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ABSTRACT

Polynomial surfaces used in ray tracing have recently been improved upon allowing

for three dimensional applications. Among these are surfaces that have a varying

eccentricity. This paper will discuss a method for finding real roots of polynomials

[allowing us to create these surfaces]. First, we will give the reader a basic compre-

hension of the workings of a ray tracer, a general understanding of three dimensional

polynomial surfaces, how this newly implemented root finder functions, and how these

concepts enable us to create surfaces of variable eccentricity. Then, examples will be

provided to demonstrate the capabilities of the program.
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CHAPTER 1

INTRODUCTION

Computer graphics design has come a long way since its start. When smooth surfaced

objecets are involved, their boarders may be approximated by mathematical functions.

One of the more common techniques practiced today is the projection-styled algorithm

which generates scenes with the objects in the scene being ’projected’ with all of the

information regarding them done locally. However, there is another method, known

as tge image-space algorithm, that draws scenes pixel by pixel using information

from the scene to determine how light affects the color of any selected pixel. It

creates each pixel of the image the viewing plane sees by tracing a virtual ray to

an object and seeing how the different elements alter the pixel in question, thus the

term ’ray-tracing.’ [12] Ray tracing is a very accurate model for light’s effect on the

object’s color, but challenges arise when dealing with complex mathematical surfaces.

Here, we restrict ourselves to dealing with algebraic surfaces defined with multivariate

polynomials. Previously, in the ray tracer we use methods implemented for drawing

surfaces of revolution defined by polynomials. After introducing the inner workings

of a ray tracer, we will describe the mathematical definition of our surfaces, how the

Bernstein basis root finder works, and the general principel(s) behind the computer

code that draws these objects. We will also use the program to provide examples of

surfaces of variable eccentricity.



CHAPTER 2

BASIC INTRODUCTION TO RAY TRACING

Ray-tracing involves defining all of the traits within a world, then using various in-

formation from said world to render a textitscene pixel by pixel. But, we need to

understand the basic inner workings of a ray-tracer. Primarily, we need to create

objects, their materials, some light source(s), and define a window that the camera

sees and tracer draws. Then, we need to ray cast from the camera to the window so

we obtain an image.

Figure 2.1: The camera, sending rays through pixels along a view plane and gathering

information based on the object it contacts and the light source located within the

world. Image taken from Wikipedia.

When ray casting, you shoot rays toward each pixel and the objects determine

the closest point of contact, if the ray hits at all. Then you use the information

gathered from the hit location (i.e. material, light, etc.) to generate the color and

brightness of any pixel in question. Should the ray hit nothing you set the color of

the background, or color based on a pre-defined image. Then, you repeat this process

for every pixel in the window.
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When the tracer sends out a ray, it draws the first point the tracer hits, since it is

on the closest side of the nearest object from the camera along the ray’s path, it should

cover and obscure all other hit points, if any. In this case, the tracer identifies the

hit point by discenring the smallest, positive value that t, a parameter representing

the hit point of the ray, assumes. We only consider positive values of t as t = 0 is

a location on the camera, and any negative t represents a point behind our field of

view. Neither is seen by the camera.

2.1 Building a World

At this point we will explore all of the elements that go into making a world and

rendering a scene and describe how these come into play while forming a world.

2.1.1 Objects

In order to generate an object we need a shape, a material, and color. For the shape,

we can use basic geometric definitions. For example, to generate a sphere we would

need a center point (p0) and a radius (r). Using this information we can make a code

that states: if a ray passes through a point located a distance r from p0, that ray

hits the sphere. Then we gather any other infromation aquired from the process to

determine the pixel color. For a cube, we can define two opposite corner points and

see if a ray passes through any x, y, or z coordinates between them. However, the t

value only determines where the object is. Normal vectors, colors and materials are

used for shading the object and making it appear 3D.

In order to vary the pixel color, we can define some material that creates the

illusion of texture. This material tells the rays how light reflects off the object. The

material determines the reflective nature at any given point. Some basic materials

are matte and phong. For the matte material we have a diffuse shading that creates
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a ’dull’ reflection. For phong, we have a specular aspect which generates a ’shiny’

finish.

Figure 2.2: Spheres with Matte finish (a) and Phong finish(b).

More complex materials are created by mapping an image onto a surface. Some

even alter the normal vectors registered by the ray; these are called bump, or normal,

mappings which can be generated in various other applications.

The whole purpose of shading is to determine the color and brightness of pixels.

For this we have a C++ class known as RGBColor, which uses a 3D point to define a

color where x represents red, y represents green and z represents blue. The numbers

go from 0 to 1 and determine the intensity of the color. By using multiple components

you can mix the colors at different intervals to make other colors such as purple (1,0,1)

and orange (1,1,0). The set of all colors that can be represented by a RGB ”point”

is called color gamut. Using the normal of an object, its position relative to the

window and light intensity, you can alter the color by using simple numeric values to

accurately describe the color observed at a pixel.

2.1.2 Light Sources

If a single color is defined for an object, the ray returns a solid color regardless of the

three dimensional shape of the object. Using some light source and the normal vector

at the point of contact, we can calculate the color intensity of the surface to generate
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a realistic shading effect based on material. For this we need to create a light of some

nature. The color intensity is calculated by the bidirectional reflectance distribution

function (BRDF) which uses the normal of an object to calculate how light reflects

off its surface. Using this function and material, it is possible to create various surface

types, including a mirror like reflective surface. There are three general types of light

sources used: ambient, directional and point light.

For ambient light, the program generates an overall light intensity that permiates

throughout the world. This is used to brighten areas that aren’t lit by any other source

which causes a minimum color intensity on all objects.

Figure 2.3: Ambient light at different intensities from lowest to highest.

