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ABSTRACT 

        Enhanced oil recovery (EOR) processes are regarded as important methods to 

recovery remaining oil after primary and secondary recovery. It is significant to select the 

most appropriate EOR process among the possible techniques for a candidate reservoir. 

EOR screening criteria has been created using available EOR datasets and served as the 

first step to compare the suitability of each EOR method for a particular reservoir. Most of 

these datasets are collected from EOR surveys published by Oil & Gas Journal. This study 

proposes a comprehensive study of a dataset including 55 pilot and field polymer flooding 

applications in China. Statistical analysis has been used to analyze the data collected. 

Histograms and box plots combined with violin plots are used to show the distribution of 

each parameter and present the range of the data. Scatter plots are constructed to compare 

relationships between different polymer properties and reservoir properties. Screening 

criteria for polymer flooding has been updated by real pilot and field polymer flooding 

data. Multiple imputation method is also proposed and implemented on the original dataset 

and a predicting model to predict incremental oil recovery using reservoir and polymer 

properties is constructed in steps.  
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NOMENCLATURE 

    Symbol  Description 

EOR                Enhance Oil Recovery 

IOR                 Improved Oil Recovery 

OOIP               Original Oil In Place 

MI                   Multiple Imputation 

M      Mobility ratio 

µ      Oil viscosity, (cP) 

T      Formation temperature (°F) 

                     Porosity (%) 

    k                      Reservoir permeability (md) 

    q                      Flow rate 

   A                     Cross-section area 

   L                      Length of the sample 

                     Pressure drop 

                    Apparent viscosity 

                       Flow consistency index 

                       Flow behavior index 

                        Shear rate 

   HPAM             Hydrolyzed Polyacrylamides 

   PV                    Polymer volume  

   MW                  Molecular Weight 

   R2                       Coefficient of determination

f

DP

happ

K

n



1. INTRODUCTION 

        Since oil and gas is in an increasing need nowadays and it’s a challenge to recovery 

oil from existing mature oilfields or hydrocarbon reservoirs because of high water cut and 

complicated geological settings, it’s a necessity to improve oil recovery in the high water 

cut reservoirs using enhanced oil recovery methods to improve oil recovery. Among them, 

polymer flooding method is proved to be a successful method in many oilfields and had 

very significant results. However, whether or not should an oilfield fit the polymer flooding 

method still needs more investigation. 

        Screening criteria for polymer flooding is allowed for evaluation and selection of a 

particular reservoir. Nearly all recently published screening criteria regarding polymer 

flooding were based on the data collected from the bi-annual EOR surveys of the Oil & 

Gas journal or some specific fields. The survey missed significant polymer flooding 

parameters such as formation water salinity, polymer type and molecular weight, polymer 

concentration, reservoir heterogeneity, and so on. To overcome this issue, a new dataset 

with important reservoir information and polymer properties from pilot and field tests is 

necessary to establish for polymer flooding. Thus, this study proposes to develop a new 

dataset of screening criteria for polymer flooding based on real significant data from pilot 

and field polymer flooding applications. 

        Polymer flooding has been widely applied in China for over 20 years and a large 

number of pilot and field projects have been conducted. These projects include important 

information to quantify the development of polymer flooding as an EOR method. 

Nevertheless, most of them have been published in Chinese, and are not accessible to  
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worldwide research community due to language barrier. Thus, this work is made to collect 

all relevant information of polymer flooding from available Chinese publications.  

        The primary objective of this study is to summarize polymer flooding applications in 

China and analyze the data collected from pilot and field polymer flooding applications 

using statistical method to provide an updated guidance of screening for polymer flooding. 

Not all applications are published due to some reasons, thus the data collected are only 

available in publications in China. This project collected 55 polymer flooding projects after 

reviewing nearly 200 publications in Chinese, including 31 pilot projects and 24 field 

projects from 1991 to 2012. Also based on the data collected, a multiple linear regression 

analysis is conducted to generate a predicting model for oil recovery increased, which is 

useful for prediction in the future study.  Since there are a lot of missing values in different 

parameters due to the availability from publications, multiple imputation method is used to 

assist doing the multiple linear regression analysis. 

        This thesis is organized into six sections. The first section presents the overall 

introduction and objectives of this study. The second section is literature review about the 

basic theories and knowledge for polymer flooding methods. EOR screening methods, 

multiple imputation method and EOR prediction methods are also reviewed in this section. 

The third section is an introduction for polymer flooding, in which polymer flooding 

mechanisms and polymer flooding processes are explained in detail. The fourth section 

describes and analyzes the data collected. In this section, parameters that affect polymer 

flooding have been discussed and data ranges and distributions of them are also been 

observed and analyzed. The fifth section presents the multiple imputation method and 

multiple linear regression analysis method and results. In this section, the multiple 
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imputation method has been proposed and used to impute the missing data and generate a 

complete dataset to assist finishing the predicting model using the multiple linear 

regression. The last section covers the overall summary, conclusions and recommendations 

for further study. 
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2. LITERATURE REVIEW 

        This section includes literature review of overall mechanisms of enhanced oil 

recovery methods. Also, EOR screening methods and data analysis method including 

multiple imputation and prediction method are reviewed. 

2.1. EOR INTRODUCTION 

        During the oil recovery process, three mechanisms are included that are primary, 

secondary and enhanced recovery. EOR, which means enhanced oil recovery, is the 

implementation of various techniques for increasing the amount of crude oil and gas that 

can be extracted from an oil field. Enhanced oil recovery is also called tertiary recovery as 

opposed to primary and secondary recovery.  Figure 2.1 shows the three stages oil 

production by Willhite (1998).  

        Primary recover is recovery by natural drive energy initially available in the reservoir 

including rock and fluid expansion, solution gas, water influx, gas cap and gravity drainage. 

It does not require the injection of any external fluids or heat as driving energies and can 

produce 5 to15% of the original oil in place (OOIP) (Tzimas, et al., 2005). Secondary 

recovery is recovery gained by injecting external fluids like water and/or gas, which is 

mainly for the purpose of pressure maintenance and improved volumetric sweep efficiency. 

Primary and secondary recovery methods can totally produce about one third of OOIP and 

leave behind two thirds of OOIP. The remaining oil located in reservoirs that are difficult 

to access and in pores as a result of capillary pressure and wettability. Also, the interfacial 

forces, high oil viscosity and reservoir heterogeneity are the factors that lead to high 

remaining oil saturation after primary and secondary recovery. Enhanced oil recovery is 

oil recovery to displace and recover the remaining oil by injection of gases or chemicals 
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and/or thermal energy into the reservoir. Applications of EOR are not restricted to a 

particular phase in the producing life of the reservoir.  

 

 

 

 
Figure 2.1. Three stages of oil production (Willhite, 1998)         

 
 
 
        Polymer flooding is one of chemical EOR methods. Chemical methods commonly 

deal with the injection of interfacial-active components such as surfactants and alkalis, 

polymers, and their blends. There are several categories of surfactants for foam flooding, 

including those intended for deep conformance in solvent flooding. Traditionally, the target 

of chemical methods is to increase the capillary number (Lake, 1989; Thomas, 2008). The 

best-known method is micellar-polymer (Lake, 1989). After significant technical successes 

in field trials, the process gave way to new alternatives, such as alkaline-surfactant-polymer 
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(ASP) flooding, and a renewed interest in surfactant-polymer (SP) flooding. Straight 

polymer flooding has been a sustained production method in many areas, China, especially 

in Daqing, has been the most successful case (Satter et al., 2008). In ASP flooding, the 

polymer acts as a mobility control agent, while the alkali and surfactant act synergistically 

to widen the range of ultra low interfacial tension (10-3mN/m). In SP flooding, which is a 

combination of two surfactant (a surfactant and a co-surfactant) co-solvents, no caustic 

agent is used. 

2.2. EOR SCREENING METHODS 

        In the past decades, reservoir screening criteria for polymer flooding were adopted 

from the 1984 National Petroleum Council report (Bailey, 1984) and revised EOR 

screening criteria by Taber et al., (1997). Technology advances will update these criteria. 

For example, oil viscosity should be low. But people started to inject polymer in high-

viscous oil reservoirs (Moe Soe Let et al., 2012; Wassmuth et al., 2009). In addition, more 

laboratory research has been done (Seright, 2010; Wassmuth et al., 2007). Among the 

reservoir properties, several aspects should be of concern when selecting the reservoir 

candidate for polymer flooding, such as reservoir type, reservoir temperature, reservoir 

viscosity, reservoir permeability, and formation water salinity. 

2.3. MULTIPLE IMPUTATION METHOD 

        Data imputation, which is the practice of 'filling in' missing data with plausible values, 

is an attractive approach to analyzing incomplete data. It apparently solves the missing data 

problem at the beginning of the analysis. However, a naive or unprincipled imputation 

method may create more problems than it solves, distorting estimates, standard errors and 

hypothesis tests, as documented by Little and Rubin (1987) and others. 
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        Rubin (1987) addressed the question of how to obtain valid inferences from imputed 

data. MI is a Monte Carlo technique in which the missing values are replaced by m>1 

simulated values, where m is typically small (e.g. 3-10) (Rubin, 1987). In Rubin's method 

for ‘repeated (m) imputation’ inference, each of the simulated complete datasets is analyzed 

by standard methods, and the results are combined to produce estimates and confidence 

intervals that incorporate missing-data uncertainty.  

         Potential uses of MI primarily for large public-use data files from sample surveys and 

censuses are also addressed by Rubin (1987). With the advent of new computational 

methods and software for creating multiple imputaions, however, the technique has become 

increasingly attractive for researchers in the biomedical (Mackinnon, A., 2010), behavioral 

(Van Ginkel, Joost R., 2010), and social sciences (Saunders, Jeanne A., et al.,2006) whose 

investigations are hindered by missing data. These methods are documented in a recent 

book by Schafer (1997) on incomplete multivariate data.  

        However, few publications were found that multiple imputation been used in oil 

industry.  

2.4. EOR PREDICTION METHODS 

        It is very important to evaluate an EOR project if is successful and very helpful to 

predict future performance. One of the most important objectives for prediction is to 

determine the amount of oil that can be recovered or incremental oil recovery after EOR 

methods are applied. EOR prediction methods can be separated into three methods, 

analytical methods, empirical methods and numerical methods.        
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        Analytical methods depend on the reservoir’s actual characteristics and most of   

them were derived from theoretical calculation based on fractional flow theory (Buckley 

and Leverett, 1942; Welge, 1952; Welge et al., 1961). 

        Empirical methods were based on the actual available data from laboratory 

experiments and/or fields. Most of the empirical methods in publications were used for 

water flooding performance (Wayhan et al., Khan, 1971). However, no empirical methods 

were found to predict polymer flooding performance. 

        Numerical methods are the most popular method used to predict the recovery and 

performance of EOR processes. The advantage is it can predict an EOR performance for a 

complex reservoir and operation conditions accurately. Numerical models can be used to 

develop a correlation for predicting oil recovery or incremental oil recovery for different 

EOR processes (Paul et al., 1982). 

        Statistical methods are the methods of collecting, summarizing, analyzing, and 

interpreting variable numerical data. Data collection involves deciding what to observe in 

order to obtain information relevant to the questions whose answers are required, and then 

making the observations. Data summarization is the calculation of 

appropriate statistics and the display of such information in the form of Tables, graphs, or 

charts.  

        Statistical analysis relates observed statistical data to theoretical models, such 

as probability distributions or models used in regression analysis. By 

estimating parameters in the proposed model and testing hypotheses about rival models, 

one can assess the value of the information collected and the extent to which the 

information can be applied to similar situations. Statistical prediction is the application of 
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the model thought to be most appropriate, using the estimated values of the parameters. 

Saleh et al., (2014) used statistical methods to analyze data for polymer flooding from lab, 

pilot and field projects including data processing and different graphical observations.  

 

 

 

 

 

 

 

 

 

 

 

 



 10 

3. POLYMER FLOODING 

        Polymer flooding is one of the most important enhanced oil recovery methods and has 

been used since 1960s (Sandiford, 1964). Polymer flooding is a water-based method used 

to improve the efficiency of water flooding by reducing the mobility of the brine. In water 

flooding, fingering problem is the major problem that causes the water break through to 

the production wells. Polymer flooding can improve the mobility ratio between oil and 

water so that the sweep efficiency is improved which in turn increases the oil recovery. 

Polymer flooding has improved oil recovery by 5 to 15% of original oil in place (OOIP) 

(Zaitoun et al.1998; Wang et al., 2002). In Daqing oilfield in China, the incremental oil 

recovery is 12% higher than water flooding when using polymer flooding and 120 tons for 

every ton of polymer injected (Yabin et al., 2001). 

