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ABSTRACT 

Nanostructured materials are one of the leading areas in photonics currently. These structures 

offer almost limitless possibilities in the manipulation of light. Using two different 

semi-analytical simulation methods, I show a few of the possible properties that these 

nanostructures possess, including polarization rotation and coupling with electronics. 
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Chapter 1 

Introduction 

The goal of this work is to demonstrate that metal-dielectric metasurfaces can exhibit a broad 

range of optical, optoelectronic and even mechanical responses to optical excitation. To do this I 

used theoretical and computational approaches of wave optics on the subwavelength and 

wavelength scales.  At the wavelength scale structures tend to exhibit strong coupling between 

surface plasmon polaritons (SPPs) and far field waves via diffraction while on subwavelength 

scales diffraction is suppressed and structural features act similarly to atoms leading to what is 

called metamaterials. Using these properties we have shown that one can have full control over 

the polarization of light, photoinduced currents, and reflectivity of metasurfaces. 

The first subject to be introduced is plasmonics, the study of plasmons, or density waves in 

the sea of electrons present in metals. Historically, one of the first dives into this subject was via 

what is now known as Mie theory[1], in which Dr. Gustav Mie, in attempting to explain the color 

of gold nanospheres, considered a simple spherical object. He was able to solve the 

electrodynamic problem, but did not go as far as to introducing the plasmons as density waves in 

metal plasma. That distinction goes to David Bohm and David Pines who wished to model the 

reactions of electrons in a metal to external oscillating electric fields using quantum 

mechanics[2-5]. In this endeavor, they quickly found that mapping each electron was utterly 

infeasible, instead adopting the idea of them acting as one entity, a dense electron plasma. 

Finding that this model was still insufficient, they added electron-electron interaction 

perturbations into the Hamiltonian finally leading to the understanding that is still used today. 

From a macroscopic electrodynamics point of view, main requirement for plasmons is negative 

dielectric permittivity of one of the material, which is characteristic of metals. 

Nowadays, it is well understood how to excite plasmons. One of the simplest methods is to 

fire electrons at the surface of a metal. R. H. Ritchie was the first to introduce this method in a 

technique which is called electron energy loss spectroscopy (EELS) [6]. The next method 

involves the use of high index of refraction materials used as prisms, with metal structures 

deposited on one side of the prism. This way plasmons can be excited at the metal structures 

using what is called Otto [7] and Kretschmann [8] geometries. Plasmons can also be excited in 

metal nanostructures by diffraction. In periodic nanostructures, such as grating structures 

plasmons appear if a diffraction order k-vector 𝑘𝑛 = 𝑘𝑖𝑛𝑠 +
2𝜋𝑛

𝑑
matches the k-vector of a 

plasmon 𝑘𝑆𝑃𝑃. 

The beauty and expanse of the field of photonics stems from the fact that even within a linear 

optics approximation, consideration of different shapes and material properties of various 

structures leads to complexity, which has never been fully explored. If one considers a generic 

structure for which electromagnetic fields need to be found, there are two ways to approach this 

problem. The first one, which has been actively utilized in commercial software, is to solve 

Maxwell equations on a grid. There are disadvantages of this approach, in particular, that this 

approach is purely numerical leaving no space for analytical analysis. Another disadvantage 
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stems from possible disparity between scales of wavelength and geometrical sizes when 

computing fields in nanostructures, leading to prohibitive computational costs. 

Another way to find a solution of Maxwell equations in a generic structure is to represent 

fields in each region of homogeneity as an expansion over a suitable basis of solutions and then 

find the expansion coefficients from boundary conditions. In Cartesian coordinates the basis of 

choice is complex exponentials with dispersion: 

𝜔2

𝜇𝜖
= 𝒌2, (1.1) 

where 𝜔 is frequency, 𝜇 represents the media’s magnetic response, and 𝜖 its electric, and k is the 

k-vector. This allows for two types of waves, plain waves in the far field, where all the

components of k are real, and evanescent in the near field, where a component of k is imaginary.

This method applied to a single planar boundary between materials leads to the well-known

Fresnel equations, originally deduced by Augustin-Jean Fresnel in 1823 [9]. Adding a second

boundary turns a structure into a Fabry-Pérot cavity, first considered by Airy [10]. Airy’s

solution is very important since it allows for the description of multiple realistic experimental

geometries, including planar dielectric waveguides, metal-insulator-metal (MIM) structures and

plasmon excitation in Kretschmann geometry. This can be generalized to multiple boundaries by

using the transfer matrix method, which allows for efficient solutions of fields and reflection and

transmission coefficients for multilayered structures, such as distributed Bragg reflectors (DBR)

or parallel-plate metamaterials. This can even be taken one step further to an infinite set of

layers, if these layers repeat periodically, then the boundary conditions can be reduced to a single

Kronig-Penney equation. This effectively leads to a new material, which on wavelength scale is

called a photonic crystal, and on subwavelength scale is an anisotropic metamaterial.

The structures composed of parallel layers with planar boundaries are very important and 

describe a lot of important practical situation, but in many cases it is interesting to consider more 

generic structures. But what can be done analytically or semi-analytically that isn’t just a simple 

set of parallel layers? One might consider taking plane-wave solutions and matching them on 

non-planar boundaries. At first one might think this impossible - how could a plane wave match 

a different plane wave on any boundary other than a plane? One can argue that, due to the 

translational symmetry of the system in the directions of periodicity, if one moves one period 

along the surface and gain a complex phase 𝜙 in the incident field, any wave that produces the 

same complex phase shift may be produced by the structure, and no others. This reduces the 

number of possible plane waves from |ℝ| to ℵ0. While still technically impossible to analytically

solve, the problem becomes more tractable. 

To be specific, consider a boundary between 2 materials with an arbitrary periodic profile. 

One can assume that the field in both materials can be described as corresponding sets of 

diffraction waves, which is called Rayleigh approximation [11]. This approach is frequently 

used, nevertheless as was shown in Ref. [12] that this method has an upper limit on height for 

any given structure. And Millar [13, 14] showed that for a sine wave profile boundary 

𝑓(𝑥) = 𝑏 sin(𝜅𝑥), that method only works for 𝑏𝜅 < 0.448. 
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In 1982 a vastly different approach was attempted by J. Chandezon [15]. In his method, 

instead of extending the diffraction-wave expansion into the region of the gratings, new basis 

waves, dependent on the details of the boundary profile, are constructed in a modified coordinate 

system where the structure’s surface is flat. The expansion coefficients are then found from 

matching these waves at the flat interface in the transformed coordinates. I describe this method 

in details in Chapter 4. One of the problems of this method, which I encountered during my 

work, is that in structures with steep profiles the convergence is hard to achieve and taking into 

account many diffraction waves is required.  

In Chapters 3 and 5 I describe the major results achieved. In 3 it is shown that with small 

periods the structure described in Chapter 2 forms a metamaterial layer and can act as a wave 

plate over as small a distance as 30 nm. We described the optical spectrum of this metasurface 

for the first time to our knowledge. The array of nanowires can serve as an anisotropic 

metasurface with epsilon-near-pole and epsilon-near-zero responses along different axes of the 

structure. Chapter 5 touches on how a sine wave structure can be used to generate electrical 

currents for potential use in optoelectronic devices. We also compare optical properties of the 

sine-wave and square-grating metasurfaces with the same period and show that they support the 

same SPP spectrum, but exhibit entirely opposite optical power distribution over reflection and 

transmission channels. 
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Chapter 2 

New Method for Calculation of Optical Properties in Square-Grating Metasurfaces 

Modern nanotechnology poses a plethora of cutting-edge research problems in the fields of 

nano-optics and electronics, which are ideal for reinforcement of the knowledge gained in the 

upper division physics courses, such as Classical Electromagnetics and Quantum Mechanics, as 

well as for training in numerical methods and computational techniques. Due to exquisite spatial 

profile of nanostructures, the solutions to these problems feature combinations of propagating 

and evanescent waves. This is known to pose considerable numerical complications if care is not 

taken. In particular, applying the straightforward routine of setting boundary conditions at 

nanostructure boundaries results in poorly conditioned systems of equations and unacceptable 

errors due to evanescent waves. This has been discussed for a number of optical structures, 

including stratified media [16], and sine-wave grating [17]. 

Plasmonic metamaterials and metasurfaces is a rapidly developing field, which encompasses 

such phenomena as negative refraction [18], superlensing [19], optical cloaking [20], wavefront 

control [21] and much more. Plasmons are evanescent waves bound to the interfaces between 

metal and dielectric materials. The new functionalities are achieved when metal-dielectric 

structures feature subwavelength design forming metamaterials. The bright modes of these 

structures behave according to the effective metamaterial medium approximation, whereas the 

dark plasmonic modes are strongly localized. This leads to the numerical issues related to 

presence of both propagating and evanescent fields to be strongly expressed in metamaterial 

structures.  