Directional lights hit the entire scene from a given direction. The difference from

ambient lighting is that a directional light casts shadows onto the ground and other

objects, generating a ’sunlight’ effect. For a single source (such as a lamp or light

bulb) we have point lights, which radiate light from a point outward.

By using all three light sources we can create accurate shadows and build at-

mosphere. However, as the color is also determined by intensity, and the maximum

intensity of any of the three primary colors is 1, the amount of light can actually be

a problem because it causes an out-of-gamut effect. At such a point ’clamping’ is

needed to set the value for any of the three prime colors back to 1 before the tracer

draws the scene, which results in an incorrect shading. So, light intensity is a crit-
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Figure 2.4: Directional light from the back (a) and front (b) as well as a Point Light

example (c).

ical concern for people geared towards building a scene. Note that it is possible to

generate an object that emits light, as well as defining the color of said light source.

Figure 2.5: Demonstrating out of gamut effect (a), while clamping out the area,

painted in red for clarity (b).

2.1.3 Windows

One can build a world with defined objects and light sources but cannot render the

scene without a window to view it. Using the ViewPane class we can create a window,

covered in pixels, whose dimensions we define. There are a few aspects to this: the

view, its dimensions in terms of position, the number of pixels in the rows and columns

and the size of those pixels. The window dimensions affect the size of our image, more

pixels means a larger window and thus more of the world is rendered within the scene.
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Pixel size effects the ’zoom’ of the view plane, with a smaller pixel size showing less

of the world and a larger pixel size showing more. But, a smaller pixel size is more

accurate at drawing objects than a larger one.

Figure 2.6: Demonstration of changing the different dimensions of the view plane.

This does not affect the image, only what is seen.

Figure 2.7: Showing Change in pixel size. (a) Control: size: 0.01, (b) Size: 0.005, (c)

Size: 0.02, (d) Size: 0.1

One aspect of the window is a phenomenon known as aliasing, and its counter

measures anti-aliasing. The computer picks a color based on what a ray sees at that

pixel. However, the ray, being shot from the center of the pixel, may register a color

that does not accurately describe what is contained by the whole pixel. More com-

plex images can cause a worse aliasing effect, generating a totally incorrect pattern.

There are three general ways to account for this; primarily by changing the window

dimensions and pixel size, or by increasing the sampling size for each pixel and/or
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how the tracer samples each pixel. When we increase the size of the window and

decrease the pixel size proportionatelly to create a window with the same image, we

also increase the resolution making the image appear less pixillated.

Figure 2.8: Demonstrating the difference caused by increasing the number of samples

taken per pixel. (a) Samples: 1, (b) Samples:4, (c) Samples: 9, (d) Samples: 16

Due to the current resolution capabilities, it is difficult to distinguish between higher

sampling sizes.

Figure 2.9: Showing resolution change by altering all parameters. (a) Dimen-

sions:100X100, Pixel Size: 0.02 Samples: 1, (b) Dimensions:200X200, Pixel Size:

0.01 Samples: 4, (c) Dimensions:400X400, Pixel Size: 0.005 Samples: 9, (d) Dimen-

sions:800X800, Pixel Size: 0.0025 Samples: 16. There is little difference between (c)

and (d) as the resolution of the screen does not allow a clearer image.

As for the sampling, by increasing the number of rays shot through each pixel and

taking an average color over the entire pixel, we can get better, more natural looking,
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colorings. But, the distribution of samples is equally important. Generally, there

are various ways to sample by either a uniform distribution, or one of many ways to

randomize where each ray passes through the pixel, known as jittered sampling. Each

method is described in Chapter 5 of [12] and has its own advatages and disadvantages.

After we have a viewing window, the image seen through the window depends

on where we are viewing from. This is known as perspective viewing. By creating an

’eye’ (camera) position we determine the veiwing angle. This also enables us to keep

a scene and simply change where we view it without the hassle of changing all of the

object positions and rotations.

2.2 Rays

Without an understanding of the various types of rays, we cannot create accurate

light and shading effects. There are four types of rays, primary, secondary, light, and

shadow, which interact with objects and generate a scene. There are also ways to

render more complex objects faster using bounding surfaces. Using the numerical

information, we can also use matrices to scale, translate and rotate objects.

2.2.1 Types of Rays

Of the four types of rays, the simplest, and most important, are the primary rays.

These are cast from the eye, through the view plane and register when they hit an

object. The goal of the primary ray is to find out the closest hit point to the view

plane. Secondary rays come in two varieties and, unlike primary rays, originate from

the surfaces of objects. Their purpose is to determine how light is either reflected

off, or transmitted through a material, giving them their names: reflected rays and

transmitted rays. Reflected rays are used with mirrors, as well as any surface that

reflects some amount of light. This topic is reffered to as caustics. For example, if you
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were to place a green sign near a white wall in bright daylight, the sign would bounce

green light off of the sign and onto the wall, giving it a green coloring. Transmitted

rays use Snell’s Law and a given index of refraction to determine the angle of refraction

through a refractive surface, such as glass or water.

Light rays are cast from a light source and simulate the effects of illumination

on an object. Shadow rays, like secondary rays, are cast from the surface of objects

and determine if there is anything between the surface and the light sources. Using

the information that the shadow rays acquire the tracer will create shading for the

surface.

2.2.2 Ray/Object Interaction

When the program tries to register the hit location of the object, due to memory

errors, the exact hit point may be slightly before or slightly after the object. When

this occurs, the tracer may think the hit point is inside the object, where no light

reaches. This effect makes speckles of black cover the object’s surface, as if the image

has ’static’. To account for this we define a small number, ε, that creates a virtual

’thickness’ prevents this anomoly by allowing for a small error.

