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ABSTRACT 

The spatial distribution of fracture sets associated with buckle folds has been well 

documented in field studies.  There are difficulties, however, in placing accurate 

constraints on the timing of the initiation of individual fracture sets during the 

deformation history of the fold under in-situ conditions.  This study investigates specific 

conditions that give rise to the initiation of various fracture sets in the hinge and limb of a 

pericline, based on an analysis of the effective stress evolution during the processes of 

buckling and erosional unloading.  A 3D finite element modeling approach is used to 

simulate the effective stress evolution in single-layer folds with a Maxwell viscoelastic 

rheology, while including the influence of overburden stress, pore pressure, and a 

geologic strain rate.  Several material properties and geometric features are varied to test 

their influence on fracture initiation.  The modeling results show that fracturing is most 

heavily influenced by permeability, initial overburden thickness, and erosional unloading.  

Further analysis reveals that six fracture sets, which are observed in natural buckle folds, 

are also observed in the modeling results:  outer arc tensile fractures, outer arc normal 

faults, and inner arc thrusts, all of which strike parallel to the fold axis, are determined to 

be common fracture sets; outer arc tensile fractures that strike perpendicular to the fold 

axis, and thrusts in the limb that strike roughly parallel to the fold axis are determined to 

be less common fracture sets that require low permeability (< 10
-21 

m
2
) folding layers in 

order to initiate; vertical conjugate shear fractures in the outer arc, where the fold axis 

bisects the acute angle between fracture planes, are determined to be a rare fracture set.  

Most importantly, the timing of initiation is determined for each set, thus providing the 

most difficult information to obtain from a field study on fold related fractures.   
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1. INTRODUCTION 

1.1. OVERVIEW 

For over half a century, folded rocks have been studied from a theoretical 

standpoint for the insight they provide in regards to the deformation history of rock 

structures.  There are also practical incentives in the petroleum industry that can be 

gained from studies on the geometry and mechanics of folding.  Large scale anticline 

structures provide some of the most common structural traps for conventional 

hydrocarbon reservoirs (Davis et al., 2012).  Although there are many factors that 

influence the ultimate recovery from these reservoirs, one of the most important is the 

presence of natural fractures.  Open fracture clusters are typically zones of elevated 

permeability that aid in the flow of hydrocarbons through a relatively impermeable rock 

matrix (Odling el al., 1999).  Closed fractures and filled fractures can greatly reduce the 

relative permeability to hydrocarbons (Nelson, 2001), but they may require relatively 

little stimulation to reactivate or re-open (Sibson, 2003).   

Fracture patterns that develop in folded rocks are complex, and they reflect the 

complex nature of the stress and strain evolution during the initiation and growth of the 

folds (Price and Cosgrove, 1990; Nelson, 2001).  This becomes apparent for large scale 

anticline structures, once buried at depth, that are now visible at the surface as a result of 

erosion and exhumation.  Many of these structures have been the focus of field studies to 

help build conceptual fold-fracture models that can be related to similar subsurface 

anticlines (e.g., Stearns, 1964; Bergbauer and Pollard, 2004; Bellahsen et al., 2006; 

Cooper et al. 2006; Stephenson et al. 2007; Al-Mahmoud et al. 2009).  A common 

takeaway from surface field studies is that there is more than one fracture pattern 

associated with folds, each with its own characteristic fracture types and orientations, 

indicating that each pattern formed under a different state of stress and at different times.  

While surface studies are effective in determining the relative timing of fracture 

initiation, based on cross-cutting relationships, they are less effective in determining the 

absolute timing of fracture initiation or even if the fractures initiated pre-folding, during 

folding, or post folding (Twiss and Moores, 2007).   
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There are also geophysical tools and techniques that help determine the location, 

and orientation of fractures in the subsurface.  These include the use of special seismic 

wave interpretation techniques to characterize subsurface fractures on a regional scale 

(e.g., Schoenberg and Sayers, 1995; Gray et al., 2003; Far et al., 2013), and the use of 

acoustic and electrical borehole image logs to characterize fractures on a much more 

localized scale (e.g., Zemanek et al., 1970; Barton and Zoback, 2002).  While still useful 

for delineating subsurface fractures, as well as aiding in the exploration and exploitation 

of subsurface natural resources, these methods are still unable to place any accurate 

constraints on the timing of fracture initiation within a fold. 

A technique that has been commonly used to predict fracture occurrence in 

developed fold shapes, is fold curvature analysis (e.g., Lisle, 1994; Fischer and 

Wilkerson, 2000; Bergbauer and Pollard, 2004; Frehner, 2011).  This technique uses the 

neutral surface concept (Price and Cosgrove, 1990; Twiss and Moores, 2007) to 

distinguish between regions of tensile and compressional failure within a fold (Figure 

1.1).  Above the neutral surface lies a region of layer parallel extensional strain, and 

below lies a region of layer parallel compressional strain.  Thus, the location of tensile 

failure is limited to the region above the neutral surface, and the location of 

compressional failure is limited to the region below the neutral surface (Davis et al., 

2012).  When used as a tool for field studies, however, fold curvature analysis is still 

unable to predict the timing of fracture initiation (Smart et al., 2009).  Furthermore, since 

fold curvature calculations are made based on fold geometry, this technique can only be 

used to quantify strain.  Fold curvature analysis provides no quantification of stress 

magnitudes at any point during the folding history.     

In order to better understand the relationship between folding and fracturing, it is 

necessary to simulate the principal stress evolution during the initiation and structural 

development of a fold.  Mechanical Earth Modeling, using numerical approaches such as 

the finite element method, allows for the simulation of subsurface folding over a 

reasonable geologic deformation period, while using realistic material properties of rocks, 

and including the influence of fluids in the subsurface (e.g., Eckert et al., 2014; Eckert et 

al., 2015) .     
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Figure 1.1. Strain distribution above and below the neutral surface of a fold. 

 

 

As a result of field studies, theoretical analyses, and experimental tests, several 

different processes have been proposed to account for the flexural folding of layers of 

rock.  These include the passive folding of layers, the bending of layers to produce forced 

folds, and the buckling of layers to produce buckle folds (Price and Cosgrove, 1990).  In 

regards to the mechanical analysis of folding, buckle folding has been the most 

extensively studied (Davis et al., 2012).  Buckle folds form when a mechanically 

competent horizontal layer embedded in a less competent matrix is subjected to layer 

parallel compression (Figure 1.2).  If the layer parallel compressive stresses become large 

enough, a mechanical instability will develop causing the competent layer to “buckle” 

(Twiss and Moores, 2007).  These buckle folds can be further subdivided into two 

groups: those that are cylindrical and maintain a constant geometry along their fold hinge 

(Davis et al., 2012), and those that depart from a cylindrical geometry and begin to form 

more irregular fold shapes (Figure 1.3).  Non-cylindrical folds in nature have the 

tendency to take the form of an elongated dome or basin, which is also called a pericline 

(Cosgrove and Ameen, 1999).  

This study utilizes the finite element method to construct a 3D Mechanical Earth 

Model [MEM] capable of simulating the principal stress evolution during the initiation 

and growth of a single-layer, periclinal buckle fold, and predicting the following 

characteristics related to fracture initiation: timing of initiation, location, type, and 

orientation.  The methodology presented in this study, for predicting fracture initiation,  
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Figure 1.2. Buckling of a competent layer in a less competent matrix. (a) Isolated 

competent layer with initial sinusoidal perturbation prior to shortening. (b) Sinusoidal 

wave train produced as a result of buckling. 

 

 

 

Figure 1.3. Cylindrical vs. non-cylindrical fold geometries. (a) Cylindrical fold with a 

constant geometry along the fold hinge. (b) Pericline with a changing geometry along the 

fold hinge. 

 

  

closely follows the procedure presented by Eckert et al. (2014), while introducing an 

additional dimensional component, which allows for the generation of more complex fold 

geometries.  Fracture occurrence can be predicted by combining the complete effective 

stress tensor obtained from the finite element model [FEM], with a particular failure 

criterion at any point in the fold.  The timing of fracture initiation is of critical importance 

in understanding permeability and porosity changes, fluid flow patterns, and fluid 

accumulation potential within a folded rock structure.  This methodology provides a 
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means of distinguishing between the fractures that formed during folding, and the 

fractures that formed post-folding; information that cannot be readily determined from 

surface field studies or subsurface geophysical investigations.     

 

 

1.2. LITERATURE REVIEW 

Of the vast literature that exists on the subject of buckle folding, most studies are 

based on the foundation of classical single-layer fold theory presented in the classic 

works of Biot (e.g., 1957, 1959, 1961), and Ramberg (e.g., 1959, 1961, 1963).  This 

theory concerns the buckling of an isolated and competent viscous, elastic, or viscoelastic 

layer embedded in a less competent matrix.  If the competent layer is given small 

sinusoidal perturbations of different wavelengths, it is predicted that one of the 

perturbations will amplify at a greater rate than all the others.  The wavelength of this 

particular perturbation is termed the dominant wavelength (λd).   

