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Varadan Sevilimedu

Under the Direction of Lili Yu

ABSTRACT

Survival analysis is the study of time to event outcomes. Accelerated Failure Time models (AFT) 

serve as a useful tool in survival analysis to study the time of occurrence of an event and its relation 

to the covariates of interest. The accuracy of estimation of parameters in AFT models is dependent 

upon the correct classification of binary covariates. Considering that perfect classification is highly 

unlikely, it is imperative that the performance of the existing bias-correction methods be analyzed 

in AFT models. However, certain areas of bias-correction in AFT models still remain unexplored. 

One of these unexplored areas, is a situation where the survival times follow a log-logistic dis-

tribution. In this dissertation, we evaluate the performance of the Misclassification simulation 

extrapolation (MC-SIMEX) procedure, a well known procedure for bias-correction due to mis-

classification, in AFT models where the survival times follow a standard log-logistic distribution. 

In addition, a modified version of the MC-SIMEX procedure i s also p roposed, that provides an 

advantage in situations where the sensitivity and specificity of classification are un known. Lastly, 

the performance of the original MC-SIMEX procedure in lung cancer data provided by the North 

Central Cancer Treatment Group (NCCTG), is also evaluated.

Key Words: AFT models, Survival analysis, Log-logistic distribution, MC-SIMEX, Cancer



APPLICATION OF THE MISCLASSIFICATION SIMULATION EXTRAPOLATION 

(MC-SIMEX) PROCEDURE TO LOG-LOGISTIC ACCELERATED FAILURE TIME (AFT) 

MODELS IN SURVIVAL ANALYSIS

by

VARADAN SEVILIMEDU

MBBS., Gandhi Medical College, India, 2004

MPH., Georgia Southern University, 2010 

A Dissertation Submitted to the Graduate Faculty of Georgia Southern University in Partial 

Fulfillment of the Requirements for the Degree

DOCTOR OF PUBLIC HEALTH

STATESBORO, GEORGIA



c© 2017

VARADAN SEVILIMEDU

All Rights Reserved



1

APPLICATION OF THE MISCLASSIFICATION SIMULATION EXTRAPOLATION 

(MC-SIMEX) PROCEDURE TO LOG-LOGISTIC ACCELERATED FAILURE TIME (AFT) 

MODELS IN SURVIVAL ANALYSIS

by

VARADAN SEVILIMEDU

Major Professor: Lili Yu
Committee: Hani M. Samawi

Haresh Rochani

Electronic Version Approved: 

December 2017



2

ACKNOWLEDGMENTS

I would like to thank Drs. Lili Yu, Hani Samawi and Haresh Rochani of the Department of Bio-

statistics at the Jiann Ping Hsu College of Public Health, for providing their time and effort in

making this dissertation a success.



3

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Regression Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Pooled estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Multiple imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Corrected score function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Estimated partial likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Misclassification simulation extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Accelerated failure time models (AFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Basic notation and formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Specifications of AFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Likelihood function of AFT models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Log-logistic AFT regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

An overview of log-logistic distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Specifications of log-logistic AFT regression models . . . . . . . . . . . . . . . . . . 21

An overview of the MC-SIMEX procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

The original MC-SIMEX procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Modified MC-SIMEX procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

An overview of simulation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



4

Overview of the existing simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Overview of the proposed simulation method . . . . . . . . . . . . . . . . . . . . . . . . 32

Data simulation and estimation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Results of the performance of the original and modified MC-SIMEX estimator . 38

Results for a sensitivity of 80% and specificity of 80% . . . . . . . . . . . . . . . . 38

Results for a sensitivity of 90% and specificity of 70% . . . . . . . . . . . . . . . . 46

Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Application to lung cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

North Central Cancer Treatment group (NCCTG) - Lung cancer data . . . . . . . . . . 59

Misclassification matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Distribution of survival times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



5

LIST OF TABLES

Page

Table 4.1: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = −log2 and β2 = 0.5 . . . . . . . . . . . 40

Table 4.2: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = −log2 and β2 = −0.5 . . . . . . . . . 41

Table 4.3: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = log2 and β2 = 0.5 . . . . . . . . . . . . . 42

Table 4.4: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = log2 and β2 = −0.5 . . . . . . . . . . . 43

Table 4.5: Results of the modified MC-SIMEX procedure using log-logistic distribution of survival

times. Sensitivity = 80%, Specificity = 80%. True β values are β1 = −log2 and β2 = 0.5 . . . . . 44

Table 4.6: Results of the modified MC-SIMEX procedure using log-logistic distribution of survival

times. Sensitivity = 80%, Specificity = 80%. True β values are β1 = −log2 and β2 = −0.5 . . . 45

Table 4.7: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = −log2 and β2 = 0.5 . . . . . . . . . . . 47

Table 4.8: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = −log2 and β2 = −0.5 . . . . . . . . . 48

Table 4.9: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = log2 and β2 = 0.5 . . . . . . . . . . . . . 49

Table 4.10: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = log2 and β2 = −0.5 . . . . . . . . . . . 50

Table 4.11: Results of the modified MC-SIMEX procedure using log-logistic distribution of sur-

vival times. Sensitivity = 90%, Specificity = 70%. True β values are β1 = −log2 and β2 = 0.5 51

Table 4.12: Results of the modified MC-SIMEX procedure using log-logistic distribution of sur-

vival times. Sensitivity = 90%, Specificity = 70%. True β values are β1 = −log2

and β2 = −0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



6

Table 4.13: Results of the MC-SIMEX procedure with the log-logistic distribution of survival

times, but misspecified as a Weibull distribution. Sensitivity = 80%, Specificity = 80%. True β

values are β1 = −log2 and β2 = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 4.14: Results of the MC-SIMEX procedure with the log-logistic distribution of survival

times, but misspecified as a Weibull distribution. Sensitivity = 80%, Specificity = 80%. True β

values are β1 = −log2 and β2 = −0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 4.15: Results of the MC-SIMEX procedure with the log-logistic distribution of survival

times, but misspecified as a Weibull distribution. Sensitivity = 90%, Specificity = 70%. True β

values are β1 = −log2 and β2 = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 4.16: Results of the MC-SIMEX procedure with the log-logistic distribution of survival

times, but misspecified as a Weibull distribution. Sensitivity = 90%, Specificity = 70%. True β

values are β1 = −log2 and β2 = −0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 5.1: Karnofsky performance status scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



7

LIST OF FIGURES

Page

Figure 1: PDF, QQ plot, PP plot and the CDF of empirical data compared to a log-normal distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 2: PDF, QQ plot, PP plot and the CDF of empirical data compared to a log-logistic distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3: PDF, QQ plot, PP plot and the CDF of empirical data compared to a Weibull

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4: PDF, QQ plot, PP plot and the CDF of empirical data compared to a logistic

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5: Hazard functions associated with the lung cancer data considering the performance score

category (PS) as the covariate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 6: Plot of the simex and naive estimators with their 95% confidence intervals. The x-axis

represents the type of estimator and the y-axis represents the β̂ values . . . . . . . . . . . . . . . . . . . . . . 65



8

Chapter 1

INTRODUCTION

Survival analysis is the study of time-to-event outcomes, and is commonly used in mor-

bidity and mortality analyses[1]. The accuracy of estimation of parameters in survival models

depends upon the correct specification of binary covariates in the model. However, correct spec-

ification of binary covariates seldom occurs, thus resulting in biased parameter estimates. For

example, misclassification of immunization status resulted in biased hazard estimates of preterm

birth, in a study by Ahrens et al. in 2012[2]. Misclassification of radiation exposure status resulted

in biased hazard estimates in a study by Prentice in 1982[3, 4]. Misclassification of socioeconomic

status resulted in biased estimates of risk of chronic disease, in a study by Kauhanen et al. in

2006[5, 6]. Despite the common occurrence of misclassification error, more research in this area

is still needed.

Misclassification error can be classified into non-differential and differential misclas-

sification error. Non-differential misclassification error occurs when the information provided by

W (misclassified or naive covariate), about Y (response) is irrelevant as long as its corresponding

true covariate X and the other confounding covariate Z are available. In this case, W is called the

surrogate for X . For example, classifying an individual as hypertensive based on his/her systolic

blood pressure measurement on a single day (W ), versus systolic blood pressure measurement

over a prolonged period of time (X) can result in non-differential misclassification error[7]. On

the other hand, if W provides additional information about Y , even when X and Z are already

available, then a differential misclassification error ensues. For example, assigning an individual

to a category of high risk for coronary heart disease, based upon total cholesterol measurements as

opposed to low density lipoprotein (LDL) measurements, can result in differential misclassifica-

tion error [8]. In this dissertation, we focus mainly on non-differential misclassification error.
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Survival analysis broadly employs two models: the cox regression model and the accel-

erated failure time model (AFT). The Cox regression model regresses the risk/hazard of a certain

event, at a certain time, on the risk/hazard at baseline and on the covariates included in the model.

The AFT model, on the other hand regresses the log of the time of occurrence of an event on the

covariates of interest[9, 10]. The effect of misclassification has been well studied in Cox regres-

sion models[11]. Ahrens et al.[2] studied the effect of misclassification using the probabilistic bias

analysis in a Cox regression model. Cole et al.[12] used the regression calibration and multiple im-

putation approach to correct for the bias caused by misclassification in a Cox proportional hazards

model. Zucker et al.[13] used the weighted least squares methods for correction of misclassifica-

tion in a Cox proportional hazards model, followed by the pseudo-partial likelihood[14] and the

corrected score function approach[15, 16]. Bang et al.[17] apply the pooled estimation technique

proposed by Spiegelman in 2001[18], to the Cox proportional hazards model. Zhou and Pepe[19]

used an estimated partial likelihood function to correct for misclassification-bias in Cox regression

models. However, the effect of misclassification has not been studied extensively in AFT mod-

els, despite the transparent interpretation provided by them[20, 21]. Bang et al.[17] studied the

effect of misclassification in survival data where the survival times follow the Weibull distribution.

Slate et al.[22] studied the effect of misclassification in a log-normal AFT model. The Weibull

and the log normal distributions can only model survival data where the hazard rate is monotonic.