In this Chapter, we present a comparison of two techniques to calculate electromagnetic 

fields in a nanostructure, which contains an array of nanoscale metal plates separated by layers of 

high-index dielectric placed above a transparent substrate. This problem is very important for the 

fields of photonics and metamaterials and its solution will allow the modeling of ultra-thin 

polarization rotators and nanoscale light emitters with controlled polarization [22].  
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Fig. 2.1: Structure Schematics. The three-layer structure considered in this chapter contains a 

one-dimensional metamaterial in layer 2. Note that the selection of coordinates that 

are shown here are explained in the text. 

From the computational perspective this structure requires simultaneous consideration of 

propagating and evanescent waves, therefore the boundary condition equations are numerically 

unstable [16, 17]. We devise a transfer matrix computational technique specific to this structure 

to resolve this issue by dynamically removing the evanescent waves from the computation as 

they decay in the structure. 

Methods 

Consider a three-layered structure composed of layers 1 and 3, which are homogeneous and 

isotropic and layer 2, which is a one dimensionally periodic array of two different homogeneous 

and isotropic materials (Fig. 2.1). Because of the periodicity of layer 2 diffraction waves will be 

produced in layers 1 and 3 with diffraction wave vectors 

𝑘𝑥
(𝑛) = 𝑘𝑥 +

2𝜋𝑛

𝑑
(2.1) 

Here d is the period of the structure. The fields in layer 1 will be represented as: 

𝑭 = 𝑅𝑒 [𝑒𝑖𝜔𝑡 (𝐼 𝑒𝑖𝒌𝟎∙𝒓 + ∑ 𝑅𝑛  𝑒
−𝑖𝒌𝒏∙𝒓

∞

𝑛=−∞

)] 𝒇̂ (2.2) 

where F is either the magnetic field H (for TM polarization) or the electric field E (TE 

polarization) and 𝒇̂ is in the transverse direction. The 𝑅𝑛s are amplitudes of the 

reflected waves, and 𝐼 = 𝑃 for TM fields and 𝐼 = 𝑆 for TE fields is the incident wave 

amplitude. Also ω is the angular frequency, 𝒌𝟎 = 𝑘𝑥𝒙̂ + 𝑘𝑦𝒚̂ + 𝑘𝑧𝒛̂, r is the position vector, and

𝒌𝒏 = 𝑘𝑥
(𝑛)𝒙̂ + 𝑘𝑦𝒚̂ + √𝑘0

2𝜀𝐼 − 𝑘𝑥
(𝑛)2 − 𝑘𝑦2 𝒛̂. In layer 3 the fields are represented as:



9 

 

 

 
𝑭 = 𝑅𝑒 [𝑒𝑖𝜔𝑡 ∑ 𝑇𝑛 𝑒

𝑖𝒌𝒏∙𝒓

∞

𝑛=−∞

] 𝒇̂ (2.3) 

Where the 𝑇𝑛s are amplitudes of transmitted waves. 

The fields in layer 2 are more complicated. Because of the reflections on the layers’ 

boundaries, waves that propagate in the positive and negative x directions are present in each 

material. In the case that the incidence plane is at an angle to the stratification of layer 2  

(x direction), the convenient directions in which to define polarization are different within each 

layer. This leads to the fields being excessively complicated to solve in the x-y-z coordinate 

system. Thus, we simply consider a wave propagating in the 𝑧′ direction and rotate the 

coordinates back when convenient (see Fig. 2.1). The un-rotated field equations look like this: 

 
𝐹
𝑦′
(𝑚) = 𝑅𝑒 [𝑒𝑖𝜔𝑡 (𝐴𝑚𝑒

𝑖𝑘
𝑧′
(𝑚)

𝑧′
+ 𝐵𝑚𝑒

−𝑖𝑘
𝑧′
(𝑚)

𝑧′
) × {

𝐶𝑚𝑒
𝑖𝛼1𝑥 +𝐷𝑚𝑒

−𝑖𝛼1𝑥 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1

𝐺𝑚𝑒
𝑖𝛼2𝑥 + 𝐽𝑚𝑒

−𝑖𝛼2𝑥 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 2
] (2.4) 

𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, and 𝐽𝑚 are unknown amplitudes, and  

𝛼𝑛 = √𝑘0
2𝜀𝑛 − 𝑘𝑧′

(𝑚)2
. 

This equation alone has in it 7 unknowns. Fortunately 𝐴𝑚 and 𝐵𝑚 can be found via the upper 

and lower boundary conditions, but 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, 𝐽𝑚, and 𝑘
𝑧′
(𝑚)

 must be solved for. To do this we 

must use Maxwell’s equations and the boundary conditions for E and H fields at metal/dielectric 

boundaries. For p polarization (𝑭 → 𝑯): 

 
𝐸𝑥 =

𝑘
𝑧′
(𝑚)

𝑘0𝜀
𝐻𝑦′ (2.5) 

   

 
𝐸𝑧′ =

𝑖

𝑘0𝜀

𝜕𝐻𝑦′

𝜕𝑥
 (2.6) 

The field components 𝐻𝑦′ and 𝐸𝑧′ are continuous across the boundary therefore: 

 𝐶𝑚𝑒
𝑖𝛼1𝑑1 + 𝐷𝑚𝑒

−𝑖𝛼1𝑑1 = 𝐺𝑚 + 𝐽𝑚 (2.7) 

   

 𝛼1
𝑘0𝜀1

(𝐶𝑚𝑒
𝑖𝛼1𝑑1 −𝐷𝑚𝑒

−𝑖𝛼1𝑑1) =
𝛼2
𝑘0𝜀2

(𝐺𝑚 − 𝐽𝑚) (2.8) 

Here 𝑑1 is the width of the first layer. In matching the period boundary we must take into 

account the phase factor 𝑒𝑖𝑘𝑥𝑑  in order to be able to match the phase in layers 1 and 3 to this one. 

This leads to the equations 

 (𝐶𝑚 + 𝐷𝑚)𝑒
𝑖𝑘𝑥𝑑 = 𝐺𝑚𝑒

𝑖𝛼2𝑑2 + 𝐽𝑚𝑒
−𝑖𝛼2𝑑2  (2.9) 

   

 𝛼1
𝑘0𝜀1

(𝐶𝑚 − 𝐷𝑚)𝑒
𝑖𝑘𝑥𝑑 =

𝛼2
𝑘0𝜀2

(𝐺𝑚𝑒
𝑖𝛼2𝑑2 − 𝐽𝑚𝑒

−𝑖𝛼2𝑑2) (2.10) 
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Where 𝑑2 is the width of the second layer. 

These four boundary conditions result in the Kronig-Penny (KP) equation: 

 
cos 𝛼1𝑑1 cos𝛼2𝑑2 −

1

2
(
𝑝1
𝑝2
+
𝑝2
𝑝1
) sin 𝛼1𝑑1 sin 𝛼2𝑑2 = cos𝑘𝑥𝑑 (2.11) 

with 𝑝𝑖 =
𝛼𝑖

𝑘0𝜀𝑖
. For s polarization (𝑭 → 𝑬) the characteristic equation is similar, except that  

𝑝𝑖 = −
𝛼𝑖

𝑘0
. 

The KP equation provides the means to find 𝑘
𝑧′
(𝑚)

 and the corresponding 𝐶𝑚, 𝐷𝑚, 𝐺𝑚, and 𝐽𝑚 

coefficients. Unfortunately, the KP equation is transcendental and has an infinite number of 

roots. It is however quite possible to find a finite set of roots for an individual set of 

parameters[23, 24]. But to get any directly relatable data we need to be able to look at a wide 

swath of the parameter space with good resolution simultaneously.  

The process to find roots for a single set of parameters is to first choose a maximum value for 

|𝑘
𝑧′
(𝑚)|, this gives a minimum decay length and wavelength to be considered. Then we create a 

graph overlaying the zero contours of the real and imaginary parts of the KP equation as a 

function of the real and imaginary parts of 𝑘
𝑧′
(𝑚)2

(see Fig. 2.2). The desired roots are at the 

intersections of these contours. 

 

Fig. 2.2: A graph of the zero contour curves of the real (blue) and imaginary (orange) parts of 

the KP equation [Eq. (2.11)] using 8.5 nm GaAs and 1.5 nm Ag at  

𝜔 = 2.47 eV and normal incidence (𝑘𝑥 = 0). 
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To find the 𝑘
𝑧′
(𝑚)

 in the desired range of parameters we use an iterative method in which we 

first do the above process for one set of parameters. Then we use those roots as the starting point 

for very slightly different parameters iterating until the whole parameter space is covered. 

This process leads to roots jumping from one branch to another even as we reached the upper 

limit of a reasonable number of iterations. To avoid this we use a pair of equations that split the 

KP equation into even and odd roots as long as the angle of incidence is zero, in other words 

𝑘𝑥 = 0. [24] 

𝑝1 tan (
𝑝2𝑑2
2
) + 𝑝2 tan (

𝑝1𝑑1
2
) = 0 (2.12) 

𝑝2 tan (
𝑝2𝑑2
2
) + 𝑝1 tan (

𝑝1𝑑1
2
) = 0 (2.13) 

These equations split all the troublesome roots apart into the two separate equations as visible in 

Fig. 2.3. However, there are still two roots of Eqn. (2.13) in p polarization that continue to have 

this issue. We have gotten around this issue by simultaneously changing multiple parameters in a 

single step such that the roots change much slower throughout the sections where the roots 

would normally need much higher resolution.  

