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CHAPTER I 
INTRODUCTION

Boundary value problems are of wide interest and 
computer-oriented solutions are of great value in applied 
mathematics. For instance., it may be desired to determine 
the trajectory of a ballistic missile which travels from 
one specified point on the surface of the earth to another 
in a given amount of time. Such a problem leads to the 
solution of either an ordinary or a partial differential 
equation depending on the approach to the solution. 
Boundary value problems involve differential equations of 
at least the second order (or systems of at least two 
equations of the first order). It is well known that it 
is theoretically always possible to reduce the solution of 
a boundary value problem to the solution of a sequence of 
initial value problems.

It has been shown by other authors that boundary 
value problems can be solved by standard methods such as 
regula falsi or Newton*s method. It is the author*s 
intention to apply Newton*s method to the nonlinear 
equations, and to apply an adaptation of the Gaussian 
algorithm to the linear equations in the same manner as 
Henrici It is interesting to note that Albert
Einstein, in his work pertaining to the orbital motion of 
the planets under the assumption of general relativity,



that is, in the problem of perihelion shift, had to solve 
a nonlinear differential equation of the type 
y ’’ = f(x,y).

2

It should be pointed out that even the simplest of all 
boundary value problems may have an infinite number of 
solutions or no solution. It must also be noted that 
the mathematical theory of the boundary value problem of 
this study is quite complicated, including the theory 
that would be involved in the numerical solution of the 
problem. Discussion of the theoretical foundation of the 
problem treated in this study may be found in the refer­
ences cited.

It should also be noted that most nonlinear and some 
linear differential equations of the second order must be 
solved by some numerical analysis method. As will be 
pointed out shortly, some of our most useful second order 
differential equations that result from common physical 
conditions have no simple analytical solutions, as one 
would see if he were to consult the literature, for 
instance, Hildebrand Struble or Davis
There are many numerical methods for solving this type of 
second order linear and nonlinear differential equation.
In devising more tractable methods, some mathematicians 
have developed their own functions to obtain analytic 
solutions of particular boundary value problemsy but many 
boundary value problem solutions can be expressed in terms
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of the well-known Elliptic or Theta functions. Three of 
the sets of functions which the author has encountered 
that were developed to solve particular equations are 
Mathieu Functions, Bessel Functions and the First and 
Second Painleve Transcendents. One can find a complete 
discussion of these functions in Struble and
Davis

It has been proved that the differential equation of 
the type y11 = f(x,y) with boundary conditions y(a) = A 
and y(b) = B has a unique solution for a wide class of 
functions, f(xj,y). This type of boundary value problem 
may, for example, result from a mathematical formulation 
of any or all of the following physical problems:

1. Trajectory of a ballistic missile
2. Vibration of a pendulum
3. Curve of pursuit
4. Orbital motion of the planets.

Some of the better known differential equations (boundary 
value problems) which arise from such problems are:

1. Duffingfs Equation
2. Mathieu1s Equation
3. Painleve1s Equation
4. Thomas-Fermi1s Equation.

The previous examples were cited because they fit the 
exact form of the type of equation which is to be 
discussed in this thesis.
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The purpose of the present study is to discuss the 
boundary value problems leading to equations exemplified 
by the four equations previously mentioned and to write a 
program for an IoB»M. computer in Fortran II language as 
a contribution to the numerical solution of an important 
class of linear and nonlinear differential equations„
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REVIEW OF LITERATURE
CHAPTER II

There is extensive literature pertaining to the 
subject of linear and nonlinear differential equations 
and to numerical processes for solving them. To begin., 
it is convenient to discuss some methods that can be found 
in Hildebrand Struble Davis and Fox

There are basically two methods for solving boundary 
value problems. These are (a) methods which transform the 
boundary value problem to an initial value problem and 
(b) direct methods. Either or both of these methods may 
be such that the process is iterated upon until 
convergence is attained if the iteration converges.
Whether or not an iteration process must be used is 
dependent on the method chosen and sometimes on the 
linearity of the function.

A method which transforms the boundary value problem 
to an initial value problem is the method of superposition. 
If the boundary value problem is linear and of the form

y1 1 + P(x)y1 + Q(x)y = F(x) (a -< x •< b) 2.1
with boundary conditions

y(a) -= A, y(b) = B
where A and B are finite constants, then this method can 
be used to obtain a solution. To describe superposition, 
assume u(x) is any solution of
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u r ’ + Pu1 + Qu = F
that satisfies the initial condition

u(a) = A
and v(x) is any nontrivial solution of

v 1 ' + Pv’ + Qv = 0
that satisfies the initial condition

v(a) = 0

Then the function
y(x) *= u(x) + cv(x)

is a solution of equation (2 .1) with one boundary 
condition y(a) = A for any constant c. If the functions 
P(x), Q(x), and F(x) are continuous in the interval 
a -< x •< b, then there exist no other functions with the 
above mentioned property. If the value of c can be 
determined from the equation

u(b) + cv(b) = B
then one has a solution. However, it is possible to have 
no solution, infinitely many solutions, or an unique 
solution, depending on the values of u(b) and v(b).