However, survival data in which the hazard rate does not follow a monotonic pattern, is also com-

mon. For example, breast cancer and lung cancer [23, 24]. The log-logistic distribution is a very

popular distribution to model such non-monotonic patterns[23]. Despite the importance of log-

logistic distribution in survival studies[23], and its flexibility in accommodating non-monotonic

hazards[23, 24], the effect of misclassification in log-logistic AFT models has not been explored

yet. Therefore, in this dissertation, we study the effect of non-differential misclassification of bi-

nary covariates in a log-logistic AFT model.

There are several methods to handle misclassified data. One such method, the MC-
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SIMEX (Misclassification Simulation Extrapolation), is a simulation-based method that makes

efficient use of misclassification rates (sensitivity and specificity) to produce bias-corrected esti-

mates. MC-SIMEX is a flexible approach which only requires the presence of a consistent esti-

mator in the absence of misclassification error. In this dissertation, we employ the MC-SIMEX

method to handle non-differential misclassification of binary covariates in a log-logistic AFT

model. Further details of the MC-SIMEX procedure and the log-logistic AFT model are given

in the Methodology section.
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Chapter 2

LITERATURE REVIEW

In this chapter, we review the methods that have been used for the correction of bias

caused by misclassification error in survival analysis. Over the period of the past three decades,

several methods have been proposed and applied to correct for bias in parameter estimates caused

by misclassification error.

2.1 Regression calibration

Regression calibration (RC) is a well known method used for correction of bias caused

by measurement error[25, 26]. In this method, the value of the true covariate X is estimated by

regressing X on the naive covariate W [27, 28]. The estimate thus obtained is then used as a sub-

stitute for X in non-validation data[27]. The standard errors of these estimates are calculated by

using statistical techniques such as bootstrapping or sandwich methods[27].

Even though the RC method is predominantly used for correction of measurement error

in continuous covariates[29, 30], its convenience and ease of interpretation has led to its use, even

in binary covariates that are prone to misclassification[17]. Cole et al.[12] studied the effect of mis-

classification of categorized glomerular filtration rate (GFR) on the 4 year incidence of end stage

renal disease (ESRD) using regression calibration in the Cox proportional hazards model. Bang et

al.[17], used the regression calibration approach to correct for bias caused by misclassification, in

a simulation study, where the survival times followed Weibull distribution.

The regression calibration method assumes that the RC model offers a good fit to the

data and that the censoring mechanism involved is independent of the conditional distribution of

X given W . The advantage of the RC method is that it is convenient and most popular for discrete
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data and non-normal data[17, 31].

2.2 Pooled estimation

Spiegelmann[18] proposed the pooled estimation method to increase the efficiency of

parameter estimates obtained through regression calibration. This method involves calculating the

weighted averages of coefficients obtained, both from regression calibration and from primary re-

gression in validation data. Bang et al.[17], applied the pooled estimation method to survival data,

using the Cox regression model.

While the pooled estimation technique provides the advantage of improved efficiency,

its performance is also contingent upon availability of large validation datasets. However, in

the context of Cox regression models, the availability of large validation datasets is not always

feasible[17].

2.3 Multiple Imputation (MI)

Multiple imputation was originally developed by Rubin et al.[32, 33], to correct for bias

caused in parameter estimates, due to missing values in the true covariate. MI involves fitting a

logistic regression model between the true covariate X and the naive covariate W, in the validation

data i.e. logitP (X = 1|W ). The naive covariate in the non-validation data is then replaced by

the corrected value (0 or 1) by using the estimated probability from the logit function[17]. Cole

et al.[17, 12], used the multiple imputation for measurement error (MIME) algorithm in the Cox

proportional hazards model, assuming that data was missing at random (MAR)[33].

The advantage of using an MI procedure is that it uses the values of true covariates,

whenever available[17]. In addition to this, it can handle differential measurement error better
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than other methods[34, 35]. Finally, it is also very user-friendly and is easily available in any

standard statistical package[17]. However, it has two disadvantages, one being that the correct

specification of the model is crucial for its successful performance. The second disadvantage is

that MI is harder to implement in data with censored outcomes[36, 37].

2.4 Corrected score function

Zucker et. al.[15, 16, 38], suggested a corrected score function approach, to correct for

bias caused by misclassification of covariates in Cox regression. If the true score function in the ab-

sence of misclassification is represented by Ψtrue(Y, Z,X, θ), then the corrected score function in

the presence of misclassification of X can be represented as ΨCS(Y, Z,W, θ), where the expected

value of the corrected score function equals the true score function[27]. This corrected score func-

tion is then used for the estimation of the parameter vector θ and the calculation of standard errors,

using procedures such as the bootstrap method or the sandwich method[17]. Augustin[38, 39]

proposes an exact corrected score estimate for the proportional hazards model in the presence of

heteroscedastic measurement error.

The corrected score function can accommodate situations where the validation sample

is not representative of all study participants[17]. Another distinct advantage of the corrected score

function method is that it allows for dependence of the censoring mechanism on the true exposure

variable X. However, there is loss of efficiency in estimating the Π matrix, which is used for esti-

mating the value of the true variable X from W [17]. In addition, when the number of individuals

at risk gets smaller as time progresses, numerical problems are known to occur in calculating the

corrected score function[17, 40, 41].

2.5 Estimated partial likelihood function
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Based on their previous work on uncensored data[42, 43], Zhou and Pepe[19] proposed

an estimated partial likelihood for inference using information from both validation (X) and non-

validation data (W ). For non-validation data, they calculate the empirical risk function by averag-

ing the values of risk functions for individuals in the validation data, that have the same covariate

value. The total estimated risk function is the sum of risk functions over the validation dataset and

the non-validation dataset. The relative risk parameter estimate is then obtained by maximizing

the estimated partial likelihood function.

The estimated partial likelihood approach does not make assumptions regarding the

baseline hazard function nor the conditional distribution of X given W , which is estimated non-

parametrically. However, the disadvantage with this method is that when the dimension of W is

large, the sample size for each substratum of W may be small, which may result in unstable esti-

mates. A second disadvantage with the estimated partial likelihood method is that it assumes that

the validation sample comes from a simple random sample, a non-adherence to which can result

in unstable estimates[19].

2.6 Misclassification Simulation extrapolation (MC-SIMEX)

The Simulation extrapolation method (SIMEX) was first proposed by Cook and Stefanski[44]

in 1994 to correct for bias caused by measurement error in continuous covariates. He et al.[45] first

proposed the use of SIMEX method in survival analysis when continuous covariates were subject

to measurement error, using data from the Busselton Health Study[46]. Kuchenhoff et al.[47, 44]

in 2006 came up with a modification of the SIMEX procedure that could be applied to a situation

where there is measurement error in binary/categorical variables. Since the measurement error in

categorical variables is equivalent to misclassification, they called it the misclassification SIMEX

or simply MC-SIMEX. Slate et al.[22] applied the MC-SIMEX procedure to evaluate the effect of

misclassification in periodontal outcomes, in a log-normal AFT model. Bang et al.[17], in their re-
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view, evaluate the MC-SIMEX procedure, by using a Poisson approximation[48, 49] to the Weibull

AFT model. The details of the MC-SIMEX procedure are provided in the Methodology section.
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Chapter 3

METHODOLOGY

The main purpose of this dissertation is to extend the works of Bang et al.[17] and Slate

et al.[22] by applying the MC-SIMEX procedure to the log-logistic distribution in AFT models.

We build a model that has a dependent variable that follows log-logistic distribution and subject to

right censoring, and a mis-specified binary variable X along with a correctly measured continuous

confounding variable Z.

3.1 Accelerated failure time models (AFT)

3.1.1 Basic notation and formula

Let f(t) be the probability distribution function of the continuous time variable. Then

the probability that an event occurs within a given time interval, say, (0,t) is the cumulative distri-

bution function of the random variable T [1].

F (t) = Pr(T ≤ t) =

∫ t

0

f(u)du (3.1)

The survival function S(t) is the complement of the cumulative density function [1]. In

other words, it is the probability that the individual will survive beyond a time t[1].

S(t) = Pr(T > t) = 1− Pr(T ≤ t) = 1− F (t). (3.2)

So, given t→∞, S(0) = 1 and S(∞) = 0 [1]. The probability density function f(t) can also

be written in terms of the survival function as

f(t) = −dS(t)

dt
. (3.3)
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The hazard function h(t) is the instantaneous rate of failure at time t [1].

h(t) = lim
∆t→0

Pr[T ∈ (t, t+ ∆t)|T ≥ t]

∆t
, (3.4)

or equivalently,

h(t) =
f(t)

S(t)
= − 1

S(t)

dS(t)

dt
=
−dlogS(t)

dt
. (3.5)

The above equations show that the three functions, namely f(t), S(t) and h(t) are

intimately related to each other. If one of these functions is available, the other two can be easily

calculated. For example, S(t) can be written as an inverse function of equation (3.5) as:

S(t) = exp(−
∫ t

0

h(u)du) = exp[−H(t)], (3.6)

where H(t) is the integration of all hazard rates upto time t and is known as the cumulative hazard

function at time t [1]. Alternatively, H(t) can also be written in terms of S(t) as:

H(t) = −logS(t). (3.7)

Furthermore, the probability density function can also be written in the following form, from

equations (3.5) and (3.6):

f(t) = h(t) exp(−
∫ t

0

h(u)du). (3.8)

3.1.2 Specifications of AFT

The AFT model is written as the regression model of the log of time over covariates [1].

Suppose that Y = log(T ) is linearly associated with the covariate vector x. Then

Y = µ∗ + x′β∗ + σ̃ε, (3.9)

with location parameter x′β∗ and the scale parameter σ̃. The term ε represents the random error

whose distribution is determined by the form of the survival function of time S(t), its cumulative
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distribution function F (t) and its probability density function f(t)[1].

From equation (3.9), it can be deduced that the survival function for individual i at time

t can be written as

Si(t) = P [(µ∗ + x′iβ
∗ + σ̃εi) ≥ log t],

= P (εi ≥
log t− µ∗ − x′iβ∗

σ̃
).