Fig. 2.3: A graph of the zero contour curves of the real (green) and imaginary (red) parts of 

the left sides of Eqs. (2.12) (left) and (2.13) (right) using the same parameters as 

Fig. 2.2 and overlaid on top of Fig. 2.2. 
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Fig. 2.4: Roots of the KP equation [Eq. (2.11)-(2.13)] as a function of frequency for 7.5 nm 

GaAs & 2.5 nm Ag, at normal incidence. 

After the modes in layer 2 are found (see Fig. 2.4) the fields need to be matched at the upper 

and lower boundaries. First we need to identify all the independent waves that are present. 

Table 1: The waves and their amplitudes within each layer 

Layer 1 Layer 2 

TM Incident P p Waveguide 𝐴𝑝𝑚 & 𝐵𝑝𝑚 

TE Incident S s Waveguide 𝐴𝑠𝑚 & 𝐵𝑠𝑚 

TM Diffraction 𝑅𝑀𝑛 Layer 3 

TE Diffraction 𝑅𝐸𝑛 TM Diffraction 𝑇𝑀𝑛 

TE Diffraction 𝑇𝐸𝑛 

Amplitudes P and S can be set as desired but all the rest must be found. We follow a usual 

method for matching infinite sets of plane and waveguide waves [25]. First we set the fields we 

intend to match equal to each other and multiply through by 𝑒−𝑖𝑘𝑥
(𝑙)
𝑥. Then we integrate both 

sides over a single period of the structure. This gives 

∫ 𝑒𝑖𝑘𝑥
(𝑛)
𝑥𝑒−𝑖𝑘𝑥

(𝑙)
𝑥𝑑𝑥

𝑑

0

= 𝛿𝑛𝑙𝑑 (2.14) 

on the side of layers 1 or 3. As for layer 2 there are terms of the form: 

∫ 𝑒−𝑖𝑘𝑥
(𝑙)
𝑥 {
𝐶𝑚𝑒

𝑖𝛼1𝑥 +𝐷𝑚𝑒
−𝑖𝛼1𝑥 𝑥 < 𝑑1

𝐺𝑚𝑒
𝑖𝛼2𝑥 + 𝐽𝑚𝑒

−𝑖𝛼2𝑥 𝑥 > 𝑑1
𝑑𝑥

𝑑

0

 (2.15) 

At this point we reduced the system to a set of eight matrix equations, one for each x and y 

component of the E and H fields on the upper and lower boundaries. Then using block matrices 

we reduce those eight equations to these four: 

Χ̂𝐴𝑥𝑨 + Χ̂𝐵𝑥𝑩+ 𝐾̂𝑅𝑥𝑹 = 𝑫𝒙 (2.16) 

Χ̂𝑦(𝑨 + 𝑩) + 𝐾̂𝑅𝑦𝑹 = 𝑫𝒚 (2.17) 
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𝑊̂𝐴𝑥𝑨 + 𝑊̂𝐵𝑥𝑩 + 𝐾̂𝑇𝑥𝑻 = 𝟎 (2.18) 

𝑊̂𝐴𝑦𝑨 + 𝑊̂𝐵𝑦𝑩+ 𝐾̂𝑇𝑦𝑻 = 𝟎 (2.19) 

Where the Χ̂s and 𝑊̂s contain matrices with entries similar to Eqn. (2.14) while the 𝐾̂s are 2x2 

block matrices of diagonal matrices containing coefficients due to angles, derivatives, and the 

like. 

These four equations can be reduced further to a single equation: 

𝑀̂𝑽 = 𝑫 (2.20) 

𝑀̂ = (

Χ̂𝐴𝑥 Χ̂𝐵𝑥 𝐾̂𝑅𝑥 0̂
Χ̂𝑦 Χ̂𝑦 𝐾̂𝑅𝑦 0̂
𝑊̂𝐴𝑥 𝑊̂𝐵𝑥 0̂ 𝐾̂𝑇𝑥

𝑊̂𝐴𝑦 𝑊̂𝐵𝑦 0̂ 𝐾̂𝑇𝑦

) (2.20a) 

𝑽 = (

𝑨
𝑩
𝑹
𝑻

) & 𝑫 = (

𝑫𝒙

𝑫𝒚

𝟎
𝟎

) (2.20c/d) 

At this point it seems to be a simple task to invert 𝑀̂ to solve for V, however when using any 

roots that decay significantly in layer 2, 𝑀̂ quickly becomes so poorly conditioned that even 

double precision isn’t enough to produce anything but zeros. The major issue is the matrix 𝐻̂ and 

its inverse contained within the 𝑊̂s, where 𝐻𝑚𝑙 = 𝑒
𝑖𝑘𝑧
(𝑚)

ℎ𝛿𝑚𝑙 and h is the height of layer 2. This

issue can be resolved by using the transfer matrix method we developed. 

In this method, we consider each boundary independently to find how an incident wave is 

converted into outgoing waves. Then we propagate and feed the outgoing waves as incident onto 

the other boundary and so on, which forms an iterative process. 

The full set of waves coming off the upper and lower boundaries can be found by 

constructing the formulas: 

𝑹 = 𝑹𝑰 + 𝑅̂𝑃̂𝑩 (2.21) 

𝑨 = 𝑨𝑰 + 𝐴̂𝑃̂𝑩 (2.22) 

𝑩 = 𝐵̂𝑃̂𝑨 (2.23) 

𝑻 = 𝑇̂𝑃̂𝑨 (2.24) 

Here RI (AI) is a vector containing the amplitudes of diffraction (waveguide) waves created as a 

direct result of the incident waves coming from the top medium. 𝐴̂ and 𝐵̂ are matrices that 

convert a waveguide wave amplitude vector into a counter-propagating waveguide wave 
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amplitude vector on the upper and lower boundaries respectively. 𝑅̂ and 𝑇̂ convert waveguide 

wave amplitude vectors into reflected and transmitted wave amplitude vectors respectively. 𝐻̂ is 

used to propagate the waveguide vectors down or up the structure. 

Substituting B into the formula for A we find: 

𝑨 = 𝑨𝑰 + 𝐴̂𝑃̂𝐵̂𝑃̂𝑨 = 𝑨𝑰 + 𝑅𝑇̂𝑨 (2.25) 

Solving for A: 

𝑨 = (1̂ − 𝑅𝑇̂)
−1
𝑨𝑰 (2.26) 

Then to avoid taking the inverse we expand Eq. (2.26) to finally get to the equation: 

𝑨 = (1̂ + 𝑅𝑇̂ + 𝑅𝑇̂2 + 𝑅𝑇̂3 +⋯)𝑨𝑰 (2.27) 

Here 𝑅𝑇̂ is a matrix, which we call a round-trip matrix. It propagates a set of modes at the top

boundary to the bottom of layer 2, reflects them, propagates them back and reflects them once 

more. The expansion (2.27) can be understood as a sum of a series of roundtrips and eliminates 

the evanescent modes as they decay. This is the root of the effectiveness of the method. 

To use this method we must start by finding RI and AI. Consider a two-layer system 

consisting of layers 1 and 2 only. In this case, we deal with P, S, R, and A coefficients. We again 

matched the x and y components of the E and H fields on the boundary by multiplying by 

𝑒−𝑖𝑘𝑥
(𝑙)
𝑥 and integrating. This time having just the four boundary conditions we only get two 

equations on the first block matrix system: 

χ̂𝑥𝑨𝑰 + 𝐾̂𝑅𝑥𝑹𝑰 = 𝑫𝑥 (2.28) 

χ̂𝑦𝑨𝑰 + 𝐾̂𝑅𝑦𝑹𝑰 = 𝑫𝑦 (2.29) 

Thus we recreate Eqn. (2.20) as a 2x2 system making the inversion even simpler, and without a 

𝑊̂ there is no 𝐻̂ and thus 𝑀̂ is not poorly conditioned. 

The next step is to find 𝐵̂ and 𝑇̂. Consider the boundary between layers 2 and 3. In this case 

we have a set of incident waveguide waves, A, reflected waveguide waves, B, and transmitted 

diffraction waves, T. Using these waves the system only changes slightly to become: 

χ̂𝑥𝑩+ 𝐾̂𝑇𝑥𝑻 = 𝐷̂𝐴𝑥𝑨 (2.30) 

χ̂𝑦𝑩+ 𝐾̂𝑇𝑦𝑻 = 𝐷̂𝐴𝑦𝑨 (2.31) 

The As will be defined later, the 𝐷̂s are constructed in the same way as the 𝜒̂s, and the 𝐾̂s are the 

same sans slight differences due to material choice on the upper and lower boundaries.  