The corresponding nonlinear problem that has the 
more general form

y'' - G(x,y,y') 2.2
with boundary conditions

y(a) « A, y(b) - B
is generally such that superposition is not valid. There 
are not very many methods that can be used to obtain a
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solution for the nonlinear problem. It is possible to 
reduce equation (2 .2 ) to the initial value problem

u’’ = G(x,u,u’) 
u(a) = A, u ’ (a) = a

which has as its solution u(x,a)* and then attempt to 
determine a such that

u(b,a) = B
The procedure is to find u(b) for two or more trial values 
of a and then iterate, using inverse interpolation, to 
find an acceptable value of a. The disadvantages in using 
this method are many. Mainly, the process is apt to be 
tedious. Also, a small change in a does not necessarily 
correspond to a small change in u(b,a) and furthermore, 
there are the questions of uniqueness and existence of a 
solution. It appears that there is no completely 
satisfactory general method for dealing with the nonlinear 
problem. If the problem does not contain a y ’ term, then 
the method to be discussed in this thesis can be applied.

There are several methods for solving the initial 
value problem that arises from a transformation of the 
boundary value problem. Some of the better known methods 
for solving initial value problems are Stormer's method, 
Milne’s method, Adams’ method, and continuous analytic 
continuation. These and other methods can be found in 
Hildebrand Struble and Davis ^  .

A direct method called the "y-process”3 which could
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be used to solve the ordinary differential equation
y ’ ' * -f(x,y,y’) with the boundary conditions g^(y^y!) = 0

at x = and g2 (y^y’ ) - 0 at x = x^, is found in Fox
A class of direct methods, which usually apply only 

when the problem is linear, is the one that approximates 
the differential equation with a difference equation which 
then requires solving a set of simultaneous algebraic 
equations. In this group is the method to be discussed 
in this thesis, taken from Henrici who used a set of
implicit difference equations.
tridiagonal and column matrices. Since this is the basis 
of the method dealt with in the present study, it will be 
discussed in detail in the next chapters.

One of the objectives of this study was to enhance 
the number of ordinates which can be found by the method 
of Henrici. Furthermore, Henrici’s method was modified 
so that computer storage space necessary for a numerical 
solution is small as compared to that which would have 
been required. This was primarily accomplished by 
reducing each n x n tridiagonal matrix to a set of three 
n x 1 column matrices, so that instead of using n2 

storage spaces, only 3n spaces are required.
The manner in which these two objectives were 

attained will be discussed at length in the main body 
of this study.
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DISCUSSION OF BASIC ALGORITHM

The problem that is to be discussed in this thesis 
is best described by the equations and conditions as 
follows:

y”  = f(x,y), y(a) = A, y (b) = B jLI
where -oo-< a b < +oo, A and B are finite arbitrary 
constants and the function f(x,y)^ in addition to 
satisfying the conditions of the existence theorem 
(theorem 1.1 found on pages 15-16 of Henrici is
such that fy(x*y) is continuous and satisfies 
fy (x,y) > 0 , a x ±  b, -00 < y < + ro.

The fact that the type of problem described by 
equations (3 «1) has a unique solution has been proved by 
Henrici. The proof of this theorem can be found on 
pages 3^7"3^8 of Henrici

It is the contention of this author that a numerical
solution for equations (3*1) can be written in the
Fortran II language for an I.B.M. computer which combines
into one program the linear and nonlinear cases.

When attempting to find a numerical solution to the
boundary value problem (3-1), it is desirable to divide
the task into three principal cases:

Case 1. This case will be employed whenever the 
function, ffx.y), can be expressed in the form 
f(x,y) = yG(x) + P(x).

CHAPTER III
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Case 2. This case will be employed whenever the 
function., f(x,y), can be expressed in the form 
f (x, y) = P(x) + T(x)H(y) where H(y) is nonlinear 
in y and there is no linear term of y.
Case i. This case will be employed whenever the 
function, f(x,y), contains both linear and nonlinear 
terms of y, such that the function can be expressed 
in the form f(x,y) = yG(x) + P(x) + T(x)H(y) where 
H(y) is nonlinear in y.
It is the author*s intention to discuss in some 

detail the process, in general, used to solve all three 
cases, and then to discuss in greater detail the 
individual cases. The procedure begins by replacing the 
given problem with a set of implicit difference equations, 
namely, the difference equations:

- yn-l + 2yn - yn+l + h2 ^ O fn-l + elfn + e2fn+l) = 0 2iS. 
where + Pg = 1. The two most commonly used
forms of equations (3 *2 ) deal with only the sets of pJs
as follows:

= °* f*i = e2 = o

f>0  = 1/12, PX = 10/12, P2 - 1/12

These are by no means the only sets of values that could 
be used, only the sets of values to which this thesis 
will pertain. For more elaborate schemes, one should 
examine the references cited, such as Fox The
difference equations (3 -2 ) will be expressed as a system 
of matrix equations involving tridiagonal and column 
matrices. This set of matrix equations is easily solved 
by using an adaptation of the Gaussian algorithm if the 
system is linear, however, if the system is nonlinear,
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then the Newton-Raphson method for systems of 
transcendental equations needs to be applied.

It would now be appropriate to discuss the notation 
and the two cases as found in Henrici Henrici
first introduced and defined the vectors (column matrices)

y2
f ( * 1 ^y1 ) 
f (*2’y2 )

A  " e0h 2 f(x0JA) 
0 
•

y = •
•

_ yN-l

» f(y) = •
•

, a = «
0

b  -
and the tridiagonal matrices

\H1OJ
1__________ P1 e2

-1 2 -1 Pq

• , B = •

-1 2 -1
9

P0 P2
-1 2 po pl_

(where all the elements not on the main diagonal or on 
the diagonals adjacent to it are zero). The difference 
equations (3 *2 ) can then be written as

Jy + h2Bf(y) = a 3« 3
where h is a constant increment for the variable x.
Defining the function f(x,y) = yg(x) + k(x) which is 
linear in y, and g(x) and k(x) are given functions of x, 
it is also necessary to define the diagonal matrix
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G =

g(xn )
g(x2)

g(xN_i)
and the vector

k(x2 )

^ ^ - i 2
where f(y) = Gy + k. The system (3-3) can be expressed 
as

Ay = b 3» 4
where

A = J + h2BG, b = a - h2Bk 3-5
The solution of the system (3*3) is relatively easy due 
to the fact that A is a tridiagonal matrix. The elements 
of the tridiagonal matrix A can be expressed as

an,n = 2 + h2pl V  an,n-l = ’ 1 + h% S n -l>
n,n+l = - 1 + hze2gn+1, n = 1,2,• • • , N-l

and a = 0  for I n - m I > 1. Assume that two n,m 1 1
nonsingular matrices, L = (1 ) and U = (u have beenv m n 7 v mn
found where L is of the form
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L =

0
21

l32 1

0

and U is of the form

U11 U12 
U22 U23

1 n -i jn -2 \

(l = u  1 = ov mm mn
for n>-m or n~<m-l)

U =

0

(u = 0  for n^m v mn
or n>m+l)UN-2JN -2 ^ - 2 ^ - 1

2

and such that LU = A. To solve it is first
necessary to determine a vector z such that Lz = b and 
second a vector y such that Uy = z. Because y = U ^z 
and z = L 1b and U = A \  the vector y satisfies
equation (3-^)-

The procedure can be summarized as follows;
Compute u _ nn and zn
the relations:

un - aii> z^ = b
i m a _ -,/u n-l nn,n-i n,
u = a 1 inn nn n,n-l
z = b - 1 - zn n n,n-j. n
n = N-l
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(II) Compute y , starting with n * N-l, using the 
relations:

yN-l ' zN-l//uN-l,N-l
yn = 'Zn an,n+lyn + l ^ unn 
n = N-2,.•o,2,1

There are numerous tedious details which have been 
omitted that are necessary in order to go from equation 
(3**0 to the end result. If the reader wishes to refer 
to the details that were omitted^ they can be found on 
page 353 of Henrici ^  . What has just been computed is 
the y that would satisfy the linear case of (3*3)* This 
is what the author will refer to as Case 1.

If the function f(x,y) is nonlinear in y, then one 
cannot hope to solve equation (3«^) by any algebraic 
method. For this reason, Henrici used the Newton-Raphson 
method for systems of transcendental equations to solve 
equation (3-^)« Suppose that equation (3-3) is now 
written as

Jy + h2Bf(y) - a = 0 3-6
and assume that y ^ ^  is close to the actual solution of 
equation (3-6), so that the residual vector

r(y(°)) = Jy^^ + h2Bf(y^^) - a 3« 7
is small. The increments of the functions

r(y) = r(y(n+1 )̂ - r(y^n )̂ 
are replaced by their differentials at the points 
y = y-°\ The resulting linear system of equations is



15

solved for the increment of the vector y, which is 
referred to as Ay. Then all that is necessary is that 
the system (3*6) be linearized. Jy is already linear 
and the remainder of the equation (3 .6) can be 
linearized by defining the diagonal matrix

fy(Xl^l) 0
fy (x2 >y2 )