3.1. MECHANISMS OF POLYMER FLOODING 

        There are several displacement mechanisms of polymer flooding. One obvious 

mechanism in polymer flooding is the reduced mobility ratio of displacing fluid to the 

displaced fluid so that viscous fingering is reduced which in turn the sweep efficiency is 

improved. When polymer is injected in vertical heterogeneous layers, cross flow between 

layers improves polymer allocation in the vertical layers so that vertical sweep efficiency 

is improved. This mechanism is detailed in (Sorbie, 1991). One economic reason of 

polymer is the reduced amount of water injected and produced compared with water 

flooding. Because polymer improves mobility ratio and sweep efficiency so that less water 

is injected and less water is produced. In some situations such as offshore environments 

and desert areas, water and the treatment of water could be costly.  
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        In polymer and gel treatment, another mechanism is called disproportionate 

permeability reduction (DPR). Polymer is also used to shut off water channeling through 

high-permeability layers and water coning from bottom aquifers. In these kinds of 

applications, if the injected polymer volume is not large or a large volume may not be 

injected because of high injection pressure constraints or short gelation time, blocking 

water channeling or water coning is temporary. Thus eventually, water will bypass the 

injected polymer zone and cross flow to high permeability zones or bypass the polymer 

zone to the producing wellbores. To avoid this kind of problem, a weak gel that has high 

resistance to flow but is still able to flow can be injected deep into reservoir. Thus, a large 

volume or large area of polymer zone is formed to block water thief zones or channels. 

Through the use of this mechanism, polymer and gel can reduce water permeability much 

more than oil permeability.  

        In a very heterogeneous reservoir, an injected viscous polymer solution may still break 

through producers early. An idea similar to weak gel was proposed to deal with this 

problem (Yang and Ni, 1998). Cationic polymer is injected through producers instead of 

crosslinkers. The injected cationic polymer has high adsorption on the rock and can form 

a water-insoluble gel to block water channeling or fingering when meet the anionic 

polymer injected through an injection well. 

        Another mechanism is related to polymer viscoelastic behavior. The interfacial 

viscosity between polymer and oil is higher than that between oil and water. The shear 

stress is proportional to the interfacial viscosity. Because of polymer’s viscoelastic 

properties, there is normal stress between oil and the polymer solution, in addition to shear 

stress. Thus, polymer exerts a larger pull force on oil droplets or oil films. Oil therefore 
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can be “pushed and pulled” out of dead-end pores. Thus, residual oil saturation is decreased 

(Sheng, J, 2010). 

3.2. POLYMER PROPERTIES 

        Below are the concepts of polymer properties. 

        3.2.1. Polymer Viscosity. Viscosity is the most important parameter for polymer 

solution. Darcy’s law describes the flow of fluid through porous media as 

 𝜇 =
𝑘𝐴∆𝑃

𝑞𝐿
 (1) 

where  is the flow rate,  is the cross-section area,  is the length of the sample,  is 

the pressure drop, and  is the Newtonian viscosity of the flowing fluid.  

        Polymer solution is non-Newtonian fluid that the apparent viscosity ( ) is not a 

constant value, which is defined as  

  (2) 

        Some of the factors that affect polymer viscosity including salinity, concentration, 

shear effect, pH effect, and temperature effect. Below are the discussions about the factors 

that affect the polymer viscosity and about their relationships using data collected from 

pilot and field cases from China. 

        Polymer viscosity is affected by water salinity and divalent ions like calcium (Ca+) 

and magnesium (Mg2+), which can decrease the viscosity of the polymer solution. The 

distance between the polymer chain and the molecules decreases as the water salinity 

increases. Thus, the polymer viscosity decreases as the water salinity increases as Figure 

3.1 shows. 

q A L DP

m

happ



 13 

 

 

Figure 3.1. Relationship between water salinity and average polymer viscosity 

 
 
 
        The polymer concentration has a direct relationship with the polymer viscosity. The 

polymer viscosity increases when the polymer concentration increases as shown in Figure 

3.2. 

        Generally, the viscosity of a polymer solution decreases as the temperature increases 

as shown in Figure 3.3. However, it is not always the same relationship for different 

patterns. It depends also on other factors, such as polymer concentration, molecular weight, 

salt and hydrolyzation (Nouri & Root, 1971). 
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Figure 3.2. Relationship between average polymer concentration and average polymer 

viscosity 

 
 
 
        The molecular weight of polymer is related to its molecular size that means polymers 

with a larger molecular size tend to have a higher molecular weight. Polymer with a higher 

molecular weight provides higher viscosity as shown in Figure 3.4. 

        The viscosity of a polymer solution is strongly shear dependent. A power-law model 

can be used to describe a polymer solution as follow 

  (3) 

        where is the flow consistency index, is the flow behavior index and is the K n
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Figure 3.3. Relationship between temperature and average polymer viscosity 

 
 
 

shear rate. In the pseudoplastic region,  is less than 1, typically 0.4-0.7 and have little 

change in different concentrations while changes. 

        Initially, polymer viscosity increases with the degree of hydrolysis. A high degree of 

hydrolysis about 35% increases the polymer viscosity in fresh water and sodium chloride 

brines (Martin & Sherwood, 1975). However, pH will increase when alkali is added that 

could decrease the viscosity of polymer because the salt effect of the alkali is dominant 

compared with the pH effect on hydrolysis.         

        3.2.2. Polymer Stability. Polymer degradation refers to any processed that break 

down the molecular structure of macromolecules. The main degradation ways in oil 

recovery applications are chemical, mechanical and biological. Sorbie (1991) summarizes 

the research on polymer stability from mid-1970s to late-1980s. 

n

K
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Figure 3.4. Relationship between average polymer molecular weight and average 

polymer viscosity 

 

 

 

        3.2.2.1. Chemical degradation. Chemical degradation refers to the breakdown of 

polymer molecules, either through short-term attack by contaminants like oxygen and iron, 

or through long-term attack to the molecular backbone by processes such as hydrolysis. 

Hydrolysis is caused by the intrinsic instability of molecules even in the absence of oxygen 

or other attacking species. Generally, polymer chemical stability is mainly controlled by 

oxidation-reduction reactions and hydrolysis. 

        The presence of oxygen virtually always leads to oxidative degradation of the 

polyacrylamide polymer. However, the effect of dissolved oxygen on polymer solution 

viscosity is not significant at a low temperature, and the polymer solution could be sTable 
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for a long time. As the temperature increases, polymer solution viscosity quickly decreases 

with time even if a small amount of oxygen exists. As the oxygen concentration increases, 

the viscosity decreases faster (Luo et al., 2006). 

        Also, the polymer viscosity could lose by the salinity effect. For example, when the 

Fe3+ concentration was high enough, it will crosslink with polymer to form insoluble gel 

so that the viscosity loss is significant. Levitt et al. (2010) reported that sodium carbonate 

and bicarbonate are demonstrated to play a key role in stabilizing polymer against multiple 

reported sources of degradation, and it seems likely that this is due to their effect on iron 

stability. 

        Overall, in a reservoir of low temperature and low hardness, as hydrolysis increases 

gradually, polymer viscosity may not change within some period of time. Sometimes, the 

viscosity may increase initially. In a reservoir of low temperature and high hardness, 

polymer viscosity decreases slowly as hydrolysis increases gradually. Finally, precipitation 

may occur. In a reservoir of high temperature and low hardness, polymer viscosity 

decreases sharply as hydrolysis increases rapidly due to the strong temperature effect, but 

precipitation may not occur. In a reservoir of high temperature and high salinity, polymer 

viscosity decreases sharply as hydrolysis increases rapidly, and precipitation may occur.         

        3.2.2.2. Mechanical degradation. Mechanical degradation describes the breakdown 

of molecules in the high flow rate region close to a well as a result of high mechanical 

stresses on the macromolecules. Shear degradation reduces the size of the molecules and 

causes the polymer to lose the viscosity needed for mobility control (Maerker, 1975). 

Polymer degradation occurs at high shear rates when polymer molecules begin to degrade 

due to high fluid stresses (viscoelastic stresses) that are generated by elongational 
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deformation (Maerker, 1975). Mechanical degradation first occurs when the polymer 

passes from the well bore to the porous media (Mareker, 1975; Seright, 2010). Zaitoun et 

al., (2011) found that shear degradation could occur at different stages, such as during flow 

through downhole valves and chokes under high pressure, flow through perforations at a 

high rate, a use of a shearing device, and recirculation with a centrifugal pump. However, 

not all polymers exhibit mechanical degradation. For instance, biopolymers like xanthan 

whose molecules are more rigid than polyacrylamide and have greater resistance to shear 

degradation thus are much sTable at a high shear rate (Seright, 2008; Stanislav & Kabir, 

1977) 

        3.2.2.3. Biological degradation. Biological degradation refers to the microbial 

breakdown of macromolecules of polymers by bacteria during storage or in the reservoir. 

Although the problem is more prevalent for biopolymers, biological attack may also occur 

for synthetic polymers. It has been found that HPAM can provide nutrition to sulfate-

reducing bacteria (SRB). As the number of SRB increases, HPAM viscosity decreases. For 

example, when the number of SRB reaches 36000/mL, the viscosity loss of HPAM of 1000 

mg/L is 19.6% (Luo et al., 2006). Biological degradation is critical only at low 

temperatures or without using effective biocides. The use of a biocide is the almost the 

most prevalent answer to biological degradation. Perhaps the most common biocide used 

in oilfield applications in the past was formaldehyde (HCHO) diluted in aqueous solution 

(O’Leary et al., 1985; Luo et al., 2006). Because of the toxic of formaldehyde, applications 

are limited these days. 

        Also, if such a biocide is used, it may affect other chemicals in the package that are 

used to protect the polymer; for example, it may interact with the oxygen scavengers. 
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Bacterial attack has been observed in at least two field tests (van Horn, 1981; Bragg et al., 

1982). 

3.3 POLYMER FLOW BEHAVIOR IN POROUS MEDIA 

        The polymer flow behavior in porous media can be categorized as polymer retention 

and inaccessible polymer volume. 

        3.3.1. Polymer Retention. Typically, some polymer is retained when a polymer 

solution flows through porous media. Polymer retention includes adsorption, mechanical 

trapping, and hydrodynamic retention. Willhite and Domin-guez (1977) discussed these 

three different mechanisms. Mechanical entrapment and hydrodynamic retention are 

related and occur only in flow-through porous media. Mechanical entrapment is viewed as 

occurring only when larger polymer molecules become lodged in narrow flow channels 

(Willhite and Dominguez, 1977). The significance of the mechanical entrapment depends 

on the pore size distribution. It is more like a mechanism for polymer retention in low-

permeability formation (Szabo, 1975; Dominguez and Willhite, 1977). If the entrapment 

process acts on polymer molecules about the average size in the distribution, it will 

inevitably lead to a buildup of material close to the injection well, which gives an 

approximately exponential penetration profile into the formation. This will eventually lead 

to pore blocking and well plugging that is indeed unsatisfactory. This is one reason that the 

polymer flooding should be implemented in a high permeability formation. 

        Adsorption refers to the interaction between polymer molecules and the solid surface. 

This interaction causes polymer molecules to be attached to the surface of the solid, mainly 

by physical adsorption, van der Waals forces, and hydrogen bonding. In fact, the polymer  
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occupies surface adsorption sites. Adsorption generally depends on the surface area 

exposed to the polymer solution. 

        Chauveteau and Kohler (1974) did the experiment that the total level of retention 

increases when the fluid flow rate increased after a steady state reached in a polymer 

retention experiment in a core. This type of rate-dependent retention called hydrodynamic 

retention and is not understood as well. Fortunately, it is generally thought to give a small 

contribution to the total retained material (Sorbie, 1991). 

        For these three mechanisms of polymer retention, adsorption is a fundamental 

property of the polymer-rock surface-solvent system and is the most important mechanism. 

Because it is difficult to distinguish these three mechanisms in dynamic flood test, the term 

‘retention’ is simply used to describe the polymer loss and sometimes just use the term 

‘adsorption’, which is discussed more often in literature related to this topic.         

        3.3.2. Inaccessible Pore Volume. Inaccessible pore volume is a general characteristic 

of polymer flow in porous media. The polymer molecules cannot flow through those pores 

when polymer molecular sizes are larger than some pores in a porous medium. The volume 

of those pores that cannot be accessed by polymer molecules is called inaccessible pore 

volume (IPV). In an aqueous polymer solution with tracer, the polymer molecules will run 

faster than the tracer because they flow only through the pores that are larger than their 

sizes. This results in earlier polymer breakthrough in the effluent end. On the other hand, 

because of polymer retention, the polymer breakthrough is delayed. In other words, if only 

polymer retention is considered, the polymer will arrive in the effluent later than the tracer. 