(3.10)

The survival function S(t) can be modeled with respect to log t as a function of a fixed component

x′β and a random component ε[1].

S(t|x) = S0(
log t− µ∗ − x′β∗

σ̃
), −∞ < log t <∞. (3.11)

Similarly, considering that H(t) = −logS(t), the cumulative hazard function can be expressed

in terms of equation (3.11) as

H(t|x) = − logS0(
log t− µ∗ − x′β∗

σ̃
),

= H0(
log t− µ∗ − x′β∗

σ̃
).

(3.12)

where −∞ < log t < ∞. Similarly, differentiating equation (3.12) gives the following hazard

function:

h(t|x) =
1

σ̃t
h0(

log t− µ∗ − x′β∗

σ̃
), −∞ < logt <∞. (3.13)

In AFT models, the effect of covariates is such that if exp(x′β) > 1, then a deceleration

of the survival (time) process ensues and if exp(x′β) < 1, then an acceleration of the survival

(time) process ensues[1, 20].

3.1.3 Likelihood function of AFT models
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Statistical inference in survival analysis is unique in the sense that censoring plays an

important role in determination of likelihood functions [1]. Censoring is usually assumed to be

random in the sense that conditional upon the model parameters, the censoring times are indepen-

dent of each other and also of the survival times[50]. Specifically to an individual, and given the

parameter vector θ, survival processes are dependent on three random variables, namely observed

ti, δi and xi. The value ti is defined as the minimum of event time Ti and censoring time Ci, xi is

the covariate vector and δi is given by

δi = 0 if Ti > ti,

δi = 1 if Ti = ti.

(3.14)

Given the covariate vector xi and parameter vector θ, the likelihood function for a group

of n individuals is given by[51]

L(θ) =
n∏
i=1

Li(θ) =
n∏
i=1

f(ti; θ, xi)
δiS(ti; θ, xi)

1−δi . (3.15)

As can be inferred from equation (3.15), when δi = 1 the likelihood function takes

on the value of the probability density function for the occurence of an event. When δi = 0,

the likelihood function takes on the value of the probability of survival beyond censoring time t.

In other words, we can see that the likelihood function takes on a value for both censored and

uncensored observations [1]. The same likelihood function can be written in terms of a parametric

regression model with a baseline hazard function and a vector of coefficients β.

L(θ) =
n∏
i=1

[h0(t) exp(x′iβ)]δi exp[−
∫ t

0

ho(u) exp(x′iβ)du]. (3.16)
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Taking the log values on both sides of equation (3.16), a log likelihood function can be derived as

logL(θ) =
n∑
i=1

{
δi[log h0(t) + x′iβ]−

∫ t

0

h0(u)du exp(x′iβ)

}
. (3.17)

The same likelihood function can be easily re-parametrized for applicability in the AFT model as

follows[1]:

L(θ) =
n∏
i=1

{
h0(t)[t exp(−x′iβ∗)] exp(−x′β∗)

}δi
exp

{
−H0[t exp(−x′β∗)]

}
. (3.18)

Finally, the log likelihood function of the AFT regression model can be obtained as

follows:

logL(θ) =
n∑
i=1

{
δi[log h0(t) + log t− (x′iβ)2]−H0[t exp(−x′β∗)]

}
. (3.19)

3.2 Log-logistic AFT regression models

3.2.1 An overview of the log-logistic distribution

A log-logistic distribution is a non-monotonic distribution and is most suitable for anal-

ysis of certain kinds of cancer data [23]. The log-logistic model is especially useful in situations

where the hazard rates of different groups of individuals converge over time [23, 24]. A random

variable T is said to have a log-logistic distribution if the log(T ) has a logistic distribution [52].

The cumulative density function of a log logistic distribution is given by

F (T, α, β) =
1

1 + ( t
α

)−β
. (3.20)

where t > 0, α > 0, β > 0 [52]. The probability density function f(t) can be easily derived from

the first derivative of the cumulative density function with respect to T .

f(t, α, β) =
β
α

( t
α

)β−1

(1 + ( t
α

)β)2
. (3.21)
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3.2.2 Specifications of the log-logistic AFT regression models

The log-logistic AFT model can be conveniently specified in the form of equation (3.9)

when the random error term ε follows the standard logistic distribution. To put it more simply,

event/censoring time T follows log-logistic distribution if the log of T follows standard logistic

distribution[1].

The cumulative density function of ε in equation (3.9) can be written as

F (ε) = P [ε < ε] =
exp(ε)[

1 + exp(ε)

] , −∞ < ε <∞. (3.22)

where ε = y−x′β∗
σ̃

and y = log t. Note that the intercept parameter µ∗ is embedded in the vector

of coefficients β∗. The survival function S(ε) can be derived from the cumulative hazard function

given above, by taking its complement. This gives

S(ε) = [1 + exp(ε)]−1, −∞ < ε <∞. (3.23)

The hazard function h(ε) can simply be derived by using equation (3.5). This gives

h(ε) =
exp(ε)

1 + exp(ε)
, −∞ < ε <∞. (3.24)

and f(ε) is derived by multiplying the hazard function with the survival function which gives

f(ε) =
exp(ε)

(1 + exp(ε))2
, −∞ < ε <∞. (3.25)

Given the above three AFT regression functions, the likelihood function for a sample of n individ-

uals can be written as

L(ε) =
n∏
i=1

[
exp(εi)

1 + exp(εi)

]δi[ 1

1 + exp εi

]
, −∞ < ε <∞. (3.26)
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Finally, the log-likelihood can be derived by taking the log of the above likelihood function

LogL(ε) =
n∑
i=1

[
δiεi − (1 + δi)log(1 + exp(εi))

]
, −∞ < ε <∞. (3.27)

where εi =

[
logti−x′iβ

σ̃

]
.The parameter estimates are then obtained by maximizing the above log-

likelihood function, as in any other standard inference procedure. The inverse of the information

matrix then gives the variance covariance matrix of the parameter estimates.

3.3 An overview of the MC-SIMEX procedure

An overview of the original MC-SIMEX procedure is provided in section 3.3.1 fol-

lowed by an overview of our modified MC-SIMEX procedure in section 3.3.2.

3.3.1 The original MC-SIMEX procedure

The probabilities of mis-classifcation can be denoted in the form of a misclassification

matrix which is given by:

Π =

 π00 1− π11

1− π00 π11

 . (3.28)

as described in Kuchenhoff et al[47, 53], where π11 is the sensitivity and π00 is the specificity of

classification.

The parameter of interest is β∗ (in equation 3.9) with the limit of the naive estimator

denoted by β̂∗. The proof for the existence of β̂∗ and its estimation is given in the works of White

et al., 1982[54]. Since the estimate of β̂∗ depends on the misclassification matrix, we denote it

by β̂∗(Π), where Π is a k x k matrix with k being the number of categorical outcomes of X . For

SIMEX, the function is defined by:

λ→ β̂∗(Πλ), (3.29)

indicating that β̂∗(Πλ) (the value of β̂∗ at a particular level of misclassification Πλ) is a function
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of λ. Assuming that the misclassification matrix Πλ is at least positive semidefinite, Πλ can be de-

composed spectrally as Πλ := EΛλE, where Λ is the diagonal matrix of eigenvalues and E is the

corresponding matrix of eigenvectors. Taking equation (3.29) into consideration, it can be stated

that ifW1 is related to X through the misclassification matrix Π andW2 is related toW1 through the

misclassification matrix Πλ, thenW2 is related to X by the misclassification matrix Π1+λ, given the

two misclassification mechanisms are independent. If it is assumed that the conditions π00 > 0.5

and π11 > 0.5 are satisfied, then the existence of Πλ is ensured[13, 47].

3.3.1.1 Simulation and extrapolation:

The MC-SIMEX procedure consists of a simulation step that simulates datasets with

varying degrees of misclassification of a binary covariate using the misclassification matrix Πλ and

the extrapolation step where the corresponding parameter estimates produced with each degree of

misclassification are extrapolated using a parametric function of the form[47]:

λ→ β̂∗(Πλ) ≈ D(1 + λ,Γ). (3.30)

where D is the quadratic extrapolation function and Γ is the vector of parameters for the quadratic

extrapolation function. In other words, D(1 + λ,Γ) = Γ0 + Γ1(1 + λ) + Γ2(1 + λ)2. Details of

the simulation step and the extrapolation step follow.

Simulation step: For a fixed grid of values (λ1.......λm), L data sets are simulated for each value of

λ. The misclassified X , i.e. W , for each of the L datasets is given by:

Wl,i(λk) = MC(Πλ)W, (3.31)

where i=1,.....n; l=1,.....L; k = 1,........m. In other words, for a particular value of λ, say λk, Wl(λk)

is obtained by inflating the misclassification in W by a factor λk. The naive estimator is then
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obtained as[47]:

β̂∗na = L−1

L∑
1

[β̂na(Yi,Wl,i(λk), Zi)], (3.32)

where i=1...n and k = 1,....m. In other words, the naive estimator for a particular λk is obtained by

averaging the values of the naive estimators over L bootstrap samples.

Extrapolation step: The estimator β̂simex is then obtained by prediction using the parametric model

D(1 + λ,Γ). That is, after the parameter Γ is estimated, we extrapolate D(1 + λ,Γ) to a point on

the y-axis where λ = −1 or equivalently, 1 + λ = 0, then

β̂simex = D(0,Γ), (3.33)

which corresponds to λ = −1. The estimator β̂simex is consistent when the Π̂ is appropriately

specified[47].

3.3.1.2 Calculation of the extrapolant function for a simple linear model:

Kuchenhoff et al. [47] showed that under certain situations, the quadratic function

offers a suitable approximation for the exact extrapolation function. Those situations were: linear

regression with misclassified X , probability estimation, logistic regression with misclassified Y ,

logistic regression with misclassified X and ordinal logistic regression with misclassified Y . This

section highlights the first of the five situations considered by Kuchenhoff et al.[47], that being,

linear regression with misclassified X . The rationale behind choosing this situation is that it is

directly related to the simple AFT model that we are considering in this dissertation, where the

response variable Y is the natural logarithm of the event time(Y = log(T )).