F(y) =

where the differential of the vector r(y) at y = y 
is F(y^®')Ay. The equation (3-6) then reads 

r(y^°)) + (J + h2BF(y^0 ^))Ay = 0 
which has as its solution

Ay •= A y ^  = - A(y(0) )_1r (y(° b  
if the inverse of the matrix

A(y) * J + h2BF(y)
exists for y *= Equation (3*8) is now linear,
y ^ ^  = + A y ^ \  then y ^ ^  will be a better
approximation to the exact solution, and repeating the 
process by letting y ^ ^  take the place of y ^ \  etc., 
convergence can be attained.

It has been proved that equation (3*6) has a unique 
solution and that Newton’s method produces a sequence of 
vectors y ^ \  y(2 ),..., converges rapidly to
y provided the first approximation y ^ '  was well chosen.

i i o
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To attain the solution of equation (3-9)* It is necessary- 
only to solve the system of linear equations

A(y(0V y  = - r(y(°)) M i
for the Ay components.

Because the matrix A(y^^) is a tridiagonal matrix, 
the solution of the system (3.11) is relatively easy.
The elements of the matrix A(y'^) can be written as

a t = - 1 + h2 pnf (x -t, y ) n,n-l K0 y^ n - l ^ n - M n 2, ° •,N-1
= 2 + h2e1fy(xn,y^0 )̂, n =

(0 )n,n 3-12

an,n+l ' - 1 + h2e2fy(xn + l ^ n + l ^  n = ‘ * ’ N‘ 2
where all other elements are zero. The procedure
described in the discussion pertaining to the linear
case is now applicable to this nonlinear case. This is
what the author will refer to as Case 2.

It was assumed in the nonlinear case that y ^ ^  was 
an approximation to the exact solution. The simplest 
way in which y ^ ^  can be found is to solve the 
differential equation y*’ = Q(x,y) where Q(x,y) is the 
part of f(x,y) remaining after the nonlinear terms in y 
have been omitted. As one will notice in Case 2, this 
resulting differential equation can be solved by 
elementary methods. Solutions by algebraic methods of 
differential equations of the type y !’ = P(x) can be 
found in any elementary differential equations book, 
such as, Kells v However, if the differential
equation is of the type considered in Case 3, then it is
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not easy to find a first approximation to the exact 
solution. In terms of the notation used in Case 3, it 
is necessary to solve y 11 = yG(x) + P(x) to find y 
It is readily seen that this is exactly like Case 1. 
However, Henrici has not discussed how to find y ^ ^  in 
this case. Chapter IV of this thesis will point out how 
the author proposes to find the approximation y ^ ^  and 
the notation changes necessary to enable the programming 
of the ideas set forth in Chapter L

It is interesting to note that on page 227 of 
Hildebrand v ;, a change of variables is found which 
enables one to transform any linear equation of the 
second order, of the form Y ’f + P(x)Y’ + Q(x)Y = F(x), to 
the form yT 1 + yf(x) = g(x), where g(x) = e^^2*̂I>̂ x ^^xF(x) 
and f(x) = 1/4(4Q(x ) - 2PT(x) - (P(x))2 ). The change 
of variables necessary to accomplish this is

Y(x) = e-1/2/P(x )dxy(x)
As one can readily see if this form is rewritten 

as y "  = - yf(x) + g(x), then it corresponds exactly to 
the form y T1 = yG(x) + P(x) (Case 1) where G(x) = - f(x) 
and P(x) = g(x). From this it follows that the ideas 
developed in the present study extend to the solution of 
a class of linear second order differential equations 
containing a y T term.
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CHAPTER IV 
MODIFIED ALGORITHM

The author, in beginning work on the I.B.M. program 
for this thesis, decided to adopt a different manner of 
designating the constants., variables and functions, so 
that he could reduce the storage space. The following is 
a list of the changes:

A. The elements of matrix B were designated by 
Pq = BO, p-̂  = Bl, and p^ = B2 and used as 
constants.

B. The elements of matrix J were designated by 
TNMl = - 1, TN *= 2, and TNPl = - 1 and used as
constants.

C. The boundary conditions were designated by 
a = XO, b = XN, A = AA, and B = BB.

D. The function f(x,y) was designated by 
f(x,y) = yG(x) + P(x) + T(x)H(y).

E. The elements of matrix A were designated by
a - = ANMl, a * AN, and a - - ANPl. niy n** J- n j n n i X

F. The first approximation was designated by

G. The elements of matrix U were designated by

H. The elements of matrix L were designated by

mn EN.
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X. The components of vector y were designated by 
y = YN if f(x,y) was linear and by y = Y00 if 
f(x,y) was nonlinear.

