 
30-
May 150 17 2010 87.5 79 20 81 24.69135803 80.25 0.8025 1 1 

Middle 
8-

Jun 159 37 2010 91 87 20 88 22.72727273 90.91 0.9091 1 1 

Middle 
10-
Jun 161 42 2010 84.5 77 6 86 6.976744186 81.4 0.814 1 1 

Middle 
10-
Jun 161 44 2010 92 86 20 100 20 79 0.79 1 1 

Middle 
16-
Jun 167 55 2010 96.5 93.5 20 111 18.01801802 75.68 0.7568 2 2 

Middle 
16-
Jun 167 57 2010 93.5 85 20 102 19.60784314 89.22 0.8922 1 1 

Middle 
19-
Jun 170 60 2010 96 92 20 133 15.03759399 82.71 0.8271 6 6 
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Middle 
19-
Jun 170 61 2010 88 77.5 20 74 27.02702703 86.49 0.8649 3 2 

Middle 
19-
Jun 170 62 2010 92 81 20 110 18.18181818 86.36 0.8636 3 3 

Middle 
19-
Jun 170 64 2010 87.5 79 20 95 21.05263158 77.89 0.7789 1 1 

Middle 
20-
Jun 171 65 2010 89 84 20 91 21.97802198 82.42 0.8242 2 4 

Middle 
20-
Jun 171 66 2010 95.4 90.4 18 121 14.87603306 75.21 0.7521 1 1 

Middle 
21-
Jun 172 67 2010 98 88 20 99 20.2020202 91.92 0.9192 3 4 

Late 7-Jul 188 114 2010 104 92 10 117 8.547008547 80 0.8 3 3 

Late 
10-
Jul 191 116 2010 105 97 20 123 16.2601626 81.3 0.813 3 3 

Late 
10-
Jul 191 117 2010 95 89 15 110 13.63636364 40.91 0.4091 1 1 

Late 

12-

Jul 193 123 2010 94 81 20 77 25.97402597 67.53 0.6753 3 3 

Late 
15-
Jul 196 129 2010 103 94 13 119 10.92436975 32.77 0.3277 1 1 

Late 
16-
Jul 197 132 2010 89 82 20 83 24.09638554 85.54 0.8554 2 2 

Late 
16-
Jul 197 136 2010 91 79 20 127 15.7480315 69.29 0.6929 4 5 

Late 
17-
Jul 198 138 2010 101 91 20 93 21.50537634 62.07 0.6207 3 2 
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