        Another fact is that both polymer molecules and pores have a wide range of size 

distribution. Some small polymer molecules can flow through small pores, which tends to 
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help the polymer flow with the tracer. However, IPV has been observed in all types of 

porous media for both synthetic polymers and biopolymers. Several models have been 

offered to explain why IPV occurs (DiMarzio and Guttman, 1970; Chauvetean, 1982; 

Chauveteau and Kohler, 1984; Kolodziej, 1987), but none has gained universal acceptance 

(Green and Willhite, 1998). Laboratory data indicate that inaccessible pore volume is 

usually greater than adsorption loss for polymers following a micellar solution. The 

inaccessible pore volume in laboratory cores typically is 20% (Trushenski et al., 1974). 
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4. DATA COLLECTION AND ANALYSIS 

4.1. DATA PREPARATION  

        This study starts from collecting polymer flooding field and pilot projects data. 55 

projects are found from different oil fields and blocks in China from publications as shown 

in Table 4.1. The data preparation part includes two steps below: data collection and 

statistical analysis.  

        4.1.1. Data Collection. A dataset was created by collecting polymer flooding pilot 

and field projects data from the published report from China year 1991 to 2012.  

        Dataset in this study are classified into four categories. As shown in Table 4.1, the 

first category is ‘reservoir properties’, which includes general field information as like 

formation type, net thickness, temperature, etc. The second category is ‘polymer 

properties’ which includes polymer concentration, polymer molecular weight, etc. The 

third category is ‘well information’, which includes well pattern, well spacing, injection 

rate, etc. The fourth category is ‘evaluation’, which includes water cut before polymer 

flooding, oil recovery increased after polymer flooding, etc. 

        Table 4.2 shows the numbers of blocks that from different oil fields in China. 

        4.1.2. Types of Projects. All the projects are pilot projects and field projects from 

China. There are total 55 projects in this study; among them are 24 field projects and 31 

pilot projects as Figure 4.1 shows. 

        4.1.3. Projects Start Year. As Figure 4.2 shows, projects in this study started from 

1991 to 2012, most of the field projects which is about 7 started in 1996 in Daqing oil field 

while most of the pilot projects which is about 6 started in 2004 in Shengli oil field and 

other oil fields. 
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Table 4.1. Four different data categories 

Reservoir 

Properties 

Basic information: depth, net thickness, formation type 

Reservoir rock properties: reservoir temperature, porosity, average 

permeability, Dykstra-Parsons Coefficient, reservoir bubble point 

pressure, original formation pressure, reservoir present pressure 

Reservoir fluid properties: oil viscosity, oil gravity, formation water 

salinity 

Polymer 

Properties 
Polymer molecular weight, polymer concentration, polymer viscosity 

Well 

Information 

Injection well numbers, production well numbers, injecting pressure, 

injecting rate, well pattern, well spacing 

Evaluation 

Polymer volume injected, water cut before polymer flooding, water 

cut after polymer flooding, water cut decreased after polymer 

flooding, oil recovery increased after polymer flooding 

 

 

 

Table 4.2. Blocks in different oil fields 

Oil Field name Blocks in each oil field 

Daqing 21 

Henan 15 

Shengli 5 

Huabei 3 

Changqing 3 

Liaohe 2 

Bohai 2 

Yanchang 1 

Xinjiang 1 

Zhongyuan 1 

Jidong 1 
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Figure 4.1. Numbers of different types of projects 

 
 
 

 

Figure 4.2. Start year of polymer flooding projects in China 
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        4.1.4. Formation Type. Most polymer flooding projects were conducted in sandstone 

reservoirs. But many polymer projects were carried out in carbonate reservoirs as well 

according to (Manrique et al., 2007) survey. So far, most successful polymer projects have 

been implemented in sandstone reservoirs. The typical example is the large-scale 

applications of polymer flooding in Daqing oilfield in China, where 10-12% average 

incremental oil recoveries were obtained between 1996-2010. The typical polymer projects 

demonstrate that sandstone reservoir is still preferable target for polymer flooding project. 

        As Figure 4.3 shows, almost all the formation type in this study is sandstone; only one 

formation type of conglomerate is in Xinjiang oil field. 

 

 

 

 

Figure 4.3. Types of formation of different reservoirs 
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        4.1.5. Types of Polymers. Basically, two types of polymers are used in enhancing oil 

recovery, synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) and 

biopolymers like xanthan. Derivatives and variations of them are developed to fit specific 

needs. HPAM polymers are much more widely used than biopolymers, because HPAM has 

advantages in price and large-scale production. Wang et al. (2006a) believes that HPAM 

solutions significantly exhibit greater viscoelasticity than xanthan solutions. Associating 

polymer (AP) is a new kind of polymer being used for polymer flooding. Studies have 

reported that oil recovery increased 6% more than HPAM when using AP solution in core 

flooding experiments (Yabin et al., 2001;Reichenbach et al., 2011). However, it is still not 

been popular used in field applications for polymer flooding. 

        Polymers that been used in this study are almost all the HPAM which is 53 projects 

while only two projects used AP to process the test as Figure 4.4 shown.  

 

 

 

 

Figure 4.4. Types of polymer that used in different projects 
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4.2. STATISTICAL ANALYSIS 

 Histogram  

        Frequency histograms show the distributions of the project numbers of different 

ranges of different parameters. From frequency histograms, numbers of projects in each 

range could be observed and analyzed. Thus, frequency distribution of projects is shown 

in each parameter. 

 Box plot and violin plot 

        Box plots are used during numerical analysis for dataset. Box plots show minimum, 

first quartile, median, third quartile, maximum, and mean values for each parameter. Also 

lower limit and upper limit could be calculated from first quartile and third quartile. Data 

points are regarded as outliers if their values are below the lower limit or above the upper 

limit. Violin plots are plots that look like a violin that are used to show the distribution of 

different parameters.  

        A box plot combined with a violin plot is created to describe the following five values 

of a dataset: minimum, 1st quartile, median, the 3rd quartile, and maximum. The upper 

limit is defined as Q3 (3rd quartile) +1.5*(Q3-Q1) and the lower limit is defined as Q1 (1st 

quartile) -1.5*(Q3-Q1). The outliers are the values that higher than the maximum value or 

lower the minimum value. The maximum observation is the maximum value in the dataset 

besides the outliers, same with the minimum value. A schematic of a box plot combined 

with a violin plot is shown in Figure 4.5 below.  

 Scatter plot  

        Scatter plots are used to describe a specialized relationship that compares two related 

parameters from reservoir. In this study, scatter plots are mainly used to show the 
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relationship between polymer properties and reservoir properties like polymer 

concentration versus formation water salinity and between evaluation parameters like 

incremental oil recovery versus polymer volume injected.  

 

 

 

 

Figure 4.5. Schematic of a boxplot combined with a violin plot 

 
 
         4.2.1. Reservoir Properties. Below are the statistical analysis of reservoir properties.  

        4.2.1.1. Depth. As shown in Figure 4.6, for field cases, the minimum and maximum 

value are 3215ft and 5139ft and the mean value is 4106ft. For pilot cases, the minimum 
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and maximum value are 1558ft and 8186ft and the mean value is 5135ft. Most of depth 

values of field cases fall into the range of 3000ft to 6000ft as shown in Figure 4.6. 

        Combining field and pilot cases together as shown in Figure 4.7, depth values formed 

a formal distribution and most of values fall into the range of 3000ft to 6000ft. 

 

 

 

 

Figure 4.6. Pilot and field depth information (A) box and violin plot (B) histogram 

 

 

 

        4.2.1.2. Net thickness. Out of the 55 cases studied, 27 cases reported their net 

thickness information including 10 field cases and 17 pilot cases. For field cases, as Figure 

4.8 shows, the minimum value is 13.2ft, the maximum value is 54.8ft and the mean value 

is 36ft. Figure 4.8 shows a normal distribution for field cases that most values fall into the 

range of 40-50ft. 
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Figure 4.7. Total depth information (A) box and violin plot (B) histogram 

 

 

 

        For pilot cases, as Figure 4.8 shows, the minimum value is 12.1ft, the maximum value 

is 53.8ft and the mean value is 33.46ft. There’s not too much variance between two test 

types. Figure 4.8 also shows a multimodal distribution for pilot cases with two peaks, one 

is the range of 10-20ft and the other is the range of 40-50ft. There are 5 cases and 6 cases 

fall into the ranges respectively. 

        Combing two tests type together, as Figure 4.9 shows, the minimum value is 12.1ft, 

the maximum value is 54.8ft and the mean value is 34.4ft. Figure 4.9 also shows a 

multimodal distribution with two peak ranges of 10-20ft and 40-50ft. 7 cases and 9 cases 

fall into the two ranges respectively. 

                4.2.1.3. Reservoir temperature. Oxidative degradation, hydrolysis and 

precipitation with divalent cations are some of the key factors affecting polymer stability. 

As the temperature increases, polymer degradation becomes more severe, especially above 

158ºF. Hydrolyzed polyacrylamide (HPAM) can be reasonably sTable if there are no 
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dissolved oxygen or divalent cations present (Seright, 2010). For field cases as shown in 

Figure 4.10, the minimum value is 93.7ºF, the maximum value is 176.5ºF and the mean 

value is 145.7ºF. And as Figure 4.10 also shows, most of values fall into the range of 150-

160ºF. 

        For pilot cases, Figure 4.10 shows that the minimum value is 78.89ºF, the maximum 

value is 200.66ºF and the mean value is 155.94ºF. Figure 4.10 also shows that most values 

fall into the ranges of 140-150ºF and 160-170ºF. 

        Combining field and pilot cases together, Figure 4.11 shows that the minimum value 

is 78.89ºF, the maximum value is 200.66ºF and the mean value is 151.42ºF. Figure 4.11 

also shows a normal distribution and most of cases of reservoir temperature values fall into 

the range of 140-180ºF. 

 

 

 

 

Figure 4.8. Pilot and field net thickness information (A) box and violin plot (B) histogram 
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Figure 4.9. Total net thickness information (A) box and violin plot (B) histogram 

 

 

 

 

 

Figure 4.10. Pilot and field reservoir temperature information (A) box and violin plot (B) 

histogram 
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Figure 4.11. Total reservoir temperature information (A) box and violin plot (B) 

histogram 

 

 

 

        4.2.1.4. Porosity. Out of the 55 cases studied, 20 cases reported their porosity values. 

Among 46 cases there are 5 field cases and 15 pilot cases. 

        For field cases, as Figure 4.12 shows, the minimum value is 18.2%, the maximum 

value is 34.8% and the mean value is 23.47%. Most of values fall into the range of 15-20% 

as shown in Figure 4.12. 

        For pilot cases, as Figure 4.12 shows, the minimum value is 8.3%, the maximum value 

is 32% and the mean value is 20.79%. Most of values fall into the range of 15-30% as 

shown in Figure 4.12. 

        Combining field and pilot cases together, as shown in Figure 4.13, the minimum value 

is 8.3%, the maximum value is 34.8% and the mean value is 21.46%. Figure 4.13 shows a 

normal distribution that most of values fall into the range of 15-30%. 
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Figure 4.12. Pilot and field porosity information (A) box and violin plot (B) histogram 

 

 

 

 

Figure 4.13. Total porosity information (A) box and violin plot (B) histogram 

 
 

 

        4.2.1.5. Average permeability. Reservoir permeability is a key factor that affects the 

propagation of a polymer solution. 
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        The polymer MW affects the effectiveness of polymer flooding. That is to say, MW 

must be small enough so that the polymer can enter and propagate effectively through the 

reservoir rock. For a given rock permeability and pore throat size, a threshold MW exists, 

above which polymers exhibit difficulty with propagation. 

        Out of the 55 cases studied, 46 cases reported their reservoir average permeability 

values. Among 46 cases there are 28 pilot cases and 18 field cases.  

        For field tests, as shown in Figure 4.14, average permeability ranges from 192md to 

3017md and mean value is 775.7md. The only outlier that is 3017md comes from Shengli 

Oil Field.  

        For pilot tests, as shown in Figure 4.14, average permeability ranges from 17md to 

2330md and mean value is 601.5md. The two outliers that are 2039md and 2330md come 

from Shengli Oil Field and Henan Oil Field. Figure 4.14 also shows a multimodal 

distribution. For pilot tests, there are 6 cases of average permeability fall into the range of 

0-1000md and others mostly fall into the range of 300-600md. For field tests, most values 

fall into the range of 500-700md. 