J. The function G(x) was designated by GN.
In discussing Case 1, using the notation of the 

preceding paragraph, the elements of the tridiagonal 
matrix A can be expressed as

AN(I) = TN + h2*Bl*GN(l), I = 1,---,N-1 
ANM1(I) = TNMl + h2*BO*GN(l), I = l,...,N-2 4J,
ANP1(I) = TNPl + h2*B2*GN(l), I = 2,---,N-l 

which correspond to equations (3.5A.)- Equations (4.1) 
represent the elements of three n x 1 column matrices.
To compute the values of the column matrices described 
by equations (4.1), it is necessary to define the n x 1 

matrix
GN(I) «= G(x), I = 1, • • • ,N-1 

where G(x) is the coefficient of the y term of the 
function f(x,y) (see subheading D). From the relationship 
of the functions F(l), F(N-l), A(l) and A(N-l) (which are 
defined in the same fashion as on page 11 of this thesis) 
and P(l) = P(N+1) = 0 and P(I) = P(x), I = 2,**«,N where 
P(x) is part of f(x,y) (see subheading D), the following 
function can be computed

B(I) - A(I) - h2*(BO*P(I) + Bl*P(1+1) + B2*P(l+2))
I - 1,-••,N-1

where the function B(I) corresponds to the b term of
4.2



equation (3° 4). It is now possible to summarize the 
procedure corresponding to the summary on pages 13-14* 
in the following manner in terms of the new notation:

20

(I) Compute UN(l) and Z(l)* starting with 1 = 2 *  
using the relations:

UN(1) = AN(1)* Z(l) = B (1)
EN(l-l) = ANMl(I-1)/UN(I-1)

UN(I) = AN(I) - EN(l-l)*ANPl(l)
A(I) = B(I) - EN(I-1)*Z(I-1)

I = 2*•••*N-1
(II) Compute YN(I), starting with I = N-l* using the 

relations:
YN(N-l) = Z(N-1)/UN(N-l)

YN(M) = (Z(M) - ANPl(M+l)*YN(M+l) )/UN(M)
M = N-2*•••* 1

The YN(M) from the above equation is then the solution of 
the problem as outlined in Case 1. As one can observe 
from the previous paragraph* there are few changes in the 
procedure.

To discuss Case 2* it is necessary to find a first 
approximation to the exact solution which is YO in terms 
of the new notation. The function described in Case 2 
has no linear term in y* therefore* it is possible to find 
YO by some elementary method. Assume that YO has been 
found, it is then necessary to define the function GN(I) 
as the partial derivative of f^(x,y) (see subheading D)
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evaluated at the point (x,YO) as I goes from 1 to N-l, 
inclusive. With this function defined, it is now 
possible to write equations analogous to equations 
(3-12) using the new notation. The equations are of the 
same form as equations (4.1). The functions 
F(l), F(N-l), A(l) and A(N-l) are defined in the same 
fashion as on page 11 of this thesis. The function 
P(l) = P(N+1) = 0 and P(l) = f(x,y), I = 2,***,N is the 
function f(x,y) (see subheading D). In order that both 
linear and nonlinear functions can be computed with a 
minimum amount of difficulty, the residual vector r(y^^) 
has been referred to as -B(l) in this thesis. Since it is 
now necessary to compute r(y^^) in order that equation 
(3-11) can be solved, the function B(I) is computed from 
the relationship

B(I) = (S(l) + T(I) - A(l))
I = 1,•••,N-1

where
S(I) = (TNM1*Y0(I) + TN*Y0(I+1) + TNPl*YO(l+2)) 
T(I) * h2*(BO*P(l) + Bl*P(l+l) + B2*P(l+2))

The procedure as described on page 20 of this thesis is 
then immediately applicable and one can proceed to find 
the value of the components of y which are referred to 
as Y00.

In the nonlinear cases, it should be pointed out 
that an iteration procedure is used and continued until
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the components of r(y^^) = 0 to the number of digits as 
specified by the individual using this program.

The remaining idea to be discussed in this study is 
Case 3 of the problem outlined in Chapter III. As was 
pointed out in Chapter III., the approximation YO is not 
readily found by elementary methods. It is important 
to note that in Case 3, if the coefficient of y is a 
constant and P(x) is any function of x, then the first 
approximation YO can be found by elementary methods. If 
the above statement is true., then Case 3 can be solved 
using ideas set forth in Case 2. However, there are 
numerical methods for finding the approximation YO., 
such as the methods found in Chapter II, if the 
coefficients are all functions of x.