One common assumption in most studies on buckle folding is that buckle folds 

are cylindrical and maintain a constant geometry along the fold hinge.  For this reason a 

2D analysis of buckle folding is deemed sufficient for most applications.  However, field 

studies of natural folds, as well as experimentally produced folds, have shown that while 

buckle folds may maintain a cylindrical shape over much of their length, but they do 

eventually die out (sometimes very abruptly) along their hinges (Price and Cosgrove, 

1990).  This knowledge calls to attention, the need for a 3D analysis of buckle folds in 

order to obtain a complete picture of the geometric and mechanical changes that occur 

during the folding process. 

1.2.1. Non-cylindrical Folding in Three Dimensions.  The majority of studies  

on folding in 3D have focused on analysis of experimentally produced folds using rock 

analogue materials such as modeling clay or paraffin wax.  Experimentally generated 

buckle folds have proven to be a useful tool for investigating 3D fold geometries created 

after a single deformation event (e.g., Dubey and Cobbold, 1977; Ghosh et al., 1995; 

Zulauf and Zulauf, 2005), two successive deformation events (e.g., Odonne and Vialon, 

1987; Grujic, 1993; Johns and Mosher, 1996), and as a result of gravity gliding (e.g., 

Blay et al., 1977; Guterman, 1980).  These studies produced folds bearing a close 
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geometric resemblance to many natural folds, and primarily focused on the geometries 

and fold interference patterns that arise for each study’s respective mode of deformation.  

Ghosh and Ramberg (1968) and Skjernaa (1975) went beyond studying a single mode of 

deformation, and made direct comparisons between fold geometries that develop as a 

result of a single period of compression in one direction, a single period of compression 

in two directions (constriction), and two successive periods of compression in two 

directions (superimposed folding).  Both studies showed that the resulting structures 

produced from shortening in two directions were highly complex and diversely oriented, 

with simplistic dome and basin structures only appearing in the early stages of 

constriction.  It has also been shown for both of these studies that buckle folds generated 

from compression in a single direction often deviate from a cylindrical geometry, and 

moreover, that non-cylindrical folds are not necessarily indicative of shortening in two 

directions.   

The geometric complexity of non-cylindrical folding in 3D has also given 

incentive to the study of tools that aid in the geometric description of folds, such as fold 

interference pattern classification and the use of differential geometry on folded surfaces.  

Theissen and Means (1980) proposed a modification to the traditional Ramsay (1967) 

classification of interference patterns by introducing a new parameter that avoids several 

ambiguities associated with Ramsay’s classification scheme (Figure 1.4).  This 

modification provides a superior means of determining the geometry of complicated 3D 

refold structures, produced by two separate episodes of folding, based solely on the 2D 

interference patterns that appeared on a cut section through the refold structure.  

Graseman et al. (2004) also built on the traditional Ramsay classification scheme by 

introducing three new end members of refold structures to supplement the classical types 

1, 2, and 3 refold structures.  The application of differential geometry to fold studies has 

proven to be useful in providing a detailed geometric description of folds at the surface 

and in the subsurface, especially with the increased availability of 3D data sets from GPS, 

LiDAR, and seismic surveys (Mynatt et al., 2007).  Lisle and Toimil (2007) presented a 

method for describing the geometry of folded surfaces by calculating Gaussian curvature 

and mean curvature at points along the folded surfaces.  They point out that the use of 

differential geometry combined with the 3D data sets mentioned above have provided  
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Figure 1.4. Relationship between interfering folds, and fold interference patterns. (a) 

Geometric relationship between two folding events. (b) Fold interference patterns that 

can develop for different combinations of α and β. (After Ramsay, 1967)  

 

 

confirmation that natural folds often depart significantly from a cylindrical geometry and 

exhibit changes in amplitude, curvature, and wavelength both parallel and perpendicular 

to their hinges.   

Only few selected studies focus on the theoretical modeling of 3D buckle folds.  

Ghosh (1970) performed a mathematical study on “intersecting folds of the first kind,” 

formed during constriction.  The findings show that the ratio of wavelengths of non-

cylindrical folds is dependent on the ratio of the rates of compression in the two 

shortening directions.  Fletcher (1991) derived a “thick plate” growth rate equation for an 

embedded viscous layer in pure shear and concluded that a cylindrical fold form, with the 

fold’s axial plane normal to the maximum shortening directions, amplifies faster than any 

other form.  Fletcher (1995) extended his theoretical analysis of three dimensional 

folding to include the folding of power-law layers, and found that buckle folds in power-

law layers tend to be more cylindrical than in Newtonian viscous layers.  Mulhaus et al. 

(1998) also performed a mathematical analysis of buckle folding for non-Newtonian 

layers and concluded that at least two dominant wavelengths within the plane of a folded 

layer are present in 3D systems.   
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In addition to theoretical studies of 3D buckle folding, there have also been 

several studies that utilized the finite element method to perform a 3D analysis of buckle 

folding.  Kaus and Schmalholz (2006) used 3D finite element analysis [FEA] to conclude 

that axial planes of folds tend to form perpendicular to the maximum shortening 

direction, that 3D folding patterns are relatively insensitive to any shortening applied 

orthogonal to the maximum shortening direction, and that a 3D folding instability causes 

a reduction of the average differential stress in the folding layer.  Using a similar 

approach, Schmid et al. (2008) were able to demonstrate that 3D buckle folds that form 

as a result of constriction, are curved and randomly oriented and do not match the 

theoretically predicted dome and basin structures that should arise from constriction.  

Both of these studies, along with the work of Schmalholz (2008), were also able to show 

that non-cylindrical fold shapes can form during a single, unidirectional shortening event.    

1.2.2. Periclines.  The results of analogue modeling and numerical simulations 

show that the geometry of buckle folds becomes very complicated in 3D systems.  It is 

therefore very difficult to pinpoint a single fold form that is representative of all natural 

folds.  However, field observations as well as experimental folding have shown that 

buckle folds have a tendency to form a periclinal (elongated dome or basin with a doubly 

plunging hinge line) geometry (e.g., Blay et al., 1977; Dubey and Cobbold, 1977; 

Guterman, 1980; Price and Cosgrove; 1990).  Some of the best exposed periclines can be 

observed in the Zagros Mountains, Iran (Figures 1.5a and 1.5b).   

 

 

 

Figure 1.5. Natural pericline in the Zagros Mountains, Iran (Google Earth). (a) Plan view 

of the pericline (central structure outlined in black). (b) Oblique view of the pericline 

showing the doubly plunging hinge line (black dashed line).   
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A detailed description of periclines can be found in Price and Cosgrove (1990) 

and Cosgrove and Ameen (1999).  A summary of their description of periclines is as 

follows: 

(1) The pericline geometry is described by giving the ratio of half wavelength (
𝜆

2
) 

to hinge length (HL), also known as the aspect ratio.  Most natural periclines 

in the upper levels of the crust have aspect ratios between 1:5 and 1:10 (Figure 

1.6). 

(2) Periclines initiate at their center and progressively develop outwards. 

(3) The central part of a pericline typically has a chevron-like profile shape while 

the ends are more rounded. 

(4) Due to strain softening and decreasing compressive stress adjacent to 

periclines they typically form in an en-echelon arrangement. 

(5) Depending on the length of the separation of their hinges, periclines can either 

link up with other periclines to form larger periclines, or they can lock up and 

cease to grow. 

(6) Natural periclines have been observed over a wide range of scales, from 

wavelengths of a few centimeters, to wavelengths of 2km or more in the 

periclinal folds of the Jura Mountains, and wavelengths as large as 10-20 km 

in the periclinal folds of the Zagros Mountains (e.g., Colman-Sadd, 1978; 

Blanc et al., 2003; Stephenson et al., 2007, Casciello et al., 2009).  

Several studies on buckle folding using analogue materials have directly 

referenced a periclinal geometry for the folds that develop during the experiments.  

Dubey and Cobbold (1977) were able to produce non-cylindrical folds using plasticline 

that bore a close resemblance to the “whale-back” pericline at Bude Haven, North 

Cornwall, England.  This recreation was achieved with a single shortening event 

perpendicular to the axial surface of the fold.  They go on to state that the periclinal 

geometry is believed to be a result of the initial layer perturbations as well as a slow 

lengthening of the fold hinge relative to the fold amplification.  Similar fold geometries 

have also been achieved in the works of Ghosh and Ramberg (1968), Skjernaa (1975), 

Blay et al. (1977), Guterman (1980), and Johns and Mosher (1996).  In each of these 

studies the periclinal geometry was achieved with a single shortening event perpendicular  



 

 

10 

 

Figure 1.6. Aspect ratio (λ/2:HL) of a pericline. (a) Oblique view of the half wavelength 

and hinge length of a pericline. (b) Plan view of the half wavelength and hinge length of a 

pericline. 

 

 

to the fold’s axial surface, and was only prominent in the early stages of deformation.  

Progressive deformation led to a more cylindrical geometry.   

Theoretical works provide little to no reference of periclinal geometries in buckle 

folding, however Treagus and Treagus (1981) provide a scenario in which periclines are 

the favored geometry.  In their model for folding, which occurs oblique to the finite strain 

ellipsoid, it is suggested that for generally oblique layers, en-echelon periclines with 

aspect ratios between 1:6 and 1:12 will form in slight constriction, as well as in some 

cases for plane strain.  They also suggest that in oblique layers, the axial migration of the 

periclines prevents the folds from ever becoming cylindrical, as opposed to a perfectly 

horizontal layer where the folds grow more cylindrical with progressive deformation.   

