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ASSESSMENT OF SHORT-TERM TOXICITY OF TITANIUM DIOXIDE 

NANO FIBER (TDNF) IN SPRAGUE DAWLEY RATS 

by 

DANIEL HUNTER 

(Under the Direction of Worlanyo Gato) 

 

ABSTRACT 

Nanotechnology is easily becoming one of the fastest growing markets around the globe. 

Synthetic nanomaterials have many unique chemical and physical properties, mainly due to their 

huge specific surface area and chemical makeup. Specifically, titanium dioxide (TiO2) 

nanomaterials have high stability, anticorrosive and photocatalytic properties. These 

nanomaterials have applications for semiconductor photocatalysis, treatment of water, as a 

photoactive material in nanocrystalline solar cells, and medicine. However, not much is known 

about the toxicity of TiO2 in the nanofiber form. The objective of the present study is to 

investigate the adverse effects associated with acute ingestion of TiO2 nanofiber (TDNF). TDNF 

was fabricated via an electrospinning method, followed by dispersion in water. Six to seven 

week old male Sprague Dawley rats were exposed to a total of 0, 40 and 60 ppm of TDNF for 

two weeks via oral gavage. Weight gain and cumulative weight eaten was tracked during the 

course of the study, displaying statistically insignificant concentration-dependent alterations 

among the three treatment groups. Differences in organ weights were not statistically significant 

among treatment groups. Blood serum was tested for Albumin, Alanine aminotransferase, and 

Lactase dehydrogenase to detect tissue damage in the lungs, liver, and kidney. Results from the 



 

 
 

blood serum indicated possible damage with respect to the kidney and liver. These findings were 

followed by global gene expression analysis to identify which transcripts might be responsive to 

TNDF toxicity. Differentially expressed mRNA levels among the liver, kidney, and lung yielded 

interesting results. Further analysis is needed to interpret what is being done to the tissue. One 

theory is the fact that TNDF is unable to penetrate the cell as a result; it forms a phagocytosis site 

and thus triggers inflammatory and immune response. All results taken together, short-term 

ingestion of titanium dioxide nano fiber (TNDF) produced marginal effects indicative of toxicity.  

 

KEYWORDS: Nanomaterials, Titanium dioxide, Gene expression, Blood serum, Toxicity 
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Chapter 1: Background/Introduction 

The past decade has seen an explosive growth in the synthesis and use of engineered 

nanomaterials (ENMs).1 ENMs have applications in various kinds of materials and processes 

because of their unique electrical, magnetic, optical, and catalytic properties.2 Titanium dioxide 

nanoparticles (TDNP) are one of the most produced ENMs in the past. This is largely due to the 

unique characteristics that TDNP exhibit, including photocatalysis, high refractive indices, 

excellent anticorrosive properties, etc.3 These characteristics allowed TDNP’s to be applied in all 

fields of science such as electronics, transportation, telecommunication, imaging, biomedical, 

pollution, medication, cosmetics, coatings, etc.4 This has led to a growth of studies that examined 

the toxicity of titanium dioxide in its nanoparticle form.5 Previous research has shown that TiO2 

can be dangerous in in vitro models. For instance, a study a few years ago found that exposure of 

BEAS-2B cells to TiO2 nanoparticles induced apoptosis and oxidative stress.6 Another study 

investigated the effect of TiO2 NPs on human astrocyte and neuronal cells after acute and long-

term exposure.7 Both acute and prolonged exposures, even at low dose, seem to affect the 

proliferative capacity of the cells. The authors found toxicological effects on the central nervous 

system (CNS). However, there are very little studies that have examined ENMs in their fiber 

form, such as the titanium dioxide nano fiber (TDNF). 

TDNFs share the same chemical properties as TDNPs except for shape and can be found 

in common household products such as cosmetics, certain food, rubber, etc.4c Since these 

products are used frequently, contact is inevitable. Interestingly enough, the shape of the ENM 

plays a crucial role in nanotoxicity, as nanofibers, in theory, have a greater resistance to be 

broken down by an organism’s internal resistance. For example, macrophages can envelope 

nanoparticles and essentially digest them; however, the length of the nanofibers are long enough 

to prevent a macrophage from breaking them down and even has a chance to lyse open the 
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macrophage.8 Thus, it is essential that the toxic impact of TDNF on human health be studied 

thoroughly. Recent studies have shown that ENM’s can have great potential to be toxic when 

introduced to the environment.9 Another study has shown that a buildup of TDNF in the body 

can cause all sorts of problems like increased generation of reactive oxygen species (ROS) and 

inflammation and increased lipid peroxidation.8, 10 One can assume that the toxicity of 

nanoparticles varies depending on type of ENM, exposure route and size of the material, which 

causes inconsistent results in ENM toxicity.3b The goal of the present study is to investigate the 

short-term effects of titanium dioxide nanofibers on the kidneys, liver, and lungs of male 

Sprague Dawley rats. 

All organs are vital in the human body and the kidney is no exception. The kidneys are 

responsible for filtering out the blood by removing wastes. The kidney controls the body’s fluid 

balance and also regulates the balance of electrolytes.11 As nanoparticles enter the body they are 

small enough to enter the bloodstream, which makes contact with the kidneys a sure thing.12 One 

study indicates that when Wistar rats were given palladium nanoparticle doses, the kidneys had 

suffered severe renal tubular dysfunction. ENM induced toxicity to the kidney can be very 

dangerous and very hard to detect, requiring multiple analytical techniques.13  

The liver, like the kidney, is responsible for filtering out the blood; however, unlike the 

kidney the blood is filtered from the digestive track before passing on to the rest of the body. 

Hepatic function also includes detoxing chemicals and metabolizing drugs, making them the 

object of focus in toxicological examinations.  

The lungs are a vital part of life for land animals, as they provide the body with oxygen 

by storing it via the alveoli in our lungs. Lungs are observed when doing toxicological studies 

with macro-drugs, even more so, with ENMs being prime candidates for drug delivery systems. 
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Since translocation of drugs is a vital part of toxicological studies, especially with ENMs since 

their high surface area to size ratio, it is important to see if it is possible for TDNF to access 

areas of the body not associated with the digestive tract.  