For complex shapes the runtime on the rendering can be problematic. To gener-

ate these objects faster we use a bounding object. Bounding objects are defined to be

larger than the object they cover, and less expensive to trace, with bounding boxes,

spheres and cylinders being most common. In fact bounding objects are referred to

as bounding surfaces. By using bounding surfaces, the tracer will bypass any objects

whose bounding surfaces are not hit by the ray.
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2.3 Transformations

We can also change the shape of an object with linear transformations. Transforma-

tions work as one would suspect, by using matrices to alter the 3D coordinates of

the surface of the object. The types of transformations used are scaling, rotation,

reflection, translation and shearing.

2.3.1 Affine Transformations

Scaling, translation, rotation, reflection and shearing are all affine transformations,

and can be represented as a series of linear transformations. Because of this represen-

tation, we can use square matrices to perform these transformations to an object. We

can use 3×3 matrices to scale, rotate, reflect and shear an object, however transla-

tion is problematic as a 3×3 matrix does not have enough degrees of freedom. Thus,

we need to use a 4×4 matrix that will have components which account for all affine

transformations, if we represent each point or vector (x, y, z)T as (x, y, z, 1)T .

To scale a component we need to multiply it by some constant. To account for

all components we use the following matrix (u, v, and w represent constants.):

S(u, v, w) =



u 0 0 0

0 v 0 0

0 0 w 0

0 0 0 1


This generates the scaling effect ([ux, vy, wz, 1]T ) for our object. For translations,

we must add three constants to x, y, and z. The matrix that does this is the following,

which adds dx, dy, and dz to their respective components.
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T (dx, dy, dz) =



1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1


The matrix will add the values associated with dx, dy, and dz to each component

in turn, causing a translation. For reflection along any axis we simply need to multiply

the desired component by −1.

Rx =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Ry =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1



Rz =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


For rotation we use the following matrices:

Rx(θ) =



1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1


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Ry(θ) =



cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1



Rz(θ) =



cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1


Shearing is the effect of ’sliding’ an object so that it is skewed along an edge.

There are six possible ways to skew an object in 3D with three axies to choose from

and two afterwards to skew with respect to. The matrix generated becomes:

Ry =



1 hyx hzx 0

hxy 1 hzy 0

hxz hyz 1 0

0 0 0 1


Because matrix multiplication is not commutative, except under special circum-

stances, one should be wary of the order they transform an object.

How do we ray-intersect a transformed object? It is just as complicated to

implement as it sounds. Fortunately, we can bypass this by intersecting the original

object with the inversely transformed ray. To be more concise, let T denote the

matrix for the total effect of all affine transformations, defined as the product of

all matrices representing each individual transformation. Then T−1 represents the

inverse transformation. The inversely transformed ray is obtained by multiplying the

origin point and the direction vector of the ray by T−1 from the left. Denote the

intersection point of the original ray and transformed object as p′, with its normal

vector n′. Similarly, we can describe the intersection point of the inversely transformed
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ray and original object by p, as well as its normal vector n. Then it is not difficult

to prove that p′ = Tp, and that the two points will have the same value of t. The

relation between the normal vectors is n′ = T−Tn, where T−T is the transpose of T−1.



CHAPTER 3

THREE DEMINSIONAL POLYNOMIAL SURFACES

Now, we will take the time to discuss how polynomials can be used to generate the

surface of an object and how it relates to the development of the SAVE and sqrtSAVE

classes.

3.1 Polynomial Surfaces

As previously explained, when drawing within a ray-tracer one needs to define the

surface based on some input. In order to ray-trace any implicit polynomial surface

f(x, y, z) = 0, (3.1)

by any given ray

x = a0t+ b0, y = a1t+ b1, z = a2t+ b2, (3.2)

we need to substitute (3.2) into (3.1) and obtain a ray-surface intersection equation

of a single variable t:

F (t) := f(a0t+ b0, a1t+ b1, a2t+ b2) = 0. (3.3)

In order to implement this in a ray-tracer, we need to find the smallest positive

solution of (3.3) for t. There are already root finders implemented within our ray

tracer. Note a similarity between this and computed tomography (CT) where ray

tracing needs only the closest (real) root while CT modeling needs all real roots [6].

For polynomails of degree n ≤ 4, there exist analytic root formulas (such as the

quadratic formula) to deal with them, but according to the Abel-Ruffini theorem,

when n ≥ 5 no such general algebraic formula exists. This reason kept many peo-

ple away from higher degree surfaces for quite some time. There is another major
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complication involved. The first is simplifying (3.3) into the standard basis:

F (t) =
n∑
i=0

cix
i. (3.4)

Fortunetely, the Polynomial class generates (3.4) upon defining the polynomial.

3.2 Rotated Polynomials

Some three dimensional objects are polynomials rotated along a single axis. To design

a class for generating them, first an abstract class PolySurf is created to handle the

basic information. Then, a child class, RotPoly, is used in order to create polynomials

of the form

x2 + y2 = p(z)2, α ≤ z ≤ β, (3.5)

which generates an object with a horizontal cross secton that is a circle of radius |p(z)|.

However, (3.5) is a symmetric object about the z-axis and can be improved upon to

allow more objects to be generated. In order to change the center, PolySurf has two

more polynomial members, px and py, that can be used. The equation becomes

(x− px(z))2 + (y − py(z))2 = p(z)2, α ≤ z ≤ β, (3.6)

where

x = px(u), y = py(u), z = u

is the 3D parametric curve the object rotates around, with its degree being

2 ∗max(deg(p), deg(px), deg(py), 1).

One thing to keep in mind is the overall shape of the object as the maximum

number of extrema in a curve is one less than the degree of its polynomial. We find

that generating more ’turning points’ is problematic as p(z)’s max degree is doubled

from the outset, thus slowing down the computation. However, if we use

(x− px(z))2 + (y − py(z))2 = p(z), p(z) ≥ 0, α ≤ z ≤ β, (3.7)
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we can define a child of Rotpoly, named RotSqrtPoly whose degree of intersection

equation is evaluaed as

max(deg(p), 2 ∗ (deg(px), deg(py), 1)).