1.2.3. Fracture Patterns Associated With Buckle Folding.  When conducting a 

geomechanical analysis of folding, the timing and location of fracture initiation becomes 

of critical importance.  The vast literature that exists on fold related fractures has 

primarily focused on either the mapping of fractures on surface folds (e.g., Stearns, 1964; 

McQuillan, 1974; Engelder et al. 1997, Wennberg et al. 2006) or the use of FEA to 

predict likelihood of fracture occurrence based on the state of stress (e.g., Casey and 
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Butler, 2004; Eckert et al., 2014; Eckert et al., 2015), and the state of strain (e.g., 

Dieterich, 1970; Sanz et al. 2008, Frehner, 2011).   

 A compilation of numerous field studies on the fracture patterns present on 

exposed folds has given rise to several widely accepted conceptual models of common 

fold related fracture patterns.  Among these is Stearns’ (1964; 1967) conceptual model of 

macrofracture patterns on the Teton Anticline, in Northwestern Montana.  In this first 

comprehensive study on fractures related to a pericline, Stearns identifies five major 

fracture patterns associated with the Teton Anticline, with two of the patterns appearing 

far more often than the rest (Figure 1.7).  Both fracture patterns consist of two conjugate 

shear fractures and an extension fracture with the intermediate principal stress (σ2) 

always oriented perpendicular to the bedding.  For the first pattern the maximum 

principal stress (σ1) is oriented parallel to the strike of the bedding and the minimum 

principal stress (σ3) is oriented in the dip direction.  For the second pattern σ3 is oriented 

parallel to the strike of the bedding and σ1 is oriented in the dip direction.  Stearns and 

Friedman (1972) also conclude that these two fracture patterns initiate as a result of 

folding itself, since the fractures maintain a consistent relationship with the bedding even 

when the orientation of the bedding changes rapidly.   

 

 

 

Figure 1.7. Two most common fracture patterns associated with Teton Anticline, 

northwestern Montana. (a) Pattern 1. (b) Pattern 2. Red dashed lines and blue lines 

represent conjugate shears and extension fractures, respectively. (After Stearns and 

Friedman, 1972)  
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One of the major drawbacks to using natural folds as an indicator for fracture 

occurrence in similar structures is the uniqueness of each fold.  Folds not only vary 

geometrically speaking, but also by the means in which they formed.  Conceptual fold 

fracture models such as those presented by Bergbauer and Pollard (2004), Cooper et al. 

(2006), and even Stearns (1964) cannot be inherently tied to buckle folding because the 

anticlines in each study are fault cored and were not created strictly by buckling.    

Cosgrove and Ameen (1999) present one of the few conceptual fold/fracture 

models that can be specifically applied to buckle folds (Figure 1.8).  This model is based 

on information obtained from previous literature as well as numerous field studies, and it 

includes the orientations of σ1 and σ3 associated with each fracture set based on the 

Navier-Coulomb criterion of failure.  Fracture Sets 1-3 are extensional fractures with σ3 

oriented perpendicular to the failure plane (Figure 1.8a).  Eckert et al. (2014) determined 

that Fracture Set, 1 which occurs in the outer arc of the hinge, normal to the bedding and 

parallel to the fold axis, can initiate for folds with a low permeability (<10
-19

 m
2
), and/or 

high viscosity (>10
21

 Pa s), and/or low overburden thickness (<500m).  It was also 

determined that Fracture Set 2 which occurs in the fold limb, normal to the bedding and 

parallel to the fold axis, can initiate for high permeability folds (>10
-16  

m
2 
) after 

erosional unloading.  Fracture Set 3, which opens normal to the bedding and the fold axis 

could not be explained by the modeling results as the out of plane principal stress 

remained compressive throughout the simulations. 

Fracture Sets 4-9 (Figures 1.8b and 1.8c) are shear fractures, normal faults, and 

thrusts that are commonly observed on buckle folds.  Normal faults at the top of the fold 

hinge (Set 7) and thrusts at the base of the hinge (Set 8) have been well documented in 

the literature and are commonly classified as strain accommodation features (Price and 

Cosgrove, 1990; Lemiszki et al., 1994; Frehner, 2011).  Fracture Set 4 has been 

documented by Cosgrove and Ameen (1999) as a common fracture set occurring in the 

limb of buckle folds, while Sets 5 and 6 have been rarely observed.  Cosgrove and 

Ameen (1999) also point out that the inferred orientation of the principal stresses for each 

fracture set suggests that the fractures did not develop at the same time, and that not all 

the individual fracture sets shown in Figure 1.8 are likely to develop in a single fold. 
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Figure 1.8. Fracture sets associated with buckle folding. (a) Extensional fractures with 

inferred orientations of σ3. (b & c) Shear fractures, normal faults, and thrusts with 

inferred orientations of σ1 and σ3 (After Cosgrove and Ameen, 1999). 

 

 

1.2.4. Limitations of Existing Literature.  While a great amount of knowledge  

has been gained from studies on the structural and mechanical evolution of buckle folds, 

many assumptions and simplifications are made.  The influence of gravity on folding is 

only taken into consideration for a few studies on analogue modeling (e.g., Guterman, 
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1980; Dixon and Tirrul, 1991), analytical solutions (e.g., Schmalholz et al., 2002), and 

FEA (e.g., Eckert et al., 2014; Eckert et al., 2015).  In addition, Eckert et al. (2014; 2015) 

represent the only two studies to date that include the influence of pore pressure and 

permeability.   

     It can clearly be seen from existing literature that timing and location of 

fracture initiation in folded rocks is still not fully understood.  Few analogue modeling 

studies attempt to characterize fold related fractures (Cloos, 1955) and field studies of 

natural folds have difficulties constraining the timing of fracture initiation.  Curvature 

analysis studies have attempted to predict fracture occurrence based on extensional or 

compressional strain within the fold, but the fracturing of rocks is dependent on the state 

of stress (Jaeger et al., 2009), and stress and strain do not always have the same 

relationship (Davis et al., 2012).  In order to truly understand how and when fractures 

initiate in folded rocks a more thorough study of the stress evolution during folding, 

which includes the influence of overburden stress, pore pressure, and a geologic strain 

rate, is necessary. 

 To the author’s knowledge, Eckert et al., (2014) is the only study that focuses 

primarily on conditions that give rise to the onset of fracture initiation in folds, while 

including the influence of overburden stress, pore pressure, and a geologic strain rate.  

Their study focuses on the specific conditions that give rise to the initiation of tensile 

fractures in cylindrical buckle folds using 2D FEA.  As it has been previously stated 

though, most buckle folds are not cylindrical and have a tendency to form a periclinal 

geometry.  For this reason, a 3D FEA approach is necessary in order to include the 

influence of 3D fold geometries.  

 

 

1.3. RESEARCH OBJECTIVES AND QUESTIONS 

The main objective of this study is to use 3D FEA to simulate 3D single-layer 

periclinal buckle folding under in-situ stress magnitudes while including the influence of 

pore pressure.  The FEM used in this study is capable of simulating the stress evolution 

over the entire buckling period as well as during erosional unloading, which occurs as a 

post-buckling process.  By applying a specific failure criterion to the stress results from 
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the 3D FEM, the timing of initiation, and location of individual fracture sets can be 

determined and directly compared to the conceptual model for fractures associated with 

buckle folds presented by Cosgrove and Ameen (1999).  Specific objectives of this study 

include the following: 

(1) Setup a 3D FEM that can simulate the initiation and growth of a single-layer 

pericline with a single, unidirectional shortening event.  

(2) Perform a sensitivity analysis of various parameters (e.g., fold shape, 

permeability, overburden stress, and competence contrast) to study their influence 

on the location and type of fractures that can develop in the hinge and limb of a 

pericline. 

(3) Use stress results from the FEM to identify individual fracture sets based on 

fracture orientations relative to the folding layer and bedding planes. 

These objectives will be used to address the following questions: 

(1) Can periclines (i.e., non-cylindrical folds) be produced by a single, unidirectional 

shortening event? 

(2) At what times during the folding process do shear and tensile failure occur in the 

hinge and limb of a pericline? 

(3) What is the influence of geometric properties (aspect ratio, amplitude) and 

material parameters (permeability, viscosity contrast) on shear and tensile fracture 

initiation? 

(4) Can the results from this study help determine the timing of initiation and the 

spatial distribution of the fracture sets presented in Cosgrove and Ameen’s (1999) 

conceptual model?  
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2. THEORETICAL BACKGROUND 

2.1. ROCK PROPERTIES AND ROCK MECHANICS 

Any study that seeks to simulate a physical process occurring below the Earth’s 

surface requires a thorough understanding of the materials that are present in the 

subsurface, and how those materials interact with one another.  For a study concerning 

geologic folding, the materials of interest include the rocks that are being folded, as well 

as any fluids that are present.  Rocks are complex materials consisting of a solid granular 

matrix and a system of interconnected pores that can store and transmit fluids.  The 

matrix portion of rocks is an aggregate of minerals with varying compositions, grain 

sizes, and physical and chemical properties.  The pore system within rocks is a function 

of the size of the individual mineral grains, and their spatial arrangement.  For this 

reason, the total pore volume within a rock and the degree of connectivity between 

individual pores is constantly changing with time, and is dependent not only on a rock’s 

composition, but also on its location in the subsurface.   