The author has not written an I.B.M. program for 
the methods found in Chapter II, except for Henrici's 
method. It is the author's intention to find the 
approximation YO (when it is necessary to use a numerical 
procedure) by employing the ideas set forth in Case 1. It 
has already been shown that the resulting differential 
equation to be solved by neglecting the nonlinear term in 
y in Case is precisely Case 1. For this reason, the 
author has written the program as found in Appendix I and 
the subroutine subprograms as found in Appendix II.
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CHAPTER V
RESULTS AND CONCLUSIONS

In numerical methods for solving any type of 
problem, the error analysis is a very important and 
necessary feature. The two types of error that occur in 
this thesis problem are the round-off error and the 
discretization error. The round-off error is defined by 
the equation

- yn_i + 2yn - yn+1 + h2 (e0f(xn_1,yn_1) + ^ ( x ^ y j

where yn is the solution obtained by applying the algorithm
as described in this thesis. The local round-off error
(as defined by Henrici) may not only be due to the
limitations of the particular computer but also to the
fact that Newton’s method was terminated after a finite
number of terms. Some round-off error may result from
the fact that the system (3*6) was not solved accurately
for other reasons. The value of £ will be the round-offn
error in the literal sense and can be computed from 
equation (5*1)«

The discretization error is defined to be 
e *= y - y(x ), where y is the exact solution of 
equations (3.6) (without round-off) and y(x ) is the exact 
solution of the boundary value problem. As it will not 
be possible in the general case to find the exact solution
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of the boundary value problem., it is necessary to write 
the discretization error in another form. In accordance 
with Theorem 7*8, as well as the conditions implied in 
Theorem 7-7 of Henrici  ̂̂  , the discretization error can 
be written in the form

Ien I < ((xn - a)(b - xn )/2)(GZhp + Khq)
n = l,2,a**,N-l 2

The G term is defined by G = /q |G(s)]ds where G(s) is 
the kernel of the integral equation obtained from an 
integration of the differential equation. The major 
problem that arises now is in determining the kernel,
G(s). If the function f(x,y) is linear, then the
difficulty can be overcome by solving for the kernel as

(7 \described in Hildebrand In terms of the boundary
value problem y 11 = yG(x) + P(x), y(XO) = AA and
y(XN) = BB, the kernel is found to be

((S - a)(x - b )/(b - a))G(J), i < x 
G(s) ■= K(x, i) =

((a - x)(b - J)/(b - a))G(J), J > x
which is clearly continuous when l = x.

The author has applied the modified algorithm to a 
boundary value problem that fit each of the cases as 
described in Chapter III. Each boundary value problem was 
chosen so that it had an analytic solution. The exact 
solution and the approximation to the solution were 
computed and compared. For the limited number of cases 
examined, the discretization error seems to be small.
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However, before more confidence could be placed in the 
discretization error without applying equation (5.2 ), a 
larger number of problems with known solutions would have 
to be computed and the approximation to the solution 
compared with the exact solution. In any case, to 
determine a thoroughly reliable approximation to the 
discretization error, it is necessary to find the kernel 
of the associated integral equation.

Table I and Table II show the amount of compilation 
and computing time necessary to obtain solutions to a 
problem from each of the three cases outlined in 
Chapter III, using the method described in this thesis 
and in accordance with the flow chart on page 28. As 
one can notice, the times are small for finding 19 

ordinates between two end points. Because only 40,000 
positions of core storage are available, the author has 
been able to compute only 49 ordinates between two end 
points. The maximum number of ordinates that could be 
obtained with the present number of storage spaces 
is 57.

There are many other methods, such as those 
described in Chapter II, that could be used to find the 
first approximation YO when one is dealing with problems 
as described in Case 3- The author feels that if one 
would combine some of those methods with Henrici’s, 
it would be possible to obtain better results. It is
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Fig. 1 Flow Chart
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the opinion of the author., that further investigation 
into these possibilities would be of great value in 
extending the work pertaining to linear and nonlinear 
differential equations and that a more detailed study 
of the error analysis, particularly the error associated 
with the nonlinear differential equation, would benefit 
the study of boundary value problems.
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APPENDIX I 
THE SOURCE PROGRAM