This study aims for a better understanding on the renal, hepatic, and lung deficiencies of 

oral ingestion of TDNF in Sprague Dawley rats, using a variety of analytical tools and 

techniques. Gene expression analysis of transcripts involved in inflammation, apoptosis, cell 

growth regulation, stressors and immune response were undertaken. Furthermore, rat 

morphometric indices, scanning electron micrograph (SEM) and histopathology of renal tissues 

were performed to further characterize tissue damage via TDNF ingestion.  
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Chapter 2: Materials and Methods 

2.1 Synthesis and Characterization 

The fabrication of titanium dioxide nanofibers (TiO2 NF) began with mixing ~1 gram of 

polyvinylpyrrolidone (PVP) with 10 mL of ethanol. In a separate container ~3 grams of TiIP 

(titanium iso-propoxide) was mixed with 5 mL of ethanol and 3 mL of Acetic Acid. These 

solutions were vortexed separately for ~ 30 minutes to ensure thorough mixing. The solutions 

were then added together and vortexed again for another 5 minutes. This mixture was then 

sonicated for 20 minutes before electrospinning. Once the gelation of the intended nanofiber 

solution was completed, it was ready for electrospinning. The parameters of electrospinning were 

as follows: the distance from the end of the syringe to the grounding aluminum collector was 12-

15 cm. The pumping rate of sol-gel solution was 5 mL/hr. The applied DC voltage was 25 kV. 

Once all the sol-gel solution had been electrospun, fabricated fibers were left overnight for 

complete gelation. These nanofibers were annealed at ~565°C in air for roughly 12 hours. A 

Field Emission Electron Microscopy (JEOL JSM-7600F) attached with Transmission Electron 

Detector (TED) was utilized for morphology and structural characterization. Once the inorganic 

TiO2 nanofibers were fabricated and purified, scanning electron microscopy (SEM) and Brunaur-

Emmett-Teller instruments was used to characterize the fibers. 

 

2.2 Experimental Design 

Twelve male Sprague Dawley rats were purchased from Taconic Bioscience Inc., Hudson 

NY. The rats randomly selected into three treatment groups: control (0ppm), Low (40ppm), 

Medium (60ppm). The rats (6-7 weeks old) were given treatment specific doses of titanium, via 

oral gavage, two times a week for two weeks. During the treatment period the weights of the 
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animals and dietary statistics were taken. At the end of the treatment period the rats were 

euthanized and blood was collected via cardiac puncture. Most of the kidney, liver, and lungs 

were extracted and preserved with liquid nitrogen, while a small fraction was submerged in a 

10% formalin solution for histology and haemotoxylin and eosin (H&E) staining.  

Animals were housed at the Georgia Southern University Animal Facility (1176A 

Biological Sciences Fieldhouse). This facility is accredited by Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). Rats were treated according to the 

principles outlined in the ILAR’s (Institute for Laboratory Animal Research) Guide for Care and 

Use of Laboratory Animals. Protocols were reviewed and approved by Institutional Animal Care 

and Use Committee (IACUC protocol# I15002). Care was taken to minimize the number of 

animals employed in the research as well as minimizing animal discomfort. 

2.3 Why In Vivo? 

The In vivo testing method was used as it accurately simulates an organism’s biological 

environment; however, it should be noted that it is rather difficult to extrapolate data from a 

rodent and apply it to humans. 

2.4 Microarray Experiment 

Total RNA was converted to single-stranded sense-target, fragmented, labeled, and hybridized to 

the Affymetrix Rat Gene ST 2.0 microarray according to the manufacturer’s protocol 

(Affymetrix, Catalog no. 902280). The labeling kit is the GeneChip® WT PLUS Reagent Kit 

(Affymetrix, catalog no. 902414). After hybridization, arrays were washed on the Affymetrix 

450S Fluidics unit and scanned using the Affymetrix 7G scanner as described in Affymetrix 
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GeneChip™ Wash, Stain and Scan protocol (Affymetrix, 2008). The Rat Gene ST 2.0 chip 

contains over 27,000 protein-coding transcripts and over 24,000 Entrez genes. Microarray was 

used to determine gene expression levels of select genes transcripts. 

2.5 Quantitative PCR 

Quantitative PCR was used to determine changes in genotypic expression. Quantitative 

measurement of Igha, CD209, Hepacam2, Rgs13, IgG2a, TNF-α, IL-1β, NF-kB, p53, p21, 

Gadd45α and β-actin as control gene. These transcripts play such cellular roles as immune 

response, DNA transcription and recombination, regulating cell division, negatively regulating 

G-protein signal pathways, and cell structure and motility. Quantification of the transcripts was

measured using quantitative real-time polymerase chain reaction (RT-qPCR) using β-actin as a 

control gene. FASTA mRNA sequences of these mRNA transcripts were obtained for Rattus 

Norvegicus using the National Center for the Biotechnology Information (NCBI) database. 

Forward and reverse primers for the genes were then generated using NCBI Primer-Blast. Primer 

sequences were shown in Table 1. Primers were purchased from Integrated DNA Technologies 

Inc (IDT), Coralville IA USA.  

Total RNA was extracted from rat livers using a Qiagen miRNEAsy mini kit 

(Qiagen, Catalog no. 217004). Approximately 30 mg kidney samples were homogenized in 

Qiazol buffer. Qiazol buffer denatures and inactivates RNases, separating RNA into the aqueous 

phase and DNA and proteins into the organic phase. The aqueous phase with RNA is then 

allowed to bind to a silica-gel membrane, DNAse treated, washed, and finally eluted with 

RNase-free water. Total RNA was quantified using the UV-vis spectrophotometer at 260 and 
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280 nm absorbance. RNA integrity was evaluated on the Agilent 2100 Bioanalyzer 6000 Nano 

assay (Agilent, catalog no. 5067-1511).  

 

2.6 Clinical Serum 

2.6.1 Total Protein 

In this experiment, serum total protein was quantified using Randox Monza Chemistry analyzer 

instrument (Kearneysville WV). The assay was performed according to the Randox’s total 

protein biuret assay guidelines. Briefly, standards and samples were prepared according to the 

manufacturer’s protocol and quantified on the instrument at a wavelength of 546 nm.  