E(Y |X) = β0 + β1X. (3.34)
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Considering that a random variable W1 is related to X by a misclassification matrix Πλ, we have

E(Y |W1) = β0 +β1P (X = 1|W1). Denoting the marginal probability P(X=1) as πx the following

can be derived:[47],

E(Y |W1) = β∗0 + β∗1W1. (3.35)

δ = det(Π) = π00 + π11 − 1. (3.36)

β∗0 = β0 + β1
(1− π11)πx
π00 − δπx

. (3.37)

β∗1 = β1
δ(1− πx)(πx)

(1− π00 + δπx)(π00 − δπx)
. (3.38)

Πλ =
1

1− δ

1− π11 + (1− π00)δλ (1− π11)(1− δλ)

(1− π00)(1− δλ) 1− π00 + (1− π11δ
λ)

 . (3.39)

The exact form of extrapolant function is then calculated by plugging in the values of the matrix

Πλ into the equation 3.38. It has been shown by Kuchenhoff et al.[47] that equation 3.38 provides

a reasonable approximation to a quadratic function over a range of values of λ. Even though the

equations (3.36-3.39) were stated by Kuchenhoff et al.[47], the proofs for the equations have not

been provided. Therefore, the proofs are provided below:

3.3.1.3 Proof for 3.36

The determinant δ of the matrix

Π =

 π00 1− π11

1− π00 π11

 .
is given by:

δ = π00π11 − (1− π00)(1− π11)

= π00 + π11 − 1.
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3.3.1.4 Proof for 3.37: β0:

Given that π00 = P (W1 = 0|X = 0);π11 = P (W1 = 1|X = 1) and P (X = 1) = πx,

E(Y |W1) = β0 + β1 ∗ P (X = 1|W1) = β∗0 + β∗1W1.

When W1 = 0,

β0 + β1 ∗ P (X = 1|W1 = 0) = β∗0 ,

=⇒ β∗0 = β0 + β1
P (X = 1,W1 = 0)

P (W1 = 0)
,

= β0 + β1
P (W1 = 0|X = 1)P (X = 1)

P (W1 = 0|X = 0)P (X = 0) + P (W1 = 0|X = 1)P (X = 1)
,

= β0 + β1
(1− π11)πx

π00(1− πx) + (1− π11)πx
,

= β0 + β1
(1− π11)πx
π00 − δπx

.

3.3.1.5 Proof for 3.38: β1:

When W1=1,

E(Y |W1 = 1) = β0 + β1(P (X = 1|W1 = 1), )

= β0 + β1
P (W1 = 1, X = 1)

P (W1 = 1)
,

= β0 + β1
P (W1 = 1|X = 1)P (X = 1)

P (W1 = 1|X = 0)(1− πx) + P (W1 = 1|X = 1)πx
,

= β0 + β1
π11πx

(1− π00)(1− πx) + π11πx
,

= β∗0 + β∗1W1.

Given that β∗0 = β0 + β1
(1−π11)πx
π00−δπx , a simple substitution yields:
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β∗1 = β1
π11πx

(1− π00)(1− πx) + π11πx
− β1

πx(1− π11)

π00 − πxδ
,

= β1πx

[
π11π00 − πxπ11δ − (1− π11)(1− π00 + δπx)

(π00 − πxδ)(1− π00 + δπx)

]
,

=
β1πx(1− πx)δ

(π00 − πxδ)(1− π00 + δπx)
.

3.3.1.6 Proof for 3.39: Πλ:

The Eigenvalues of the matrix

Π =

 π00 1− π11

1− π00 π11


is obtained by solving the equation ∣∣∣∣∣Π− xI

∣∣∣∣∣ = 0,

where I is the 2X2 identity matrix and x is the eigenvalue.

π00 − x 1− π11

1− π00 π11 − x

 = 0,

=⇒ (π00 − x)(π11 − x)− (1− π00)(1− π11) = 0

Solving the above equation gives the following eigenvalues:

e1 = δ and e2 = 1.

The eigenvectors for the corresponding eigenvalues are obtained by solving the following equation

for each eigenvalue (e1 = δ and e2 = 1).

π00 − x 1− π11

1− π00 π11 − x


Z1

Z2

 = 0,

where

Z1

Z2

 is the eigenvector. Solving the above matrix equation gives the following results for
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eigenvectors:

When e1 = δ, Z1

Z2

 =

 1

−1

 .
When e2 = 1 Z1

Z2

 =

 1

1−π00
1−π11

 .
The two eigenvectors for the corresponding eigenvalues can be combined to give a single matrix

as follows:

E =

 1 1

−1 1−π00
1−π11

 .
The matrix Πλ can be obtained by spectral decomposition which is as follows:

Πλ = E∆λE−1,

where E =

 1 1

−1 1−π00
1−π11

, ∆λ =

δλ 0

0 1

 and λ is a factor that denotes the degree of measure-

ment error.

3.3.1.7 Estimation of the variance of the MC-SIMEX estimator

The variance of the MC-SIMEX estimator is obtained in the following way: For a single simulation

with L replications, we calculate the sample variance of the estimator β̂sim(λk) for each value of

λk by the formula[27, 55]:

V̂sim(λk) := L−1

L∑
l=1

(β̂na[Yi,Wl,i(λk), Zi]− β̂(λk))
2, (3.40)
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with Vsim(0) := 0. The variance for each naive estimate is also calculated through the information

matrix for each value of λ and denoted by V̂naive(β̂[Yi,Wl,i(λk), Zi]) and

V̂na(λk) = L−1

L∑
l=1

V̂naive(β̂na[(Yi,Wl,i(λk), Zi)]). (3.41)

The variance of the simex estimator (also known as the Stefanski variance VST ) is then given by

the extrapolation of the difference between the sample variance and the variance obtained through

the information matrix[27], i.e.

V̂ST = lim
λ→−1

(V̂na(λ)− V̂sim(λ)). (3.42)

3.3.2 Modified MC-SIMEX procedure

The consistency of the existing MC-SIMEX estimator depends upon the correct specifi-

cation of the misclassification matrix (Π). However, in real data, the exact misclassification matrix

(Π) is seldom known. Therefore, we propose a modified MC-SIMEX method in which we estimate

Π. The modified MC-SIMEX procedure can be very useful in real data analysis where the true Π

is unknown.

The estimation of the misclassification matrix in the modified MC-SIMEX requires four

components: π̂00, π̂11, π̂10 and π̂01. π̂00 (specificity) is the conditional probability that the naive

covariateW takes the value of 0 given that the value of the true covariateX is 0. π̂11 (sensitivity) is

the conditional probability that W takes on the value of 1 given that the value of X is 1. π̂10 is the

conditional probability that W takes on the value of 1 given that the value of the X is 0. π̂01 is the

conditional probability thatW takes the value of 0 given that the value ofX is 1. These conditional

probabilities can be estimated by calculating the number of rows in the simulated dataset where X

and W take on the same value and then dividing it by the number of rows of the simulated dataset

where X takes on that value. For example, π̂00 is obtained by dividing the number of rows in the

simulated dataset where X = 0 and W = 0, by the number of rows where X = 0. π̂10 is then
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estimated by subtracting the value of π̂00, from 1. π̂11 is estimated by dividing the number of rows

in the simulated dataset where X = 1 and W = 1, by the number of rows where X = 1. π̂01 is

then estimated by subtracting π̂11 from 1. The above mentioned steps can be written in the form of

mathematical equations as follows:

π̂00 = P (W = 0|X = 0)

π̂11 = P (W = 1|X = 1)

π̂10 = 1− π̂00

π̂01 = 1− π̂11

(3.43)

The estimated misclassification matrix Π̂m, for the mth Monte Carlo run is then obtained as fol-

lows:

Π̂m =

π̂00 π̂01

π̂10 π̂11

 (3.44)

For each Monte Carlo run, the MC-SIMEX algorithm performs 50 replications for each value of

the estimated misclassification matrix (Π̂λk
m ), where λk > 0. The extrapolation functionD(1+λ, Γ̂)

is then estimated by plotting the β̂s that are obtained at each degree of misclassification (λk), on

the Y-axis against the (1 + λk)s on the X-axis. The resulting curve is then extrapolated to a point

on the Y axis where λ = -1 or equivalently, 1+λ = 0, as shown below:

β̂simex = D̂(1 + λ, Γ̂)

= D̂(0, Γ̂)

(3.45)

The estimation of the variance in the modified MC-SIMEX procedure is similar to the

existing MC-SIMEX procedure. The addition of the estimation step in the modified MC-SIMEX

procedure provides an added advantage in situations when the exact sensitivity and specificity (π11

and π00) are unknown.

When dealing with real data, the misclassification matrix is estimated by constructing
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2 X 2 contingency tables from the validation data. The 2 X 2 contingency table is constructed as

follows:

Table 3.1: 2 X 2 contingency table of binary variable subject to misclassificaiton

X(true)→

W (naive)↓
X = 0 X = 1 Row totals

W = 0 n00 n01 nw=0 = n00 + n01

W = 1 n10 n11 nw=1 = n10 + n11

Column totals n00 + n10 n01 + n11 Total (n) = n00 + n01 + n10 + n11

where n00 denotes the number of observations where W = 0 and X = 0, n01 denotes the number

of observations where W = 0 and X = 1, n10 denotes the number of observations where W = 1

and X = 0 and n11 denotes the number of observations where W = 1 and X = 1. The conditional

probabilities of correct classification and misclassification are then calculated as follows:

π̂00 =
n00

n00 + n10

π̂10 = 1− π̂00

π̂11 =
n11

n01 + n11

π̂10 = 1− π̂11

(3.46)

Details of analysis of real data from the North Central Cancer Treatment Group (NCCTG) lung

cancer clinical trial are provided in chapter 5.
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Chapter 4

SIMULATION STUDY

A simulation study is conducted to evaluate the performance of the MC-SIMEX method

in an AFT model where the survival time follows log-logistic distribution. In Section 4.1, we pro-

pose a new method to simulate right censored survival data that is computationally less burdensome

than existing methods and also saves processing time. Section 4.2 describes the methods used to

estimate parameters. Section 4.3 describes the results of the performance of the original and modi-

fied MC-SIMEX methods, followed by an analysis of robustness to misspecification of distribution

in section 4.4. Section 4.5 describes the conclusion of our simulation study.