C Use format (4E18.8) for floating point data.
C Use format (4l3) for fixed point data.
C Load AA, BB, XO and XN, which are determined by 

y(XO) = AA and y^XN) = BB.
C Load N, ISWl, ISW2, and ISW3 where N is the number 

of intervals.
C ISWl = 2 if BO = 0, Bl = 1 and B2 = 0 and ISWl = 1 

if BO = 1/12., Bl = 10/12 and B2 = 1/12.
C ISW2 = 1 if f(x,y) is linear and 2 if f(x,y) is

nonlinear in y.
C ISW3 = 1 if no y term and 2 if it contains a y

term and 0 if linear.
C Load TOL where TOL is tolerance set by individual 

if f(x,y) is nonlinear.
C Values in dimension statement are dependent on 

storage space of computer.
Dimension AN(xxx), ANPl(xxx), ANMl(xxx), GN(xxx+l) 
Dimension UN(xxx), B(xxx), A(xxx), F(xxx), P(xxx+1) 
Dimension Z(xxx), EN(xxx), YN(xxx), BL(xxx) 
Dimension Y0(xxx+1), S(xxx), Tfxxx), Y00(xxx+1) 
Read 5, AA, BB, XO, XN 
Read 25, N, ISWl, ISW2, ISW3
X00 = XO
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ISWl = (ISW1 - 1)
ISW2 = (ISW2 - 1)
ISW3 = (ISW3 - 1)
If (ISWl) 1, I, 2

2 BO = 0.0 
Bl = 1.0 
B2 = 0.0 
Go to 3

1 BO = 1.0/12.0 
Bl = 10.0/12.0 
B2 = 1.0/12.0

3 FN = N 
TN = 2.0 
TNMl = -1.0 
TNPl = -1.0
H = (XN - X0)/FN 
K = N - 1 
J = N - 2 
If (ISW2) 4, 4, 62 

62 If (ISW3) 6, 6, 60 
60 Call DIFF1 (GN, XO, H, K)

XO = XOO 
Do 41 I = 1, K 

41 AN(I) = TN + H*H*B1*GN(I)

APPENDIX I (Con‘ t . )
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APPENDIX I  (Con ' t . )

Do 45 I = 2, K
45 ANP1(I) = TNP1 + H*H*B2*GN(I) 

Do 46 I = 1, J
46 ANM1(I) = TNMl + H*H*BO*GN(l) 

Call DIFF2 (P, XO, H, N)
XO = XOO
Call DIFF3 (F, XO, AA, 1)
Call D1FF3 (F, XN, BB, K)
P(l) = 0.0 
P(N+1) = 0 . 0  
Do 55 I = 2, J 
F(I) = 0.0 

55 A(I) = 0.0
A(l) = AA - B0*H*H*F(1)
A(K) = BB - B2*H*H*F(K)
Go to 7

6 Call DIFF4 (YO, XO, H, N)
XO = XOO 

29 Y0(1) = 0.0 
Y0(N+1) = 0 . 0  
Read 5, TOL
Call DIFF5 (GN, XO, H, YO, K) 
XO = XOO 
Go to 48
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4 Do 47 I = 1, N
47 YO(l) = 0.0 

Y0(N+1) = 0.0
Call DIFF1 (GN, XO, H, K)
XO = XOO

48 Do 10 I = 1, K
10 AN(I) = TN + H*H*Bl*GN(l)

Do 12 I = 2, K
12 ANP1(I) = TNPl + H*H*B2*GN(I)

Do 13 1 = 1, J
13 ANMl(l) = TNM1 + H*H*B0*GN(I)

If (ISW2) 14, 14, 99
99 Call DIFF6 (P, XO, H, YO, N)

XO = XOO 
Go to 246

14 Call DIFF2 (P, XO, H, N)
XO = XOO

246 P(l) = 0.0 
P(N+1) = 0 . 0  
If (ISW2) 72, 72, 73

72 Call DIFF3 (F, XO, AA, 1)
Call DIFF3 (F, XN, BB, K)
Go to 74

73 Call DIFF7 (F, XO, AA, 1)

APPENDIX I (Con't.)
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Call DIFF7 (F, XN, BB, K)
74 Do 30 I = 2, J 

f (i ) = 0.0 
30 A(I) = 0.0

A(l) = AA - B0*H*H*F(1)
A(K) = BB - B2*H*H*F(K)
If (ISW2) 7, 1, 8 

7 Do 28 I = 1, K
28 B(I) = A(I) - (H*H)*(BO*P(l) + Bl*P(l+l) + B2*P(l+2)) 
44 Z(l) = B(l)

UN(1) = AN(1)
Do 17 I = 2, K
EN(I-I) = ANM1(I-1)/UN(I-1)
UN(I) = AN(I) - EN(I-1)*ANP1(I)

17 Z(I) = B(I) - EN(I-1)*Z(I-1)
YN(K) = Z(K)/UN(K)
M - N - 2

18 YN(M) = (Z(M) - ANP1(M+1)*YN(M+1))/UN(M)
M = M - 1
If (M) 19, 19, 18

19 If (ISW2) 42, 42, 40 
40 If (ISW3) 56, 56, 57 
57 Do 59 I = 2, N
59 Y0(l) = YN(I-l)

APPENDIX I (Con't,)
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ISW3 = (ISW3 - 1)
Go to 29