(32)



15 

Next, we returned to the boundary between layers 1 and 2. This time the incident waves 

being waveguide waves. The resultant equations are the same as Eqns. (2.30)-(2.31) except 

𝐵 → 𝐴, 𝐴 → 𝐵, and 𝑇 → 𝑅. 

Now we need to use Eqns. (2.28)-(2.31) to create matrices that directly convert a set of 

incident waves to reflected and transmitted waves.  

𝑀̂−1𝑫 = 𝑽 = (
𝑨𝑰
𝑹𝑰
) (2.32) 

𝑀̂ (
𝑩
𝑻
) = (𝐷̂

𝐴𝑥

𝐷̂𝐴𝑦
)𝑨 (2.33) 

∴ 

𝑀̂−1 (𝐷̂
𝐴𝑥

𝐷̂𝐴𝑦
) = (𝐵̂

𝑇̂
) (2.34) 

To do this we need the 𝑀̂−1 associated with each set of equations, the general form being: 

𝑀̂−1 = (
(𝜒̂𝑥 − 𝐾̂𝑥𝐾̂𝑦

−1
𝜒̂𝑦)

−1

−𝜒̂𝑥−1𝐾̂𝑥(𝐾̂𝑦 − 𝜒̂𝑦𝜒̂𝑥−1𝐾̂𝑥)
−1

−𝐾̂𝑦
−1
𝜒𝑦 (𝜒̂𝑥 − 𝐾̂𝑥𝐾̂𝑦

−1
𝜒̂𝑦)

−1

(𝐾̂𝑦 − 𝜒̂𝑦𝜒̂𝑥−1𝐾̂𝑥)
−1

) (2.35) 

Doing Eqns. (2.33) and (2.34) again for the other side, mutatis mutandis, yields the 𝐴̂ and 𝑅̂ 

conversion matrices. 

Results and Conclusions 

For convergence one seems to needs to truncate the infinite system of equations at about 

|𝑘𝑧|
2 ≈ (1 Å)

−2
 which occurs at various 𝑁𝑡𝑟 waveguide modes. This means that taking just one

propagating waveguide mode [23] is not enough for determining the exact optical properties of 

these structures. The evanescent modes may not contribute to the determination of the spectral 

positions of the resonances in subwavelength structures, but they determine the power 

distribution at interfaces between layers. Additionally the possibility of including multiple modes 

in our method allows for consideration of large period structures and the establishing of the exact 

conditions under which the metamaterial approximations fail. 

Currently, there is a strong interest in applicability of effective medium approximation for 

describing fields in metamaterials. To evaluate the correctness of the results of this 

approximation, one has to compare it to an exact calculation. In Chapter 3 we demonstrate that 

the effective medium approximation and our new method lead to close results for subwavelength 

structures. 

To conclude, we have developed a new transfer matrix method for calculating the fields in 

metal-dielectric parallel-plate arrays. This method allows reaching convergence and obtaining 

reliable results. We apply this method to model metasurface wave plates introduced in Chapter 3. 
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Chapter 3 

Light Polarization Control with Square Nanowire Metasurfaces 

Polarization manipulation constitutes a large portion of what optical components do. The 

large majority of wave plates operate on one simple principle, in one polarization the light moves 

more slowly than in the orthogonal polarization. This phenomenon, known as birefringence, is 

well understood, however the two speeds of light are never that far from each other in natural 

materials leading to a requirement that the component be somewhat thick to accommodate the 

large number of wavelengths needed to produce a full 180° flip in relative phase [26]. The 

modern push into metasurface photonics has produced a myriad of amazing ideas into optics 

[27-29]. This includes some polarization converters, some of which include metasurface cavities 

that can reduce the required thickness to a mere fraction of a micron [22, 30-33]. And some 

single surface structures have been proposed that can shrink that even further [34-37]. All of 

which so far require complex structures that are tricky to fabricate. Recently it has been shown 

experimentally that a simple gold nanowire based metamaterial produced polarization rotation 

with only 350 nm [38]. 

Here we are looking at a thin layer of the parallel plate structure described above were the 

period is taken to be far sub wavelength. At this extreme this material could either be considered, 

as stated, a thin layer of a parallel plate metamaterial, or a monolayer of a nanowire array. 

Nanowire arrays such as this are well known as being the simplest polarizers. However, in this 

case the structure is made to act as a wave plate in near IR and visible range. This is achieved by 

using both the epsilon near pole (ENP) and epsilon near zero (ENZ) transitions that occur in 

orthogonal directions as the volumetric metal fraction changes from 0 to 1. These transitions 

occur because the metal’s permittivity is negative, its absorption is low, and a high index 

dielectric is between wires. When thicker, this material supports a large number of Fabry-Perot 

(FP) resonances allowing potentially for multiple polarization rotation points. 

Structure 

Consider a parallel-plate metal-dielectric array with period 𝑑 = 𝑑𝑚 + 𝑑𝑑, where 𝑑𝑚 = 𝑓𝑑 

and 𝑑𝑑 = (1 − 𝑓)𝑑 are the thicknesses of the metal and dielectric layers (Fig. 3.1 (a)). The

dielectric permittivities are 𝜀𝑚 and 𝜀𝑑 = 𝑛𝑑
2 for the metal and dielectric and 𝑓 is the volumetric 

metal fraction. As stated in Chapter 2, the dispersion of the photonic states is described by the 

Kronig-Penney equation, and at normal incidence by Eqs. 2.12 and 2.13. 
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Fig. 3.1: Schematic of the structure and its typical dielectric response. (a), (b), (c) 

Correspondence between the parallel-plate and the nanorod metamaterials and the 

monolayer nanowire grid metasurface considered in this chapter. (d) Dielectric 

permittivities 𝜀𝑥 (blue for real and dashed blue for imaginary parts) and 𝜀𝑦 (red) as 

functions of metal fraction at ℏ𝜔 = 2.2 𝑒𝑉 for silver/GaAs metasurface, featuring 

ENP and ENZ. 

The dispersion Eqs. (2.12-13) have an infinite number of solutions. In a subwavelength array 

𝑘0𝑑 ≪ 1, only modes with 𝛼𝑚,𝑑𝑑𝑚,𝑑 ≪ 1 efficiently couple to external waves. In this case, the 

tangent functions in Eqs. (2.12-13) can be substituted by their arguments. Only Eq. (2.12) leads 

to reasonable dispersion equations in this limit, which are given by 𝑘𝑧
2 = 𝑘0

2𝜀𝑥 for TM fields

(electric field along x-axis in Fig. 3.1 (a), (c)) and 𝑘𝑧
2 = 𝑘0

2𝜀𝑦  for TE fields (electric field along

y-axis). The effective dielectric permittivities are given by

𝜀𝑥
−1 = 𝜀𝑚

−1𝑓 + 𝜀𝑑
−1(1 − 𝑓), 𝜀𝑦 = 𝜀𝑚𝑓 + 𝜀𝑑(1 − 𝑓). (3.1) 

Hence in the subwavelength case the array forms a metamaterial, with 3 bright modes, whose 

fields closely follow the effective medium approximation and all the other photonic states are 

dark plasmonic modes. Below we use Eqs. (3.1) for effective medium calculations and model 

given in Fig. 3.1 (a) and (c) for exact calculations, but the same ideas apply to the nanorod 

metamaterials or metasurfaces. Note that the structures we consider here are different in principle 

from the structures considered in [38, 39], where the optic axes were perpendicular to the plane 

of the metasurfaces and the dielectric response in the plane of the metasurface was isotropic, 

which required large angles of incidence to achieve polarization manipulation. In this chapter, 

we consider structures with optic axes in the plane of the metasurfaces perpendicular to the 

incidence direction, and anisotropy of the dielectric properties in the plane of the metasurface is 

crucial for the effects we predict. 

Metamaterial Approximation 

This data is decently represented by using a metamaterial approximation in which the 

epsilons in eqs. (3.1) are taken and the structure is assumed to be homogeneous. Note that at 

normal incidence the dielectric properties along the z axis (𝜀𝑧 = 𝜀𝑦 for parallel plates and 
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𝜀𝑧 = 𝜀𝑥 for nanorods) do not affect the response of the metasurface, which removes the principal 

difference between the nanorods and parallel-plates. 

Going from pure dielectric to pure metal, waves who’s polarization lies against the optical 

axis, in the y direction, called ordinary waves, will see the material as a simple linear 

combination of the two materials dielectric constants leading to an ENZ transition. However, for 

waves polarized with the optical axis, in the x direction, called extraordinary waves, the 

material’s response can be characterized as the inverse of the sum of inverses leading to an ENP 

transition. For ordinary waves, the permittivity trends down as metal fraction increases and for 

extraordinary waves the permittivity trends up, except in a small region around the ENP 

transition where absorption takes over. These trends lead to the increase and decrease of 

effective wavelength 𝜆0/√𝜀𝑖 respectively. Note that the values of 𝜀𝑥 can get very high, for 

example, Re 𝜀𝑥 ≈ 400 in Fig. 3.1(d). This is an artifact of the effective medium approximation, 

since for such values of 𝑘𝑧/𝑘0 = √𝜀𝑀𝑎𝑥 the condition 𝛼𝑚,𝑑𝑑𝑚,𝑑 ≪ 1 is not satisfied. 