 

2.6.2 Albumin 

The Shimadzu UV-VIS Recording Spectrophotometer was used to quantify the amount of 

albumin (ALB) in the blood serum. Method of ALB determination was used with the 

bromocresol green (BCG) method; 10 μl of sample was mixed with 1ml of BCG. Absorbance 

was taken within 90 seconds of mixing at 630 nm at a constant temperature of 37 oC. 

Concentration of ALB was calculated using linear extrapolation via ALB standard curve; using 

the BCG reagent as a blank and a 6g/dL ALB solution as the upper limit. 

 

2.6.3 Alanine Aminotransferase 

The RX Monza was used to quantify the amount of alanine aminotransferase (ALT) in the blood. 

RX Monza was calibrated with a Calibration Serum Level 3 (CAL 3) from Randox Laboratory. 

The CAL 3 serum had to be primed before use; therefore, 5ml of DI water was added to the CAL 

3 powdered mix and was left in darkness for 30 mins. ALT kit from Randox was used to 
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determine ALT levels.  ALT reagent was prepared by mixing 2 ml of R1a with R1b, from the 

ALT kit. The upper calibration limit was prepared using 50 μl of CAL 3 solution with 500ul of 

R1a/b solution (1:10 sample to reagent ratio). The blank used was just the R1a/b mixture by 

itself. RX Monza used linear calibration to determine ALT levels in sample. 

2.6.4 Lactase Dehydrogenase 

The Rx Monza analyzer (Randox Laboratories, Kearneysville WV) was employed to 

quantitatively determine the amount of lactase dehygrogenase (LDH) in the blood serum. LDH 

test was optimized using LDH Pyruvate-L-lactated kit from Randox laboratories (Kearneysville 

WV). Rx Monza instrument was calibrated using the CAL 3 serum (Cat#: CAL2351). Once 

calibrated, the LDH reagent was prepared by mixing one vial of R1b with 3ml of R1a from the 

LDH Randox kit. Samples were prepared and measured according to guidelines provided 

Randox laboratories (Kearneysville WV). 

2.6.5 Igha Levels in Liver 

Quantification of Igha was measured using quantitative real-time polymerase chain reaction 

(qRT-PCR) using β-actin as a control gene. FASTA mRNA sequences of these mRNA 

transcripts were obtained for Rattus norvegicus using the National Center for the Biotechnology 

Information (NCBI) database. Forward and reverse primers for the genes were then generated 

using NCBI Primer-Blast. Primer sequences were shown in Table 3. Primers were bought from 

Integrated DNA Technologies Inc (IDT), Coralville IA USA. 
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2.7 Data Analysis 

The .cel files were loaded into Partek® Genomics Suite 6.6 (Partek Inc. 2015, St Louis 

MO) for derivation of quality control metrics to ensure data integrity and validity. Quality 

control parameters were within normal range as such none of the .cel data was excluded. Data 

was then subjected to a mixed model analysis of variance (ANOVA). Significantly (p < 0.05) 

differentially expressed genes between control and treated groups and fold change > 2 or fold 

change < -2 were calculated. False discovery rate (FDR) was 1 %.  

 Statistical analyses were performed on body and organ weights to assess significant 

changes in treated groups in comparison to the control animals. Random trend model was 

employed to test the overall effect from the ingestion of TNDF. All statistical analyses were 

performed using Statistical Analysis System (SAS) software version 9.3. The data was presented 

as the mean ± standard error.  
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Chapter 3: Results and Discussion 

 

3.1 Characterization of TiO2 Nanofibers 

Characterization of TDNF was assessed using BET and SEM. Translocation pathways of 

nanofibers in vivo are still not well known. Characterizing the size and shape of ENMs, 

especially nanofibers, can help ease the way for a more solid understanding ENM translocation. 

BET data in Figure 1A shows that the surface areas of the fibers were 6.63m2/g. Figure 1B 

illustrated that not only were the fibers porous, but the fibers contained more smaller pores than 

larger pores. The length of titanium dioxide nanofibers ranged from 2-50 μm, which was 

acquired via several SEM images one of which was Figure 2A. These images, in conjunction 

with the image-j program, were used to determine the diameter of the fibers, which ranged from 

45nm ≤x≤ 917nm (Figure 3).  Recent studies on shape-induced toxicity by titanium dioxide 

nanofibers have shown a positive relationship on abnormal macrophage morphology with an 

increase in nanofiber length.14 
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Figure 1. Using the equation from the BET Plot (Left-A) the surface area for the fibers can be 

calculated. The BJH Pore Size Distribution (Right-B) provides the density of pore sizes within 

the fibers. 
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Figure 2. SEM images of Purified TDNF at 7000x (A), 10000x (B), and 130000x (C) 

magnification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C: TiO2 nano fiber (TNDF) x130000  A: TiO2 nano fiber (TNDF) x7000  B: TiO2 nano fiber (TNDF) x10000  
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Figure 3. Cumulative Distribution of Fiber Diameter acquired through Image J program using 

various SEM images of the nanofibers. 
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3.2 TDNF Effect on morphometric indices 

There is enough evidence to suggest TiO2 NPs might negatively impact human health.  

However most of the studies involving TiO2 nanomaterial toxicity comprised in vitro models. It 

is quite a task to make the case for health concerns based solely on cell culture data. In general, 

exposure to environmental contaminants produces varying effects on body weight gain. 

Depending on the toxicant, overall body weight can be reduced or significantly increased 

between control and exposed groups.15  

The effects of TDNF consumption on amount of diet ingested (Figure 4), weight gain 

(Figure 5), Feed efficiency (Table 1), and kidney, lung, and liver weights (Figure 6, 7, 8) were 

measured. The rats were allowed a surplus of food and water to last for 2-3 days. At the end of 

the 2-3 days the water and food were replenished; the feed was filled to ~200g. Due to natural 

growth and a sedentary lifestyle the amount of food eaten will increase.  Around the second 

weighing period, according to Figure 4, there is a slight nuance in the difference of cumulative 

food eaten between the control group and the groups that ingested TDNF (40ppm and 60ppm). 

However, in the third and fourth weighting periods the difference increases by 60% and then by 

90%, with referencing to the second weighting period. There seems to be a small trend in eating 

habits and ingestion of TDNF; however, there is a lack of supporting evidence from studies 

showing any such correlation.  