With this in hand we can now generate a cross sectional radius of
√
p(z). But there

is still one limit: all of the horizontal cross sections are either circles or ellipses with

the same eccentricity.

3.3 Surfaces Allowing Varying Eccentricity

Within an ellipse,

x2

a2
+
y2

b2
= 1,

we can define r1 = min(a, b) and r2 = max(a, b), the eccentricity will be

e =

√
r22 − r12
r2

=

√
1− r1

2

r22
.

In order to vary it, we must convert a and b into polynomials of z and use another

inherited class SAVE to solve the following equation:

(x− px(z))2

a(z)2
+

(y − py(z))2

b(z)2
= p(z)2, a(z) > 0, b(z) > 0, α ≤ z ≤ β, (3.8)

which can be rewritten as the polynomial

((x− px(z))b(z))2 + ((y − py(z))a(z))2 = a2(z)b2(z)p2(z), p(z) ≥ 0, (3.9)

with a maximum degree of

2∗max(deg(p)+deg(a)+deg(b),max(deg(px), 1)+deg(b),max(deg(py), 1)+deg(a)).

This is a rotated polynomial whose eccentricity varies based on b(z)
a(z)

. Like the rotated

polynomials, the degree of p, which determines the number of turning points of the
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outline of the solid, is doubled here. Like before, we will create the sqrtSAVE class

by removing the square on p(z).

(x− px(z))2

a(z)2
+

(y − py(z))2

b(z)2
= p(z), p(z) ≥ 0, a(z) > 0, b(z) > 0, α ≤ z ≤ β. (3.10)

This equation can be rewritten as the polynomial

((x− px(z))b(z))2 + ((y − py(z))a(z))2 = a(z)2b(z)2p(z), (3.11)

whose maximum degree is

max(2(deg(a)+deg(b))+deg(p), 2(max(deg(px), 1)+deg(b)), 2(max(deg(py), 1)+deg(a))).

The lowest degree that we need to make a significant surface of varying eccentric-

ity using both eccentricity parameters is four, where the equation giving the lowest

degree is:

x2

(c1 + c2x)2
+ y2 = c3

with no central variance, deg(p) = deg(a) = deg(b) = 0.



CHAPTER 4

BERNSTEIN ROOT FINDING

Previously, a global root finder, the Jenkins-Traub algorithm, was used in our ray

tracer. Even though seeking out all roots of a polynomial would be adequite, finding

all real and complex roots weighs down the program’s processing power. To account

for this we use a Bernstein basis root finder that only searches for real roots locally.

4.1 Properties of the Bernstein Basis

Bernstein Polynomials of degree n are defined by

Bn
i (x) :=

(
n

i

)
xi(1− x)n−i, i = 0, 1, ..., n, 0 ≤ x ≤ 1. (4.1)

This forms a basis for the space of polynomials of degree ≤ n on [0, 1]. Because of

this, any polynomial p(x) can be written as a Bézier Curve:

p(x) =
n∑
i=0

aiB
n
i (x). (4.2)

The coefficients a0, a1, ..., an can be used to discern useful infromation about the curve.

[10] As such, we will begin examining various properties of the Bernstein Basis and

Bézier Curves.

4.1.1 Properties of Bn
i

These are some useful properties of the Bernstein Basis:

positivity: Bn
i (x) ≥ 0 for x ∈ [0, 1]

partition of unity:
n∑
i=0

aiB
n
i (x) ≡ 1

recursion: Bn
i (x) = xBn−1

i−1 (x) + (1− x)Bn−1
i (x)
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derivative: d
dx
Bn
i (x) = n(Bn−1

i−1 (x)−Bn−1
i (x))

curve derivative: d
dx
p(x) =

n−1∑
i=0

ai+1−ai
1/n

Bn−1
i (x)

In order to fully utilize the Bernstein Basis, we must be able to change the interval

[0, 1]. To perform this change we must map x onto an arbitrary interval [α, β]. This

is done by the change of variable

u =
x− α
β − α

(4.3)

which maps x ∈ [α, β] onto u ∈ [0, 1]. [4] This changes (4.2) into

p[α,β](x) =
n∑
i=0

aiB
n
i (u) =

n∑
i=0

ai

(
n

i

)
(β − x)n−i(x− α)i

(β − α)n
. (4.4)

4.1.2 Variation Diminishing

Another useful property of the Bernstein basis is the ability to generate control points

and a control polygon from the coefficients.

Control Points: Pi = (α + i
n
(β − α), ai).

Control Polygon: P0P1...Pn

Control Points are used with the convex hull property of Bézier curves. This states

that the curve lies within the convex hull of its contol points. This occurs because of

the positivity and partition of unity properties of the Bernstein Basis. This leads to

the variation diminishing property ; a Bernstein Basis version of DeCartes rule of signs

says no line intersects the curve more times than it intersects the control polygon.

If we were to consider the line to be the x-axis we can conclude that if the x-axis

intersects a Bézier curve n1 times and the control polygon n2 times then

n1 = n2 − 2n3 (4.5)

where n3 is a non-negative integer. In particular, if the control points change signs

exactly once, then the polynomial has exactly one root in [α, β].
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4.2 Real Root Finding

In order to find the roots of a Bernstein polynomial, a technique known as root

isolation is employed. Commonly referred to as root localization, there are various

methods and theorems involved, with most localizations being done based on the

coefficients of the polynomials. (There are also methods of bounding the roots.)