4.1 An overview of simulation methods

An overview of the existing simulation method and modified simulation method is pro-

vided in sections 4.1.1 and 4.1.2 respectively.

4.1.1 Overview of the existing simulation method:

The existing simulation method generates survival times from a specific distribution and

censoring times from a specific distribution (for e.g.: uniform) with an initial upper limit. The up-

per limit is adjusted iteratively until the censoring percentage falls within the stipulated censoring

range. To be more specific, if the censoring rate from a particular iteration is lesser than the lower

bound of the stipulated range, then the upper limit is decreased so that the censoring rate increases

and falls within the range. In the other case where the censoring rate is higher than the upper bound

of the stipulated range, the upper limit is increased so that the censoring rate decreases and falls

within the stipulated range. This process is repeated until an appropriate upper limit is reached.

4.1.2 Overview of the proposed simulation method:
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We propose a new method to simulate right censored survival data, that achieves the

exact level of censoring when the survival times follow a log-logistic distribution (however, this

method can also be used for other survival data distributions). Existing algorithms require many

number of iterations to achieve the desired censoring rates. The proposed algorithm, on the other

hand, requires only one iteration to achieve the exact rate of censoring. Our algorithm also eases

computational burden and saves processing time, as opposed to other algorithms. The proposed

algorithm follows:

Step 1: Assign a value each for β0, β1 and β2.

Step 2: Generate n random values for the variable X which follows Bernoulli distribution with the

probability 0.5.

Step 3: Generate n random values for the variable Z which follows a N(0, 1) distribution.

Step 4: Generate n random values for the variable ε (residual) which follows a logistic distribution

with location zero and scale 1.

Step 5: Generate n natural logarithms of survival times using the following formula:

Y = β0 + β1X + β2Z + ε; where Y = log T .

Step 6: Generate n censoring times which follows a U ∼ (0, 10) distribution.

Step 7: Generate a new variable r = Y − log(c) for each of the n observations, where c is the

censoring time.

Step 8: Pick the value of r that represents a percentile corresponding to the event rate. For exam-

ple, if a censoring rate of 30% is desired, we will pick a value of r that corresponds to the 70th
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percentile of its distribution.

Step 9: Create a new variable that represents the log of the new survival time which is obtained by

deducting the value of r that represents the 70th percentile of its distribution from the original log

of the survival time. Say,

logTnew = Y − rq70,

where logTnew represents the log of the new survival time, rq70 is the 70th percentile of the dis-

tribution of r. This step allows us to order the new survival times in such a way that 30% of the

observations are censored and the remaining uncensored.

Step 10: Obtain a new survival time tnew by taking the exponential of the value of logTnew

obtained from the previous step.

tnew = exp(logTnew).

Step 11: Generate a new variable ynew which is the minimum of tnew and c, where c is the censoring

time corresponding to tnew.

Ynew = pmin (tnew, c).

Step 12: Fit an AFT model using survreg[56] procedure in R (install MASS package[57] for sur-

vival analysis before implementing survreg), with ynew as the observed time, and δ as the indicator

for censoring. If tnew > c then δ = 0, or else, δ takes on the value of 1. X and Z are the ex-

planatory variables. By the end of this step, the β̂nmisc (nmisc stands for no misclassification)

associated with the true variable X is obtained.

Step 13: Using the misclass[58] function in R, generate a naive variable W using the misclassifi-

cation matrix Π. Fit an AFT model as in Step 12, but with the naive covariate W instead of X . By

the end of this step, β̂naive associated with the naive covariate W is obtained.
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Step 14: Using the misclass function in R, generate additional naive covariates W1, W2, W3 and

W4 from true covariate X . These naive covariates represent the misclassified form of the covariate

X at λ = 0.8, 1.2, 1.6 and 2 respectively, where λ is the power of the misclassification matrix Πλ.

Step 15: At each level of misclassification, an AFT model is fit, as described in step 12, using the

naive covariate instead of the true covariate. That is, four different AFT models using the naive

covariates W1, W2, W3 and W4 - one in each model, along with the confounding variable Z are fit.

Step 16: Using the quadratic extrapolation function described in chapter 3, the β̂ estimates (β̂W1 , β̂W2 , β̂W3

and β̂W4) obtained at the corresponding level of misclassification are extrapolated to a point on the

Y-axis where λ = -1. The value of β̂ at this point on the Y-axis, is the β̂simex estimate.

Step 17: 50 iterations[22] of steps 14 to 16 are run for each simulation. At the end of 50 iterations,

average of the β̂simex estimates is calculated to give the final β̂simex estimate for that simulation. In

addition, the empirical variance, estimated variance and Stefanski variance (VST ) are also obtained

using equations 3.40-3.42, as described in chapter 3.

Step 18: At the end of one simulation and 50 replications within the simulation, the MSE, bias,

estimated variance and coverage of the true estimator (β̂nmisc), the naive estimator β̂naive and the

β̂simex estimator are calculated.

Step 20: Steps 1 through 18 are repeated until a total of 500 Monte-Carlo runs are completed. The

β̂nmiscs, β̂W s and β̂simexs along with their corresponding MSEs, biases, estimated variances , em-

pirical variances and coverages are averaged over 500 Monte-Carlo runs to give the corresponding

final estimates.

Despite the advantages provided by this proposed simulation method (as described at
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the start of section 4.1.2), it must be noted that this algorithm also results in a distortion of the

value of the intercept in the model. However, since the study of properties of the intercept is not

our primary objective, we ignore this distortion. The properties of β1 and β2 remain unchanged

despite this adjustment. The distribution of the newly generated survival times also remains the

same, albeit a change in the expected value (mean) occurs.

4.2 Data simulation and estimation of parameters

In this study, a sample size of 200 is chosen. We consider two covariates, one binary

and the other continuous. The binary covariate X , which is subject to misclassification error,

is generated from a binomial distribution (X ∼ binom(n, 0.5)). The continuous covariate Z is

generated from a standard normal distribution(Z ∼ N(0, 1)), independent of X. The error term

εi is generated from a standard logistic distribution with εi ∼ logistic(0, 1) (0 is the value of

the location parameter and 1 is the value of the scale parameter). The survival times T are then

generated using the following equation:

Y = log(T ) = β0 + β1X + β2Z + εi

T = exp(Y ),

where the values of β1 and β2 are pre-specified. The censoring times c are generated from a uni-

form distribution with c ∼ U(0, 10).

After conducting this preliminary simulation, the algorithm described in steps 7 through

13 of section 4.1.2 is performed. That is, a new variable r = Y − log(c) is created followed by the

selection of the value of r, which corresponds to a stipulated percentile of its distribution, say rq70.

This is followed by the creation of a new variable logTnew, that represents the difference between

the variable Y and rq70. The new survival time, tnew is then obtained by taking the exponential of

the variable logTnew. Censoring statuses are then assigned and an AFT model is fit, as described

in steps 12 and 13 of the algorithm mentioned above.
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In this dissertation, two situations are considered, wherein the misclassification matri-

ces are

0.8 0.2

0.2 0.8

 and

0.9 0.3

0.1 0.7

. Estimates of β1 are obtained for each Monte Carlo run using

the true estimator (which is obtained from the AFT model using the true covariate X), naive esti-

mator (which is obtained from the AFT model using the naive covariate W ) and the MC- SIMEX

estimator. Also, for each run, the corresponding bias and MSE are obtained. In order to obtain the

MC-SIMEX estimator, a total of 50 replications were run for each simulation, as done by Slate et

al[22]. A total of 500 simulations were run. The estimates of β̂nmisc, β̂naive and β̂simex and their

corresponding bias and MSE are obtained as follows:

β̂nmisc =
1

M

M∑
i=1

β̂nmisci

β̂naive =
1

M

M∑
i=1

β̂naivei

β̂simex =
1

M

M∑
i=1

β̂simexi

ˆMSEnmisc =
1

M

M∑
i=1

(β̂nmisci − (β))2

ˆMSEnaive =
1

M

M∑
i=1

(β̂naivei − (β))2

ˆMSEsimex =
1

M

M∑
i=1

(β̂simexi − (β))2

ˆbiasnmisc =
1

M

M∑
i=1

(β̂nmisci − β)

ˆbiasnaive =
1

M

M∑
i=1

(β̂naivei − β)

ˆbiassimex =
1

M

M∑
i=1

(β̂simexi − β)
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The coverage probability of each estimator is then obtained by first estimating the variance and

standard error (SE) of each estimator from the information matrix, as described in section 3.3 of

chapter 3. 95% confidence intervals are then estimated by using the following formula:

95%CI = β̂ ± 1.96SE

The coverage probability is then calculated as the percentage of the occurrences where the 95% CI

includes the value of the true parameter.

4.3 Results of the performance of the original and modified MC-SIMEX

estimator

Tables 4.1 - 4.4 illustrate the results of the MC-SIMEX procedure when the survival

times follow standard log-logistic distribution for 0%, 30%, 50% and 70% levels of censoring,

with the true Π being

0.8 0.2

0.2 0.8

. Table 4.5 and table 4.6 illustrate the results of the modified

MC-SIMEX procedure, under similar specifications as table 4.1 and 4.2. Tables 4.7 - 4.10 illus-

trate the results of the MC-SIMEX procedure when the survival times follow standard log-logistic

distribution for 0%, 30%, 50% and 70% levels of censoring, with the true Π being

0.9 0.3

0.1 0.7

.

Table 4.11 and table 4.12 illustrate the results of the modified MC-SIMEX procedure, under simi-

lar specifications as table 4.7 and table 4.8.

4.3.1 Results for a sensitivity of 80% and specificity of 80%:

The performance of the MC-SIMEX estimator is evaluated for four different combi-

nations of β1 and β2, those being: β1 = − log 2 and β2 = 0.5, β1 = − log 2 and β2 = −0.5,
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β1 = log 2 and β2 = 0.5 and finally, β1 = log 2 and β2 = −0.5. For a Π of

0.8 0.2

0.2 0.8

, tables

4.1 - 4.4 show that the MC-SIMEX estimator consistently performs better than the naive estimator.