The complex nature of rocks subsequently makes the prediction of their behavior, 

when subjected to applied loads, very complicated.  The discipline of rock mechanics 

seeks to explain how rocks interact with one another, how fluids will move through 

rocks, and how rocks will fail under the influence of applied loads.  In regards to rock 

mechanics, this study is concerned with the failure of rocks over thousands of years of 

continuous deformation.   

In order to fully understand the methodology and results presented in this thesis, 

the reader must have a good comprehension of the following properties related to rocks 

and subsurface fluids:  rock density (bulk and dry bulk), fluid density, porosity, 

permeability, elastic parameters (specifically Young’s modulus and Poisson’s ratio), and 

rheological behavior.  In addition the reader should have a basic knowledge of the stress 

tensor, principal stresses, effective stresses, differential stress, mean stress, pore pressure, 

shear failure, tensile failure, and Mohr circles.  Going forward, the author assumes these 

concepts to be common knowledge, and therefore a description of each concept is not 

included in this thesis.  A detailed description of rock properties and rock mechanics can 
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be found in standard geology and rock mechanics text books (e.g., Fjar et al., 2008, 

Jaeger et al., 2009; Turcotte and Schubert, 2014). 

 

 

2.2. BUCKLE FOLDING THEORY 

2.2.1. Single Layer Fold Theory.  Single layer fold theory centers on the  

buckling of an isolated competent folding layer, embedded in a less competent matrix, 

when subjected to layer parallel compression.  The theory predicts that for a layer with 

numerous sinusoidal perturbations with different wavelengths, one perturbation will 

amplify faster than all the rest.  This perturbation has a characteristic wavelength, which 

is termed the dominant wavelength (λd).  Biot (1961) and Ramberg (1961) derived a 

mathematical relationship that predicts λd for a Newtonian viscous layer and matrix in 

plane strain, with the maximum shortening direction parallel to the folding layer.  Using 

this relationship, λd is given as: 

 

            3
L

d

M

μ
λ = 2πh

6μ
                                                      (1)                  

 

where h is the layer thickness, μL is the viscosity of the folding layer, and μM is the 

viscosity of the matrix.  Biot (1961) also derived a mathematical relationship that predicts 

λd for the case of a competent elastic folding layer embedded in a less competent viscous 

matrix.  This relationship is given as: 

 

              
2

L
d

L

E
λ = πh

P(1 - ν )
                                                     (2) 

 

Where EL is the Young’s Modulus of the folding layer, P is the layer-parallel stress in the 

folding layer, and νL is the Poisson’s ratio of the folding layer.  

 Schmalholz and Podladchikov (1999) later derived a dominant wavelength 

solution for the buckling of a competent viscoelastic layer embedded in a less competent 

viscous matrix.  Their primary motivation in deriving this solution was to resolve some of 
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the problems associated with equations (1) and (2).  Among these problems was the 

assumption that buckle folding could be approximated as a purely viscous or a purely 

elastic deformation mode without any true knowledge of which deformation mode is 

dominant.  They present a parameter, termed the dominant wavelength ratio (R), which 

predicts, whether buckling is dominated by viscous or elastic behavior.  R is defined as 

the ratio of the viscous dominant wavelength (λdv) over the elastic dominant wavelength 

(λde): 

 

3
dv L

Mde

λ μ P
R =  = 

λ 6μ G
                          (3) 

 

where G is the shear modulus of the folding layer.  If R < 1 then λd is approximated by 

equation (1), and if R > 1 then λd is approximated by equation (2).  Solutions to the 

approach by Schmalholz and Podladchikov are applicable to layers that exhibit a 

Maxwell viscoelastic rheological behavior (Jaeger et al., 2009), which can be represented 

as a spring and a dashpot in series (Figure 2.1).  In this setup the spring acts as the elastic 

(instantaneous) response of a material to an applied load while the dashpot acts as the 

Newtonian viscous (time-dependent) response.    

 

 

 

Figure 2.1.  Mechanical model of a spring and a dashpot in series to represent Maxwell 

viscoelastic behavior.  Under a continuous applied load (σ) the spring will rapidly deform 

elastically and then gradually return to its initial undeformed state as the dashpot begins 

to deform viscously.  
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2.2.2. Stress Distribution and Evolution in Buckle Folds.  Fracture orientation 

in rocks is dependent on the orientation of the principals stresses at the time of failure.  

The dynamic nature of folding gives rise to continuously changing principal stress 

orientations within the folding layer.  Dietrich and Carter (1969) analyzed stress 

distributions in a high amplitude 2D viscous fold, embedded in a less competent viscous 

matrix, using a modified version of the finite element method.  Figure 2.2 shows the 

orientations of σ1 at various stages of shortening for a fold with a viscosity contrast (
μL

μM
) 

of 42, a wavelength over thickness ratio (
λ

h
) of 12, and an initial fold amplitude (A0) of 

0.1h.  In the early stages of shortening, σ1 is oriented parallel to the folding layer and is 

highly compressive.  In the later stages of shortening, fold amplitude increases, and σ1 

magnitudes and orientations change in both the limb and hinge of the fold.  Along the 

limb, σ1 begins to decrease in magnitude, and also begins to rotate to increasingly higher 

inclinations to the folding layer.  In the outer arc of the fold hinge, σ1 becomes oriented 

perpendicular to the folding layer, and decreases rapidly in magnitude as a result of layer 

parallel extension.  In the inner arc of the fold hinge, σ1 remains parallel to the folding 

layer, and increases in magnitude as a result of layer parallel compression.  The results 

from the simulations by Dieterich and Carter also show that low magnitude layer-parallel 

tensile stresses are expected to develop in the outer arc of the fold hinge.    

 

 

 

Figure 2.2. Orientations of σ1 within a buckle fold for various stages of shortening (After 

Dieterich and Carter, 1969). 
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 While fracture orientation depends on the orientation of the principal stresses, a 

rocks true ability to fracture depends on the magnitudes of the effective principal stresses.  

Eckert et al. (2014) document the temporal evolution of the minimum effective principal 

stress (σ'3) magnitude as part of their study on the initiation of tensile fractures during the 

buckling of a 2D viscoelastic fold embedded in a less competent viscoelastic matrix.  In 

the hinge of the fold (Figure 2.3), σ'3 can be observed to evolve differently for the outer 

arc and inner arc.  In the outer arc of the hinge (Figure 2.3b), σ'3 initially increases up to a 

certain point.  At this point σ'3 decreases rapidly and then steadily increases again.  For 

the case of Element 1 this rapid decrease occurs at ~16% shortening and the lowest 

magnitude of σ'3 is reached at ~26% shortening.  This rapid drop in σ'3 indicates that for 

Element 1, tensile fractures will be most likely to initiate during the 16-26% shortening 

window.  The temporal evolution of σ'3 in the inner arc of the hinge (Figure 2.3c) follows 

a trend very similar to that of the fold limb (Figures 2.4b and c).  For both cases σ'3 

steadily increases with only some minor drops in σ'3 for select elements.  These trends 

indicate that tensile failure is unlikely to occur in the inner arc of the fold hinge or in the 

fold limbs unless σ'3 is tensile at the start of the shortening period.       

 

 

 

Figure 2.3. Temporal evolution of σ'3 magnitudes in the fold hinge. (a) Illustration of 

elements 1-12 in the fold hinge.  Plot of σ'3 vs percent shortening included for elements 

1-6 (b) and 7-12 (c) (After Eckert et al., 2014).  

 

 

2.2.3. Strain Distribution in Buckle Folds.  Strain within a folding layer can be 

accommodated in a number of different ways depending on the material properties of the 

layer, as well as the fold geometry (Ramsay, 1967).  Many studies using finite element 

analysis (e.g., Dieterich and Carter, 1969; Parrish, 1973; Frehner, 2011) have shown that  
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Figure 2.4. Temporal evolution of σ'3 magnitudes in the fold limb. (a) Illustration of 

elements A-L in the fold limb.  Plot of σ'3 vs percent shortening included for elements A-

F (b) and G-L (c) (After Eckert et al., 2014).  

 

 

single layer buckling of a competent layer embedded in a less competent matrix will 

produce parallel folds (folds that retain a constant orthogonal thickness).  There are two 

well-known end members of internal deformation associated with parallel folding: 

tangential longitudinal strain [TLS] and flexural flow [FF] (Ramsay, 1967).   

TLS is characterized by principal strain axes that are oriented either parallel or 

perpendicular to the folding layer and by strain concentration in the fold hinges (Figure 

2.5a).  Within TLS folds lies a surface where the strain is zero.  This surface, called the 

neutral surface, separates regions of layer parallel extension from layer parallel 

compression in the hinge of the fold.  TLS folding is typically associated with 

homogenous, isotropic materials (Price and Cosgrove, 1990).   

FF is characterized by simple shear strain that is concentrated in the limb of the 

fold (Figure 2.5b), and zero strain in the fold hinges.  This type of folding is analogous to 

the bending of a stack of papers where the individual sheets slide past one another.  FF 

folding is typically associated with materials that exhibit a high degree of mechanical 

anisotropy (Price and Cosgrove, 1990).   

Shimamoto and Hara (1976), Lan and Hudleston, (1995), and Huddleston et al. 