        Combining field and pilot tests together, most average permeability values fall into 

the range of 500-700md as shown in Figure 4.15. 

        4.2.1.6. Dykstra parsons coefficient. "Dykstra-Parsons coefficient of permeability 

variation" V is defined as: 

  (4) 

where Vk is the permeability variation, k50 is the permeability value at the 50th percentile, 

and k is the permeability at the 84.1 percentile. 

 

Vk =
V50 -Vs

V50

s



 36 

 

Figure 4.14. Pilot and field average permeability information (A) box and violin plot (B) 

histogram 

 
 
 

 

Figure 4.15. Total average permeability information (A) box and violin plot (B) 

histogram 

 

 

        The dispersion or scatter of permeability values measures reservoir heterogeneity. A 

homogeneous reservoir has a permeability variation that approaches zero, while an 
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extremely heterogeneous reservoir has a permeability variation that approaches one. 

Polymer floods can improve the heterogeneity between layers or within layers. 

        Out of the 55 cases studied, 18 cases including 6 field cases and 12 pilot cases reported 

their Dykstra Parsons Coefficient values. 

        For field test cases, as shown in Figure 4.16, the minimum value is 0.7, the maximum 

value is 0.87 and the mean value is 0.7717. Figure 4.16 also shows that most values fall 

into the range of 0.7-0.8. 

        For pilot cases, as shown in Figure 4.16, the minimum value is 0.4, the maximum 

value is 0.87 and the mean value is 0.6761. Figure 4.16 shows a nearly average distribution. 

        Combining field and pilot cases together, as shown in Figure 4.17, the minimum value 

is 0.4, the maximum value is 0.87 and the mean value is 0.7079. Figure 4.17 also shows 

that most values fall into the range of 0.7-0.9. 

        4.2.1.7. Reservoir bubble point pressure. Out of the 55 cases studied, 10 cases 

including 3 field cases and 7 pilot cases reported their reservoir bubble point pressure 

values.  

        For field test cases, as shown in Figure 4.18, the minimum value is 7.1Mpa, the 

maximum value is 14.8Mpa and the mean value is 10.27Mpa.  

        For pilot cases, as shown in Figure 4.18, the minimum value is 1.4Mpa, the maximum 

value is 14.95Mpa and the mean value is 8.55Mpa. Figure 4.18 also shows a peak 

distribution that most values fall into the range of 10-15Mpa. 
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Figure 4.16. Pilot and field dykstra parsons coefficient information (A) box and violin 

plot (B) histogram 

 
 

 

 

Figure 4.17. Total dykstra parsons coefficient information (A) box and violin plot (B) 

histogram 

 

        Combining field and pilot cases together, as shown in Figure 4.19, the minimum value 

is 1.4Mpa, the maximum value is 14.95Mpa and the mean value is 8.55Mpa. Figure 4.19 

also shows that most values fall into the range of 10-15Mpa. 
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Figure 4.18. Pilot and field reservoir bubble point pressure information (A) box and 

violin plot (B) histogram 

 
 
 
 

 

Figure 4.19. Total reservoir bubble point pressure information (A) box and violin plot (B) 

histogram 
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        4.2.1.8. Original formation pressure. Out of the 55 cases studied, 10 cases including 

4 field cases and 6 pilot cases reported their original formation pressure values. 

        For field test cases, as shown in Figure 4.20, the minimum value is 7.19Mpa, the 

maximum value is 17.1Mpa and the mean value is 12.12Mpa.  

        For pilot cases, as shown in Figure 4.20, the minimum value is 4.914Mpa, the 

maximum value is 20.2Mpa and the mean value is 13.476Mpa.  

        Combining field and pilot cases together, as shown in Figure 4.21, the minimum value 

is 4.914Mpa, the maximum value is 20.2Mpa and the mean value is 12.932Mpa. Figure 

4.21 also shows that most values fall into the range of 10-20Mpa. 

 

 

 

 

Figure 4.20. Pilot and field original formation pressure information (A) box and violin 

plot (B) histogram 
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Figure 4.21. Total original formation pressure information (A) box and violin plot (B) 

histogram 

 

 

 

        4.2.1.9. Reservoir present pressure. Out of the 55 cases studied, 10 cases including 

3 field cases and 7 pilot cases reported their original formation pressure values. 

        For field test cases, as shown in Figure 4.22, the minimum value is 9.8Mpa, the 

maximum value is 12Mpa and the mean value is 11.13Mpa.  

        For pilot cases, as shown in Figure 4.22, the minimum value is 10Mpa, the maximum 

value is 14.8Mpa and the mean value is 12.44Mpa. Figure 4.22 also shows that all of values 

fall into the range of 10-15Mpa. 

        Combining field and pilot cases together, as shown in Figure 4.23, the minimum value 

is 9.8Mpa, the maximum value is 14.8Mpa and the mean value is 12.05Mpa. Figure 4.23 

also shows that most values fall into the range of 10-15Mpa. 
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Figure 4.22. Pilot and field reservoir present pressure information (A) box and violin plot 

(B) histogram 

 
 
 
 
 
 
 

 

Figure 4.23. Total reservoir present pressure information (A) box and violin plot (B) 

histogram 
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        4.2.1.10. Oil viscosity. Out of the 55 cases studied, 25 cases including 11 field cases 

and 14 pilot cases reported their oil viscosity values. 

        For field test cases, as shown in Figure 4.24, the minimum value is 2.6cP, the 

maximum value is 76.96cP and the mean value is 29.31cP. Figure 4.24 also shows that 

most of values fall into the range of 0-10cP. 

        For pilot cases, as shown in Figure 4.24, the minimum value is 2.3cP, the maximum 

value is 285.2cP and the mean value is 61.987cP. Figure 4.24 also shows that most of 

values fall into the range of 0-10cP. 

        Combining field and pilot cases together, as shown in Figure 4.25, the minimum value 

is 2.3cP, the maximum value is 285.2cP and the mean value is 47.61cP. Figure 4.25 also 

shows that most values fall into the range of 0-10cP. 

 

 

 

 

 

Figure 4.24. Pilot and field oil viscosity information (A) box and violin plot (B) 

histogram 
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Figure 4.25. Total oil viscosity information (A) box and violin plot (B) histogram 

 

 

 

        4.2.1.11. Oil gravity. Out of the 55 cases studied, 15 cases including 9 field cases and 

6 pilot cases reported their oil gravity values. 

        For field test cases, as shown in Figure 4.26, the minimum value is 16.2° API, the 

maximum value is 53.2° API and the mean value is 36.89° API.  Figure 4.26 also shows 

that most of values fall into the range of 40-50° API. 

        For pilot cases, as shown in Figure 4.26, the minimum value is 14.96° API, the 

maximum value is 51.1° API and the mean value is 24.81° API. Figure 4.26 also shows 

that most of values fall into the range of 10-20° API. 

        Combining field and pilot cases together, as shown in Figure 4.27, the minimum value 

is 14.96° API, the maximum value is 53.2° API and the mean value is 32.06° API. Figure 

4.27 also shows that most values fall into the range of 10-50° API. 
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Figure 4.26. Pilot and field oil gravity information (A) box and violin plot (B) histogram 

 
 
 

 

Figure 4.27. Total oil gravity information (A) box and violin plot (B) histogram 

 

 

        4.2.1.12. Water salinity. Formation water salinity has a strong effect on polymer 

viscosity, especially for HPAM. Polymer solution viscosity decreases with salinity. 

Polymer viscosity is sensitive to the cation content of water solution: Ca2+, Mg2+, Fe3+, 
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etc., far more than K+, Na+. High divalent or trivalent content in the formation water may 

cause polymer participation. Lower polymer viscosity will lead to poor mobility control by 

polymer processes. 

        Out of the 55 cases studied, 25 cases including 10 field cases and 15 pilot cases 

reported their water salinity values. 

        For field test cases, as shown in Figure 4.28, the minimum value is 3580ppm, the 

maximum value is 28868ppm and the mean value is 8087ppm.  Figure 4.28 also shows that 

most of values fall into the range of 6000-8000ppm. 

        For pilot cases, as shown in Figure 4.28, the minimum value is 2127ppm, the 

maximum value is 84128ppm and the mean value is 23135ppm. Figure 4.28 also shows 

that most of values are above 40000ppm. 

        Combining field and pilot cases together, as shown in Figure 4.29, the minimum value 

is 2127ppm, the maximum value is 84128ppm and the mean value is 17116ppm. Figure 

4.29 also shows a multimodal distribution that one peak range is 4000-8000ppm and the 

other peak range is above 20000ppm. 

        4.2.2. Polymer Properties 

        4.2.2.1. Polymer molecular weight. Molecular weight is a key factor that affects 

polymer flooding effectiveness. Polymers with higher molecular weight can provide 

greater viscosity and thus leads to high oil recovery. The reason is simply that for a given 

solution viscosity and sweep efficiency increase with increased polymer MW. In other 

words, to recover a given volume of oil, less polymer is needed using a high MW polymer 

than a low MW polymer.  
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Figure 4.28. Pilot and field water salinity information (A) box and violin plot (B) 

histogram 

 
 
 

 

Figure 4.29. Total water salinity information (A) box and violin plot (B) histogram 

 
 
 
        Two factors should be considered when choosing the polymer MW. On one hand, 

choose the polymer with the highest MW practical to minimize the polymer cost. On the 
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other hand, the MW must be small enough so that the polymer can enter and propagate 

effectively through the reservoir rock. For a given rock permeability and pore throat size, 

a threshold MW exists, above which polymers exhibit difficulty in propagation. 

Mechanical entrapment can significantly retard polymer propagation if the pore throat size 

and permeability are too small. Thus, depending on MW and permeability differential, this 

effect can reduce sweep efficiency. A trade-off must be made in choosing the highest MW 

polymer that will not exhibit pore plugging or significant mechanical entrapment in the 

less permeable zones.  

        Figure 4.30 shows the relationship between reservoir average permeability and 

polymer molecular weight. It also indicates that a medium polymer weight (12-16 million 

daltons) is applicable for oil zones with average permeability greater than 100md and a 

high molecular weight (17-25 million daltons) is appropriate for oil zones with the average 

permeability greater than 500md.  

        Out of the 55 cases studied, 20 cases including 6 field cases and 14 pilot cases reported 

their polymer molecular values. 

        For field test cases, as shown in Figure 4.31, the minimum value is 1075(10^4), the 

maximum value is 2750(10^4) and the mean value is 1896(10^4).  

        For pilot cases, as shown in Figure 4.31, the minimum value is 600(10^4), the 

maximum value is 2500(10^4), and the mean value is 1436(10^4). Figure 4.31 also shows 

that most of values are above 1200-2000(10^4). 

        Combining field and pilot cases together, as shown in Figure 4.32, the minimum value 

is 600(10^4), the maximum value is 2750(10^4), and the mean value is 1574(10^4). Figure 

4.32 also shows a peak range that is 1600-2000(10^4). 
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Figure 4.30. Relationship between reservoir average permeability and polymer molecular 

weight 

 
 
 

 

Figure 4.31. Pilot and field average polymer molecular weight information (A) box and 

violin plot (B) histogram 
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Figure 4.32. Total average molecular weight information (A) box and violin plot (B) 

histogram 

 

 

        4.2.2.2. Polymer concentration. Polymer concentration is a key factor that higher 

polymer concentrations can cause greater reductions in water cut and can shorten the time 

required for polymer flooding. High polymer concentration can also lead to a faster 

decrease in water cut, an earlier response in the production wells, a greater decrease in 

water cut, less required pore volumes of polymer, and less required volume of water 

injected during the overall period of polymer flooding. As polymer concentration increases, 

EOR increases and the water cut during polymer flooding decreases. However, higher 

concentrations will cause higher injection pressures and lower injectivity. 

        Out of the 55 cases studied, 44 cases including 17 field cases and 27 pilot cases 

reported their polymer concentration values.         
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        For field test cases, as shown in Figure 4.33, the minimum value is 650ppm, the 

maximum value is 2050ppm and the mean value is 1250ppm. Figure 4.33 also shows that 

most values fall into the range of 1000-1400ppm.  

        For pilot cases, as shown in Figure 4.33, the minimum value is 600ppm, the maximum 

value is 2000ppm, and the mean value is 1325ppm. Figure 4.33 also shows a multimodal 

distribution that one peak range is 0-1400ppm and the other peak range is 1600-1800ppm. 