The magnitude of the bias associated with the MC-SIMEX estimator is always lower than that of

the naive estimator. The MSE associated with the MC-SIMEX estimator is consistently lower than

that of the naive estimator across all levels of censoring. With regard to the coverage probabilities,

the MC-SIMEX estimator is shown to perform satisfactorily and consistently better than the naive

estimator across all levels of censoring.

Table 4.5 and table 4.6 illustrate the performance of the modified SIMEX procedure

using the log-logistic distribution of survival times for a specified true sensitivity of 80% and a true

specificity of 80%. It can be seen from table 4.5 and table 4.6 that the bias, MSE and coverage

probabilities for the modified SIMEX procedure are satisfactory and comparable to that of the true

estimator. A comparison of tables 4.5 and 4.6 to tables 4.1 and 4.2 shows that the performance of

the modified MC-SIMEX procedure is comparable to the performance of the original MC-SIMEX

procedure and that there are no notable deviations in bias, MSE and coverage probabilities.
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Table 4.1: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = − log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.063 0.062

Empirical variance 0.064 0.055 0.043

Bias -0.006 0.266 0.055

MSE 0.064 0.126 0.046

Coverage 0.944 0.828 0.956

Censoring rate = 30%

Estimated Variance 0.067 0.069 0.068

Empirical variance 0.060 0.070 0.047

Bias 0.011 0.288 0.189

MSE 0.060 0.153 0.083

Coverage 0.960 0.784 0.930

Censoring rate = 50%

Estimated Variance 0.078 0.079 0.078

Empirical variance 0.074 0.086 0.062

Bias 0.027 0.297 0.125

MSE 0.074 0.174 0.077

Coverage 0.948 0.808 0.948

Censoring rate = 70%

Estimated Variance 0.108 0.106 0.107

Empirical variance 0.109 0.107 0.098

Bias 0.008 0.277 0.080

MSE 0.109 0.183 0.104

Coverage 0.946 0.846 0.942
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Table 4.2: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = − log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.063 0.062

Empirical variance 0.057 0.065 0.066

Bias 0.015 0.297 0.093

MSE 0.058 0.153 0.075

Coverage 0.950 0.772 0.938

Censoring rate = 30%

Estimated Variance 0.067 0.069 0.068

Empirical variance 0.066 0.060 0.062

Bias 0.011 0.286 0.069

MSE 0.066 0.142 0.067

Coverage 0.958 0.818 0.944

Censoring rate = 50%

Estimated Variance 0.077 0.078 0.078

Empirical variance 0.074 0.082 0.060

Bias -0.016 0.276 0.167

MSE 0.074 0.158 0.088

Coverage 0.950 0.802 0.936

Censoring rate = 70%

Estimated Variance 0.110 0.109 0.108

Empirical variance 0.111 0.105 0.072

Bias -0.014 0.270 0.140

MSE 0.111 0.177 0.091

Coverage 0.952 0.854 0.952
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Table 4.3: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.060 0.062 0.062

Empirical variance 0.062 0.065 0.049

Bias 0.012 -0.252 -0.040

MSE 0.062 0.129 0.050

Coverage 0.950 0.814 0.946

Censoring rate = 30%

Estimated Variance 0.066 0.067 0.067

Empirical variance 0.065 0.065 0.062

Bias -0.007 -0.287 -0.047

MSE 0.065 0.147 0.064

Coverage 0.942 0.796 0.936

Censoring rate = 50%

Estimated Variance 0.077 0.078 0.078

Empirical variance 0.070 0.075 0.061

Bias -0.025 -0.279 -0.130

MSE 0.07 0.153 0.078

Coverage 0.956 0.820 0.940

Censoring rate = 70%

Estimated Variance 0.109 0.108 0.108

Empirical variance 0.107 0.110 0.084

Bias 0.012 -0.260 -0.072

MSE 0.107 0.177 0.089

Coverage 0.942 0.864 0.948
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Table 4.4: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 80%, Specificity = 80%. True β values are β1 = log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.063 0.062

Empirical variance 0.059 0.064 0.052

Bias 0.014 -0.253 -0.091

MSE 0.059 0.128 0.060

Coverage 0.948 0.806 0.946

Censoring rate = 30%

Estimated Variance 0.066 0.068 0.067

Empirical variance 0.067 0.072 0.052

Bias -0.011 -0.296 -0.091

MSE 0.067 0.159 0.060

Coverage 0.946 0.784 0.946

Censoring rate = 50%

Estimated Variance 0.078 0.079 0.078

Empirical variance 0.072 0.078 0.075

Bias 0.012 -0.267 -0.120

MSE 0.072 0.148 0.090

Coverage 0.960 0.826 0.922

Censoring rate = 70%

Estimated Variance 0.109 0.108 0.108

Empirical variance 0.099 0.114 0.090

Bias 0.034 -0.264 -0.001

MSE 0.100 0.183 0.090

Coverage 0.964 0.844 0.930
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Table 4.5: Results of the modified MC-SIMEX procedure using log-logistic distribution of survival

times. Sensitivity = 80%, Specificity = 80%. True β values are β1 = − log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂simex

Estimated Variance 0.061 0.062

Empirical variance 0.064 0.054

Bias -0.014 0.193

MSE 0.064 0.091

Coverage 0.946 0.920

Censoring rate = 30%

Estimated Variance 0.066 0.067

Empirical variance 0.074 0.052

Bias -0.015 0.172

MSE 0.074 0.081

Coverage 0.944 0.948

Censoring rate = 50%

Estimated Variance 0.078 0.078

Empirical variance 0.078 0.065

Bias -0.014 0.034

MSE 0.078 0.066

Coverage 0.958 0.940

Censoring rate = 70%

Estimated Variance 0.108 0.108

Empirical variance 0.115 0.097

Bias -0.010 0.009

MSE 0.114 0.097

Coverage 0.936 0.932
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Table 4.6: Results of the modified MC-SIMEX procedure using log-logistic distribution of survival

times. Sensitivity = 80%, Specificity = 80%. True β values are β1 = − log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂simex

Estimated Variance 0.062 0.062

Empirical variance 0.055 0.062

Bias -0.001 0.036

MSE 0.055 0.063

Coverage 0.956 0.936

Censoring rate = 30%

Estimated Variance 0.067 0.067

Empirical variance 0.072 0.045

Bias 0.000 0.073

MSE 0.072 0.051

Coverage 0.934 0.942

Censoring rate = 50%

Estimated Variance 0.077 0.079

Empirical variance 0.079 0.058

Bias 0.001 0.076

MSE 0.079 0.064

Coverage 0.964 0.946

Censoring rate = 70%

Estimated Variance 0.110 0.107

Empirical variance 0.115 0.075

Bias -0.006 0.067

MSE 0.115 0.079

Coverage 0.938 0.944
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4.3.2 Results for a sensitivity of 90% and specificity of 70%:

Tables 4.7-4.10 illustrate the performance of the MC-SIMEX estimator in comparison

to the naive estimator, when Π is

0.9 0.3

0.1 0.7

. The magnitude of the bias associated with the MC-

SIMEX estimator is consistently lower than that of the naive estimator at all the levels of censoring.

The MSE associated with the MC-SIMEX etimator is also consistently lower than that of the naive

estimator. The coverage probability associated with the MC-SIMEX estimator is satisfactory and

consistently better than that of the naive estimator at all levels of censoring.

Table 4.11 and table 4.12 illustrate the performance of the modified SIMEX procedure

using the log-logistic distribution of survival times for a specified true sensitivity of 90% and a

true specificity of 70%. It can be seen from table 4.11 and table 4.12 that bias, MSE and coverage

probabilities associated with the modified MC-SIMEX procedure are satisfactory and comparable

to that of the true estimator. A comparison of tables 4.11 and 4.12 to tables 4.7 and 4.8 shows

that the performance of the modified MC-SIMEX procedure is comparable to that of the original

MC-SIMEX procedure and that there are no notable deviations.

4.4 Robustness

In this dissertation, the analysis of robustness is done in by mis-specifying a log-logistic

distribution (of survival time), as a Weibull distribution. The results of this misspecification of

survival time distribution are described in this section.
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Table 4.7: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = − log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.065 0.058

Empirical Variance 0.061 0.067 0.047

Bias 0.006 0.274 0.010

MSE 0.061 0.143 0.047

Coverage 0.942 0.786 0.93

Censoring rate = 30%

Estimated Variance 0.066 0.071 0.062

Empirical Variance 0.066 0.072 0.053

Bias -0.010 0.279 0.106

MSE 0.066 0.151 0.064

Coverage 0.946 0.804 0.938

Censoring rate = 50%

Estimated Variance 0.077 0.083 0.075

Empirical Variance 0.077 0.075 0.089

Bias -0.008 0.220 0.052

MSE 0.077 0.123 0.092

Coverage 0.944 0.88 0.908

Censoring rate = 70%

Estimated Variance 0.109 0.116 0.105

Empirical Variance 0.108 0.111 0.096

Bias 0.005 0.264 0.010

MSE 0.108 0.181 0.096

Coverage 0.962 0.884 0.934
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Table 4.8: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = − log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.065 0.059

Empirical Variance 0.065 0.068 0.061

Bias -0.004 0.250 0.090

MSE 0.065 0.130 0.069

Coverage 0.938 0.81 0.926

Censoring rate = 30%

Estimated Variance 0.066 0.071 0.064

Empirical Variance 0.072 0.073 0.067

Bias 0.004 0.261 0.071

MSE 0.071 0.141 0.072

Coverage 0.946 0.824 0.944

Censoring rate = 50%

Estimated Variance 0.077 0.080 0.073

Empirical Variance 0.076 0.079 0.066

Bias 0.031 0.272 0.095

MSE 0.077 0.153 0.075

Coverage 0.944 0.834 0.920

Censoring rate = 70%

Estimated Variance 0.108 0.108 0.099

Empirical Variance 0.095 0.105 0.089

Bias -0.007 0.287 0.078

MSE 0.095 0.187 0.095

Coverage 0.970 0.868 0.926
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Table 4.9: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.065 0.059

Empirical variance 0.066 0.069 0.055

Bias -0.006 -0.258 -0.088

MSE 0.066 0.136 0.062

Coverage 0.934 0.808 0.928

Censoring rate = 30%

Estimated Variance 0.067 0.072 0.064

Empirical variance 0.064 0.078 0.056

Bias -0.012 -0.250 -0.042

MSE 0.064 0.140 0.058

Coverage 0.964 0.824 0.942

Censoring rate = 50%

Estimated Variance 0.077 0.083 0.077

Empirical variance 0.080 0.084 0.077

Bias 0.006 -0.272 -0.086

MSE 0.080 0.158 0.084

Coverage 0.950 0.830 0.926

Censoring rate = 70%

Estimated Variance 0.110 0.118 0.105

Empirical variance 0.113 0.106 0.101

Bias 0.021 -0.220 0.027

MSE 0.113 0.154 0.102

Coverage 0.948 0.890 0.928
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Table 4.10: Results of the MC-SIMEX procedure using log-logistic distribution of survival times.