(1996) all use finite element analysis to show that TLS appears to be the dominant 

mechanism for viscous folding models.  It should be noted however that studies of 

natural folds have shown that most folds exhibit strain patterns that represent some 

combination of TLS and FF. (Ramsay, 1967). 
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Figure 2.5. Strain distribution in a fold developed by tangential longitudinal strain (a) and 

flexural flow (b). Strain ellipses show that strain is concentrated in the hinges for a TLS 

fold and in the limbs for a FF fold (after Hudleston et al., 1996). 

 

 

2.3. FRACTURE PREDICTION 

The following paragraph is a brief summary of brittle failure of rocks. A more    

thorough description of the deformation and failure of rocks can be found in Jaeger et al. 

(2009).     

Rocks can behave in a number of ways when subjected to applied loads.  In some  

cases the rock can deform, and subsequently return to the original undeformed state when 

the applied load is removed (elastic deformation).  In other cases the rock can experience 

permanent deformation while still being able to sustain increasing applied loads (ductile 

deformation).  When applied loads become too large though, and stresses can no longer 

be accommodated by elastic or ductile deformation, the rock will fail abruptly; termed 

brittle failure.  The two basic types of brittle failure include shear fractures, which are 

characterized by shear displacement along the fracture surface, and tensile fractures, 

which are characterized by an opening of the fracture and no shear displacement.  Rock 

failure can be analyzed by combining the state of stress, with rock strength, and a 

particular failure criterion (e.g., Mohr-Coulomb, Von Mises, Hoek-Brown, Griffith).  
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This analysis can determine whether a rock will fail, how it will fail (i.e., shear or tensile 

fractures), and the fracture orientation.   

2.3.1. Combined Griffith/Navier-Coulomb Failure Criterion.  Experimental  

deformation of rocks under triaxial compression have yielded two common relationships 

between principal stresses at failure: linear and non-linear (Figure 2.6).  The Navier-

Coulomb and Griffith criteria of brittle failure have been examined to explain both of 

these relationships (Price and Cosgrove, 1990). 

 

 

 

Figure 2.6. Linear and non-linear relationships between principal stresses at failure.  Note 

that for a linear relationship the acute angle between fracture planes remains the same 

with an increase in σ3.  For a non-linear relationship, the acute angle between fracture 

planes increases with an increase in σ3 (After Price and Cosgrove, 1990).   

 

 

 The Navier-Coulomb criterion of brittle failure predicts that shear failure will 

occur on a surface if the shear stresses become high enough to overcome the cohesive 

strength of a rock, and the frictional resistance to sliding (Price and Cosgrove, 1990).  
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This criterion can be plotted as a failure envelope on a Mohr stress diagram (Figure 2.7a) 

using the following equations: 

 

n0τ = C + σ μ             (4) 

μ = tanψ          (5) 

 

where τ and σn are the shear and normal stresses, respectively, which are acting on the 

surface, C0 is the cohesion of the rock, μ is the coefficient of friction, and ψ is the angle 

of internal friction.  The linear geometry of the failure envelope for the Navier-Coulomb 

failure criterion allows for the prediction of the acute angle between σ1 and the shear 

plane.  This angle, termed the failure angle (θ), is given by:   

 

ψ
θ = 45 - 

2
                             (6) 

 

On a Mohr stress diagram, the acute angle between the normal stress axis and the normal 

to the failure envelope is equivalent to 2θ (Figure 2.7a).  Since the sign of θ does not 

influence the shear stress, two conjugate shear planes of failure are possible at angles of 

±θ to σ1 (Figure 2.7b).   

 

 

 

Figure 2.7. Navier-Coulomb brittle failure criterion. (a) Navier-Coulomb failure envelope 

on a Mohr stress diagram. (b) Conjugate shear fractures that can initiate based on the 

Navier-Coulomb criterion.  σ1 bisects the acute angle (2θ) between the two failure planes.    
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The Griffith criterion of brittle failure was developed based on the assumption 

that rocks contain numerous elliptical shaped micro-cracks (Price and Cosgrove, 1990).  

Griffith (1925) suggested that stress concentrations around the tips of these cracks could 

explain the vast differences observed between theoretical and experimental values of a 

materials tensile strength.  Griffith ultimately developed a non-linear relationship 

between principal stresses at the time of failure, which, when expressed as a failure 

envelope on a Mohr’s stress diagram, takes the form: 

                                                                                                                                                            

2 2
nτ + 4Tσ - 4T = 0                                                   (7) 

 

where T is the tensile strength of the rock.  It can be seen from this equation that the 

cohesion (τ when σn = 0) of the Griffith failure criterion is twice the tensile strength of the 

rock.   

 Using the concept that a compressive stress field will cause the Griffith micro-

cracks to close, and subsequently allow shear stresses to be generated along the surfaces 

of the cracks, a hybrid failure criterion can be implemented which includes the Griffith 

failure criterion and the Navier-Coulomb failure criterion (McClintock and Walsh, 1962).  

The shape of the failure envelope for the combined Griffith/Navier-Coulomb failure 

criterion can be determined by combining the two envelopes from each respective 

individual failure criterion.  The failure envelope in tension is determined using equation 

(7).  In compression, the failure envelope takes the following form: 

 

nτ = 2T + σ μ                        (8) 

 

which is identical to equation (4), except C0 has now been replaced with 2T.  A benefit of 

using the combined Griffith/Navier-Coulomb failure criterion is that a distinction can be 

made between whether tensile failure or shear failure will occur based on the differential 

stress (σd).  If σd > 4T (shear regime), the Mohr circle will touch the shear failure 

envelope before σ3 = -T, and thus only shear failure is possible (red circle in Figure 2.8).  

Shear failure can be separated into two categories: extensional shear failure, which  
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Figure 2.8. Combined Griffith/Navier-Coulomb failure criterion. In the tensile regime 

only tensile failure is possible (green circle). In the shear regime only shear failure is 

possible (red circle).  

 

 

requires 4T < σd < 5.66T; and compressional shear failure, which requires σd > 5.66T 

(Sibson, 2003).  For the purpose of this study, however, shear failure is only considered 

as a whole, and no distinctions are made between extensional shear failure and 

compressional shear failure.  If σd < 4T (tensile regime), the radius of the Mohr circle 

never becomes large enough to touch the shear failure envelope, and due to the shape of 

the Griffith parabola, failure can only occur when σ3 = -T (green circle in Figure 2.8).   

2.3.2. Fracture Potential.  When trying to predict fracture occurrence in a  

geologic structure by means of stress analysis, three issues must be addressed.  First it 

must be determined if fractures will actually be initiated.  Second, if fractures are 

initiated, a distinction must be made between shear fractures and tensile fractures.  Third, 

how do fractures evolve once they initiate?  As will be seen in later sections, the 

methodology presented in this study is not capable of accounting for fracture propagation 

after initiation, and thus the third issue is beyond the scope of this investigation.  

Connolly and Cosgrove (1999), and Eckert and Connolly (2004) utilize a concept called 
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the fracture potential method [FP], based on the combined Griffith/Navier-Coulomb 

failure criterion, which addresses the first two issues.  In addition, the geometric 

relationship between the principal stresses and the failure planes for the combined 

Griffith/Navier-Coulomb failure criterion allows for the orientations of the failure planes 

to be calculated using the complete stress tensor.   

 Fracture potential can be further subdivided into two categories: fracture potential 

in the shear regime [sFP], and fracture potential in the tensile regime [tFP].  Since failure 

in the shear regime can only occur if the Mohr circle touches the shear failure envelope, 

sFP can be defined by the relationship between the actual differential stress and the 

critical differential stress at failure (σd,crit), for the same value of mean stress (σm).  This 

relationship can be expressed using the following ratio: 

 

d

d,crit

σ /2
sFP = 

σ /2
                       (9) 

 

If this ratio reaches 1 it indicates that the Mohr circle has touched the shear failure 

envelope, and shear failure occurs (Figure 2.9a).  From Figure 2.9a it can be seen that 

σd,crit can be determined using the following equations: 

 

d,crit
m

σ
 = (x + σ )sinψ

2
               (10) 

0C
x = 

tanψ
                  (11) 

 

where C0 = 2T.  Substituting equations (10) and (11) into equation (9) gives sFP as: 

 

d

m0

σ
sFP = 

2(C cosψ+σ sinψ)
                   (12) 

 

In addition it should be noted that if σd < 4T, shear failure is not possible, and sFP is 

assigned a value of 0. 



 

 

28 

 

Figure 2.9. Illustration of the fracture potential concept using Mohr stress diagrams. (a) 

sFP is determined by taking the ratio of the actual differential stress (σd for red 

semicircle) over the critical differential stress at failure (σd for black semicircle). Failure 

occurs when sFP = 1. (b) tFP is determined by taking the ratio of the minimum principal 

stress over the tensile strength of the rock.  Failure occurs when tFP = -1.   

 

 

In the tensile regime, shear failure is not possible, and tensile failure can only 

occur when σ3 = -T.  Thus, tFP can be defined by the ratio of σ3 over T: 

 

3σtFP = 
T

                 (13) 

If this ratio reaches -1 it indicates that σ3 = -T, and tensile failure occurs (Figure 2.9b).  