The acute effect of TDNF ingest was examined in male Sprague Dawley rats. Exposure 

to TDNF could result in weight loss. Shown in Figure 5 is the mean weight of the rodents over 

the course of the study. The overall spaghetti plot showed that all the rats gained weight over 

time. As anticipated, animals gained weight during treatment. However, the mean weight gain 

varied depending on the amount of TDNF ingested.  At the beginning of the treatment period, 
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cumulative weight of the control group was least in comparison to the rest. As time went on 

though, TDNF exposed groups began to reveal slightly reduced weight. By the end of the 

treatment period, there was a marginal difference between the control animals and TDNF 

consumed rats.   

Feed efficacy (Table 1), the interpretation of how well an animal can convert feed into a 

desired product was calculated among the three treatment groups; however, the rats were not 

producing a desired product. Feed efficiency in this study was to see how much feed was 

converted into body weight. Looking at the FE*100 column of Table 1, among the three 

treatment groups 50-60% of what was eaten was converted into body weight. However, the 

differences among the groups was deemed not significant via one-way ANOVA (F(2,9) = 1.204, 

p= 0.344). 

ENMs have an increased size to surface area ratio. In theory, the nanofibers should be 

small enough to infiltrate and translocate into various organs via bloodstream. For this reason 

weight measurement of various organs like the kidney, lungs, and liver were taken. Figure 6 

shows the weights of the kidneys of the three treatment groups. The figure depicts a small 

decrease in average kidney weight as ingestion of TDNF increases. However, the weight change 

is not significant according to statistical analysis. The weight of the lung was measured after 

euthanasia. Animals in the control group had the highest mean of lung weight, followed by the 

medium group rats, with the low concentration TDNF rats showing the lowest lung weights 

(Figure 7). The weights of the livers, shown in figure 8, were measured on the day of sacrifice. 

The control group had the highest liver weights followed by the medium group (60ppm) and 

lastly by the low group (40ppm). At first, it appears that TDNF may have some role in weight 

loss albeit healthy weight loss or through cytotoxicity. However, upon statistical evaluation 
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(ANOVA) differences among the three treatment groups are not significant. Furthermore, 

histopathology rules out any serious tissue damage that would result in weight loss of the liver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

22 

 

Figure 4. Cumulative amount of dietary ingestions over the course of the study. Treated groups 

seem to consume less of the diet over time.  
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Figure 5. Average weight±SE of male Sprague Dawley rats over the course of the study. Weight 

measurements were performed nine times for two plus weeks. The horizontal axis represents 

actual weight measurement times. Animals were assigned into dose regimes of treatment 1 (blue 

– control, 0 ppm); treatment 2 (red – low concentration, 40 ppm) and treatment 3 (green – 

medium concentration, 60 ppm). Weight gain was not significant. 
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Table 1. Feed Efficiency Data. This figure depicts how well the rodents can convert food 

consumed into body weight and its significance in the differences between them. 
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Figure 6. Mean kidney weights (g) at the time of sacrifice of rats. Data shown as 

weight±standard error. Treatments 1, 2 and 3 were 0 ppm; 40 ppm; and 60 ppm TiO2 NF 

respectively 
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Figure 7. Mean lung weights (g) at the time of sacrifice of rats. Data shown as weight±SE. 

Treatments 1, 2 and 3 were control – 0 ppm, low – 40 ppm, and medium – 60 ppm TiO2 NF 

respectively.  
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Figure 8. Mean Liver weights (g) at the time of sacrifice of rats. Data shown as weight±SE. 

Control – 0 ppm, low – 40 ppm, and medium – 60 ppm TiO2 NF respectively.  
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3.3 TDNF Effects in the Kidney 

3.3.1 Histopathology of the Kidney 

Kidney tissue was then prepped for histological testing. The trimming and sectioning of 

the tissue was at a thickness of 4 µm and staining was done with hematoxylin and eosin. The 

sections were then rated on a scale of 0-3 (0=none, 1-mild, 2= moderate, 3=marked). Assessment 

kidney histopathology slides were examined. Figure 9 shows no observable morphological 

irregularities in the renal tissues. However, according to some literature titanium dioxide 

nanoparticles with sizes of 5 nm or more caused dose dependent inflammatory lesions in rats.4b 

One study injected titanium dioxide nanoparticles into zebra fish and found no damage or trauma 

to the kidney tissues.16 

3.3.2 Serum Levels of Lactate Dehydrogenase (LDH) 

LDH is an enzyme that helps the catalysis of pyruvate into lactate, also converting 

NAD+ to NADH and back. LDH is released in the presence of damaged cells; therefore, it is 

used as a marker for tissue injury and diseases. LDH activity in blood serum was significantly 

elevated in animals exposed to TDNF (Figure 10) in a seemingly concentration-dependent 

manner. These LDH values ranged from around 450 U/L in the 0 ppm group to over 525 U/L in 

both the 40 and 60 ppm animals. LDH levels this high should indicate tissue damage; however, 

histology showed no observable abnormalities in the kidney tissue. High levels aside, there seem 

to be a dose-dependent relationship between TDNF ingestion between the control group and the 

treated groups. Statistical analysis tells that the difference in LDH levels between the control and 

treated groups are not significant.  
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3.3.3 Selected Inflammatory mRNA Levels in response to TDNF Ingestion  

The significant expression of Hepacam2 (Figure 11 panel I) were noted from transcripts 

previously identified to be responsive to TDNF ingestion in a prior study. On the contrary, 

CD209, IgG-2a, IghA and RgS13 were not significantly changed in renal tissues. With respect to 

genes selected based on literature reviews, Gadd45a and NFkB genes were over-expressed in 

kidney tissues (Figure 11 panel II). Contrarily, IL-1B and TNFalpha seem to be down-regulated 

relative to 0 ppm groups.  

Looking at the 11 genes examined, only 3 showed significant signs of over-expression. 

NF-KB is a transcription factor that regulates many important pathways such as apoptosis, cell 

proliferation, pro-/anti-inflammatory processes. Up-regulation of NF-KB could possibly lead to 

uncontrolled cell death or tumorigenesis, two extreme cases on the opposite sides of cell life. 

However, this data paired with histology, normal cell counts, and no indication of tumors leads 

to the assumption that NF-KB was involved with inflammation in the kidneys. However, a 

typical NF-KB inflammation response should correspond to increased levels of IL-1B and TNFα. 