The energies of the FP resonances depend strongly on 𝑓, such that the 𝑛th extraordinary FP 

(e-FPn) mode may intersect 𝑚th ordinary FP (o-FPm) resonance if 𝑛 > 𝑚 at energies which we 

denote as 𝐸ℎ𝑤,𝑚𝑛, where “hw” stands for “half-wave plate” as will be explained below. 

In Fig. 3.2(a) we plot reflectivity for a very thin metasurface with ℎ = 30 nm. Only one 

extraordinary e-FP1 resonance with is visible. Higher order resonances are positioned closer to 

ENP and are extremely faint due to strong absorption in the effective medium at ENP. The only 

ordinary wave resonance present has 𝑛 = 0 at the ENZ transition. The e-FP1 and the ENZ 

intersect at ℏ𝜔 = 𝐸ℎ𝑤,01 as indicated by the black dot. We show reflectivity for thicker 

metasurfaces ℎ = 100 nm and 150 nm in Fig. 3.2 (b)-(c). As one can see the e-FP1 shifts to 

lower energies and higher order extraordinary resonances become strong. Additionally ordinary 

resonances appear and intersect with higher order extraordinary resonances at ℏ𝜔 = 𝐸ℎ𝑤,𝑚𝑛. 
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Fig. 3.2: Reflectivity of metasurfaces at 𝜙 = 45°. (a) ℎ = 30 𝑛𝑚; (b) ℎ = 100 𝑛𝑚; 

(c) ℎ = 150 𝑛𝑚. (d) Dependence of the energies 𝐸ℎ𝑤,𝑛𝑛+1 at which the metasurface

is a half-wave plate on metasurface thickness.

We are mainly interested in intersections between the consecutive FP resonances at 

𝐸ℎ𝑤,𝑛𝑛+1. For very thin metasurfaces the intersection between e-FP1 and the ENZ occurs at 

𝑓01 ≈ 0.5 and with increase of the thickness ℎ shifts down in energy along the ENZ line as 

shown in Figs. 3.2 (a)-(c). The intersections 𝐸ℎ𝑤,𝑛𝑛+1 are marked by black dots and as ℎ is 

increased their energies are reduced. This dependence of 𝐸ℎ𝑤,𝑛𝑛+1 on metasurface thickness ℎ is 

shown in Fig. 3.2(d). For thicker metasurfaces more FP resonances and their intersections appear 

in the plasmonic frequency range of silver (~1-4 eV). 
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Fig. 3.3 (a), (b) TE transmission for ℎ = 30 𝑛𝑚 and ℎ = 150 𝑛𝑚 in response to TM 

polarized light. (c), (d) Transmission of left and right circular polarized light in 

response to TM polarized incidence for metasurface thickness ℎ = 150 𝑛𝑚. 

The nature of polarization rotation in the ENZ-ENP structure (Figs. 3.2(a) and 3.3(a)) which 

we propose here is easy to understand. The electric field of the ENZ ordinary wave directed 

along the 𝑦-axis (see schematics in Fig. 3.1 (a)-(c)) exhibits no phase change, while the 

extraordinary fields directed along the 𝑥-axis oscillate with wavelength 𝜆𝑥 = 𝜆0/√𝜀𝑀𝑎𝑥 = 2ℎ, 

providing the required phase difference for the wave-plate effect in an extremely thin 

metasurface. We call this structure an ultrathin ENZ-ENP wave plate. 

A larger thickness ℎ = 150 nm metasurface (Fig. 3.3 (b)) has intersections at 

ℏ𝜔 = 𝐸ℎ𝑤,𝑛𝑛+1 that lead to peaks with transmission 𝑇 > 0.95 in TE. Further investigating this 

structure, we can find conditions in which it exhibits quarter-wave-plate behavior, converting 
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linearly polarized incident radiation to circularly polarized transmission. For ℎ = 150 nm the 

efficient close-to-90% conversion into left-circular polarized (LCP) radiation happens at 

𝐸𝑞𝑤,1/2,1, while 90% conversion into right-circular polarized (RCP) occurs at 𝐸𝑞𝑤,1/2,2. This 

high-efficiency conversion from linear to circular polarization indicates that the metasurfaces 

proposed here can acquire torques from the incident radiation with power 𝑃𝑖𝑛𝑐 = mW of about 

𝜏 ≈ 𝑃𝑖𝑛𝑐/𝜔 in the 103 pN ⋅ nm range, similar to the optical torque wrench structures previously

proposed [40]. At the same time these metasurfaces have moments of inertia of comparable 

magnitudes, despite being composed of heavy Au atoms due to reduced dimensionality. This 

introduces the possibility of high-rpm rotation of plasmonic metal nanostructures. 

Semi-analytical Solution 

We use our recently developed numerical method, which I describe in the previous Chapter, 

to solve Maxwell’s equations semi-analytically for the nanostructure shown in Figs. 3.1 (a) and 

(c). To do so we first find the solution to the Kronig-Penney equation, which for normal 

incidence is given by Eqs. (2.12-13). The effective permittivity may become large at ENP, which 

leads to 𝑘𝑧 ≈ 𝛼𝑚,𝑑 ≫ 1/𝑑𝑚, violating the applicability conditions for the effective medium 

approximation. We compare the exact solution of Eq. (2.12-13) for the bright extraordinary 

modes in the structure with period 𝑑 = 50 nm with the effective medium dispersion, obtained 

using 𝜀𝑥 from Eq. (3.1) (see Fig. 3.1(d)). We are especially interested in deviations of the mode 

propagation wave vector 𝑘𝑧, since 𝑘𝑧 = 𝑛𝜋/ℎ is the condition for the extraordinary FP 

resonances. 

We provide the three most extreme examples of such deviations for the two resonances: the 

e-FP1 mode at ℎ = 30 nm which requires 𝑘𝑧 = 𝜋/(30 nm) (shown as the right red dashed line

in panels of Fig. 3.4) and the e-FP3 mode at ℎ = 150 nm requiring 𝑘𝑧 = 3𝜋/(150 nm) (the left

red dashed line in Fig. 3.4). The blue curves in Fig. 3.4 represent the exact solution of

Eq. (2.12-13), while the green curves are the effective medium approximation. In Fig. 3.4(a) for

𝑓 = 0.3 the exact solution intersects the 𝑛𝜋/ℎ lines at lower frequencies than the effective

medium approximation, as indicated by the blue and green arrows. The real part of the exact

solution does not intersect the 𝑘𝑧 = 𝜋/(30 nm) line, but comes close to it at ℏ𝜔 = 2.33 eV, so

the resonance at this frequency should be expected.

In Fig. 3.5(b) for 𝑓 = 0.4 we see that the exact dispersion coincides with the effective 

medium dispersion at 𝑘𝑧 = 3𝜋/(150 nm). Meanwhile, for the exact dispersion at 

Re 𝑘𝑧 = 𝜋/(30 nm) two resonances exist within close proximity at ℏ𝜔 = 2.1 eV and 

ℏ𝜔 = 2.2 eV due to back-bending, instead of a single frequency for the effective medium at 

ℏ𝜔 = 2.33 eV. As can be seen from Fig. 3.4(c) the high-frequency root from the back-bending 

pair with Re 𝑘𝑧 = 𝜋/(30 nm) has much higher damping as it is overwhelmed by large Im 𝑘𝑧 
(represented by the dashed blue line), leaving only the low-frequency root as a resonance. It is 

important to note that this is always the case for the effective medium approximation regardless 

of 𝑓. For 𝑓 = 0.5 the exact solution intersects the 𝑛𝜋/ℎ lines at higher frequencies than the 

effective medium dispersion. 
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Fig. 3.4 Comparison of the exact solution 𝜔(𝑘𝑧) of Eq. (1) for period 𝑑 = 50 𝑛𝑚 and the 

effective medium approximation (the inverse function of 𝑘0√𝜀𝑥(𝜔)) with 

(a) 𝑓 = 0.3; (b) 𝑓 = 0.4; (c) 𝑓 = 0.5.

This analysis directly translates into the optical response of the metasurface in the full 

solution of Maxwell’s equations according to semi-classical method of Ref. [38] illustrated in 

Fig. 3.5. Panels (a) and (b) show the reflectivity of the structure at ℎ = 30 nm and ℎ = 150 nm 

respectively, which correspond directly to the effective medium calculations shown in Fig 3.2 (a) 

and (c). Similarly, panels (c) and (d) in Fig. 3.5 show TE transmittance in direct comparison to 

Fig. 3.4(a) and (b). The ramifications of the disparity between 𝑘𝑧 calculated exactly and in the 

effective medium approximation near the ENP as outlined in Fig. 3.4 make themselves apparent 

in Fig.3.5 by the higher degree of curvature and back-bending in the energy as a function of 

metal fraction 𝑓 for the e-FP1 at ℎ = 30 𝑛𝑚 and e-FP3 at ℎ = 150 𝑛𝑚 (Fig. 3.5 (a) and (b) 

respectively). This results in minor shifts in the parameters and insignificant changes in the 

magnitude for the half-wave (Fig. 3.5 (c) and (d)) and quarter-wave plate behavior (not shown) 

as manifested by the TE transmission at ℏ𝜔 = 𝐸ℎ𝑤,𝑛𝑛+1. 