Bernstein basis root finders subdivide using the recursive property on the polynomial

and isolate the real root, as well as approximate it. The methods are discussed and

various algorithms are defined in [11]. In general, real root finding in the Bernstein

basis is a special case for finding the intersection points between two Bézier curves,

with one curve being a line. For more information regarding finding intersection

points between two Bézier curves see Sederberg and Nishita’s work [9].

4.2.1 Convex Hull Marching and Root Deflation

The current Bernstein root finding algorithm our tracer uses is based on two con-

cepts, convex hull marching and root deflation. The algorithm takes a step-by-step

’march’ toward the root from the left, then it deflates the polynomial. The algorithm,

known as the Bernstein convex hull approximating step algorithm, finds each real root

within [0, 1] ([α, β] if the conversion mapping is in place) by computing a sequence

of subdivided Bézier curves. [10] It looks for the leftmost point where the convex

hull intersects the x-axis, since the root cannot exist between α and this intersection,

denoted by x1, (because all roots are inside the hull and the interval [α, x1] is outside

the hull) the algorithm sets x1 as the new α and generates a new convex hull of the

same number of control points using the subdivision algorithm and then searches the

new interval of [x1, β] for the next intercept point x2. It repeats the process until

xi = xi+1 within floating point error. This value then becomes the first root. If more
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roots are needed, p(x) is deflated and the whole process starts over again. In deflation

the program finds a polynomial of degree n − 1, p1[xi,1](x) which has the same roots

as the previous curve, with exception to the root that was previously found. The

deflation of the Bézier curve is done by the following formula:

p[xi,1](x) = (x− xi)p1[xi,1](x)

with the coefficients of p1[xi,1](x) being

a1j =
n

j + 1
aj+1, j = 0, 1, ..., n− 1.

The advantage of this algorithm is that it always converges to the left-most root

if p has at least one root in [α, β]. However, there is the possiblility of skipping

roots due to roundoff errors, at which point a sign comparison between p[xj ,1](xi) and

p[xi+1,1](xi+1) is needed after each iteration to prevent the algorithm from going past

the root [10]. If they do not have the same sign, take xi as the root.

4.3 Other Methods of Finding Roots

There are various other methods for isolating and finding the real roots of Bernstein

basis polynomials. These include recursive subdivision, Newton method variants, Hull

approximations, and higher degree envelopes. These are listed expressly as further

reading subjects for those interested in Bernstein root finding, and are not elaborated

on for that purpose.

4.3.1 Recursive Subdivision

These techniques use a midpoint to bisect the interval within a Bézier curve and use

the recursive property to subdivide the interval until a root is found or the algorithm

can discern that no root exists within. These are all variations of work done by
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Lane and Risenfeld [8], and all use the recursive property. Some others use linear

interpolation, or the convex hull to determine the roots.

4.3.2 Newton Based Methods

There are two methods that use the Newton method to calculate the roots. The

first, done by Grandine [5], uses spline functions and the derivative of the curve

along with Newton’s iterative method to converge on the root. The other is from

a research report by Marchepoil and Chenin [2] and combines recursive subdivision

and Newton’s method. Be warned, the entire report is in French and no translation

exists as of yet, and, unless you are well versed in the language, may take some time

to understand.

4.3.3 Hull Approximation

This type of root finding includes the approximation technique discussed earlier. How-

ever, there is another method that uses a parabolic representation of the convex hull

property and can be used to quickly find high degree roots. This particular variation

of the convex hull property was developed by Rajan, Klinkner, and Farouki [3] and

exibits cubic convergence.

4.3.4 Quadratic and Cubic Envelopes

These methods are fairly modern and utilize an envelope formed by quadratic or cubic

Bézier cuves and converge on the root from both sides by shrinking the interval the

envelop creates as it crosses the x-axis. These methods are useful for higher degree

curves and find the roots significantly faster than their counterparts. The quadratic

variation was developed first by Bartoň and Jűttler [1], and adapted later into cubic
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form by Liu, Zhang, Lin, and Wang [7].



CHAPTER 5

GENERATING SURFACES OF VARIABLE ECCENTRICITY

We will begin to explain the implementation of the SAVE and sqrtSAVE classes,

enabling us to draw surfaces of variable eccentricity. SAVE itself is an acronym for

surface allowing for variable eccentricity as it can also draw any rotated polynomial,

as well as adding a center variance effect, by setting a(z) and b(z) to the default value

of 1.

5.1 Required Definitions

In order to generate the SAVE class we first need to define some variables and op-

erators that will allow us to solve (3.11). We let the sqrtSAVE class inherit the

RotSqrtPoly class, which already has p(z), px, py, as well as their derivatives, and

utilizes a Bernstein basis root finder.

5.1.1 Variable Assignments

To create (3.11) we need to add a(z), b(z) and their derivatives to RotSqrtPoly as

new class members. We need to declare them as polynomials, take their derivatives,

and have a means to set and utilize them when building the object. However we also

need to input their coefficients within the SAVE class. Two operations, set a and

set b, input coefficients and generate the polynomials a, b, and take their derivative.

The remaining information is obtained from the constructors of RotSqrtPoly (p, px

and py).
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5.1.2 Constructors

When making a surface with eccentricity we need to construct it using a default and

copy constructors along with a few operators that will be defined and implemented

later in the default constructor of sqrtSAVE. We call the default constructor for the

RotSqrtPoly class and set a and b to a constant function 1.0. For the copy constructor

we call the corresponding constructor of RotSqrtPoly and modify it using a, b, and

their derivatives in order to describe the object. We also set up some classes to be used

later in the implementation; the full sqrtSAVE file can be viewed in the appendix.

5.2 Implementation

We can now account for eccentricity. We build an operator function that inputs the

information for a rotated polynomial, and sets both a and b.

5.2.1 Setup

The setup code is neccessary to build an object within the world of the ray tracer.