Since the Mohr circle is unable to reach the Griffith parabola in the shear regime, tFP is 

assigned a value of 0 when σd > 4T. tFP is also assigned a value of 0 for an additional 

case when σd < 4T and σ3 > 0.  For this case the Mohr circle lies in the tensile regime, 

however, since σ3 > 0 stresses never become tensile, tensile failure will not occur.  

 

 

2.4. STEREOGRAPHIC PROJECTIONS AND STEREONETS 

In the world of geology, stereographic projections are a useful method for  

visualizing the 3D orientations of lines and planes using a 2D surface.  If the lines and 

planes are thought of as passing through the center of a sphere (Figure 2.10a), their 

intersection with the lower hemisphere is the projection (Figure 2.10b).  The Schmidt 

equal-area stereonet is one of the most versatile tools for plotting stereographic 
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projections (Davis et al., 2012).  To plot the orientations of lines and planes on a 

stereonet only two measurements are necessary; azimuth and inclination.  Azimuth is 

measured clockwise from north with values that range from 0°-360°.  Inclination is 

measured from a horizontal plane with values that range from 0°-90°.  For the purpose of 

this study only a basic knowledge of how lines and planes are plotted on a stereonet is 

necessary.  Additional details regarding relationships between lines and planes on a 

stereonet can be found in standard structural geology textbooks (e.g., Ragan, 1973; Davis 

et al., 2012).    

 

 

 

Figure 2.10. Stereographic projection of a line and a plane. Lines and planes passing 

through the center of a sphere (a) project as points and great circles, respectively, in the 

lower hemisphere (b).  

 

 

2.4.1. Plotting Lines on a Stereonet.  The azimuth and inclination of a linear  

feature are referred to as the trend and plunge, respectively.  For a line with a trend of 30° 

and a plunge of 60° the procedure for plotting the trend and plunge on a stereonet is as 

follows: 

(1) Place a tracing paper overlay on the stereonet, being sure that north (N) 

corresponds to an azimuth of 0° (Figure 2.11a).   
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(2) Locate the azimuth marker of 30° on the outer perimeter of the stereonet and 

mark it as point x (Figure 2.11a). 

(3) Rotate the overlay until the point x is at the top end of the north-south line of 

the stereonet (Figure 2.11b). 

(4) Plot the plunge as point y by counting in 60° from the perimeter of the 

stereonet (Figure 2.11b). 

(5) Rotate the overlay back so that point x is once again at the 30° azimuth 

marker.  The resulting point y represents the stereographic projection of a line 

with a trend of 30° and a plunge of 60° (Figure 2.11c). 

 

 

 

Figure 2.11. Procedure for plotting the projection of a line with a trend of 30° and a 

plunge of 60° on a stereonet. (a) Mark the trend of the line along the perimeter of the 

stereonet with the point x.  (b) Rotate overlay until x is at the top of the north-south line. 

Plot the plunge of the line as point y by counting in 60° from the stereonet perimeter. (c) 

Rotate overlay back to original position. Point y represents the projection of a line with a 

trend of 30° and a plunge of 60°. 

 

 

2.4.2. Plotting Planes on a Stereonet.  The azimuth and inclination of a planar 

feature are referred to as the strike and dip, respectively.  For a plane with a strike of 30° 

and a dip of 30° the procedure for plotting the strike and dip on a stereonet is as follows: 

(1) Place a tracing paper overlay on the stereonet, being sure that north (N) 

corresponds to an azimuth of 0° (Figure 2.12a). 

(2) Locate the azimuth marker of 30° on the outer perimeter of the stereonet and 

mark it as point x (Figure 2.12a). 
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(3) Rotate the overlay until the point x is at the top end of the north-south line of 

the stereonet (Figure 2.12b). 

(4) Plot the dip as a great circle by counting in 30° from the right perimeter of the 

stereonet. The dip direction follows the right-hand rule where the thumb 

points in the strike direction and the rest of the fingers point in the dip 

direction (Figure 2.12b). 

(5) Rotate the overlay back so that the point x is once again at the 30° azimuth 

marker.  The resulting great circle represents the stereographic projection of a 

plane with a strike of 30° and a dip of 30° (Figure 2.12c).  

 

 

 

Figure 2.12. Procedure for plotting the projection of a plane with a strike of 30° and a dip 

of 30° on a stereonet. (a) Mark the strike of the line along the perimeter of the stereonet 

with the point x.  (b) Rotate overlay until x is at the top of the north-south line. Plot the 

dip of the plane as a great circle by counting in 30° from the right side of the stereonet 

perimeter (use right hand rule to determine dip direction). (c) Rotate overlay back to 

original position. Great circle represents the projection of a plane with a strike of 30° and 

a dip of 30°. 

 

 

2.5. FINITE ELEMENT METHOD 

Many physical phenomena in nature can be mathematically described as a 

continuous process using partial differential equations [PDE], where a dependent variable 

is a function of more than one independent variable.  These PDE’s can be solved 

analytically to obtain unique solutions of the unknown dependent variable at various 

times and locations within a physical body.  In some cases, however, the geometry of the 
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physical body and/or the boundary conditions associated with the PDE’s are too complex, 

and an analytical solution does not exist.  When analytical solutions cannot be 

determined, numerical methods such as the finite element method may be used to give an 

approximate solution of the unknown variable.   

 What follows in this section is a basic summary of two approaches to the finite 

element method: the standard discrete system, and the generalized finite element method.  

A complete mathematical description of the finite element method is beyond the scope of 

this study.  A more detailed investigation of the finite element method is given in 

Zienkiewicz et al. (2005). 

2.5.1. The Standard Discrete System.  The finite element method is built on the  

fundamental concept that the solution to a continuous problem (continuum) can be more 

easily determined if that continuum is divided (discretized) into a finite number of 

individual components.  In engineering, this concept is analogous to discretizing a 

physical domain, over which a continuous physical process is acting, into a finite number 

of sub-domains (elements).  These elements are interconnected at a number of discrete 

points (nodes) along the element’s boundaries (Figure 2.13).  The displacements of these 

nodes are the unknown values for the problem of interest.  Assuming linear elasticity, the 

relationship between nodal forces and displacements for an individual element takes the 

following form: 

 

e e e eq = K u + f                      (14) 

 

where q
e
 represents the nodal forces, K

e
 is the element stiffness matrix, u

e
 represents the 

nodal displacements, f
e
 represents the nodal forces required to balance any distributed 

loads acting on the element, and K
e
u

e
 represents the forces induced by displacement of 

the nodes.  If the two conditions of 

(a) displacement compatibility  

and 

(b)  nodal force equilibrium  

are satisfied throughout the domain, equation (14) for each individual element can be 

combined to give a global set of equations which can be represented as: 
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Ku + f = 0                    (15) 

 

where K is the global stiffness matrix.   

 

 

 

Figure 2.13. Discretization of the cross section of a borehole (physical domain) using 

finite elements with interconnecting nodes. 

 

 

2.5.2. The General Finite Element Method.  The method described in Section 

2.5.1 is known as the standard discrete system, which is capable of solving for solutions 

of the unknown parameter (u) at the nodes of an element, while assuming linear 

elasticity.  If a problem arises (that may or may not assume linear elasticity) which is 

posed in the form of a PDE with a set of boundary conditions, another method can be 

utilized to solve for approximations of the unknown parameter.  This method, stated as 

the generalized finite element method, seeks approximate solutions of the unknown 

parameter (u) in the form: 

 
n

a=1

a au N u                    (16) 
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where Na are shape functions given in terms of independent variables (such as spatial 

coordinates), and au are the approximate solutions of the unknown parameter.  For 

problems that take the form: 

 

A(u) + B(u) = 0           (17) 

 

where A(u) represents a differential equation acting on a domain (Ω), and B(u) represents 

boundary conditions acting on the domain boundary (Γ).  A(u) and B(u) can be multiplied 

by an arbitrary function (v) and integrated to give: 

 

Ω Γ

vA(u)dΩ + vB(u)dΓ = 0          (18) 

 

An approximation to equation (18) can be made by inserting two approximate functions; 

the approximate function presented in equation (16), and an additional approximate 

function (w) to be used in place of the arbitrary function (v): 

 

n

b=1

b bv w δu           (19) 

 

where bδu  is an arbitrary parameter.  Inserting the approximations from equations (16) 

and (19) into equation (18) gives: 

 

Ω Γ

a a a ab b bδu w A(N u )dΩ + w B(N u )dΓ  = 0
 
 
 
             (20) 

 

Since bδu  is arbitrary, it can be divided on both sides of the equation to give: 

 

Ω Γ

a a a ab bw A(N u )dΩ + w B(N u )dΓ = 0       (21) 
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By using a procedure known as “the Galerkin method,” the approximate function (wb) is 

set equal to the shape function (Nb); which results in the equation: 

 

Ω Γ

a a a ab bN A(N u )dΩ + N B(N u )dΓ = 0      (22) 

 

Equation (22) is now an integral equation of the form Ku + f = 0, and can be used to 

solve for au , not only at the nodes of an element, but within the element and at any 

location along the element boundary.   
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3. METHODOLOGY 

3.1. NUMERICAL MODELING APPROACH 

Because the finite element method solves for approximate solutions of an  

unknown parameter, a general rule of thumb is that the more elements there are in a given 

domain, the lower the magnitude of any errors associated with the approximation will be, 

and the closer the results will be to the analytical solution (Zienkiewicz et al., 2005).  The 

downside to introducing a large number of elements is that the resulting system of 

equations can become very large, making hand calculations tedious and impractical.  