Note that for calculations in this chapter we use the dielectric permittivity of silver [41] and a 

dielectric with refractive index 𝑛𝑑 = √𝜀𝑑 = 3.6, which corresponds to GaAs. 
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Fig. 3.5 Optical properties on the metasurface shown in (Fig. 3.1(c)) according to the semi-

analytical solution of Maxwell’s equations. (a), (b) Reflectivity of the metasurface at 

𝜙 = 45° for ℎ = 30 𝑛𝑚 and ℎ = 150 𝑛𝑚; (c), (d) TE transmission of the same 

metasurfaces. 

Conclusion 

In this Chapter I used the method described in Chapter 2 to theoretically and numerically 

predict the optical response of a nanowire grid array. Using the full solutions of Maxwell’s 

equations, beyond a metamaterial approximation, show that it acts as an ultrathin nanoscopic 

wave plate. The correctness of the method and calculations is confirmed by the similarity 

between the results of the full calculations and metamaterial approximation within region of 

applicability for the metamaterial approximation. 
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Chapter 4 

Chandezon’s Method 

The following relies very heavily on the works of Chandazon et. al. [15] and S. J. Elston et. 

al. [42] but was fully implemented in a program as part of my work, thus I am reproducing its 

derivation here. 

As stated in the introduction, Chandazon’s method is a method of transforming the space 

around a structure such that the structure is flat, solving Maxwell’s wave equations in the curved 

space, and matching the resulting waves at the now flat boundary. We use this method to study 

structures with arbitrary profiles. First we define the structure with a periodic function 𝑦 = 𝑎(𝑥) 

with period 𝑑 in Euclidean coordinates (Fig. 4.1). With an incident wave vector 𝒌 at an angle 𝜃 

off the y axis and angle 𝜙 between the x-y-plane and incident plane. 

Fig. 4.1: Structure and Euclidian Basis, showing the incident wave vector k, its angle off the 

normal, 𝜃, angle off the x-y-plane, 𝜙, the basis vectors x, y, and z, the boundary 

function 𝑦 = 𝑎(𝑥), and its period d. 

Here we can define two polarizations, transverse electric (TE) and transverse magnetic (TM) 

where the respective fields only have components perpendicular to the plane of incidence. In 

either case, we take the complex time independent incident field to be: 

|𝑭| = exp (𝑖(𝑘𝑥𝑥 − 𝑘𝑦𝑦 + 𝑘𝑧𝑧)), (4.1) 

where 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are absolute value of the components of 𝒌 and 𝑭 represents either the 

electric (TE) or magnetic (TM) field. The scattered far field should also be defined in a standard 

form 

∑ 𝑅𝑛 exp(𝑖(𝛼𝑛𝑥 + 𝛽𝑛𝑦 + 𝑘𝑧𝑧))𝑛 , (4.2) 

in reflection where 𝛼𝑛 = 𝑘𝑥 +
2𝜋𝑛

𝑑
 , 𝛽𝑛 = √𝒌2𝜖𝑠 − 𝛼𝑛2 − 𝑘𝑧2, and 𝜖𝑠 is the permittivity of the

media the wave is propagating; and 

∑ 𝑇𝑛 exp(𝑖(𝛼𝑛𝑥 − 𝛽𝑛𝑦 + 𝑘𝑧𝑧))𝑛 , (4.3) 

in transmission where the sum is over all far field diffraction orders. 

k 
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Having defined the structure and far field, we now move to construct a coordinate system in 

which the surface is flat. For scalars, this is simple: 

𝑢 = 𝑥, 𝑣 = 𝑦 − 𝑎(𝑥),𝑤 = 𝑧. (4.4) 

However, defining vectors is a bit more complicated, in order to reproduce curl, required for 

Maxwell’s equations, while maintaining simple formulae two sets of vectors are needed, the 

contravariant 

𝜼1 = 𝒊̂,  𝜼2 = 𝒋̂ − 𝑎′𝒊̂,  𝜼3 = 𝒌̂, (4.5) 

and the covariant 

𝜼1 = 𝒊̂ + 𝑎
′𝒋̂,  𝜼2 = 𝒋̂,  𝜼3 = 𝒌̂, (4.6) 

where 𝑖,̂ 𝑗̂, and 𝑘̂ are unit vectors in the x, y, and z directions respectively. These vectors then 

allow cross products, and thus Maxwell’s equations to be modified as follows 

𝜵 × 𝑭 = (𝜼1
𝜕

𝜕𝑢
+ 𝜼2

𝜕

𝜕𝑣
+ 𝜼3

𝜕

𝜕𝑤
) × (𝐹𝑢𝜼1 + 𝐹𝑣𝜼2 + 𝐹𝑤𝜼3), (4.7) 

while the time derivative is unaffected, simply producing a −𝑖𝑘 term due to its complex 

exponential nature. Due to that same nature, as well as the translational symmetry in the w/z 

direction 

𝜕

𝜕𝑤
= 𝑖𝑘𝑧. (4.8) 

From here we use the fact that we only need two boundary conditions for each of two 

polarizations at any given boundary to reduce the problem further, and because both E and H 

fields parallel to a surface are continuous across the boundary, we will use the fields 

𝐻|| = (1 + (𝑎
′)2)𝐻𝑢 + 𝑎

′𝐻𝑣 ,     𝐸𝑤 = 𝐸𝑧,

𝐸|| = (1 + (𝑎
′)2)𝐸𝑢 + 𝑎

′𝐸𝑣 ,     and     𝐻𝑤 = 𝐻𝑧 .
(4.9) 

This means that, with a bit of manipulation, Maxwell’s wave equations can be written in the 

form 

𝑈̂𝑭 =
𝜕

𝜕𝑣
𝑭, (4.10) 

Where 

𝑈 =

(

𝜕

𝜕𝑢

𝑎′

1+(𝑎′)2
0

𝜕

𝜕𝑢

𝑘𝑧

𝑘(1+(𝑎′)2)
𝑖𝑘𝜖 +

𝜕

𝜕𝑢

𝑖

𝑘(1+(𝑎′)2)

𝜕

𝜕𝑢

0
𝑎′

1+(𝑎′)2

𝜕

𝜕𝑢

−𝑖(𝑘2𝜖−𝑘𝑧
2)

𝑘(1+(𝑎′)2)
−

𝑘𝑧

𝑘(1+(𝑎′)2)

𝜕

𝜕𝑢

−
𝜕

𝜕𝑢

𝑘𝑧

𝑘𝜖(1+(𝑎′)2)
−𝑖𝑘 −

𝜕

𝜕𝑢

𝑖

𝑘𝜖(1+(𝑎′)2)

𝜕

𝜕𝑢

𝜕

𝜕𝑢

𝑎′

1+(𝑎′)2
0

𝑖(𝑘2𝜖−𝑘𝑧
2)

𝑘𝜖(1+(𝑎′)2)

𝑘𝑧

𝑘𝜖(1+(𝑎′)2)

𝜕

𝜕𝑢
0

𝑎′

1+(𝑎′)2

𝜕

𝜕𝑢 )

,  𝑭 = (

𝐻||
𝐻𝑤
𝐸||
𝐸𝑤

). (4.11) 
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Now 𝐸𝑤 and 𝐻𝑤 need to be defined for the far field waves. The transmitted waves will be of 

the form 

𝐹𝑤 = ∑ 𝑇𝑛 exp (𝑖(𝑘𝑧𝑤 − 𝛽𝑛(𝑣 − 𝑎(𝑢)) + 𝛼𝑢))𝑛 , (4.12) 

which we can Fourier expand to give 

𝐹𝑤 = ∑ 𝑇𝑛 ∑ 𝐿𝑚−𝑛(𝛽𝑛) exp(𝑖(𝛼𝑚𝑢 − 𝛽𝑛𝑣 + 𝑘𝑧𝑤))𝑚𝑛 , (4.13) 

where 

𝐿𝑚(𝑓) =
1

𝑑
∫ exp (−𝑖 (𝑎(𝑢)𝑓 +

2𝜋𝑚

𝑑
𝑢))

𝑑

0
. (4.14) 

The reflected fields look the same mutatis mutandis, and for the incident field, 𝑛 = 0 and the 

amplitude coefficient is assumed to be 1. 