First, we find the degree of the ray-surface intersection equation (3.11) by the formula

below it, then resize the memory of the polynomial to account for it. Next, we perform

the setup operation to generate a bounding cylinder for our surface. We make a small

’pace’ in z, a base x-value and y-value (Sx(z), Sy(z)), then examine our polynomial

at each pace as follows:

Sx(z) = |px(z)|+ |a(z)|
√
p(z)

Sy(z) = |py(z)|+ |b(z)|
√
p(z)

The cylinder generated by the maximum radius R = maxz
√
S2
x(z) + S2

y(z) will

be used to bound our object.
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5.2.2 Parametrized Equation for t

We will breifly describe how to create the make eqn t function,which is (3.11) in the

form of (3.3). We need to parameterize p, a, b, px and py in terms of z(t) and create

(3.11) within the program. For this, we substitute (3.2) for x, y, and z in (3.11). For

more details see the function make eqn t in the appendix.

5.2.3 Normal Calculation

To produce shading, we need to compute the normal of (3.11). For efficiency, we

store a new polynomial,

q(z) = a(z)2b(z)2p(z),

in the memory, which simplifies the code. (Note: within the program we don’t need

an extra memory definition for q just a replacement: p = p ∗ a ∗ b.) The normal is

then calculated by

∇F (x, y, z) =
∂F

∂x
x̂+

∂F

∂y
ŷ +

∂F

∂z
ẑ =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
, (5.1)

which we apply to (3.11). This generates the following equations:

∂F
∂x

= 2(x− px(z))b2(z) = cx ∗ b(z), where cx = 2b(z)(x− px(z))

∂F
∂y

= 2(y − py(z))a2(z) = cy ∗ a(z), where cy = 2a(z)(y − py(z))

∂F
∂z

= cx(0.5cx ∗ db(z)dz
/b(z)− dpx(z)

dz
b(z)) + cy(0.5cy ∗ da(z)dz

/a(z)− dpy(z)

dz
a(z))− dq(z)

dz

5.2.4 Using sqrtSAVE

To call upon the sqrtSAVE, you need to generate an instance of the object, then

define the five vectors for p, px, py, a, and b by using the set operations. Finally

you define its desired material, color, scale, translation, and rotation before using the

add object command to place your surface within the world.



CHAPTER 6

ANALYSIS OF THE SAVE AND SQRTSAVE PROGRAMS

In theory the program should be able to generate a surface of varying eccentricity by

simply utilizing a(z) and b(z) with any rotated polynomial. However, there are a few

restrictions that should be noted before drawing objects.

6.1 Polynomial Requirements

When generating objects, one must consider the roots of p(z). This determines where

the object crosses the axis of rotation. For example, a sphere requires roots where

the sphere intersects the z axis. For a radius of one, we must ensure p(z) = 0 when

z = 1 or −1. For this particular sphere the function is as follows:

Figure 6.1: Unit sphere generated by the sqrtSAVE program.

p(z) = −(z + 1)(z − 1) = −z2 + 1

When written as code we have p = [−1, 0, 1]. If the desired object is an open

one, p(z) must not have a root within the clipped interval. By considering the roots
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of p(z), their multiplicity, and the interval being traced, we can generate a closed

section anywhere on the object.

For central variance, px and py, the rules are less strict. However, for a(z) and

b(z) there is a very strict requirement, the eccentricity functions MUST NOT have

any root within the interval (see (3.8)). Otherwise, the only limitations are those on

the imagination.

6.2 Objects

Now it is time to examine a few objects and how they can be varied. We will examine

some simple objects, their functions, and what occurs when we vary the axis of

rotation. Then, an eccentricity variance will be applied to demonstrate its effect.

6.2.1 Examples of Rotated Polynomials With No Variance

Now some basic objects will be introduced and defined. First, we start with a few

closed objects.

p(z) = −z4 + 1 = −(z2 + 1)(z2 − 1) (6.1)

p(z) = z4 − 2z2 + 1 = (−z2 + 1)2 (6.2)

p(z) = z3 − z2 − z + 1 = (z − 1)(z + 1)2 (6.3)

These polynomials have roots at both 1 and −1 and no roots in between. Also used

are the following open objects:

p(z) = −1

4
(z3 + 4z2 + z − 6) (6.4)

p(z) = − 1

10
(z4 + z3 + 17z2 − 2z − 24) (6.5)

p(z) = z3 + z2 + z + 1.5 (6.6)
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Figure 6.2: Closed objects with no variance. From left to right: (a) (6.1), (b) (6.2),

(c) (6.3)

Figure 6.3: Objects with no variance from left to right: (a) (6.4), (b) (6.5), (c) (6.6),

(d) (6.7)

p(z) = z4 + z3 + z2 + z + 1 (6.7)

Upon examining the horizontal cross sections of these objects, one should note

they are all circles of various sizes.

Next, we demonstrate the effect of central variance and how it alters the object.

6.2.2 Central Variance

By using the parameters px and py we create a variation in the axis of rotation. Let’s

compare (6.2) to its counterpart with linear variance. If we vary px alone we can

generate the same effect as varying py alone by simply rotating the object.
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Figure 6.4: Object (6.1) (a) in base form, then clipped to demonstrate the cross

sections at (b) [-1.0, 0.9], (c) [-1.0, 0.75] and (d) [-0.75, 0.5]

Figure 6.5: Object (6.2) (a) clipped to demonstrate cross section at (b) [-1.0, 0.9], (c)

[-1.0, 0.75] and (d) [-0.75, 0.5]

Figure 6.6: Object (6.2) (a) in base form, then (b) varied by px = z, (c) by py = z

and (d) rotating the previous image by −90 degrees.

There are some noteworthy traits of this variance. Let’s use (6.1) and (6.3) to

examine what happens when we vary the center in multple ways.