        Combining field and pilot cases together, as shown in Figure 4.34, the minimum value 

is 600ppm, the maximum value is 2050ppm and the mean value is 1296ppm. Figure 4.34 

also shows a multimodal distribution that one peak range is 1000-1200ppm and the other 

peak range is 1600-1800ppm. 

 

 

 

 

Figure 4.33. Pilot and field average polymer concentration information (A) box and 

violin plot (B) histogram 
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Figure 4.34. Total average polymer concentration information (A) box and violin plot (B) 

histogram 

 

 

 

        4.2.2.3. Polymer viscosity. The polymer solution viscosity is a key parameter to 

improve the mobility ratio between oil and water. As injection viscosity increases, the 

effective-ness of polymer flooding increases. A number of factors such as polymer MW, 

polymer concentration, and degree of HPAM hydrolysis, temperature, salinity, and 

hardness can affect the viscosity. The effectiveness of a polymer flood is directly 

determined by the magnitude of the polymer viscosity. 

    Out of the 55 cases studied, 10 cases including 5 field cases and 5 pilot cases reported 

their polymer viscosity values. 

        For field test cases, as shown in Figure 4.35, the minimum value is 17.75cP, the 

maximum value is 220.45cP and the mean value is 87.01cP. 

        For pilot cases, as shown in Figure 4.35, the minimum value is 15cP, the maximum 

value is 91.1cP, and the mean value is 43.82cP.  
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        Combining field and pilot cases together, as shown in Figure 4.36, the minimum value 

is 15cP, the maximum value is 220.45cP and the mean value is 65.42cP. Figure 4.36 also 

shows that most values fall into the range of 20-40cP. 

 

 

 

 

Figure 4.35. Pilot and field average polymer viscosity information (A) box and violin plot 

(B) histogram 

 
 
 
        4.2.3. Well Information 

        4.2.3.1. Injection well numbers. Out of the 55 cases studied, 24 cases including 8 

field cases and 16 pilot cases reported their injection well numbers values.         

        For field test cases, as shown in Figure 4.37, the minimum injection well numbers are 

9 wells, the maximum well numbers are 99 wells and the mean well numbers are 43 wells. 

Figure 4.37 also shows that most cases have above 50 injection wells.  
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Figure 4.36. Total average polymer viscosity information (A) box and violin plot (B) 

histogram 

  

 

 

        For pilot cases, as shown in Figure 4.37, the minimum well numbers are 4 wells, the 

maximum well numbers are 49 wells, and the mean well numbers are 17 wells. Figure 4.37 

also shows that most cases have no more than 20 injection wells. 

        Combining field and pilot cases together, as shown in Figure 4.38, the minimum 

injection well numbers are 4 wells, the maximum well numbers are 99 wells and the mean 

well numbers are 25 wells. Figure 4.38 also shows that both field and pilot cases have most 

injection well numbers of no more than 20 wells.  

        4.2.3.2. Production well numbers. Out of the 55 cases studied, 25 cases including 8 

field cases and 17 pilot cases reported their production well numbers values.        
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        For field test cases, as shown in Figure 4.39, the minimum production well numbers 

are 16 wells, the maximum well numbers are 109 wells and the mean well numbers are 

64 wells. Figure 4.39 also shows that most cases have above 50 production wells.  

 

 

 

 

Figure 4.37. Pilot and field injection well numbers information (A) box and violin plot 

(B) histogram 

 
 
 
        For pilot cases, as shown in Figure 4.39, the minimum well numbers are 9 wells, the 

maximum well numbers are 63 wells, and the mean well numbers are 25 wells. Figure 4.39 

also shows that most cases have 10-20 production wells. 

        Combining field and pilot cases together, as shown in Figure 4.40, the minimum 

production well numbers are 9 wells, the maximum well numbers are 109 wells and the 

mean well numbers are 38 wells. Figure 4.40 also shows a multimodal distribution that one 

peak range of is 10-30 wells and the other peak range is above 50 wells.  
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        4.2.3.3. Injecting pressure. Out of the 55 cases studied, 12 cases including4 field 

cases and 8 pilot cases reported their injecting pressure values. 

 

Figure 4.38. Total injection well numbers information (A) box and violin plot (B) 

histogram 

 

 

 

 

 

Figure 4.39. Pilot and field production well numbers information (A) box and violin plot 

(B) histogram 
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Figure 4.40. Total production well numbers information (A) box and violin plot (B) 

histogram 

 

 

         

        For field test cases, as shown in Figure 4.41, the minimum value is 12Mpa, the 

maximum value is 12.3Mpa and the mean value is 12.15Mpa. Figure 4.41 also shows that 

most values fall into the range of 10-15Mpa. 

        For pilot cases, as shown in Figure 4.41, the minimum value is 10Mpa, the maximum 

value is 20.5Mpa, and the mean value is 13.84Mpa. Figure 4.41 also shows that most values 

fall into the range of 10-15Mpa. 

        Combining field and pilot cases together, as shown in Figure 4.42, the minimum value 

is 10Mpa, the maximum value is 20.5Mpa and the mean value is 13.28Mpa. Figure 4.42 

also shows that most values fall into the range of 10-15Mpa. 
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Figure 4.41. Pilot and field injecting pressure information (A) box and violin plot (B) 

histogram 

 

 

 

 

 

 

Figure 4.42. Total injecting pressure information (A) box and violin plot (B) histogram   
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        4.2.3.4. Injection rate. The injection rate of polymer solution is also a key factor in 

the project and affects the whole development and effectiveness of polymer flooding. The 

injection rate has significant effect on the cumulative production time. Lower injection 

rates lead to longer production times and higher rates may increase shear degradation of 

the polymer. Injection rates must be controlled not too high to minimize polymer flow out 

of the pattern or out of the target zones. Also, the injection rate should not exceed the 

reservoir fracture pressure. To maximize the oil production, the injection rate should be 

maintained from 0.14 to 0.16PV/year for well spacing of 250m and 0.16-0.20 PV/year for 

well spacing of 150-175m (James J, 2013). Figure 4.43 shows the relationship between 

well spacing and injection rate that conform to previous research. 

 
 
 
 

.  

Figure 4.43. The relationship between well spacing and injection rate 
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        Out of the 55 cases studied, 23 cases including 5 field cases and 18 pilot cases reported 

their injection rate values. 

        For field test cases, as shown in Figure 4.44, the minimum value is 0.1PV/a, the 

maximum value is 0.16PV/a and the mean value is 0.118PV/a. Figure 4.44 also shows that 

most values fall into the range of 0.3-0.4PV/a. 

        For pilot cases, as shown in Figure 4.44, the minimum value is 0.057PV/a, the 

maximum value is 0.34PV/a, and the mean value is 0.146PV/a. Figure 4.44 also shows that 

most values fall into the range of 0.2-0.6PV/a. 

        Combining field and pilot cases together, as shown in Figure 4.45, the minimum value 

is 0.057PV/a, the maximum value is 0.34PV/a and the mean value is 0.1399PV/a. Figure 

4.45 also shows a normal distribution that the peak range is 0.3-04PV/a. 

 

 

 

 

Figure 4.44. Pilot and field injection rate information (A) box and violin plot (B) 

histogram 
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Figure 4.45. Total injection rate information (A) box and violin plot (B) histogram 

 

 
 
        4.2.3.5. Well pattern. According to (Li and Chen, 1995), the well pattern has a 

relatively small effect on the incremental oil recovery by polymer flooding as others. Table 

4.3 provides an EOR comparison of various well patterns based on (Li and Chen, 2005) 

numerical simulations. The results indicate that the incremental recovery is10.9% for a 

line-drive pattern and 10.6% for an inverted 9-spot. For a 5-spot, the incremental oil 

recovery is 10.3%. However, the injection volume will be three times more for the inverted 

9-spot than for the 5-spot which leads to a temptation to inject above the fracture pressure 

when using the inverted 9-spot pattern. Also, the connectivity factor will be much smaller 

with a line pattern than with the 5-spot. Therefore, the 5-spot pattern appears to be more 

attractive (Wang et al., 2009). 

 

 

 
 



 62 

 
Table 4.3. Comparisons of various well patterns for polymer flooding (Li and Chen, 

2005) 

Well Pattern Δη—EOR/% 

Line in positive 10.6 

Line in diagonal 10.9 

5-spot 10.3 

4-spot 10.1 

9-spot 10.0 

Inverted 9-spot 10.6 

Parameters: 5 layers, net pay=39 ft, Vk=0.70, φ=0.26, k=101, 260, 491, 938, and 

3207*10-3μm2. 

 

 

 

        In this study, as Figure 4.46 shows, there are 15 cases reported well pattern 

information. There are 10 5-spot patterns, 1 inverted 5-spot pattern, 2 inverted 9-spot 

patterns and 3 irregular well patterns.  This validates that 5-spot well pattern is more 

popular in use than other well patterns. 

        4.2.3.6. Well spacing. Considered the interwell continuity, the well spacing is 

suggested to be from 200 to 250 m for oil zones with average permeability above 300-

400*10-3μm2and net pay above 5 m. For oil zones with the average permeability above 

100-200*10-3μm2 and the net pay of 1-5, 150-175 m is an ideal well spacing (Wang et al., 

2009). Figure 4.47 shows the relationship between well spacing and reservoir average 

permeability. 

        Out of the 55 cases studied, 26 cases including 12 field cases and 14 pilot cases 

reported their well spacing values. 
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        For field test cases, as shown in Figure 4.48, the minimum value is 150m, the 

maximum value is 280m and the mean value is 230m. Figure 4.48 also shows that most 

values fall into the range of 250-300m. 

 

 

 

Figure 4.46. Well pattern information in this study 

 
 
 
        For pilot cases, as shown in Figure 4.48, the minimum value is 100m, the maximum 

value is 310m, and the mean value is 192m. Figure 4.48 also shows that most values fall 

into the range of 100-150m and 250-300m. 

        Combining field and pilot cases together, as shown in Figure 4.49, the minimum value 

is 100m, the maximum value is 310m and the mean value is 210m. Figure 4.49 also shows 

the peak range is 250-300m. 
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Figure 4.47. Relationship between well spacing and reservoir average permeability in this 

study 

 

 

 

 

 

 

Figure 4.48. Pilot and field well spacing information (A) box and violin plot (B) 

histogram 
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Figure 4.49. Total well spacing information (A) box and violin plot (B) histogram 

 

 

 

        4.2.4. Evaluation. Below are the parameters for evaluation information of polymer 

flooding. 

        4.2.4.1. Polymer volume injected. Based on theoretical research and practical 

experiences (Shao et al., 2001; Wang et al., 2009), the polymer volume should be 

determined by the gross water cut of the flooding unit. Generally, when the gross water cut 

achieves 92-94%, the polymer injection should be stopped.  

        Out of the 55 cases studied, 32 cases including 13 field cases and 19 pilot cases 

reported their polymer volume injected values. 

        For field test cases, as shown in Figure 4.50, the minimum value is 0.15, the maximum 

value is 0.875 and the mean value is 0.5068. Figure 4.50 also shows that most values fall 

into the range of 0.3-0.4.   
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        For pilot cases, as shown in Figure 4.50, the minimum value is 0.033, the maximum 

value is 0.8, and the mean value is 0.4119. Figure 4.50 also shows that most values fall 

into the range of 0.2-0.6. 

        Combining field and pilot cases together, as shown in Figure 4.51, the minimum value 

is 0.033, the maximum value is 0.876 and the mean value is 0.4505. Figure 4.51 also shows 

the peak range is 0.3-0.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.50. Pilot and field polymer slug size information (A) box and violin plot (B) 

histogram 
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        4.2.4.2. Water cut before polymer flooding. Out of the 55 cases studied, 36 cases 

including 14 field cases and 22 pilot cases reported their water cut values before polymer 

flooding. 

        For field test cases, as shown in Figure 4.52, the minimum value is 86.1%, the 

maximum value is 96.49% and the mean value is 93.87%. Figure 4.52 also shows that most 

values fall into the range of 94%-98%. 

        For pilot cases, as shown in Figure 4.52, the minimum value is 78.51%, the maximum 

value is 0.8, and the mean value is 98.14%. Figure 4.52 also shows that most values fall 

into the range of 96%-98%. 

 
 

 

 

Figure 4.51. Total polymer slug size information (A) box and violin plot (B) histogram 

 
 
 
        Combining field and pilot cases together, as shown in Figure 4.53, the minimum value 

is 78.51%, the maximum value is 98.14% and the mean value is 93.13%. Figure 4.53 also 

shows the peak range is 94%-98%. 



 68 

        4.2.4.3. Water cut after polymer flooding. Out of the 55 cases studied, 26 cases 

including 9 field cases and 17 pilot cases reported their water cut values after polymer 

flooding. 