Sensitivity = 90%, Specificity = 70%. True β values are β1 = log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.065 0.059

Empirical variance 0.061 0.066 0.053

Bias -0.003 -0.262 -0.085

MSE 0.061 0.134 0.060

Coverage 0.932 0.810 0.912

Censoring rate = 30%

Estimated Variance 0.066 0.071 0.063

Empirical variance 0.061 0.074 0.070

Bias 0.016 -0.243 -0.187

MSE 0.061 0.133 0.104

Coverage 0.950 0.830 0.904

Censoring rate = 50%

Estimated Variance 0.078 0.084 0.075

Empirical variance 0.082 0.085 0.080

Bias 0.010 -0.247 -0.070

MSE 0.082 0.146 0.085

Coverage 0.944 0.854 0.920

Censoring rate = 70%

Estimated Variance 0.110 0.117 0.110

Empirical variance 0.091 0.104 0.114

Bias 0.018 -0.243 -0.012

MSE 0.091 0.163 0.114

Coverage 0.964 0.896 0.926
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Table 4.11: Results of the modified MC-SIMEX procedure using log-logistic distribution of survival

times. Sensitivity = 90%, Specificity = 70%. True β values are β1 = − log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂simex

Estimated Variance 0.060 0.057

Empirical variance 0.070 0.065

Bias -0.018 0.123

MSE 0.070 0.080

Coverage 0.936 0.904

Censoring rate = 30%

Estimated Variance 0.066 0.061

Empirical variance 0.068 0.074

Bias -0.003 0.086

MSE 0.067 0.081

Coverage 0.946 0.916

Censoring rate = 50%

Estimated Variance 0.077 0.072

Empirical variance 0.078 0.069

Bias -0.015 0.044

MSE 0.078 0.071

Coverage 0.946 0.938

Censoring rate = 70%

Estimated Variance 0.107 0.097

Empirical variance 0.111 0.107

Bias 0.023 0.067

MSE 0.111 0.112

Coverage 0.956 0.942
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Table 4.12: Results of the modified MC-SIMEX procedure using log-logistic distribution of survival

times. Sensitivity = 90%, Specificity = 70%. True β values are β1 = − log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂simex

Estimated Variance 0.061 0.059

Empirical variance 0.062 0.059

Bias 0.001 0.106

MSE 0.062 0.070

Coverage 0.944 0.906

Censoring rate = 30%

Estimated Variance 0.065 0.063

Empirical variance 0.072 0.066

Bias 0.001 0.070

MSE 0.072 0.070

Coverage 0.924 0.922

Censoring rate = 50%

Estimated Variance 0.078 0.072

Empirical variance 0.083 0.085

Bias -0.017 0.065

MSE 0.083 0.089

Coverage 0.942 0.926

Censoring rate = 70%

Estimated Variance 0.109 0.098

Empirical variance 0.114 0.070

Bias -0.007 0.041

MSE 0.114 0.071

Coverage 0.952 0.948
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Tables 4.13 to 4.16 illustrate the effect of misspecification of a log-logistic distribution

as a Weibull distribution, for 0%, 30%, 50% and 70% levels of censoring. In tables 4.13 and

4.14, the misclassification matrix used is

0.8 0.2

0.2 0.8

, while in tables 4.15 and 4.16, the misclas-

sification matrix used is

0.9 0.3

0.1 0.7

. This analysis of robustness is done for two combinations of

pre-specified β1 and β2 values. Tables 4.13 to 4.16 show that the MC-SIMEX procedure performs

consistently better than the naive estimator in terms of bias, MSE and coverage probabilities and

also that the MC-SIMEX procedure is robust to mis-specification of distribution and change in

parameter values.

4.5 Conclusion

Tables 4.1 to 4.16 show that the MC-SIMEX estimator is a reliable and valid estimator

even under misspecification of distribution. The above tables also show that under varying degrees

of misclassification of the binary variable X and at varying levels of censoring, the MC-SIMEX

estimates are very close to the true value of βs that are assigned in the simulation. The β̂ estimates

obtained from our modified MC-SIMEX method also proved to be efficient and comparable to the

true estimator. However, we will be remiss, if we didn’t note the increased bias in the MC-SIMEX

estimates, when dealing with a mis-specified distribution. We attribute this finding to chance and

reiterate that such findings are not totally surprising, given that similar findings have been reported

in the study by Slate et. al.[22]
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Table 4.13: Results of the MC-SIMEX procedure with the log-logistic distribution of survival times,

but misspecified as a Weibull distribution. Sensitivity = 80%, Specificity = 80%. True β values are

β1 = − log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.063 0.114

Empirical variance 0.065 0.067 0.122

Bias 0.006 0.277 0.124

MSE 0.065 0.143 0.137

Coverage 0.942 0.796 0.922

Censoring rate = 30%

Estimated Variance 0.066 0.068 0.064

Empirical variance 0.065 0.068 0.070

Bias -0.003 0.281 0.070

MSE 0.065 0.148 0.075

Coverage 0.948 0.802 0.922

Censoring rate = 50%

Estimated Variance 0.078 0.079 0.070

Empirical variance 0.074 0.087 0.062

Bias 0.003 0.292 0.171

MSE 0.074 0.172 0.091

Coverage 0.958 0.802 0.916

Censoring rate = 70%

Estimated Variance 0.110 0.108 0.097

Empirical variance 0.115 0.112 0.068

Bias 0.006 0.286 0.189

MSE 0.115 0.193 0.104

Coverage 0.948 0.834 0.934
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Table 4.14: Results of the MC-SIMEX procedure with the log-logistic distribution distribution of

survival times, but misspecified as a Weibull distribution. Sensitivity = 80%, Specificity = 80%.

True β values β1 = − log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.062 0.111

Empirical variance 0.059 0.064 0.101

Bias -0.003 0.268 0.114

MSE 0.059 0.135 0.113

Coverage 0.954 0.818 0.924

Censoring rate = 30%

Estimated Variance 0.066 0.067 0.064

Empirical variance 0.063 0.068 0.055

Bias 0.015 0.294 0.130

MSE 0.063 0.154 0.071

Coverage 0.954 0.782 0.944

Censoring rate = 50%

Estimated Variance 0.078 0.079 0.070

Empirical variance 0.074 0.087 0.062

Bias 0.003 0.292 0.171

MSE 0.074 0.172 0.091

Coverage 0.958 0.802 0.916

Censoring rate = 70%

Estimated Variance 0.108 0.106 0.098

Empirical variance 0.099 0.096 0.062

Bias 0.018 0.313 0.089

MSE 0.099 0.193 0.070

Coverage 0.956 0.846 0.950



56

Table 4.15: Results of the MC-SIMEX procedure with the log-logistic distribution distribution of

survival times, but misspecified as a Weibull distribution. Sensitivity = 90%, Specificity = 70%.

True β values are β1 = − log 2, β2 = 0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.066 0.106

Empirical variance 0.065 0.069 0.114

Bias -0.003 0.260 0.128

MSE 0.065 0.137 0.130

Coverage 0.942 0.826 0.920

Censoring rate = 30%

Estimated Variance 0.066 0.070 0.060

Empirical variance 0.067 0.075 0.058

Bias -0.015 0.257 0.160

MSE 0.067 0.140 0.083

Coverage 0.940 0.818 0.912

Censoring rate = 50%

Estimated Variance 0.077 0.080 0.063

Empirical variance 0.080 0.076 0.068

Bias 0.010 0.270 0.187

MSE 0.080 0.149 0.102

Coverage 0.932 0.838 0.910

Censoring rate = 70%

Estimated Variance 0.107 0.106 0.090

Empirical variance 0.112 0.111 0.079

Bias -0.008 0.253 0.155

MSE 0.112 0.174 0.103

Coverage 0.940 0.864 0.924



57

Table 4.16: Results of the MC-SIMEX procedure with the log-logistic distribution distribution of

survival times, but misspecified as a Weibull distribution. Sensitivity = 90%, Specificity = 70%.

True β values are β1 = − log 2, β2 = −0.5

Censoring rate = 0 % β̂nmisc β̂naive β̂simex

Estimated Variance 0.061 0.065 0.109

Empirical variance 0.054 0.062 0.136

Bias 0.002 0.259 0.049

MSE 0.054 0.129 0.138

Coverage 0.960 0.846 0.902

Censoring rate = 30%

Estimated Variance 0.067 0.070 0.059

Empirical variance 0.074 0.083 0.052

Bias -0.016 0.261 0.122

MSE 0.074 0.151 0.067

Coverage 0.944 0.802 0.934

Censoring rate = 50%

Estimated Variance 0.076 0.080 0.064

Empirical variance 0.082 0.082 0.063

Bias -0.001 0.262 0.118

MSE 0.082 0.151 0.077

Coverage 0.944 0.832 0.942

Censoring rate = 70%

Estimated Variance 0.109 0.108 0.088

Empirical variance 0.119 0.113 0.072

Bias -0.001 0.271 0.150

MSE 0.118 0.186 0.095

Coverage 0.924 0.842 0.944
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Chapter 5

APPLICATION TO LUNG CANCER DATA

5.1 Introduction

In this chapter, an analysis of a lung cancer dataset that was developed by Loprinzi et

al.[59, 60] is conducted. The Karnofsky performance scale (KPS) is a widely renowned scale, not

only to measure the functional status of patients with debilitating illnesses such as lung cancer, but

also to assess their medical needs[61]. It has been shown to be significantly predictive of survival

outcomes in patients with lung cancer. It has also been used as an outcome indicator to compare

the efficacies of different clinical trial interventions[61]. KPS is a 11-point scale that ranges from

0 - dead to 100 - normal. The detailed classification is given in table 5.1 below[62].