Both IL-1B and TNFα help regulate the immune response; therefore, a lack of inflammatory 

regulation in conjunction with an over-expression of NF-KB should have shown inflammation in 

the histology slides.  

Gadd45a is a protein associated with stressful growth arrest conditions and treatment with 

DNA-damaging agents.  With a small up regulation in both 40 and 60ppm groups, it seems that 

Ti-47 may have induced stress on the cells. However, lack of upregulation of p21, another major 

protein associated with cell growth arrest, could indicate cell growth arrest pathway independent 

of the canonical Gadd45a and p21 pathway. Furthermore, there was no difference in regulation 

of this pathway according to the static expression of p53 in both low and medium groups.  
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0 ppm TDNF 40 ppm TDNF 
60 ppm TDNF 

Figure 9. Renal anatomic characterization showing select H&E images of male Sprague Dawley 

rats exposed to 0 ppm (control), 40 ppm (low concentration), 60 ppm (medium concentration) for 

two weeks via oral gavage. 
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Figure 10. Amount of LDH in the serum of animals exposed to TDNF. LDH activity is 

significantly increased (p<0.01) in animals that ingest TDNF. Treated groups were 0ppm, 40 

ppm, 60 ppm TDNF. 

0

100

200

300

400

500

600

1 2 3

LD
H

 A
ct

iv
it

y 
(U

/L
)

Treatment Groups



32 

Figure 11. The relative mRNA expression (ΔCq) of a select genes in the kidneys of rats that 

ingested TDNF at 0 ppm (control – FC); 40 ppm (low concentration – FLC) and 60 ppm  

(medium concentration – FMC). Gnat3 and and Hepacam2 were differentially expressed. 

Significant changes were noted as aP<0.05, P>0.01. Panel I shows genes previously identified 

from a study in our laboratory. Panel genes were identified in the literature to be responsive to 

TDNF in other systems 
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3.4 TDNF Effects in the Liver 

3.4.1 Histopathology of the Liver 

The H&E staining of the tissues showed no considerable differences among the three 

treatment groups, with respect to liver damage. 

3.4.2 Serum Levels of Alanine Aminotransferase and Albumin 

Serum levels, specifically albumin (ALB) and alanine aminotransferase (ALT), are 

excellent indicators of liver health. Small deviations in the amount of ALB in liver tissue could 

mean that the liver were functioning as expected as ALB levels can vary depending on food 

consumption; however, large variation of albumin could indicate damage.  Likewise, an increase 

in the amount of ALT could indicate liver damage. Serum levels of alanine aminotransferase 

(ALT) of the control group were substantially higher than those from reference values. When 

comparing the serum levels among the three groups there is a dose dependent relationship in 

increased TDNF ingestion with decreased ALT levels. The decreased ALT activity in the treated 

groups; however, bring the levels within reference values. This could be due to possible serum 

contamination from fat cell aggregates or possible cell layer contamination. When looking at the 

three groups ANOVA indicated that differences in the ALT activity were significant (p-

value<0.01). 

Albumin levels in the control and low groups were within one standard deviation of the 

literature value (4.4 ± 0.5). The ALB levels, in the medium dose group, were not statistically 

significant with respect to the reference value (Table 2). It is worth noting that the low dose 

group was statistically different from the control and medium groups (p=0.0012). However, 

Table 2 clearly shows that albumin levels coincide with literature values for rodents. On the 
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other hand, ALT levels are extremely high compared to reference values, which could be 

interpreted as liver damage.  
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Figure 12. Images of hepatic cells taken from livers of rats in the control (0 ppm TDNF), low 

dose (40 ppm TDNF), and medium dose (60 ppm TDNF) groups.   
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Table 2. Concentration of ALT and ALB in the control (0 ppm TDNF), low (40 ppm TDNF), 

and medium (60 ppm TDNF) exposure groups. Reference values are for ALT and ALB levels in 

serum of female rats between 8 and 16 weeks old.17  

Reference Mean ± SD control low medium 

[ALT] U/L 25 ± 9 48.05 ± 1.33 22.04 ± 2.37 19.50 ± 2.38 

[ALB] g/dL 4.4 ± 0.5 3.92 ± 0.042 4.47  ± 0.094 3.73  ± 0.17 
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Table 3.  Primer sequences of the 11 genes studied. 

Gene Name Primer Sequence 

CD209 

Forward 5’CTCCAAATCCCAGCGTAACT3’ 

Reverse 5’ACAGCAGAGGTCAAGGAAAC3’ 

Igha 

Forward 5’TCTGGACCTGAACTGGAGAA3’ 

Reverse 5’TGGGTAGATGGTGGGATCTT3’ 

IgG-2a 

Forward 5’GCCTGGTCAAGGGCTATTT3’ 

Reverse 5’GTAACTCCCATCTGTGTCCATC3’ 

Hepacam2 

Forward 5’GACTGTTCTGCTGACTCTTATCC3’ 

Reverse 5’CTCTGTGTCGTCTTGCTGTT3’ 

Rgs13 

Forward 5’GTACAACACGGGAAGCTATCA3’ 

Reverse 5’TAATCATGGGCGTGCTACAG3’ 

TNF-α 

Forward 5’ACAAGGCTGCCCCGACTAT3’ 

Reverse 5’ CTCCTGGTATGAAGTGGCAAATC3’ 

IL-1β 

Forward 5’ TACCTATGTCTTGCCCGTGGAG3’ 

Reverse 5’ ATCATCCCACGAGTCACAGAGG3’ 

NF-kB 

Forward 5’ AGCAGGATGCTGAGGATTCTG3’ 

Reverse 5’ GGCAACTCTGTCCTGCACCTA3’ 

P53 

Forward 5’GTGGCCTCTGTCATCTTCCG3’ 

Reverse 5’ CCGTCACCATCAGAGCAACG3’ 

P21 

Forward 5’ AGCAAAAGAGGCAACCAAGA3’ 

Reverse 5’ GGGTAAGGAATGGGATGGTT3’ 

Gadd45-α 

Forward 5’ GGAAGCTGCGAGAAAAGAGA3’ 

Reverse 5’ TGAAAGTAACCTGGCCATCC3’ 
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3.5 TDNF Effects in the Lung 

3.5.1 Histopathology of the Lung 

Lung samples were fixed in 10% neutral buffered formalin for at least 48 hours, trimmed, 

routinely processed for histology, sectioned at 4-µm thickness, and stained with hematoxylin and 

eosin. Histologic changes were evaluated subjectively on a scale from 0 to 3, with 0=none, 

1=mild, 2=moderate, and 3=marked.  