        For field test cases, as shown in Figure 4.54, the minimum value is 67.9%, the 

maximum value is 92.5% and the mean value is 84.2%. 

 

 

 

 

 

Figure 4.52. Pilot and field water cut before polymer flooding information (A) box and 

violin plot (B) histogram 
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Figure 4.53. Total water cut before polymer flooding information (A) box and violin plot 

(B) histogram 

 

 

 

        

 

 

 

        Figure 4.54 also shows that most values fall into the range of 85%-90%. 

        For pilot cases, as shown in Figure 4.54, the minimum value is 69.16%, the maximum 

value is 95%, and the mean value is 84.6%. Figure 4.54 also shows that most values fall 

into the range of 90-95%. 

        Combining field and pilot cases together, as shown in Figure 4.55, the minimum value 

is 67.9%, the maximum value is 95% and the mean value is 84.46%. Figure 4.55 also shows 

the peak range is 85%-95%. 
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Figure 4.54. Pilot and field water cut after polymer flooding information (A) box and 

violin plot (B) histogram 

 

 

 

        4.2.4.4. Water cut decreased after polymer flooding. Out of the 55 cases studied, 

26 cases including 8 field cases and 18 pilot cases reported their water cut values decreased 

after polymer flooding.  

        For field test cases, as shown in Figure 4.56, the minimum value is 2%, the  

maximum value is 25.1% and the mean value is 10.32%. most values fall into the range of 

5%-10%. Figure 4.56 also shows that most values fall into the range of 5%-10%. 

        For pilot cases, as shown in Figure 4.56, the minimum value is 2.1%, the maximum 

value is 21.2%, and the mean value is 8.289%. Figure 4.56 also shows that most values fall 

into the range of 5%-10%. 

        Combining field and pilot cases together, as shown in Figure 4.57, the minimum value 

is 2%, the maximum value is 25.1% and the mean value is 8.916%. Figure 4.57 shows the 

peak range is 5%-10%. 
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Figure 4.55. Total water cut after polymer flooding information (A) box and violin plot 

(B) histogram 

 

 

 

 

 

 

Figure 4.56. Pilot and field water cut decreased after polymer flooding information (A) 

box and violin plot (B) histogram 
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Figure 4.57. Total water cut decreased after polymer flooding information (A) box and 

violin plot (B) histogram 

 

 

 

        4.2.4.5. Oil recovery increased after polymer flooding. Out of the 55 cases studied, 

29 cases including 14 field cases and 15 pilot cases reported their oil recovery increased 

values after polymer flooding. 

        For field test cases, as shown in Figure 4.58, the minimum value is 5.23%, the 

maximum value is 19.5% and the mean value is 9.449%. Figure 4.58 also shows that most 

values fall into the range of 5%-10%. 

        For pilot cases, as shown in Figure 4.58, the minimum value is 1.58%, the maximum 

value is 14.15%, and the mean value is 7.986%. Figure 4.58 also shows that most values 

fall into the range of 5%-10%. 

        Combining field and pilot cases together, as shown in Figure 4.59, the minimum value 

is 1.58%, the maximum value is 19.5% and the mean value is 8.692%. Figure 4.59 also 

shows the peak range is 5%-15%. 
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Figure 4.58. Pilot and field oil recovery increased information (A) box and violin plot (B) 

histogram 

 
 
 
 
 

 

Figure 4.59. Total oil recovery increased information (A) box and violin plot (B) 

histogram 
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4.3. SUMMARIZING AND DISCUSSION ON SCREENING RANGE 

        Table 4.4, 4.5, 4.6 provides a summary of polymer flooding screening range for pilot, 

field and total dataset based on the above statistical analysis of the dataset in this study. 

This summary includes the parameters that contribute to the success of a polymer flooding 

project, including reservoir properties, polymer properties and evaluations.  The minimum 

and maximum observations mean and median of dataset values are the standard statistics 

used to describe the screening range. 

         Table 4.7 shows a comparison between the screening range for polymer flooding in 

this work and previous work. Beyond this, Table 4.8 shows the proposed screening range 

for other parameters in this work that previous researches did not include. 

 

Table 4.4. Summary of polymer flooding screening range for pilot dataset 

Screening range for pilot dataset 

Parameters 
Statistics 

Mean Median Minimum Maximum 

Depth/ft 5135 5331 1558 8186 

Net thickness/ft 33.46 35.1 12.1 53.8 

Temperature/ºF 155.9 159.5 78.89 200.7 

Oil gravity/° API 24.81 18.3 14.96 51.1 

Oil viscosity/cP 61.99 32.5 2.3 285.2 

Water salinity/ppm 23140 18000 2127 84130 

Average permeability/md 601.5 519 17 2330 

Dykstra Parsons Coefficient 0.6761 0.715 0.4 0.87 

Porosity/% 20.79 20 8.3 32 

Average molecular weight/10^4 1436 1500 600 2500 

Average polymer viscosity/cP 43.82 23 15 91.1 

Average polymer 

concentration/ppm 
1325 1350 600 2000 

Injecting pressure/Mpa 13.84 12.76 10 20.5 

Injection rate/(PV/a) 0.146 0.13 0.057 0.34 

Well spacing/m 191.8 193.8 100 310 

Polymer slug size/PV 0.4119 0.41 0.033 0.8 

Water cut before polymer 

flooding/% 
92.66 95.15 78.51 98.14 
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Table 4.5. Summary of polymer flooding screening range for field dataset 

Screening range for field dataset 

Parameters 
Statistics 

Mean Median Minimum Maximum 

Depth/ft 4101 4034 3215 5139 

Net thickness/ft 36 40.35 13.2 54.8 

Temperature/ºF 145.7 153.7 93.7 176.5 

Oil gravity/° API 36.89 40 16.2 53.2 

Oil viscosity/cP 29.31 9.7 2.6 76.96 

Water salinity/ppm 8087 6326 3580 28870 

Average permeability/md 775.7 630 192 3017 

Dykstra Parsons Coefficient 0.7717 0.765 0.7 0.87 

Porosity/% 23.47 20.3 18.2 34.8 

Average molecular weight/10^4 1896 1800 1075 2750 

Average polymer viscosity/cP 87.01 66.35 17.75 220.4 

Average polymer 

concentration/ppm 
1250 1181 650 2050 

Injecting pressure/Mpa 12.15 12.15 12 12.3 

Injection rate/(PV/a) 0.118 0.11 0.1 0.16 

Well spacing/m 230.4 250 150 280 

Polymer slug size/PV 0.5068 0.45 0.15 0.876 

Water cut before polymer 

flooding/% 
93.87 94.7 86.1 96.49 

 

 

 

Table 4.6. Summary of polymer flooding screening range for combined pilot and field 

dataset 

Screening range for combined pilot and field dataset 

Parameters 
Statistics 

Mean Median Minimum Maximum 

Depth/ft 4819 4593 1558 8186 

Net thickness/ft 34.4 39.7 12.1 54.8 

Temperature/ºF 151.4 153.7 78.89 200.7 

Oil gravity/° API 32.06 33.6 14.96 53.2 

Oil viscosity/cP 47.61 18 2.3 285.2 

Water salinity/ppm 17120 7500 2127 84130 

Average permeability/md 669.7 575 17 3017 

Dykstra Parsons Coefficient 0.7079 0.7350 0.4 0.87 

Porosity/% 21.46 20 8.3 34.8 

Average molecular weight/10^4 1574 1650 600 2750 

Average polymer viscosity/cP 65.41 48.18 15 220.4 

Average polymer concentration/ppm 1296 1247 600 2050 
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Table 4.6. Summary of polymer flooding screening range for combined pilot and field 

dataset (cont.) 

Injecting pressure/Mpa 13.28 12.25 10 20.5 

Injection rate/(PV/a) 0.1399 0.12 0.057 0.34 

Well spacing/m 209.6 231 100 310 

Polymer slug size/PV 0.45 0.412 0.033 0.876 

Water cut before polymer flooding/% 93.13 95.05 78.51 98.14 

      

Table 4.7. Comparison between the screening range for polymer flooding in this work 

and previous work 

Proposed by 
Permea 

Bility/md 

Tempe 

rature/ºF 

Water 

salinity

/ppm 

Oil 

viscosity/

cP 

Oil 

gravity/° 

API 

Depth/ft 

NPC (1976) ≥20 ≤93  ≤200   

Brashear and 

Kuuskraa (1978) 
＞20 ＜93 

＜
50,000 

＜20 ＞15  

Chang (1978) ＞20 ＜93  ＜200   

Carcoana (1982) ＞50 ＜80 Low 50-80 25-35 ＜6561 

NPC (1984) ＞10 ＜121 

＜
200,00

0 

＜150   

Goodlett et al. 

(1986) 
＞20 ＜93.3 

＜
100,00

0 

＜100 ＞25 ＜9000 

Taber et al. 

(1997a, b) 
＞10 ＜93.3  

10＜Oil 

viscosity 

＜150 

＞15 ＜9000 

Al-Bahar et al. 

(2004) 
＞50 ＜70 

＜
100,00

0 

＜150   

Aladasani and 

Bai (2011) 
2-5500 74-237  1-4000 13-43 

700-

9460 

Saleh et al. 

2014a 
＞10 

 
＜99  

＜5000 

 
＞12  

Saleh et al. 

2014b 
1-5500 65-210  0.3-130   

Sheng, J et al. 

(2015) 

 

50 ＜93 
＜

50,000 
＜150   

This work ≥17 ≤200 
2127-

74130 
≤285 ＞15 

1158-

8186 
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Table 4.8. Screening range for other parameters in addition to previous researches 

Parameters Suggest Range 

Net thickness/ft ＞12 

Dykstra Parsons Coefficient ＜0.87 

Porosity/% ＞8.3 

Average molecular weight/10^4 600-2750 

Average polymer viscosity/cp ＜220 

Average polymer concentration/ppm 600-2050 

Injecting pressure/Mpa 10-20.5 

Injection rate/(PV/a) 0.12-0.14 

Well spacing/m 200-310 

Polymer slug size/PV ＞0.45 

Water cut before polymer flooding/% 93-98 
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5. MULTIPLE IMPUTATION AND MULTIPLE LINEAR REGRESSION 

        Regression analysis is one of the statistical methods to estimate the relationships 

among different variables. Regression analysis specifically helps one understand how the 

typical value of the dependent variable varies when one or more of the independent 

variables are changed. Regression analysis is widely used for prediction and forecasting by 

revealing forms of relationships between dependent variables and independent variables. 

Regression analysis has been widely used in petroleum industries. Hawkins (1994) used 

regression analysis for integrated formation evaluation. Jablonowski (2011) used 

regression analysis to identify HSE leading indicators. Bandyopadhyay (2011) used 

regression analysis to model the improved estimation of bubble point pressure of crude oils. 

However, rare applications of regression analysis in oil recovery prediction using the same 

or similar set of reservoir and fluid parameters were found. This study investigates the 

complex relationships among oil recovery increased after polymer flooding and other 

related reservoir and fluid properties using multiple linear regression method. The final 

result of regression analysis can be used as a guided prediction model in further data 

analysis of enhanced oil recovery projects. 

5.1. DESCRIPTION OF THE MODEL DATASET 

        By collecting reservoir and fluid information from publications of polymer flooding 

from China, the dataset that used in this study was created. The dataset contains almost all 

the pilot and field applications of polymer flooding from different blocks of different oil 

fields. The dataset in this study includes 55 polymer flooding projects from Daqing, Henan, 

Shengli, Liaohe, Huabei, Changqing, Yanchang, Xinjiang, Bohai, Zhongyuan, 

Jidong oil fields.  
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        Some parameters that less significant to polymer flooding or in case of colinearity 

between independent variables were not chosen in order to build a reliable predictive model. 

The parameters that chosen include reservoir properties of water salinity (ppm), average 

permeability (md), dykstra parsons coefficient and polymer properties of polymer 

concentration (ppm), polymer average molecular weight (10^4) and well information of 

well spacing (m) and evaluation information of polymer volume injected (PV), water cut 

before polymer flooding (%), oil recovery increased after polymer flooding (%). 

        However, not all the data that required can be found in publications. Thus, There’s a 

problem that affected the dataset’s quality that the dataset contains quite a lot missing 

values for each parameter. Each oil field has missing values for one or more parameters. 

Each case in the dataset has at least one missing value for one parameter. Thus, there are 

no complete cases in this work. Since regression analysis process cannot go through with 

a case that has missing values even one, methods should be found dealing with missing 

values in order to make the process successful. 