Table 5.1: Karnofsky performance status scale

100 Normal, no complaints, no evidence of disease

90 Able to carry on normal activity, minor signs or symptoms of disease

80 Normal activity with effort, some signs or symptoms of disease

70 Cares for self. Unable to carry on normal activity or to do active work

60 Requires occasional assistance, but is able to care for most of his needs

50 Requires considerable assistance and frequent medical care

40 Disabled, requires special care and assistance

30 Severely disabled, hospitalization is indicated although death not imminent

20 Hospitalization necessary, very sick, active supportive treatment necessary

10 Moribund, fatal processes progressing rapidly

0 Dead
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As the performance score increases from 0 to 100, the patients functional ability also increases.

KPS is of two types: one that is provided by the patient, that is referred to as the patient Karnofsky

performance scale and the other that is provided by the physician, which is referred to as the physi-

cian Karnofsky performance scale. The two scales have been shown to be highly correlated[59]

and hence are reliable indicators. However, room for error exists.

5.2 North Central Cancer Treatment Group (NCCTG) - Lung Cancer Data

The NCCTG lung cancer dataset[59] provides survival outcomes of 228 patients with ad-

vanced lung cancer. The variables that are provided in this dataset include (variable names are

in italics): inst- Institution code, time-survival time in days, status-censoring status (1=censored,

2=dead), age-age in years, sex- sex of the patient (Male = 1, Female =2), ph.ECOG-Eastern Co-

operative Oncology Group performance score (scale of 0-5, 5: dead and 0: normal), ph.karno-

Karnofsky performance score, as rated by physician on a scale of 0 to 100, pat.karno-Karnofsky

peformance score, as rated by the patient on a scale of 0 to 100, meat.cal-calories consumed at

meals and wt.loss-weight loss in the last six months.

5.2.1 Misclassification matrix

The performance score reported (one reported by physician and the other reported by

the patient) was categorized into two classes, low (0) and high (1). A recorded score of 70 and be-

low was considered as a low score and a recorded score greater than 70, was considered as a high

score. This classification was done using the ability to perform normal activity as a benchmark,

which corresponds to a score of above 70. The performance category, as reported by the physician

was then considered as a true covariate (X) while the performance category reported by the patient

was considered as a naive covariate (W ). The misclassification matrix is then estimated using the

method described in section 3.3.2 of chapter 3. Using this method, the estimated misclassification

matrix Π̂ was

0.7 0.2

0.3 0.8
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5.2.2: Distribution of survival times

The distribution of the survival times was examined using QQ plots, probability plots,

plots of cumulative distribution functions and probability density plots. The following distribu-

tions were examined: log-normal, log-logistic, Weibull and logistic distribution. The plots were

constructed using the fitdistrplus[63] package in R 3.2.2. The distribution plots for the above men-

tioned distributions are provided in figures 1 through 4.

Figure 1: PDF, QQ plot, PP plot and the CDF of empirical data compared to a log-normal distribution

Among the distributions considered, Weibull and log-logistic distributions offered a good fit to the

data. In order to assign the appropriate distribution (among Weibull and log-logistic distributions)

for the survival times, the hazard functions were examined[64], stratified by performance status.

Figure 5 shows the hazard functions associated with lung cancer over period of time (in days),
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Figure 2: PDF, QQ plot, PP plot and the CDF of empirical data compared to a log-logistic distribution

considering performance status (low and high) as the covariate of interest. It can be seen clearly

that the hazard function associated with lung cancer does not follow a monotonic distribution and

hence is not an appropriate fit for the Weibull distribution. However, this non-monotonous hazard

pattern provides an appropriate fit for the log-logistic distribution[23]. Hence, in this dissertation,

further analysis is conducted to assess the performance and robustness of the MC-SIMEX proce-

dure, assuming log-logistic distribution of lung cancer data.

5.3 Analysis

We categorize the physician Karnofsky performance score and the patient Karnofsky performance
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Figure 3: PDF, QQ plot, PP plot and the CDF of empirical data compared to a Weibull distribution

score into two categories: low performance category which includes scores of 70 or below and a

high performance category which includes scores of greater than 70[23]. We treat the physician’s

assigned category as the true binary covariate X and the patient’s self-assigned category as the

naive binary covariate W .

5.4 Results

A total of 228 patients participated in this study. Among them, there were 138 males and

90 females. The mean age group among males was 63.34 years (standard deviation: 9.14, mini-

mum=39 years, maximum=82 years) while the mean age group among females was 61.08 years

(standard deviation 8.85, minimum=41 years, maximum = 77 years). Out of 228 patients, a total of



63

Figure 4: PDF, QQ plot, PP plot and the CDF of empirical data compared to a logistic distribution

63 patients were right censored while 165 patients were uncensored. The proc lifetest[65] function

in SAS 9.2 was used to estimate the mean survival times through the Kaplan-Meir method[66]. The

mean survival time among men was 321.12 days (299.52,342.72) and 439.26 days (410.86, 467.66)

among women. Among men, the mean karnofsky performance score reported by the patients was

79.41 (standard deviation: 14.29, minimum: 30, maximum: 100) and the mean Karnofsky score

reported among women was 80.79 (standard deviation: 15.17, minimum: 30, maximum: 100).

Among men, the mean Karnosfsky performance score reported by physicians was 81.82 (standard

deviation: 12.38, minimum: 50, maximum: 100) and the mean Karnofsky score reported among

women was 82.11 (standard deviation: 12.32, minimum: 50, maximum: 100).
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Figure 5: Hazard functions associated with the lung cancer data considering the performance score category
(PS) as the covariate.

The results presented here are those of an AFT model, where the survival times follow

log-logistic distribution. The model considered here adjusts for the performance score category

(PS) and age.

log(Ti) = β0i + β1iPS + β2iage+ εi

where Ti is the survival time of an individual and εi is the error term which follows log-logistic

distribution.

The coefficient β̂1simex obtained using the MC-SIMEX estimator was further from

zero than the naive estimator (0.74 and 0.48 respectively), as would be expected because of
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Figure 6: Plot of the simex and naive estimators with their 95% confidence intervals. The x-axis represents
the type of estimator and the y-axis represents the β̂ values

attenuation[22]. The 95% confidence intervals for the MC-SIMEX and the naive estimators were

(0.48,1) and (0.22,0.74) respectively. The plots of 95% confidence intervals for the naive and

simex estimators are shown in figure 6. As evident from the plot, there is an overlap of confidence

intervals of the MC-SIMEX and the naive estimator, which shows that the two estimators are not

significantly different from each other. The results can be interpreted as follows: The simex esti-

mate indicates that after adjusting for age, a lung cancer patient in the high performance category

survives 115% (exp0.77−1) more (in days) than a patient in the low performance category. The

naive estimate indicates that a lung cancer patient in the high performance category survives 61%

(exp0.48−1) more (in days) than a patient in the low performance category.
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Chapter 6

CONCLUSION

Despite the vast amount of literature that existed with regard to misclassification error, we

found that a few areas still remained unexplored. One of these areas is the study of misclassifica-

tion in cancer survival data analysis. In this dissertation, we aim to fill this gap by studying the

effect of misclassification in survival data, where the survival times follow a log-logistic distri-

bution. Log-logistic distribution is the most common distribution encountered when dealing with

lung and breast cancer data[23]. We surmise that one of the reasons for this gap in literature is a

lack of a suitable mechanism within the inbuilt mcsimex function, to deal with survival data.

Even though MC-SIMEX procedure was put forth by Kuchenhoff et al.[47] under the

assumption that the true sensitivity and specificity of misclassification are known, it is shown in

this dissertation that the estimated misclassification matrix can provide a reasonable approxima-

tion in situations where the true sensitivity and specificity are not known. This is evident from

the robustness analysis in Chapter 4. Also, the distribution of real data can be easily mis-specified

in statistical analyses. Taking this issue into consideration, this dissertation sheds light on the ro-

bustness of the MC-SIMEX estimator, when a log-logistic distribution of data is mis-specified as

a Weibull distribution (Chapter 4). The examination of robustness under the two above mentioned

scenarios, offers a fresh perspective, since such an analysis of robustness has not been done before.

This dissertation provides a conduit for the application of MC-SIMEX procedure in

survival analysis, considering that the existing mcsimex function is only amenable for generalized

linear models and not for survival analysis. This dissertation also relaxes the assumption of avail-

ability of the true misclassification matrix. A new way to generate survival times and censoring

rates, which is less time consuming and of lower computational burden, is also provided. This dis-

sertation also helps in understanding the behavior of parameters with varying degrees of censoring.
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This dissertation has certain limitations. First, it focuses on a simple AFT model with

a confounding variable and a misclassified binary variable. However, in realistic situations, such

simple statistical analysis may not suffice. Secondly, the quadratic function that is routinely used

for extrapolation only provides an approximate fit to the exact extrapolant function, thereby re-

sulting in some loss of accuracy. Third, the β̂simex estimate is consistent to the true estimator

only when the exact underlying distribution is known, which may not always be true. Finally,

this dissertation assumes non-differential measurement error with homoscedasticity of residuals.

However, this does not always hold true.[27]

This dissertation opens the door for more future research in the field of public health,

pertaining to biostatistics. First, the behavior of coefficients of the confounding variable with

varying degrees of misclassification of the binary covariate can be further explored for a log-

logisitc distribution. Second, the efficiency of the MC-SIMEX procedure can be further evaluated

in models where more than one binary variable is subject to misclassification error. Third, further

analysis can be done in situations where there is differential measurement error, when considering

a log-logistic distribution of survival times. Finally, the MC-SIMEX procedure can be extended to

other fields of biostatistics such as mediation analysis.
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