Fortunately, the finite element method can be readily incorporated into the numerical 

algorithms of computer software programs; capable of handling very large element 

numbers, and solving very large equation systems in a matter of minutes.  In order to 

successfully employ a computer software program that uses the finite element method to 

simulate a physical process, both an understanding of the equations that govern the 

physical process, and the ability of the software to solve those equations is necessary.   

3.1.1. Governing Equations for 3D Viscoelastic Folding.  This study simulates  

the buckling of a competent viscoelastic folding layer embedded in a less competent 

viscoelastic matrix.  The viscoelastic rheology is incorporated by following a Maxwell 

model approach (e.g., Mancktelow, 1999; Schmalholz et al., 2001; Eckert et al., 2014), 

which allows for instantaneous linear elastic behavior for fast strain rates, and Newtonian 

viscous behavior for slower strain rates.  For this study it is assumed that buckle folds 

have a constantly changing geometry along the fold axis, and thus a 3D equation system 

is introduced to allow for x, y, and z components of displacement during folding.  The 

influence of pore pressure is also taken into consideration for this study by utilizing 

effective stress analysis.   

Assuming that the material for this study consists of a compressible rock with an 

incompressible pore fluid (water), and that mass is conserved everywhere, the following 

must be satisfied: the equations of equilibrium, conservation of mass, equations of pore 

fluid flow, and constitutive equations for a compressible Maxwell body.  Unknown 

parameters for the problem include: all six stress tensor components (σxx, σyy, σzz, σxy, σxz, 
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and σyz), the pore pressure (Pp), the material velocities in the x, y, and z directions (vx, vy, 

and vz), and the material density (ρm).  11 unknowns require 11 governing equations.   

For a 3D body, the equations of equilibrium using effective stresses are given by 

(Jaeger et al., 2009): 

 

pxx xz
( P ) σσ σ

 -  +  +  = 0
x x y z

xy  

   
                (23) 

yy p xy yzσ ( P ) σ σ
 -  +  +  = 0

y y x z

   

   
               (24) 

p yzzz xz
m

( P ) σσ σ
 -  +  +  + ρ g  = 0

z z x y
z

  

   
                   (25) 

 

where gz is the gravitational acceleration in the z-direction and α is the Biot coefficient.  

The constitutive relationships for a compressible 3D Maxwell body are: 

 

iso dev dev
pxx xx xx

xx

Pσ σ σ1 α 1
ε  =  -  +  + 

3K t 3K t 2G t 2μ

 

  
         (26) 

iso dev dev

yy pσ P σ σ1 α 1
ε  =  -  +  + 

3K t 3K t 2G t 2μ

yy yy

yy

  

  
         (27) 

iso dev dev
pPσ σ σ1 α 1

ε  =  -  +  + 
3K t 3K t 2G t 2μ

zz zz zz
zz

 

  
         (28) 

dev

xy xy

xy

σ σ1
ε  =  + 

2 t 2

dev

G 




               (29) 

dev

xz xz
xz

σ σ1
ε  =  + 

2 t 2

dev

G 




                (30) 

dev

yz

σ σ1
ε  =  + 

2 t 2

dev

yz yz

G 




               (31) 

 

where ε  is the strain rate, K the bulk modulus, G the shear modulus, and μ the viscosity.  

The superscript “iso” denotes the isotropic component of the stress tensor and the 
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superscript “dev” denotes the deviatoric component of the stress tensor.  Since density is 

changing as a function of depth, and depth is changing as a function of time, the 

conservation of mass is given by: 

 

ym x z
m

vρ v v
 + ρ  +  +  = 0

t x y z

 
 
 

  

   
               (32) 

 

Finally, using the conservation of fluid mass, Darcy’s law in 3D (Jaeger et al., 2009), and 

assuming an incompressible pore fluid, the governing equation for fluid flow is 

represented as: 

 

2 2 2

iso

2 2 2

p y p p px z

f f f

P Kk P P PKk Kk
 +  +  -  + σ  = 0

μ x μ y μ z t

   

   
           (33) 

 

where kx, ky, and kz are the permeabilities in the x, y, and z directions, respectively, and 

μf is the viscosity of the pore fluid.  Equations (23-33) represent the 11 governing 

equations used to solve for the 11 unknowns of the problem.  A detailed derivation of the 

equation system can be found in Appendix 1.     

3.1.2. The ABAQUS
TM 

Solver.  For this study, the commercial FEA software 

package ABAQUS
TM

 (Abaqus, 2014) is employed to solve the governing equations 

presented in the previous section.  This software is capable of simulating static or 

dynamic processes using 2D and 3D models, and has been used to address a number of 

problems related to earth sciences (e.g., Dyksterhuis et al., 2005; Vidal-Gilbert et al., 

2009; Smart et al., 2012, Mitani et al., 2013).  ABAQUS
TM

 includes constitutive material 

relationships which can be modified to combine linear elastic and Newtonian viscous 

behavior (i.e., Maxwell Model), while simultaneously accounting for the influence of 

gravity and pore pressure.  Additionally, ABAQUS
TM

 is able to define constant or 

parameter dependent material properties (density, porosity, permeability, etc.) for 

individual element sets, specify time dependent creep behavior to initiate a viscoelastic 

response analysis, and export result sets for post-processing purposes.  In regards to 

single layer buckle folding, ABAQUS
TM

 has proven successful in simulating effective 
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stress evolution, and pore pressure evolution, for the case of a 2D Maxwell viscoelastic 

folding layer and matrix (Eckert et al., 2014; 2015).    

 

 

3.2. MODEL SETUP 

One of the objectives of this study is to perform a sensitivity analysis, which tests   

how various parameters (e.g., fold shape, permeability, overburden stress, and 

competence contrast) influence the location and type of fractures that can initiate in a 

pericline.  In order to perform this sensitivity analysis, a base model must be established 

that serves as a reference point for comparisons.  The base model is assigned 

characteristic geometric and material properties which are varied for each individual 

parametric study.    

3.2.1. Material Properties.  In order to simulate in-situ stress magnitudes using  

FEA, material properties must be appropriately assigned to all components in the model.  

ABAQUS
TM 

requires that the following material properties be defined for a consolidation 

analysis of a fluid filled, viscoelastic porous media: porosity, permeability, dry bulk 

density, fluid density, fluid saturation, Young’s modulus, Poisson’s ratio, and dynamic 

viscosity.   

 The magnitude of porosity and permeability of a rock is directly related to the 

degree of cementation, amount of compaction, and the method of grain packing (Selley 

and Sonnenberg, 2014).  Each of these factors is heavily influenced by the depth of burial 

and amount of overburden stress.  Greater burial depths and higher overburden stresses 

typically correspond to higher degrees of cementation, increased amounts of compaction, 

and tighter grain packing; this in turn leads to lower magnitudes of porosity and 

permeability (Tiab and Donaldson, 2015).  Since this study includes the influence of 

gravity and increasing overburden loads over time, the following relationships are applied 

to model porosity and permeability changes with depth (Medina et al., 2011):  

 

-0.00039z(z) = 16.39e               (34) 

17 0.283k(z) = 7.583 10 e       (35) 
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where ϕ is the porosity (%), z is the depth in meters, and k is the permeability in m
2
.  The 

permeability for the base model is considered to be isotropic. 

 As a result of increasing overburden stresses at greater burial depths, the fluids in 

a rock are forced from the pore spaces, allowing the rock matrix to compact.  Thus, so 

long as the surrounding matrix is denser than the pore fluid, any reduction in the rock’s 

pore volume (i.e., porosity) is met with a simultaneous increase in bulk density (ρb).  For 

a coupled pore fluid flow/stress analysis, ABAQUS
TM

 defines ρb in terms of the dry bulk 

density (ρdb) of the rock, and the fluid density (ρf).  This relationship can be expressed as 

(Jaeger et al., 2009):  

 

fb f dbρ = ρ (1 - ) + ρ  = ρ + ρs               (36) 

 

where ρs is the density of the solid grains.  By introducing the specific gravity of the solid 

grains (Gs): 

 

s
s

w

ρ
G = 

ρ
       (37) 

 

where ρw is the density of water (1000 kg/m
3
), and including the depth dependent 

porosity given in equation (34), the dry bulk density component of equation (36) can be 

rewritten as: 

 

-0.00039z
s w s wdbρ = G ρ (1 - ) = G ρ (1 - 16.39e )         (38) 

 

Since water is the only fluid being considered in this study, ρf in equation (36) is set equal 

to ρw, and relationship for ρb becomes: 

 

-0.00039z -0.00039z
s w wbρ = G ρ (1 - 16.39e ) + ρ (16.39e )             (39) 
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For the relationship in equation (39) to hold true, the pore volume must be 100% 

saturated with water.  Gs is assigned a value of 2.75 for all the models in this study.  This 

value is a representative average of the specific gravities of sedimentary rocks composed 

predominantly of quartz, calcite, dolomite, and clay minerals (Dietrich and Skinner, 

1979). 