42 Punch 5, (YN(l), I = 1, K)
Go to 92

8 Do 16 I = 1, K
S(I) = (TNMl*YO(l) + TN*Y0(I+1) + TNP1+Y0(1+2)) 
T(I) = H*H*(B0*P(I) + Bl*P(l+l) + B2*P(l+2))

16 B(I) = - 1.0*(S(I) + T(I) - A(l))
Go to 44

56 Do 20 I = 2, N 
20 Y00(l) = Y0(l) + YN(I-l)

Y00(1) = 0.0 
Y00(N+1) =0.0
Call DIFF8 (P, XO, H, YOO, N)
XO = X00 
Do 22 I = 1, K
S(I) = (TNMl*YOO(I) + TN*Y00(I+1) + TNP1*Y00(1+2)) 
T(I) = H*H*(BO»P(l) + Bl*P(l+l) + B2*P(l4e))

22 BL(I) = - 1.0*(S(l) + T(I) - A(I))
Do 35 I = K
If (ABSF(B(I) - BL(I)) - TOL) 35, 35, 24 

35 Continue 

Go to 23

APPENDIX I (Con't. )

24 Do 33 I = 2, N
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APPENDIX I (Con't.)

33 YO(l) = YOO(l)
Go to 48

23 Punch 5, (YOO(l), 1 = 2 ,  N) 
5 Format (4E18.8)

25 Format (413)
92 Stop 

End
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APPENDIX II 
SUBROUTINE SUBPROGRAM

C For linear case, define DIFF1 - DIFF3 as specified.
C Define all other subprograms as zero.
C For nonlinear case with no y term, define 

DIFF4 * DIFF8 as specified.
C Define all other subprograms as zero.
C For nonlinear case with y term, define 

DIFFl - DIFF8 as specified.
C All terms of subprogram refer to equation 

f(x,y) = G(x)*y + P(x) + T(x)*H(y)
C where H(y) is nonlinear in y.
C Read each comment card preceding each subprogram 

before starting.
C GN(l) is coefficient of y term in f(x,y) and in 

terms of x.
Subroutine DIFFl (GN, X, H, N)
Dimension GN(xxx+l)
Do 102 I - 1, N 
X = X + H 

102 GN(I) = G(x)
Return
End

C p(l) is the function P(x) in f(x,y) in terms of
x when f(x,y) is linear.
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C P(l) =■ 0 if f(xjy) is nonlinear, with or without 
a y term.
Subroutine DIFF2 (P, X, H, N)
Dimension P(xxx+1)
Do 103 I = 2, N 
X = X + H

103 P(I) = P(x)
Return
End

C F(N) = G(x)*y + P(x) in terms of x and y.
Subroutine DIFF3 (F, X, Y, N)
Dimension F(xxx)
F(N) = G(x)*y + P(x)
Return
End

C Y0(l) is approximation to the second derivative of 
f(x,y) without the

C nonlinear term of y if G(x) =» 0, and in terms of x. 
C If G(x) is not zero, then Y0(l) is zero.

Subroutine DIFF4 (Y0, X, H, N)
Dimension Y0(xxx+1)
Do 104 I = 2, N 
X = X + H

104 Y0(l) = Y0(x), approximation to solution.

APPENDIX II (Con't.)
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APPENDIX II (Con’t.)

Return

End

C GN(l) is partial derivative of f(x,y) with respect 
to y.

C If f(x,y) has a nonlinear term., then GN(l) is in 
terms of x and Y0(l+1).

C If f(x,y) has no nonlinear term, then GN(l) * 0. 
Subroutine DIFF5 (GN, X, H, YO, N)
Dimension GN(xxx+l), Y0(xxx+1)
Do 105 I = 1, N 
X = X + H

105 GN(I) = df(x,y)/dy 
Return

End

C P(l) = f(x,y) in terms of x and Y0(l) if f(x,y) is 
nonlinear.

C P(l) = 0 if f(x,y) is linear.
Subroutine DIFF6 (P, X, H, YO, N)
Dimension P(xxx+1), Y0(xxx+1)
Do 106 I = 2, N 
X * X + H

106 P(I) = f(x,y)
Return

End



41

C F(N) = f(x,y) in terms of x and y if f(x,y) is 
nonlinear.

C F(N) = 0 if f(x,y) is linear.
Subroutine DIFF7 (F, X, Y, N)
Dimension Ffxxx)
F(N) = f(xjy)
Return
End

C P(l) = f(x,y) in terms of x and YOO(l) if nonlinear
and P(I) = 0 if linear.
Subroutine DIFF8 (P, X, H, Y00, N)
Dimension P(xxx+1), Y00(xxx+1)
Do 107 I = 2j N 
X = X + H 

107 P(I) = f(x,y)
Return

APPENDIX II (Con't.)

End
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