Pathological assessment of the lung is shown in Figure 13. Anatomical evaluation 

showed no significant changes between the animals that ingested TDNF and control groups. 

3.5.2 Serum Total Protein 

Significant reductions in total protein concentration in animals that ingested TNDF in 

comparison to the control groups (Figure 14). Serum total protein concentration was significantly 

reduced in animals that ingested TDNF.  During the course of the experiment the Total Protein 

of the lungs was analyzed. The total protein test quantifies the amount of albumin and globulins 

in the blood vessels, which are responsible for preventing leaks and helping the immune system, 

respectively. Thus, any deviation from normal or expected total protein concentrations can prove 

detrimental to the tissue and even the organism. When looking at the total protein graph one can 

tell that there is a decrease in total protein when comparing the control groups to the treated 

groups. There is also a slight decrease in the total protein amount when comparing the medium 

dose group to the low dose group.18  
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3.5.3 Assessing Genome-wide Effect of TNDF 

Additional adverse effects were examined in the genome-wide mRNA expression of the 

lung. The goal was to assess the differential expression of unique gene transcripts in the lung. 

Volcano plot of differentially expressed that were at least 2-fold up- or down-regulated are 

represented in Figure 15. Blue or red dots indicate a gene. Up- and down-regulated genes were 

those falling outside of the pair of marker lines of fold change of -2 to +2 as seen in Figure 15A, 

B & C. Numbers of transcripts decoded from Figure 15 is plotted as a Venn diagram in Figure 

16. Rats that ingested more TNDF also had a higher number of differentially expressed 

transcripts. Comparison of the control group and 40 ppm-treatment group showed 39 

significantly changed transcripts.  The comparison of the control group to the 60 ppm treatment 

group and the comparison of the 40 ppm treatment group to the 60 ppm treatment group showed 

58 and 57 significantly changed genes, respectively.  

The differentially expressed genes within the TNDF treated groups seem to play essential 

roles in cellular immunity. Some of these include; CD209 antigen-like protein, immunoglobulin 

heavy chain alpha, and hepacam2 (immunoglobulin superfamily of cell adhesion molecules) 

(Table 4). Cd209 is reported to be crucial for modulating endogenous glycoprotein clearance.19 

Both treatment groups indicate an over-expression of immunoglobulin heavy chain, alpha (Igha) 

transcript. This particular gene is vital for immune responses. It blocks viral attachment as well 

as neutralizing virus infectivity.20 From the preceding, one can deduce that the fibers are too long 

to penetrate the cell, however they may serve as a phagocytosis site at the point of deposit that 

can lead to inflammation.   

Mapping of significantly changed genes onto pathways may be important to understand 

the adverse effects associated with TDNF exposure (Table 5). Several pathways from KEGG 



40 

were identified to be relevant to assessing the toxicity of TNDF. Some of these are TNF 

signaling pathway, Cytokine-cytokine receptor interaction, cAMP signaling pathway, MAPK 

signaling pathway, chemokine signaling pathway and inflammatory mediator regulation of TRP 

channels.  

3.5.4 Igha mRNA Levels in response to TDNF Ingestion 

Clinical chemistry and morphometric indices can provide insightful knowledge regarding 

the short-term effect of TDNF ingestion. Nevertheless noting changes at the molecular level via 

these techniques will not be apparent. Global gene expression analysis provides the opportunity 

to examine transcriptional modifications in biological systems.21 This will provide an 

understanding of toxic effects at the molecular level.  

Quantitative measurement of IgA (immunoglobulin A) was undertaken in lungs as a way 

to validate microarray data. IgA is the principal line of defense against pathogens and other 

foreign materials.22 The Ig heavy chain alpha has been reported to play crucial roles in cellular 

transcription and recombination.23 To assess the validity of broad gene expression patterns, the 

Igha transcript was quantified in lung tissues.  

Genome-wide differential gene expression data was validated using quantitative PCR 

analysis of the Igha gene. Global gene expression data showed that Igha was down-regulated in 

the low concentration group while up-regulated in the 60ppm treated group. However the qPCR 

data indicated that Igha mRNA was over-expressed in the FLC and FMC treated rats compared 

with control groups (Figure 17). Still the medium concentration animals expressed higher levels 

of the Igha than the low concentration group. A study a few years ago assessing the toxicity of 

subchronic exposure to TCDD (2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin) found Igha was down-
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regulated in the liver of rats.24 Another study recently revealed that airways proteins such as Igha 

(IgA constant region) was found to be affected by exposure to glutathione reaction product and 

methylene-diphenyl diisocyanate (MDI).25   
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Figure 13. Anatomic characterization of select H&E images of lungs of male Sprague Dawley 

rats exposed to 0 ppm (FC), 40 ppm (FLC), and 60 ppm (FMC) for two weeks via oral gavage.  

FC FLC FMC 
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Figure 14. Total protein concentration in the serum of Sprague Dawley rats ingested 0 ppm 

(FC), 40 ppm (FLC) and 60 ppm (FMC) Titanium Dioxide Nanofibers for two weeks. Total 

Protein levels were significantly (p<0.05) reduced in rats that ingested TDNF. 
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B 

A 

C 

Figure 15. Volcano plot of lung differentially expressed genes from TDNF exposed rodents. The 

plot of p-value relative to fold-change shows comparison between control and treated groups; A) 

control vs low concentration (40 ppm), and control vs medium concentration (60 ppm).  
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Figure 16.  Venn diagram shows connection of significantly (p<0.05) altered genes between 

groups. Comparing 0ppm vs 40ppm showed a total of 39 genes differentially expressed while 

0ppm vs 60ppm and 40ppm vs 60ppm indicated 58 and 57 transcripts respectively. There were 

no common gene expressed in all three of the groups. 
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Table 4. Select number of altered mRNA transcripts between the groups. These genes were 

extracted from Figure 2A which showed 16 genes to be common to all dose regimes. 