The final piece to the puzzle is to note that the matrix that represents Maxwell’s equations 

has only two functions that are dependent on the structure, 

𝐶(𝑢) =
1

1+(𝑎′)2
, and 𝐷(𝑢) =

𝑎′

1+(𝑎′)2
, (4.15) 

which can both be Fourier expanded. The same can be done to any solutions to the whole system 

of equations due to the structure’s periodicity. Expanding these two independent sums will allow 

us to evaluate the derivatives in 𝑼 and subsequently turn 𝑈̂ into a block matrix with each entry 

an ∞ ×∞ matrix. Of course, to solve it we truncate the sums at ±𝑁 creating an (8𝑁 + 4) ×
(8𝑁 + 4) matrix for which we find the eigenvalues and eigenvectors, 𝑟𝑞 and 𝑽𝑞 . These then

allow us to construct the fields present in the medium 

𝑭(𝑣) = 𝑀̂𝛷̂(𝑣)𝑨, (4.16) 

where 𝑭 is the expanded form of the block vector in eq. 4.12, 𝑀̂ is a matrix whose columns are 

𝑽𝑞 , 𝛷̂ is a matrix with entries 𝛷𝑝𝑞(𝑣) = exp(𝑖𝑟𝑞𝑣) 𝛿𝑝𝑞, and 𝑨 is an amplitude vector we still

need to find via boundary conditions. Now, it is important to point out that in the topmost and 

bottommost media we will only need those eigenvalues that have positive, or negative imaginary 

components respectively because these will be the ones that go to zero at infinity. The opposites 

will approach complex infinity at infinity, and the remaining, those with only real parts have 

already been defined by 4.14. We should also note that the waves defined in 4.14 are already in 

the basis of the expanded 𝑭 vector, meaning that these outward propagating waves can replace 

the waves that best resemble plane waves. Now, we simply split the 𝑭 in, my choice being 

between 𝑤 and || components. From this we construct boundary condition equations just as was 

done in chapter two, albeit with significantly fewer diagonal matrices.  

As a test of this method I devised a formula to approximate a square wave like structure 

where 𝑎′(𝑥) is a difference of offset Jacobi theta 3 functions to compare it to the photonic crystal 

method described in Chapter 2. The results look similar (fig. 4.2), but Chandezon’s method 

presents its own computational issues.  
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Fig. 4.2: The magnetic field due to normal incident light on an air-gold structure with 

(a) 𝑑 = 358 nm, 𝑓 = 0.5, and ℎ = 80 nm, and (b) a similar structure using

C-method with approximately 10 nm transitions between top and bottom flat sections.

As the structure gets closer to the true shape for the photonic crystal, the number of waves 

required to produce sensible results increased rapidly. However, it is far less prone to 

conditioning issues, involves finding no solutions to transcendental equations, and allows for 

much more flexibility in structure types. 
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Chapter 5 

Sine Wave Grating: Optoelectronic Characterization 

Plasmon drag effect (PLDE) is an enhancement of photoinduced electric currents in metal 

films and nanostructures [43-51], associated with excitation of surface plasmon polaritons(SPPs). 

PLDE presents interest for various applications as it provides an opportunity for direct electrical 

monitoring of plasmonic elements in electronic and optoelectronic devices and sensors. From a 

fundamental point of view, the effect can be considered in terms of plasmon-assisted momentum 

transfer in light–matter interaction in metal [44]. In the first PLDE experiments [50, 51], strong 

enhancement of photoinduced currents was observed in flat gold and silver films under 

conditions of surface plasmon polariton resonance in Kretschmann geometry [52]. Significant 

photo-induced electric effects were reported in rough and nanostructured surfaces under direct 

illumination, with polarity and magnitude of electric signals dependent on angle of incidence, 

wavelength of illumination, light polarization, and nanoscale surface geometry [43, 47-49]. 

The theoretical description of PLDE is based on electromagnetic momentum loss. In a metal 

nanostructure, the rate of momentum transfer from field to electrons can be found as [44] 

𝑓𝐿̅𝑖 =
1

2
∑ Re{𝑃𝛼𝜕𝑖𝐸𝛼

∗}α=x,y,z , (5.1) 

where 𝑷 = 𝜒𝑬 is the polarization vector, E is the electric component of the optical field, and 𝜒 is 

the susceptibility of the material. It was recently shown [53] that this approach, modified to take 

into account the electron thermalization time [54, 55], therm, adequately describes the electric 

currents induced under SPP resonance conditions in flat films. The theory was extended to 

surfaces with modulated profiles and multi-mode plasmonic excitations [53]. Assuming a 

relatively small amplitude of surface modulation height, and laminar electric current, the 

electromotive force (emf) per unit length induced in a plasmonic structure can be presented as a 

sum of contributions from each mode, with the contribution proportional to the absorbed power 

Qm and k-vector of each mode, 𝑘𝑚, as 

𝑈 = ∑ 𝑈𝑚𝑚 =
𝜏𝑡ℎ𝑒𝑟𝑚

𝜏

1

𝑛𝑒𝑒
∑

ℏ𝑘𝑚

ℏ𝜔
𝑄𝑚𝑚 , (5.2) 

where is the Drude collision time, and ne is the electron density. 

According to [53], strict numerical calculations (eq. (5.1)) correctly predict the angular 

position, magnitude and polarity of the photoinduced currents experimentally observed in flat 

silver films [50] and a gold film with a sine-wave profile [53] at the SPP resonance conditions. 

However, in both cases, the exact shape of the peak as well as off-resonance signals are not 

properly described by the theory; and this is tentatively attributed to the effect of roughness in 

experimental samples. Below, we provide details of our calculations for the sine-wave films, 

explore limitations of our theoretical approach [53] and the validity of a simplified consideration 

(equation (5.2)). 

The structure under consideration is a 60 nm thick gold film with a sine-wave profile, a 

period of 𝑑 = 538 nm and a modulation depth 2 h, which we varied, see fig. 5.1(a). The 
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electromagnetic fields in a sine-wave structure are calculated Chandezon’s method described 

above. As expected, simulations predict surface plasmon resonance (SPR) [55] at the incidence 

angle, θ  

𝑘𝑠𝑝𝑝 =
2𝜋𝑛

𝑑
+ 𝑘𝑥, (5.3) 

where 𝑘𝑥  =  𝑘 sin(𝜃) is the x component of the k-vector and n is an integer. The SPP k vector

closely corresponds to the estimations for flat films [56], 

𝑘𝑆𝑃𝑃

𝑘
= 𝜉 = √

𝜀𝑚𝜀𝑑

𝜀𝑚+𝜀𝑑
, (5.4) 

where 𝜀𝑚 and 𝜀𝑑   are dielectric permittivities for metal and air respectively. 

Reflectivity of the film, R(h,  ) was calculated for the whole optical range for various 

amplitudes of surface modulation, h = 0-50 nm, as a function of incidence angle, , and light 

frequency (Fig. 5.1(b)). Two SP branches are seen, which can be fitted with Eq. (5.3) for 

𝑛 =  −1 or +1, corresponding to the plasmon propagating backward, against kx, for the low 

frequency branch and forward, with kx, for the high frequency branch. These modes join each 

other at 𝜃 = 0 and frequency ~ 2.15 eV, forming a standing plasmon wave with 𝑘𝑠𝑝𝑝 =
2𝜋𝑑−1

𝜉


Fig. 5.1: (a) Schematic of the structure; (b) Reflectivity as a function of 𝜃 and ℏ𝜔 for 

ℎ = 30 nm; (c) Normalized reflectivity for 𝜃 = 5° for different modulation 

amplitudes ℎ as color coded in the bottom left corner of the figure; (d) Frequency 

spectrum of SPP losses for different ℎ; (e) PLDE emf spectrum corresponding to 

reflectivity in panel (c); (f) Peak emf per SPP losses. 

In Fig 5.1(c), the reflectivity R, normalized to the reflectivity of the flat film, 𝑅0, is plotted as 

a function of frequency for different modulation amplitudes at 𝜃 = 5° Each curve demonstrates 
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two SPP resonance dips and an additional small peak around 2.15 eV related to the Rayleigh 

anomaly [57]. With an increase in the modulation amplitude, the resonance dips first become 

deeper and then broader. 

Fig. 5.1(d) shows the spectral dependences of losses associated with the SPP excitation, 

𝑃𝑆𝑃𝑃, which were calculated as the difference between the reflected intensity from a flat gold 

film (ℎ =  0) and at the conditions of the SPP resonance for a particular h with the same 𝜃 and 

𝜔. At low h (10 and 20 nm), 𝑃𝑆𝑃𝑃 decreases with increase in frequency, giving a small peak at 

∼2.15 eV. 𝑃𝑆𝑃𝑃 is the highest at ℎ ≈  30 nm for most of the spectrum, indicating the most

efficient SPP excitation. With the further increase in h the spectral dependence 𝑃𝑆𝑃𝑃(𝑤) tends to,

instead, increase with the increase of 𝜔.

The plasmonic pressure force acting on an electron is determined by fields in a metal as 

𝑓𝛼 =
1

2
𝑅𝑒 {𝜒(𝐸𝑥𝜕𝛼𝐸𝑥

∗ + 𝐸𝑦𝜕𝛼𝐸𝑦
∗ + 𝐸𝑧𝜕𝛼𝐸𝑧

∗)}. (5.5) 

The photoinduced emf is calculated by averaging the pressure force, 𝑓𝐿𝑥  , over the volume of the 

metal film as [53]  

𝑈

𝐼
=

1

2𝜋

𝜏𝑡ℎ𝑒𝑟𝑚

𝜏

𝐿/𝐼

𝑒𝑛𝑒

1

ℎ
∫ 𝑓𝐿̅𝑥(𝑧)𝑑𝑧ℎ

, (5.6) 

where I is the incident light intensity and 𝐿 is the diameter of the illuminated spot. 