But this does not change the horizontal cross sections, they are still always circles.
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Figure 6.7: Object (6.1) (a) in base form, (b) varied by px(z) = z2, (c) varied by

py(z) = z2, and (d) by px(z) = py(z) = z2.

We could scale p(z) in the x or y direction by a constant but the horizontal cross

sections would all be ellipses with the same
b

a
ratio.

Figure 6.8: Object (6.3) with linear central variance, px = z, viewed from the top

clipped at (a) [-1.0, 0.9], (b) [-1.0, 0.75] and (c) [-0.75, 0.5] with the bottom view (d).

In order to vary the eccentricity we need to use the new parameters a(z) and

b(z).

6.2.3 Varying Eccentricity

To demonstrate the effects of a and b we will use the (6.6) and (6.7). To start we

focus on the (6.6) and vary a(z) linearly by 0.5z + 1.

Now we vary b(z) by the quadratic function 0.5z2 + 0.5z + 1.

The eccentricity is noticably different at the top and bottom of the object. To
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Figure 6.9: (a) Object (6.6), then adding a linear a(z) as viewed from different angles.

(b) Front, (c) Top, (d) Bottom

Figure 6.10: (a) Object (6.6), then adding quadratic b(z) as viewed from different

angles. (b) Front, (c) Top, (d) Bottom

achieve a more drastic effect, we will use (6.7) and choose two simple functions:

a(z) = 0.5z + 1, an increasing function, and b(z) = −0.5z + 1, a decreasing function.

Figure 6.11: Object (6.7) varied by a(z) = 0.5z+1 and b(z) = −0.5z+1 as seen from

different angles. (a) Front, (b) Side, (c) Top, (d) Bottom

We will now use (6.4) to show the effects of central and eccentrical variance on
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an object by taking the cross section at various points along [−1, 1]. We will use the

following parameters:

px = z

py = −z2 + 1.0

a(z) = 0.5z + 1.0

b(z) = 0.25(z − 2)2 = 0.25z2 − 1.0z + 1.0

First we examine the object using a(z) and b(z) alone.

Figure 6.12: Object (6.4) varying by a(z) = 0.5z + 1 and b(z) = −0.25z2 − z + 1 as

viewed from different angles. (a) Front (b) Side (c) Top (d) Bottom

Now, we add the central variance parameters to generate the following object.

Figure 6.13: Object (6.4) with added central variance px = z and py = −z2 + 1.0, as

seen from various angles. (a) Front, (b) Side, (c) Top, (d) Bottom
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We examine the top and bottom of the object with a small clipping applied and

compare it to the top and bottom views to get a general understanding of its shape.

Figure 6.14: (6.4), (a) seen from the top and clipped at (b) 0.9 as well as (c) the

bottom with a clipping at (d) −0.9.

To fully demonstrate the effects of a(z) and b(z) we gradually cut away from the

top and bottom.

Figure 6.15: (6.4) as seen from the top; clipped at (a) 0.75, (b) 0.5, (c) 0.25, (d) 0.1

6.3 Bernstein Conversion

The ray tracer also a Bernstein to power basis conversion, enabling us to account for

Bernstein coefficients. This allows the user to choose between Power and Bernstein

Basis. We will compare (6.5) in power basis to its Bernstein basis counterpart whose

coefficients are [0.5, 2.35, 2.8667, 2.65, 0.7].
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Figure 6.16: (6.4) as seen from the bottom; clipped at (a) −0.75,(b)− 0.5, (c) −0.25,

(d) −0.1

Figure 6.17: Comparison of (6.5) with (a) px to (b) its Bernstein coefficient equivalent.

The conversion can also change central variance and eccentrical variance to ac-

count for Bernstein Basis coefficients. Let’s demonstrate this using px(z) = z, whose

coefficients in Bernstein Basis are [−1, 1].

Figure 6.18: Comparison of (6.5) (a) to its Bernstein coefficient equivalent. (b)

To compare eccentricity we will convert a(z) = 0.5z + 1 and b(z) = −0.5z + 1 to

their Bernstein equivalents [0.5, 1.5] and [1.5, 0.5] respectively.
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Figure 6.19: (6.5) with a(z) and b(z) as seen from the (a) front, (b) side, (c) top, and

(d) bottom

Figure 6.20: (6.5) using Bernstein coefficients for a(z) and b(z) as seen from the (a)

front, (b) side, (c) top, and (d) bottom.

As expected the conversion works and we achieve identical images for power and

Bernstein basis.



CHAPTER 7

CONCLUSION

We have examined the basic workings of a ray tracer, the mathematics behind gen-

erating various polynomial surfaces, the Bernstein basis root finding algorithm, and

how to create the SAVE and sqrtSAVE program. We examined the different objects

that are generated by the program and applied conversions for Bernstein basis coef-

ficients. Overall, the program does what is expected. A variation in eccentricity has

been displayed and thus opens up a new group of objects that can be now generated

within a ray tracer.
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Appendix A

APPENDIX

The appendix will cover the entire code involved with the sqrtSAVE program as well

as Bernstein root finding and basis conversion.