5.2. MISSING DATA PATTERNS 

        Missing data or missing values appear when there is no value stored for a variable in 

a dataset. Missing data are common in data analysis and can have a significant effect on 

the conclusion that can be drawn from the dataset. There are three types of missing data. 

The missing data type of this dataset should be known before doing further analysis in case 

of bias. 
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        5.2.1. Missing Completely At Random. Values in a dataset are missing completely 

at random (MCAR) only if the events or projects that cause any particular data value being 

missing which is independent both of observable variables and of unobservable parameters 

of interest and appear at random entirely. The analyses performed on the datasets that have 

missing values completely at random are unbiased. However, data are rarely MCAR (Polit, 

2012). 

        5.2.2. Missing At Random. Missing at random (MAR) is an alternative condition and 

occurs then the missing values are related to a particular variable but not related to the 

values of the variable that has missing data (Polit, 2012). 

        5.2.3. Missing Not At Random. Missing not at random (MNAR) is the value is 

missing for a specific or particular reason that is different with other common values (Polit, 

2012). For example, if the permeability value in one area is missing because this area 

doesn’t have permeability value. It’s impossible for this study, thus it can be ignored. 

        Based on the above, the type of missingness of this study is missing completely 

random since the value that is missing is not given by the author of publication thus it has 

nothing to do with other values within the variable and also other variables. Therefore, 

there should be none or less bias when dealing with missing data using statistical methods. 

5.3. IMPUTATION METHODS 

        Missing data reduce the representativeness of the sample and thus can distort the 

inferences from the dataset. While facing the occurrence of missing data, it’s often advised 

for the researcher to plan to use methods of data analysis methods that are proper and robust 

to missingness. An analysis is regarded as proper and robust when mild to  
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moderate violations of the method’s key assumptions will produce little or no bias or 

distortion in the conclusions.    

        5.3.1. Case Deletion/Data Deletion. The most common method of dealing with 

missing data by far is listwise deletion that all cases with a missing value are deleted. This 

method is simple but it may introduce bias or affect the representativeness of the results or 

decrease power of the analysis by decreasing the effective sample size. The dataset in this 

study is from publications that has not very much data as from EOR survey thus if delete 

the cases with missing values it will not have enough data points to do data analysis and 

build a model. Therefore, this method shouldn’t be used for this dataset. 

        5.3.2. Single Imputation. Single imputation includes methods of hot-deck, cold-deck, 

mean, regression, stochastic regression and other single imputation methods. Although 

single imputation has been widely used, it cannot reflect the full uncertainty created by 

missing data. Therefore, a more reliable method should be found for this dataset. 

        5.3.3. Multiple Imputation. In case of increased noise due to single imputation, 

Rubin (1987) developed a method called multiple imputation by averaging the outcomes 

across multiple imputed data sets to account for this. The imputation processes is similar 

to stochastic regression are run on the same dataset multiple times and the imputed datasets 

are saved for later analysis. Each of the imputed datasets is analyzed separately and the 

results are averaged except for the standard error. The standard error is constructed by the 

variance within each data set and the variance between imputed values on each dataset. 

Thus, the noises due to imputation process as well as the residual variance are introduced 

to the regression model because of the standard error determined by the square root of these 

two variances added together (Rubin, 1987).  
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        Multiple imputation draws values of parameters from a posterior distribution that 

reflects the noise associated with the uncertainty surrounding the parameters of the 

distribution that generates the data. Therefore, multiple imputation simulate both the date 

generating process and the uncertainty associated with the parameters of the probability 

distribution of the data.  More traditional imputation methods fail to give a complete 

simulation of the uncertainty associated with missing data.  

        Figure 5.1 shows the general three steps for application of multiple imputation. First 

step is imputation that imputes the missing entries of the incomplete datasets not once but 

several m times (here m=3 in the Figure). The imputed values are drawn for a posterior 

distribution that can be different for each missing entry. At last of the first step, three 

complete datasets with impuations are created. Second step is to analyze that each of the 

m completed datasets with regression analysis for a result. The third step is pooling process 

that integrate the m analysis results into a final result. 

        In this study, multiple imputation is used to impute the dataset in order to build a 

complete dataset to build the prediction model. There are also many softwares available to 

use to implement multiple imputation as R, SAS, SPSS, etc. R is chosen to do the multiple 

imputation in this study.  

        The package “MICE (Multiple Imputation by Chained Equations)” is used within R 

for its compatibility with the dataset in this study, for example, the dataset in this study is 

not multivariate normal which violates the assumption of some other packages. The reason 

its name is “chained equations” is it assumes that for each incomplete variable the user 

specifies a conditional distribution for the missing data given by the other data. 
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Figure 5.1. Three steps for application of multiple imputation 

 
 
 
        For instance, incomplete binary variables could use logistic regression, categorical 

data could use polytomous regression, and numerical data could use linear regression. 

Under this assumption that a multivariate distribution exists, from which these conditional 

distributions can be derived. MICE constructs a Gibbs sampler from the specified 

conditions, which is used to generate multiple imputaions. A number of publications 

document the method (Van Buuren et al. 1999; Brand 1999). Thus this MICE package is 

useful and convenient to generate multivariate multiple imputations, it also suits the dataset 

in this study that only has numerical data.  

        The default method in MICE for imputating numerical data is predictive mean 

matching (PMM) method. Predictive Mean Matching (PMM) is a semi-parametric 

imputation approach. It is similar to the regression method except that for each missing 

value, it fills in a value randomly from among the a observed donor values from an 
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observation whose regression-predicted values are closest to the regression-predicted value 

for the missing value from the simulated regression model (Heitjan and Little 1991; 

        Schenker and Taylor 1996). The PMM method ensures that imputed values are 

plausible and it might be more appropriate than the regression method (which assumes a 

joint multivariate normal distribution) if the normality assumption is violated (Horton and 

Lipsitz 2001, p. 246). Since the dataset in this study is not multivariate normal distribution, 

it can fit this method without violating the assumptions as other methods. 

        In the traditional regression method, a regression model is fitted for a continuous 

variable with the covariates constructed from a set of effects. Based on the fitted regression 

model, a new regression model is simulated from the posterior predictive distribution of 

the parameters and is used to impute the missing values for each variable (Rubin 1987, pp. 

166–167). That is to say, for a continuous variable with missing values, a model 

                                (5) 

is fitted using observations with observed values for the variable and its 

covariates . The fitted model includes the regression parameter 

estimates  and the associated covariance matrix , where  is the 

usual  inverse matrix derived from the intercept and covariates . 

        The following steps are used to generate imputed values for each imputation: 

        New parameters  and  are drawn from the posterior 

predictive distribution of the parameters. 

Y j
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        That is to say, they are simulated from , , and . The variance is 

drawn as 

                                       

(6) 

        where  is a  random variate and  is the number of nonmissing                  

observations for . The regression coefficients are drawn as 

                                                   

(7) 

        where  is the upper triangular matrix in the Cholesky decomposition, , 

and  is a vector of  independent random normal variates. 

        The missing values are then replaced by 

                       (8) 

        where  are the values of the covariates and  is a simulated normal deviate. 

 

        Following the description of the model above about the traditional regression method 

for missing data below is how predictive mean matching method generates imputed values. 

        For each missing value in the dataset, a predicted value  

                          (9) 

        is computed with the covariate values . 
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        Then a set of observations whose corresponding predicted values are closest to  

is generated. Finally, the missing value is replaced by a random value drawn from these  

observed values. The predictive mean matching method requires the number of closest 

observations  to be specified. The default in MICE package is . That is to say, each 

missing case is matched to the 5 cases that have the closest predicted values. One of the 5 

cases is chosen at random and its value is assigned to the case with missing data. In SPSS 

and Strata, the  is only 1 which is a serious error because it’s not enough to produce proper 

imputations and the estimated standard errors tend to be too much low which leads to 

inflated test statistics and confidence intervals that are much too narrow (Morris et al. 2014). 

Schenker and Taylor (1996) did simulations with =3 and =10 finding there was small 

difference in performance but there was less bias and more sampling variation with =3. 

Based on previous simulations, Morris et al. (2014) recommended =10 is good for most 

situations but a lot depends on sample size. =10 is probably the better choice with large 

samples. Otherwise, it will probably include too many cases that are rather unlike the case 

to which they are matched with smaller samples. Thus, MICE in which =5 is good for 

most of samples and is popular in multiple imputation researches. Also, it’s fit with the 

dataset in this study to generate plausible results. 

        5.4. PROCESS OF MULTIPLE IMPUTATION         

        5.4.1. Missing Data Inspection. Before the imputation process, a data inspection is 

given below to show the distribution of missing data in the dataset. Thus a big picture of 

missing data can be seen to do further review and deep analysis.  

        Figure 5.2 shows a margin plot of polymer volume injected versus oil recovery 

increased as an example to express the situation of the incomplete data. The blue dots in 

k yi*

k

k k = 5

k

k k

k
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the big area indicate the data points that observed both in PV and oil recovery increased. 

The red dots at left indicate that observed in oil recovery increased but missed in PV. The 

red boxplot at left correspond to the red dots and the blue boxplot at left indicates the 

distribution of observed data in oil recovery increased. On the opposite, the red dots at 

bottom indicate observed in PV but missed in oil recovery increased. The orange dot at the 

left bottom corner indicates that there are records both oil recovery increased and PV are 

missing and the number is 17 as shows. Also, 26 records in which 26 out of 55 data points 

of oil recovery increased are missing and 23 out of 55 data points of PV are missing. 

 

 

 

Figure 5.2. Margin plot about PV vs. oil recovery increased. 
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        5.4.2. Create Imputations. Creating imputations can be down with code to generate. 

In this study, the multiple imputation times m=5 is chosen. Rubin (1996) claims that unless 

the rate of missing information is very high, there is nearly little advantage to producing 

and analyzing more than a few imputed datasets in most situations. Thus, m=5 is quiet fit 

this dataset in this study. 

        5.4.3. Diagnostic Checking. After imputations were done, diagnostic checking is an 

important step in multiple imputation to evaluate whether the imputations are plausible or 

not. Imputaitons should be values that can have been obtained had they not been missing 

and should be close to the data available. Data values that are obviously impossible (e.g. 

porosity more than 1, negative PV) should not appear in the imputed data. Imputaitons 

should respect relations between each two variables and reflect the appropriate amount of 

uncertainty about their ‘true’ values. 

        Figure 5.3 shows an imputation example of PV and each row corresponds to a missing 

case in PV till total of 23 cases out of 55 cases. The column at most left is the cases number 

of dataset and the rest columns are the results of multiple imputaions after five iterations. 

The actual results are different due to different value randomly drawn during the imputation 

process. Also, the complete data combine both observed and imputed data can be viewed. 

It is often useful and meaningful to inspect the distributions of original and the imputed 

data. 

        Figure 5.4 shows a strip plot of an example of distributions of the observed data and 

imputed data of PV. The number 0 represents the original dataset and the numbers 1 to 5 

represent 5 complete datasets with observed data and imputed data. The observed data 

points are plotted in blue and the imputed data points are plotted in red. 
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Figure 5.3. Example of imputation of PV (m=5) 

 

 

 

        Since the predictive mean matching method draws imputations from the observed data, 

the imputed values have the same gaps as in the observed data and are always within the 

range of the observed data. Also, the distributions of the observed data and the imputed 

data are similar thus the imputed data could reflect the feature like clusters around PV 

equals 0.4 and 0.6 closely.  

        Figure 5.5 shows a scatter plot group of polymer volume injected versus oil recovery 

increased after the 5 imputations. The 0 plot is the original scatter plot without the 

imputation and number 1 to 5 are scatter plots after imputaions in which the red dots 

represent the imputed values and the blues represent the observed values. 
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Figure 5.4. Strip plot of distributions of compared original and imputed dataset of PV 

 

 

 

        The blue dots are the same in different plots but the red ones vary. The red dots have 

more or less the same shape as blue dots that indicates that they could have been plausible 

measurements if they had not been missing. The differences between the red points 

represent the uncertainty about the true but unknown values.  

        Figure 5.6 shows a density plot of comparison of observed and imputed data of 

polymer volume injected. It indicates that the imputaions are reasonable because nearly all 

5 imputaions have nearly the same density as the observed data except number 3 in which 

imputed values are a little bit higher than the observed data. 
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Figure 5.5. Scatter plot of PV and oil recovery increased with imputed data 

 

 

 

        Differences in the densities between the observed and imputed data may suggest a 

problem that needs to be further checked. The reason for number 3 in which is that the 

probability that polymer volume injected is missing in small values like 0.2-0.3 is larger 

since most of the oil fields have higher polymer volume injected like 0.7. Plots like this are 

very useful to detect interesting difference between the observed and imputed data.           