Control vs 40ppm Treatment Group 

Gene_assignment Gene Symbol p-value(0
ppm vs. 40
ppm)

Ratio(0 
ppm vs. 
40 ppm) 

Fold-
Change(0 
ppm vs. 40 
ppm) 

Fold-Change(0 ppm vs. 
40 ppm) (Description) 

XM_003752548 // LOC100912723 // CD209 
antigen-like protein A-like // --- // 100912723 

LOC100912723 0.0109 0.402987 -2.48147 0 ppm down vs 40 ppm 

XM_006221059 // LOC102551003 // keratin-
associated protein 20-2-like // --- // 10255100 

LOC102551003 0.0106 2.082 2.082 0 ppm up vs 40 ppm 

BC087057 // Igha // immunoglobulin heavy 
chain, alpha // 6q32 // 314487 

Igha 0.0356 0.290157 -3.4464 0 ppm down vs 40 ppm 

NM_001191973 // Ccdc129 // Ccdc129 0.0405 0.492741 -2.02947 0 ppm down vs 40 ppm 

Control vs 60ppm Treatment Group 

Gene_assignment Gene Symbol p-value(0
ppm vs. 40
ppm)

Ratio(0 
ppm vs. 
40 ppm) 

Fold-
Change(0 
ppm vs. 40 
ppm) 

Fold-Change(0 ppm vs. 
40 ppm) (Description) 

ENSRNOT00000039185 // Hps5 // Hermansky-
Pudlak syndrome 5 // 1q22 // 308598 /// 
ENSRNOT 

Hps5 0.0042 2.15772 2.15772 0 ppm up vs 60 ppm 

ENSRNOT00000048829 // RGD1564184 // 
similar to monoclonal antibody 17-1A, light 
chain / 

RGD1564184 0.0099 2.43501 2.43501 0 ppm up vs 60 ppm 

FQ234364 // IgG-2a // gamma-2a 
immunoglobulin heavy chain // 6q32 // 367586 

IgG-2a 0.0197 2.14326 2.14326 0 ppm up vs 60 ppm 

ENSRNOT00000038646 // Igl // Igl 0.0342 5.09259 5.09259 0 ppm up vs 60 ppm 

40ppm vs 60ppm Treatment Group 

Gene_assignment Gene Symbol p-value(0
ppm vs. 40
ppm)

Ratio(0 
ppm vs. 
40 ppm) 

Fold-
Change(0 
ppm vs. 40 
ppm) 

Fold-Change(0 ppm vs. 
40 ppm) (Description) 

NM_001106580 // Hepacam2 // HEPACAM 
family member 2 // 4q13 // 296846 /// 
ENSRNOT000000 

Hepacam2 0.0071 2.15206 2.15206 40 ppm up vs 60 ppm 

XM_003752548 // LOC100912723 // CD209 
antigen-like protein A-like // --- // 100912723 

LOC100912723 0.0180 2.23899 2.23899 40 ppm up vs 60 ppm 

NM_173139 // Gnat3 // guanine nucleotide 
binding protein, alpha transducing 3 // 4q11 / 

Gnat3 0.0081 2.02105 2.02105 40 ppm up vs 60 ppm 

XM_001068656 // Rgs13 // Rgs13 0.0120 3.09498 3.09498 40 ppm up vs 60 ppm 

NM_053333 // Retnla // resistin like alpha // Retnla 0.0131 2.93234 2.93234 40 ppm up vs 60 ppm 

XM_006255431 // LOC685226 // LOC685226 0.0170 2.26691 2.26691 40 ppm up vs 60 ppm 

XM_002727416 // LOC685989 // LOC685989 0.0190 2.25025 2.25025 40 ppm up vs 60 ppm 

XM_006255431 // LOC685226 // LOC685226 0.0212 2.3786 2.3786 40 ppm up vs 60 ppm 

BC087057 // Igha // Igha 0.0413 3.27428 3.27428 40 ppm up vs 60 ppm 

NM_017146 // Mcpt10 // Mcpt10 0.0261 3.77258 3.77258 40 ppm up vs 60 ppm 

XM_006227158 // LOC679730 // LOC679730 0.0379 2.34971 2.34971 40 ppm up vs 60 ppm 

XM_006227158 // LOC679730 // LOC679730 0.0368 2.32343 2.32343 40 ppm up vs 60 ppm 
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XM_003748679 // LOC501467 // s LOC501467 0.0388 3.38318 3.38318 40 ppm up vs 60 ppm 

NM_001108388 // Scel // sciellin // Scel 0.0364 0.220588 -4.53334 40 ppm down vs 60 
ppm 

XM_003748679 // LOC501467 // LOC501467 0.0387 3.09909 3.09909 40 ppm up vs 60 ppm 

XM_006255043 // LOC689453 // LOC689453 0.0465 3.63195 3.63195 40 ppm up vs 60 ppm 

XM_003748679 // LOC501467 // LOC501467 0.0441 2.8232 2.8232 40 ppm up vs 60 ppm 

XM_003751851 // LOC679730 // LOC679730 0.0472 2.57289 2.57289 40 ppm up vs 60 ppm 
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Table 5. Pathways assessed to be significantly (p<0.05) altered by oral ingestion of TDNF using 

KEGG (Kyoto Encyclopedia of Genes and Genomes). Percentage of genes involved in each 

pathway ranged from 97 to 103.  

Pathway Name Enrichment 
Score 

Enrichment 
p-value

% genes in pathway 
that are present 

# genes in list, 
in pathway 

cAMP signaling pathway 9.87006 5.17E-05 100.518 194 

Adrenergic signaling in cardiomyocytes 7.37151 0.000629 101.399 145 

FoxO signaling pathway 6.72035 0.001206 100 133 

Chemokine signaling pathway 6.59099 0.001373 99.4318 175 

Cytokine-cytokine receptor interaction 6.54372 0.001439 99.0654 212 

Hepatitis C 6.15986 0.002113 100 122 

Sphingolipid signaling pathway 6.10895 0.002223 100 121 

Protein processing in endoplasmic reticulum 6.08662 0.002273 99.3939 164 

Thyroid hormone signaling pathway 5.90538 0.002725 100 117 

Oxytocin signaling pathway 5.67723 0.003423 99.359 155 

Oocyte meiosis 5.62983 0.003589 101.835 111 

Insulin resistance 5.60023 0.003697 100 111 

Cholinergic synapse 5.54939 0.00389 100 110 

TNF signaling pathway 5.39694 0.00453 100 107 

Chagas disease (American trypanosomiasis) 5.14298 0.00584 100 102 

Rap1 signaling pathway 5.09067 0.006154 98.5915 210 

PI3K-Akt signaling pathway 5.04025 0.006472 97.8979 326 

Choline metabolism in cancer 5.00387 0.006712 101.02 99 

Signaling pathways regulating pluripotency of stem cells 4.9129 0.007351 99.2806 138 