A.1 sqrtSAVE

The header file is as follows:

sqrtSAVE.h

//Surface Allowing for Variable Eccentricity

#ifndef __sqrtSAVECC__

#define __sqrtSAVECC__

#include "RotSqrtPoly_Bern.h"

class sqrtSAVE:public RotSqrtPoly{

public:

//Default Constructor default a and b to constant 1

sqrtSAVE() : RotSqrtPoly(){

IsEccBernstein = false;

double coeff[] = {1.0};

a = Polynomial(coeff, 1);

b = a;}

//Copy Constructor
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sqrtSAVE(const sqrtSAVE& obj):

RotSqrtPoly(obj), a(obj.a), ader(obj.ader), b(obj.b), bder(obj.bder){}

virtual sqrtSAVE* clone(void) const

{ return (new sqrtSAVE(*this)); }

//assignment Operator

virtual sqrtSAVE& operator= (const sqrtSAVE& rhs);

//changes a and b from power to Bernstein basis

void BernsteinEcc()

{IsEccBernstein = true;}

//set a and b

virtual void set_a(double* u, const int n_coeff)

{

//checks to see if a is Bernstein and converts it

if(IsEccBernstein){

Bernstein t = Bernstein(u, n_coeff);

t.set_A_B(-1,1);

a = Polynomial(t.power_basis());}

else {

a = Polynomial(u,n_coeff);}

ader = a.derivative();

}

virtual void set_b(double* u, const int n_coeff)

{
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//Checks for b and changes it to Bernstein if neccessary

if(IsEccBernstein){

Bernstein t = Bernstein(u, n_coeff);

t.set_A_B(-1,1);

b = Polynomial(t.power_basis());}

else {b = Polynomial(u, n_coeff);}

//calculates derivative for normal

bder = b.derivative();

}

//make eqn

virtual void make_eqn_t(const Ray& ray) const;

//setup class

virtual void setup(void);

//calculates normal

virtual Normal find_normal(double x, double y, double z) const;

bool IsEccBernstein;

Polynomial a,b, ader, bder;

//define a and b as polynomials everything else in base classes

};

#endif

Next we have the .cpp file.

sqrtSAVE.cpp

#include "sqrtSAVE.h"
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#include "BoundingCyl.h"

/* Cunstructors (Default Copy)

Operator

*/

//setup class

void sqrtSAVE::setup(void)

{

//generates right side of equation and takes derivative

p = p*square(a)*square(b);

pder = p.derivative();

//checks and sets the degrees of the polynomials involved

int deg = p.degree(), degx=px.degree(), degy=py.degree();

degx=max(1, degx); degy=max(1, degy);

degx+=b.degree(); degy+=a.degree();

deg = max(max(degx, degy), deg);

maxn = deg+1;

//sets the degree to the max degree of our function

p.resize(maxn);

//set maxn and bounding cylinder

PolySurf::setup();

//set up bounding cylinder

double z, pace = 1/256.0;

double Sx, maxSx, Sy, maxSy = -1.0;

//checks for max values for bounding surface
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for(z=-1.0; z<=1.0; z+=pace)

{

Sx = abs(px.value(z)) + abs(p.value(z)/b.value(z));

if(maxSx<Sx) maxSx=Sx;

}

for(z=-1.0; z<=1.0; z+=pace)

{

Sy = abs(py.value(z)) + abs(p.value(z)/a.value(z));

if(maxSy<Sy) maxSy=Sy;

}

//multiplies to increase maximums

maxSx *= 1.2;

maxSy *= 1.2;

//make bounding cylinder

Casing_I* cs1_ptr = new Casing_I;

BoundingCyl *bcyl_ptr = new BoundingCyl;

bcyl_ptr->scale(maxSx, maxSy);

cs1_ptr->bs_ptr = bcyl_ptr;

bound_ptr = cs1_ptr;

}

//generates the operator from RotPoly and adds a and b

sqrtSAVE& sqrtSAVE::operator = (const sqrtSAVE& rhs)

{
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if (this == &rhs) return (*this);

RotSqrtPoly::operator= (rhs);

a=rhs.a, b=rhs.b;

return (*this);

}

//parameterizes the equation in terms of t

void sqrtSAVE::make_eqn_t(const Ray& ray) const

{

double c[]={ray.d.x, ray.o.x+ t0*ray.d.x},

d[]={ray.d.y, ray.o.y+ t0*ray.d.y},

e[]={ray.d.z, ray.o.z+ t0*ray.d.z};

Polynomial xmPx_t(c,2,maxn), ymPy_t(d,2,maxn), z_t(e,2,2);

Polynomial pofz_t(p.of(z_t)); // p(z(t))

Polynomial aofz_t(a.of(z_t));

Polynomial bofz_t(b.of(z_t));

xmPx_t -= px.of(z_t);//bofz; // x(t) - px(z(t))

xmPx_t = xmPx_t*bofz_t;

ymPy_t -= py.of(z_t);//aofz

ymPy_t = ymPy_t*aofz_t;

// y(t) - py(z(t))

eqn_t = square(xmPx_t); // squares px and py

eqn_t += square(ymPy_t);

eqn_t -= pofz_t;
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}

//finds the normal

Normal sqrtSAVE::find_normal(double x, double y, double z) const{

Normal normal;

//saves values used multiple times when calculating the normal

double cx = (x - px.value(z));

double cy = (y - py.value(z));

double az = a.value(z); double bz = b.value(z);

//calculates x and y values for the normal

normal.x = 2*cx*bz*bz;

normal.y = 2*cy*az*az;

//calculates the z value for the normal

normal.z = 2*cx*bz*(cx*bder.value(z) - pxder.value(z)*bz);

normal.z+= 2*cy*az*(cy*ader.value(z) - pyder.value(z)*az);

normal.z-= pder.value(z);

//normalized in PolySurf

return normal;

}

A.2 SAVE

A header file, SAVE.h is used to square the value of p(z).

#ifndef __SAVECC__
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#define __SAVECC__

#include "sqrtSAVE.h"

class SAVE: public sqrtSAVE {

public:

// Default constructor

SAVE() : sqrtSAVE() {}

// Copy constructor

SAVE(const SAVE& obj) : sqrtSAVE(obj) {}

// Virtual copy constructor

virtual SAVE* clone(void) const

{ return (new SAVE(*this)); }

// This will allow input and square p(z)

virtual void set_p(double* a, const int n_coeff)

{ p = square(Polynomial(a, n_coeff));

pder = p.derivative();

}

};
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#endif __SAVE__
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