The emf calculated in a flat film (ℎ =  0), 𝑈0, is pure photonic drag [58], which is small and 

plays a role only at the blue part of the spectrum. The plasmonic emf, 𝑈 – 𝑈0, calculated at 

𝜏𝑡ℎ𝑒𝑟𝑚  =  270 fs, 𝐿 =  2 mm, and 𝜃 =  5° is plotted in Fig. 5.1(e). The polarities of 𝑈 – 𝑈0 at 

the red and blue parts of the spectrum are opposite to each other, in each case corresponding to 

the drift of electrons in the direction of SPP propagation. The emf peaks change with variation of 

h in a similar way to the dips in reflectivity (Fig. 5.1(c)). 

The ratio of the peak emf and maximum losses at SPR are plotted in 

Fig. 5.1(f) for the whole optical range. The curves are almost flat, corresponding to 

𝐶 =
1

𝐼

𝑈−𝑈0

𝑅0−𝑅
=  2.2 − 2.5 mV/(MW cm

2
) at small modulation amplitudes increasing to ~ 3-3.5

with an increase in h They are negative at the red part of the spectrum, and positive at the blue, 

corresponding to backward or forward plasmon drag. The polarity switches at ~ 2.15 eV where 

the standing SPP wave is excited, providing zero momentum to electrons. Near the switching 

point the curves with high h demonstrate a small peak. 

The flatness of the curves indicates that the momentum transfer from plasmons to electrons is 

directly proportional to the energy transfer, which correlates well with the conclusions of the 

theory [53] predicting a direct proportionality between the plasmon induced emf and absorption 

at relatively small modulations of the metal surfaces (ℎ ≪ 𝑑) and laminar electron flow. 

According to the results of the simulations, it holds up to amplitudes of 40–50 nm for our 

periodicity. In comparison with the experiment, the calculations correctly predict the magnitude, 

polarity and angular position of the PLDE peak observed experimentally in the gold film with 
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ℎ ∼  25 nm see, figure 3 in [53]). However, the presence of additional contributions (clearly 

seen at large incidence angles) have yet to be taken into account. 

In conclusion, the PLDE in a thin gold film with a sine-wave profile was analyzed 

theoretically for various amplitudes of the surface modulations in a broad optical range. The 

numerical simulations based on modified electromagnetic momentum loss approach was shown 

to provide adequate description of the emf associated with propagating SPPs at small amplitudes 

of surface modulations. 

Plasmons in Sine Wave Films Vs Square Nanowires 

Periodic arrays of plasmonic elements, such as 1 D arrays of metal strips can support 

propagating modes of plasmonic excitations [59, 60] which have a certain similarity with surface 

plasmon polaritons (SPPs) excited at dielectric-metal interfaces in continuous metal films. 

Discontinuous plasmonic systems may be advantageous for a number of applications due to a 

lower relative concentration of metal and, possibly, a lower loss. In order to better understand 

optical and plasmonic properties of periodic arrays of plasmonic strips of subwavelength 

periodicity, we study these systems theoretically. Experimental studies were conducte at Norfolk 

State University [61], in comparison with continuous metal gratings with a sine-wave modulated 

profile. 

The schematics of the structures 

under consideration and results of the 

numerical simulations are shown in Fig. 

5.2. The two methods described in 

earlier chapters were used. The 

parameters used in the calculations 

correspond to those of my collaborator’s 

experimental samples. 

The continuous grating (Fig. 5.2(a)) 

supports SPPs at the metal-air interface 

at 𝒌𝑠𝑝𝑝 = 𝑛𝑮+ 𝒌𝑥, where kx is the 

projection of the optical k-vector, k0, on 

the sample plane, 𝐺 = 2𝜋/𝑑𝑔 and 

𝑛 = ±1 for our parameters. According 

to the simulations, the ratio 

𝜉 = 𝑘𝑠𝑝𝑝/𝑘0 is very close to 

what is expected in flat films, 

𝜉 = [(𝜀𝑚𝜀𝑑)/(𝜀𝑚 + 𝜀𝑑)]
1/2, where 𝜀𝑚

and 𝜀𝑑 are the permittivities of metal 

and dielectric respectively. The 

solutions for the strip array 

(Fig. 5.2(b)) predict two different 

branches of collective excitations; one 

corresponds to the participation of the 

air-gold interface, and the other involves 

Fig. 5.2: Schematic cross-sections of the 

continuous sine-wave grating (a) and strips array 

(b); Zero-order reflectivity (shown with color) as 

the function of the angle of incidence, , and 

photon energy in the continuous grating (c) and 

strip array (d); Electric fields at resonance 

conditions in the continuous grating (e) and strip 

array (f, g). Parameters used in calculations are 

indicated. 
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the glass-gold interface. The major difference between continuous and discontinuous systems is 

expected in the reflection at the resonance conditions: a dip in the zero-order reflectivity is 

expected in the continuous film while a peak in the zero-order reflectivity is expected for the 

strip array. Increased reflection is also predicted at 𝑘0 = 2𝜋/𝑑𝑔 − 𝑘0 sin 𝜃 (bright Rayleigh-

Wood anomaly [62]). 

In the experiment by Dr. Noginova’s group at Norfolk State University, arrays of gold strips 

on glass substrates were fabricated using the interferometric lithography technique [63] first to 

form a photoresist pattern in SU-8 on top of a metal film and then transferring the pattern into the 

metal with a reactive ion etching, a dry etch. Gold continuous gratings were fabricated with 

forming a photoresist pattern on glass and subsequent deposition of metal onto the pattern. 

In the reflectance measurements, the structure under study was mounted on the double 

goniometer stage, and illuminated with He-Ne laser at λ = 632.8 nm at p polarization 

(Fig. 5.3 (a)). The intensity of the reflected beam (zero order reflectivity) was measured as the 

function of angles of incidence, 𝜃,  𝜙. A dip in the reflected 

intensity was observed in the continuous film (Fig. 5.3 (b)), while the strip array demonstrated a 

peak with an additional extra-sharp feature (Fig. 5.3 (c)) of angular width as small as ~ 0.04°. 

Changing the relative orientation of the strips (varying 𝜙), the peak positions shifted toward 

larger 𝜃. 

Fig. 5.3. (a) Setup in reflection measurements; (b, c) Reflected intensity in the sine-wave 

continuous film (b) and strip array (c); (d) reflection spectra at different 𝜃 as 

indicated; (e) the dispersion curve obtained from the reflection data (points). Solid 

trace is calculations for the continuous air-gold interface. 

In the spectral measurements, the total reflected and transmitted intensities were recorded 

using the integrating sphere in the spectrophotometer setup. The reflection spectrum showed a 

dip as a characteristic signature of the resonance mode (Fig. 5.3(d)). The dispersion curve of this 

mode (Fig. 5.3 (e), points) derived from these measurements has a typical SPP character, but 

differs in magnitude from that of a continuous gold film, corresponding to slower propagation of 

the SPP in the discontinuous system. 

Comparison of theoretical predictions and experimental data shows a very good agreement 

for both types of systems. 
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Conclusions 

Throughout this thesis I have described multiple methods for semi-analytically solving 

Maxwell’s equations in complicated two dimensional structures. These methods were then used 

in a variety of ways to manipulate light. Rotating its polarization in a fraction the distance of any 

other proposed waveplate; potentially acting as an efficient coupling mechanism between optics 

and electronics; and having a plasmonic peak so strong and sharp that it holds incredible promise 

as a sensor. 

We first modeled a metal-dielectric 1D optical meta-crystal. Then we used that to model 

arbitrary rectangular grating structures using a novel geometric series based approach. we then 

used this method to exactly model a metamaterial layer calculations performed by D. Keene et. 

al. By modifying the thickness and metal fraction, frequencies of polarization rotation could be 

moved almost anywhere within the optical range. 

We also implemented Chandezon’s method, manipulating the metric in which Maxwell’s 

wave equations were to be solved, and beating the Rayleigh hypothesis’s limitations. Then we 

used the plasmonic pressure mechanism to find the forces on electrons and characterize the 

optoelectronic responses for various heights of sine wave metal structures, which may one day 

be used to couple electronic and optical computational devices. 

We then used both methods together, comparing their reflectivity responses and theoretically 

explaining interesting details in the data of experiments done by Dr. Noginova’s group at 

Norfolk State University. 

My work described in this thesis has the potential to push science quite far. Not just here at 

Georgia Southern University, where I have created a suite of computational wave optics 

programs useable in the search for more and more interesting surface properties. But also at 

large, where I have proposed a fair few realizable ideas for surface structures that could pave the 

way for new sensors, wave plates, maybe even realistic optical computers. 
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