        5.4.4. Analysis of Imputed Data. After multiple imputation, the dataset now is 

complete and ready to do the multiple regression analysis. Multiple linear regressions are 

used to evaluate the relationship between a single response ( ) and more than one predictor 

variable ( ).   

 

Y

x1,x2,..., xk
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Figure 5.6. Density plot of comparison of observed and imputed data of PV 

 

 

        The general form of the multiple linear regression equation is given by 

 

                          

(10) 

 

        The s are the regression coefficients (unknown parameters). 

 

        In this study, the dependent is oil recovery increased after polymer flooding and 

independent variables are water salinity (ppm), average permeability (md), dykstra parsons 

coefficient, polymer concentration (ppm), polymer average molecular weight (10^4), well 

spacing (m), polymer volume injected (PV), water cut before polymer flooding (%). 

Yj = b0 + b1x1 + b2x2 + ...+ bkxk + ei

b

Y
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        The results of multiple linear regression of five imputed datasets are as follow Table 

5.1 to Table 5.5 shows. 

 

 

Table 5.1. Multiple linear regression result of imputation dataset 1 

Independents Estimate(β) P Significance 

Intercept -9.154 0.47726  

Water salinity -5.763*10-5 0.00115 ** 

Permeability -2.039*10-3 0.00305 ** 

DPC -13.24 0.000011 *** 

polymer concentration -1.966*10-3 0.07832 . 

polymer molecular weight 2.537*10-3 0.00121 ** 

well spacing 3.166*10-2 0.00066 *** 

PV 3.486 0.04394 * 

Water cut before polymer flooding 0.2081 0.05629 . 

R-squared 0.7834 

 
 
 
 

        In statistics, the coefficient of determination, also known as , measures the 

proportion of the total variation in response  is that is explained by a linear model. This 

value is always between 0 and 1 as a fraction or 0 and 100 as a percent and the most fitting 

model will be with  equals to one, which means that the predictor’s values ( ) allow 

R2

Y

R2
x
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perfect prediction of response . Similarly, the adjusted is an alternative to the . The 

adjusted  is considered better than  for comparing models. A model that has a good 

value of adjusted  which is close to one indicates a good fit of the data.  

 

 

Table 5.2. Multiple linear regression result of imputation dataset 2 

Independents Estimate(β) P Significance 

Intercept -22.86 0.05758 . 

Water salinity 4.703*10-5 0.08252 . 

Permeability 1.220*10-3 0.20071  

DPC -4.611 0.27539  

polymer concentration 2.694*10-4 0.86957  

polymer molecular weight -7.942*10-4 0.41527  

well spacing 4.578*10-2 0.00000167 *** 

PV 6.165 0.00803 ** 

Water cut before polymer flooding 0.2435 0.01652 * 

R-squared 0.6467 

 

 

 

        The p-value for each term tests the null hypothesis that the coefficient is equal to zero, 

which means no effect. A low p-value (< 0.05) indicates that the null hypothesis can be 

rejected. In other words, a predictor that has a low p-value indicates this independent 

variable is a meaningful addition to the predict model because changes in the predictor’s 

Y R2 R2

R2 R2

R2
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values are related to changes in the response value variable. On the contrary, a larger p-

value indicated that the predictor is insignificant, which means that changes in the predictor 

are not associated with changes in the response. 

 

 

 

Table 5.3. Multiple linear regression result of imputation dataset 3 

Independents Estimate(β) P Significance 

Intercept 20.04 0.01875 * 

Water salinity -2.981*10-5 0.19859  

Permeability 4.229*10-3 0.00000523 *** 

DPC -15.69 0.0000183 *** 

polymer concentration -3.469*10-3 0.00743 ** 

polymer molecular weight -2.448*10-4 0.74816  

well spacing -2.353*10-2 0.01088 * 

PV 9.327 0.0000352 *** 

Water cut before polymer flooding 3.132*10-2 0.65713 . 

 0.6871 

 

 

 
        From Table 5.1 to Table 5.5, five multiple linear regression have different results due 

to their differences in imputation values. Some are good and some are bad even worse. The 

results of number 1 and 3 seem quite satisfying since the adjusted  of them (74.57% for 

number 1 and 63.27% for number 3) are much higher than other three results.  

R2
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        Based on five regression analyses above, Rubin (1987) developed a set of rules for 

combing the separate estimates (intercepts) and standard errors from each of the m (m=5 

in this study) imputed datasets into an overall estimate with standard error, confidence 

intervals and P-values. These rules are based on asymptotic theory on the normal 

distribution and the pooling process could be implemented in function in MICE.  

 
 
 

Table 5.4. Multiple linear regression result of imputation dataset 4 

Independents Estimate(β) P Significance 

Intercept 22.07 0.13559  

Water salinity -4.077*10-5 0.27779  

Permeability 2.434*10-3 0.02262 * 

DPC -8.576 0.00947 ** 

polymer concentration -3.392*10-3 0.03571 * 

polymer molecular weight 2.169*10-5 0.98458  

well spacing -7.838*10-3 0.50018  

PV 8.293 0.00361 ** 

Water cut before polymer flooding -7.527*10-2 0.58518  

R-squared 0.4054 

 

 

 

 

 



 97 

Table 5.5. Multiple linear regression result of imputation dataset 5 

Independents Estimate(β) P Significance 

Intercept -11.19 0.3148  

Water salinity 5.204*10-5 0.2342  

Permeability 1.356*10-3 0.1988  

DPC -2.943 0.4262  

polymer concentration -8.87*10-4 0.6558  

polymer molecular weight 1.363*10-3 0.3896  

well spacing -1.144*10-3 0.9217  

PV 1.081 0.7048  

Water cut before polymer flooding 0.2124 0.0594 . 

R-squared 0.2321 

 

 

 

 

        Table 5.6. shows the pooling results of the five multiple linear regression results. 

        From the Table 5.6 of pooling results above, it shows that the p-values are very poor 

that all the p-values for each predictor are over 0.05. The reason is some of the imputaions 

are not very good imputaions thus the values are not good for regression analysis which in 

turn causes the bad overall pooling result from five regression results. Otherwise, the 

pooling result is better than each of those five results if those five results all have good 

fittings, like have high s. Although it is not always a good fitting model is with higher 

, those three results except number 1 and 3 still seem too bad.  

R2
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Table 5.6. Pooling results for five multiple regression analysis results  

Independents Estimate(β) P Significance 

Intercept -0.2181047 0.9934662  

Water salinity -5.827571*10-6 0.9321054  

Permeability 1.440177*10-3 0.6323410  

DPC -9.013298 0.2563224  

polymer concentration -1.888974*10-3 0.4446328  

polymer molecular weight 5.765398*10-4 0.7638077  

well spacing 8.987941*10-3 0.8092299  

PV 5.670414 0.2563152  

Water cut before polymer 

flooding 

0.1239951 0.5317838  

 

 

 

        Based on discussed above, the number 1 regression analysis that has the highest 

(74.57%) is chosen to do further analysis. From the number 1 regression results, there are 

two insignificant independent variables ‘average polymer concentration’ and ‘water cut 

before polymer flooding’ for their p-values are over 0.05. Thus, another multiple linear 

regression analysis without these two predictors is encouraged to process.   

        Table 5.7 shows the result of multiple regression analysis result after removing two 

insignificant variables ‘average polymer concentration’ and ‘water cut before polymer 

flooding’. In fact, polymer concentration also plays an important role for polymer flooding. 

R2
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In this dataset, however, the values are mostly fall into the range of low concentration. 

Thus, there is a bias occurs which in turn misleads the result of multiple linear regression. 

The p-values are all less than 0.05 now and the most significant variables are formation 

water salinity, average permeability, dykstra parsons coefficient and polymer molecular 

weight. Although the overall fit based on of the model, which is 67.76%, is lower than 

the previous fit that is 74.57%, this model is still regarded as the most fitting model for 

predicting.  

 

 

 

Table 5.7. Multiple linear regression result with removed insignificant variables 

Independents Estimate(β) P Significance 

Intercept 10.36 0.006650 ** 

Water salinity -6.512*10-5 0.000682 *** 

Permeability -2.634*10-3 0.000567 *** 

DPC -13.73 0.00000291 *** 

polymer molecular weight 2.792*10-3 0.000113 *** 

well spacing 1.954*10-2 0.011549 * 

PV 4.401 0.022193 * 

R-squared 0.7134 

         

 

 

R2
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        Thus, this model  

             

(11) 

where is oil recovery increased after polymer flooding (%), is the water salinity (ppm), 

is average permeability (md), is the dykstra parsons coefficient, is average 

molecular weight (10^4), is the well spacing (m), is the polymer volume injected is 

chosen for the final multiple regression analysis predicting model for polymer flooding. 

        5.4.5. Model Validation. In order to validate the predicting model constructed, a 

validation process is encouraged to show whether the model is plausible or not. Since the 

original dataset has no enough data and unable to do linear regression using this model, 

the number 3 dataset with imputaions is chosen to validate the model. 

        Table 5.8 shows the comparison of original dataset and predicted dataset of dykstra 

parsons coefficient versus oil recovery increased. The values in black are the original 

values of oil recovery increased from number 3 imputed dataset and the red values are the 

predicted values of oil recovery increased using predicting model built by number 1 

imputed dataset using same independent variables of water salinity, average permeability, 

dykstra parsons coefficient, average molecular weight, well spacing and polymer volume 

injected. 

        Figure 5.7 shows a scatterplot of the comparison for original dataset of number 3 and 

predicted dataset of dykstra parsons coefficient versus oil recovery increased. The black 

points are the original dykstra parsons coefficient values versus oil recovery increased 

values in number 3 dataset and the red points are the original dykstra parsons coefficient 

values newly predicted oil recovery increased values. From Figure 5.7, it can be seen that 

Y =10.36 - 0.00006512x1 - 0.002634x2 -13.73x3 + 0.002792x4 + 0.01954x5 + 4.401x6

Y x1

x2 x3 x4

x5 x6
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the predicted values have similar locations as the original ones. That is to say, the predicted 

values can also reflect the linear relationship between dykstra parsons coefficient and oil 

recovery increased just as the original data points do. 

 

 

Table 5.8. Comparison of original dataset and predicted dataset of dykstra parsons 

coefficient versus oil recovery increased 

 

 

 

 

        Based on the validation process stated, the predicted model is good and plausible for 

predicting oil recovery increased. 



 102 

 

Figure 5.7. Comparison for original dataset and predicted dataset of dykstra parsons 

coefficient versus oil recovery increased 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. CONCLUSIONS 

        This study constructed a comprehensive dataset for polymer flooding including pilot 

and field applications in China. Statistical analysis using histograms, boxplots, violin plots 

and scatter plots is presented in this study and gave overall updated screening range for 

polymer flooding. In addition, multiple imputation method is used to impute the missing 

data after collecting the original data. At last, a predicting model to predict incremental oil 

recovery based on reservoir properties and polymer properties using multiple linear 

regression method is constructed. 

• 55 polymer flooding including 31 pilot and 24 field projects in China were analyzed 

based on the reservoir properties, polymer properties, and production data. 

• Each parameter was displayed graphically using box plots, frequency histograms 

to analyze the range of the parameters that influence polymer flooding. 

• Screening range for polymer flooding was summarized and updated compared to 

previous research. New screening range with more parameters for polymer flooding 

was generated based on statistical analysis. 

• Multiple imputation method was introduced and used to impute missing data. 

• Multiple linear regression analysis was processed and a model for predicting 

incremental oil recovery was built based on reservoir and polymer properties. 
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6.2. RECOMMENDATIONS 

 This study only collects 55 pilot and field projects from China only and have 

missing data problem. Thus, it is necessary and encouraged to enlarge the dataset 

from other country or sources to have a more satisfying result with more data. 

 PMM has been around for a long time (Rubin 1986, Little 1988), but only recently 

has it become widely available and practical to use.  Some organizations have made 

considerable investments to develop procedures for imputing key variables, like 

income or family size, whose values are subject to all kinds of subtle constraints. 

Using one of the built-in imputation methods like PMM could be a waste of this 

investment, and may fail to produce what is needed. Thus it is somehow inaccurate 

using this method in oil industry because of the constraints in different specific 

situations. Therefore, It is possible to write elementary imputation function instead 

of PMM specifically for oil industry or even an oilfield. This may be an 

encouraging work in the future. 

 Some advanced screening methods like big data methods can be used to build better 

predicting models instead of numerical analysis. 
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