Phosphatidylinositol signaling system 4.90211 0.007431 101.042 97 

Melanogenesis 4.83845 0.007919 100 96 

Circadian entrainment 4.78773 0.008331 100 95 

Estrogen signaling pathway 4.74952 0.008656 101.075 94 

Toll-like receptor signaling pathway 4.68629 0.009221 100 93 

Glycerophospholipid metabolism 4.68629 0.009221 100 93 

cGMP-PKG signaling pathway 4.66842 0.009387 98.8166 167 

Proteoglycans in cancer 4.59698 0.010082 98.5 197 

Neuroactive ligand-receptor interaction 4.51988 0.01089 97.9167 282 

GnRH signaling pathway 4.4835 0.011294 100 89 

Progesterone-mediated oocyte maturation 4.39373 0.012355 101.163 87 

Prostate cancer 4.39373 0.012355 101.163 87 

Axon guidance 4.38141 0.012508 99.2126 126 

Dopaminergic synapse 4.38141 0.012508 99.2126 126 

Endocytosis 4.36019 0.012776 97.8799 277 
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MAPK signaling pathway 4.35599 0.01283 98.0315 249 

Insulin secretion 4.29213 0.013676 101.19 85 

TGF-beta signaling pathway 4.1398 0.015926 101.235 82 

Hippo signaling pathway 4.02961 0.017781 98.6928 151 

Calcium signaling pathway 3.89601 0.020323 98.3425 178 

Glutamatergic synapse 3.77121 0.023024 99.115 112 

Prolactin signaling pathway 3.73386 0.0239 101.37 74 

Pathways in cancer 3.71438 0.024371 97.2152 384 

Inflammatory mediator regulation of TRP channels 3.68501 0.025097 99.0991 110 

Gastric acid secretion 3.62288 0.026706 100 72 

Melanoma 3.58176 0.027827 101.429 71 

Bile secretion 3.53107 0.029274 101.449 70 

Ras signaling pathway 3.51735 0.029678 97.807 223 

Thyroid hormone synthesis 3.47121 0.031079 100 69 

Renin secretion 3.37904 0.03408 101.515 67 

Glioma 3.28637 0.037389 103.175 65 

Fc epsilon RI signaling pathway 3.27773 0.037714 101.563 65 

Amphetamine addiction 3.27773 0.037714 101.563 65 

Long-term potentiation 3.23559 0.039337 103.226 64 

Pancreatic cancer 3.22708 0.039673 101.587 64 

Synaptic vesicle cycle 3.11757 0.044265 100 62 

Glucagon signaling pathway 3.0894 0.045529 98.9691 96 

Taste transduction 3.06708 0.046557 100 61 

Pancreatic secretion 3.04742 0.047481 98.9583 95 

AMPK signaling pathway 3.03243 0.048198 98.4252 125 

VEGF signaling pathway 3.02456 0.048579 101.695 60 

Long-term depression 3.02456 0.048579 101.695 60 

Natural killer cell mediated cytotoxicity 2.96372 0.051627 98.9362 93 
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Figure 17. Igha gene expression determined via quantitative real-time PCR. Igha was 

significantly expressed in the FLC (low concentration - 40ppm) and FMC (medium 

concentration - 60ppm) animals relative to the control (FC - 0ppm) group. 
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Chapter 4 Summary and Conclusion 

4.1 Kidney Effects 

In summary, the short term effects of TDNF ingestion in Sprague Dawley rats was 

performed. Titanium fibers ranged from 50 nm to 950 nm in diameter. TDNF consumption 

seems to lead to a slight trend towards reduction in dietary ingestion. A literature search, 

however, indicates a lack of other studies showing any such effects.  TDNF exposure showed no 

significant histopathological changes in renal tissues. However, LDH activity and Ti-47 

concentration were found to be significantly elevated in the 40 ppm and 60 ppm rats.  It has been 

previously shown that high levels of Ti-47 caused serious inflammation or even small cell 

lesions, which could correspond to the increased levels of LDH. This was followed with analysis 

of specific mRNA transcripts that might provide insight into the molecular perturbations with 

respect to TDNF ingestion. Up-regulation of NFKB likely indicates the involvement of renal 

tissue inflammation via an independent mechanism. Similarly, Gadd45a was significantly over 

expressed in kidney tissues. This transcript was previously increased following stressful growth 

arrest conditions and treatment with DNA-damaging agents. 

4.2 Liver Effects 

The results indicate that TDNF (40 ppm and 60 ppm) is not toxic to the liver of Sprague 

Dawley rats during a short-term exposure via oral gavage. No significant changes in 

histopathological data, weight measurements, and serum ALB levels between 0 ppm and 

experimental groups are suggestive of little toxicity. In order to confirm this hypothesis, the 

hepatic effects of anatase-TDNF would need to be investigated in the future in addition to 

prolonged exposure periods and higher concentrations of TDNF.   
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4.3 Lung Effects 

The present study was undertaken to examine the short-term toxicity associated with 

TDNF ingestion. Lung weight and qualitative examination of the lung showed no significant 

changes. However serum total protein and weight gain during the course of the study displayed 

marginal concentration-dependent alterations. These findings were followed by global gene 

expression analysis to identify which transcripts might be responsive to TDNF toxicity. 

Differentially expressed mRNA levels were dose-dependently higher in animals exposed to 

TDNF. It appears that the majority of the affected genes may be biochemically involved in 

immune response and inflammation. We surmise that TDNF may be too long to penetrate the 

cell, which may create a phagocytosis site and trigger inflammatory and immune response. All 

results taken together show that short-term ingestion of TDNF may produce moderate effects 

indicative of inflammation. Finally, the Igha gene was dose-dependently upregulated in treated 

groups in a manner similar to patterns noted in the genome-wide results.  
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