 Constitutive relationships between stress and strain for materials that exhibit 

linear elasticity can be described using various combinations of the five elastic 

parameters: Young’s modulus (E), Poisson’s ratio (ν), shear modulus (G), bulk modulus 

(K), and the 1
st
 Lamé parameter (λ).  While each parameter has a unique physical 

meaning all five are mutually related, and because of these mutual relationships, only two 

parameters must be independently defined for a constitutive relationship to be established 

(Fjar et al., 2008).  ABAQUS
TM

 establishes linear elastic constitutive relationships using 

Young’s modulus and Poisson’s ratio.  For the models used in this study, E is defined as 

a depth dependent parameter using the relationship presented by Eckert et al. (2014):    

 

-0.00039z
mfE  = 10  E = 33.7(1 - 0.1639e )                 (40) 

 

where Ef and Em are the Young’s moduli of the folding layer and matrix, respectively, in 

GPa.  All the models in this study are assigned a constant Poisson’s ratio of 0.25; a value 

which is typical for most rocks (Fjar et al., 2008).   

 Lastly, the dynamic viscosity (μ) must be defined to establish a constitutive 

relationship between the stress and the strain rate for a Newtonian viscous material.  As 

described in Section 2.2, the dominant wavelength equations have been developed for the 

cases of a competent folding layer embedded in a less competent matrix.  The degree to 

which the folding layer is more or less competent than the matrix can be quantified by a 

viscosity (or competence) contrast (Rμ), which is defined as:  

 

f

m

μ
R  = 

μ
                    (41) 
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The folding layer is assigned a constant viscosity of 1.2 x 10
21

 Pa ∙ s which falls in the 

range of viscosities tested by previous viscoelastic folding studies (e.g., Zhang et al., 

1996; Mancktelow, 1999; Eckert et al., 2014).  The viscosity of the matrix is dependent 

on the value of Rμ.  For the base model a Rμ value of 50 is chosen, giving a μm of 2.4 x 

10
19

 Pa ∙ s.   

 A list of the material properties for the base model, comprised of a folding layer, 

matrix, overburden, and base, is given in Table 3.1.   

 

 

Table 3.1. Material properties for the base model 

Properties Folding Layer Matrix/Overburden/Base 

Porosity (φ) at 1000m 11.1 (%) 11.1 (%) 

Permeability (k) at 1000m 1.75 x 10-15 (m2) 1.75 x 10-15 (m2) 

Specific Gravity of Solid Grains 
(Gs) 

2.75 2.75 

Fluid Density (ρf) 1000 (kg/m3)  1000 (kg/m3)  

Fluid Saturation 100 (%) 100 (%) 

Young's Modulus (E) at 1000m 30 (GPa) 3 (GPa) 

Poisson’s Ratio (ν) 0.25 0.25 

Viscosity (μ) 1.2 x 1021 (Pa∙s)  2.4 x 1019 (Pa∙s)  

 

 

3.2.2. Model Geometry.  The geometry of the base model is comprised of a 30 m  

thick folding layer embedded in a 500 m thick matrix, a 280 m thick base layer 

underlying the matrix, and a 250 m thick overburden layer above the matrix (Figure 

3.1a).  The folding layer is characterized by sinusoidal perturbations in the x and y-

directions with initial amplitudes of 2.5 m.  As previously mentioned in Section 1.2.2, the 

geometry of a pericline is described by giving the folds aspect ratio (ratio of half 

wavelength to hinge length), with most periclines in the upper levels of the crust 

exhibiting an aspect ratio in the range of 1:5 to 1:10.  For this study, initial perturbations 

are assigned in such a way that there will always be four half-wavelengths in the x-

direction, two hinge lengths in the y-direction, and a doubly plunging anticline (pericline) 

located in the central portion of the model (Figure 3.1b).  Thus, the aspect ratio of the  
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Figure 3.1. Geometry of the base model. (a) Oblique view of the base model with overall 

dimensions in the x, y, and z-directions. (b) Plan view showing the distribution of domes 

and basins in the folding layer. It should be noted that while the model length in the x-

direction will change during the folding process, the model will always be characterized 

by two wavelengths in the x-direction and 2 hinge lengths in the y-direction. 

 

 

central pericline can be determined at any time during buckling based on the model 

dimensions in the x and y-directions.     

 The perturbations in the x-direction are assigned initial wavelengths equivalent to 

the dominant wavelength.  Since the models in this study are viscoelastic, the dominant 

wavelength ratio (R) must be calculated using equation (3) to determine whether the 

model is controlled largely by elastic or viscous properties.  The layer parallel stress in 

equation (3) can be estimated using the following relationship (Schmalholz and 

Podladchikov, 1999): 

 

lP = 4μ ε       (42) 

 

where ε  is the background strain rate.  Using a strain rate of 10
-14

s
-1

, which is 

representative of a reasonable geologic deformation rate (Twiss and Moores, 2007), and a 
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folding layer viscosity of 1.2 x 10
21

 Pa∙s gives a layer parallel stress of 40 MPa.  This 

value remains fixed for all models since ε  and μl are held constant for this study.  The 

other two parameters besides P which influence the value of R, viscosity contrast (Rμ) 

and shear modulus (G), are varied in certain cases during this study.  For the different 

viscosity ratios considered (Rμ = 25, 50, 75, 100), R is in the range of 0.094 - 0.150 

(Table 3.2), which corresponds to dominantly viscous behavior (i.e., R<1).  The 

magnitude of the shear modulus changes with depth in a similar manner as the Young’s 

modulus, and thus models with different initial overburden thicknesses will have different 

magnitudes of shear modulus for their respective folding layers.  For the different 

overburden thicknesses considered (500 m, 1000 m, 1500 m, 2000 m) with a constant Rμ 

of 50, R is in the range of 0.115 – 0.119 (Table 3.2), which also corresponds to 

dominantly viscous behavior.  All of the models in this study exhibit dominantly viscous 

behavior; therefore, choosing to express the dominant wavelength as the viscous 

dominant wavelength from equation (1) is deemed appropriate.  The dominant 

wavelength for the base model, with a viscosity contrast of 50, is 382.2 m, making the 

initial length of the model in the x-direction 764.4 m.   

 

 

Table 3.2. Calculated values of R used to verify dominant wavelength selection. 

Rμ 
Overburden Thickness 

(m) 
P (MPa) G (GPa) R 

25 500 40 11.67 0.094 

50 500 40 11.67 0.119 

75 500 40 11.67 0.136 

100 500 40 11.67 0.150 

50 1000 40 11.99 0.117 

50 1500 40 12.26 0.116 

50 2000 40 12.47 0.115 

 

 

 No lateral strains are applied parallel to the y-axis during this study, which keeps 

the model length in the y-direction fixed during buckling.  The initial length of the model 

in the y-direction depends on the final desired aspect ratio of the pericline and the relative 

amount of lateral shortening the model experiences parallel to the x-axis.  The base 
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model is set up so a pericline with an aspect ratio of 1:5 is generated after 50% 

shortening.  At the end of the 50% shortening period, the initial perturbations in the x-

direction with dominant wavelengths of 382.2 m are shortened to 191.1 m.  At this point 

the half-wavelength of the pericline is 95.55 m.  Following the definition of the aspect 

ratio, the half wavelength is multiplied by five to give a hinge length of 477.75 m, 

subsequently making the initial length of the model in the y-direction 955.5 m.  

3.2.3. Loading Procedures.  In natural subsurface settings absent of a current    

state of rapid deformation (e.g., fault rupture, karst collapse, landslide), rock formations 

are in a state of stress equilibrium (Twiss and Moores, 2007).  The model presented in 

Section 3.2.2 represents an undeformed volume lacking an initial state of stress 

equilibrium.  In order to introduce an initial state of stress equilibrium to the model that is 

representative of natural subsurface settings, a stress initialization procedure known as 

pre-stressing is utilized (Buchman and Connolly, 2007; Eckert and Liu, 2014).  This 

procedure begins with the introduction of gravity, which subsequently causes the model 

to compact, and ends when the resultant stresses reach a state of equilibrium.  The 

resultant stress state represents the initial stress conditions for the model prior to the onset 

of buckling.   

 The loading procedures used in this study to simulate in-situ stress magnitudes 

during buckle folding are adopted after the works of Eckert et al. (2014; 2015) and 

include the following: 

(1) Pre-stressing step where gravity is applied to the model.  Boundary conditions are 

applied to constrain the model in such a way that only vertical displacements are 

allowed (Figure 3.2a).  Pre-stressing concludes when the modeled stresses reach a 

state of equilibrium.   

(2) Horizontal compression parallel to the x-direction at a constant strain rate (10
-14

s
-

1
) to simulate a unidirectional tectonic shortening event necessary to induce 

buckling (Figure 3.2b).  Horizontal compression concludes when the pericline 

reaches the final desired aspect ratio (Figure 3.2c).  It should also be noted that 

this study only considers horizontal shortening parallel to the x-axis.  For this 

reason, the model boundaries perpendicular to the y-axis are always assigned 

boundary conditions that only allow for displacements in the x and z-directions.    
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Figure 3.2. Loading procedures used during buckle fold simulations. (a) Gravitational 

pre-stressing step is used to simulate in-situ stress magnitudes.  Boundary conditions are 

applied that only allow for vertical displacements (rollers).  (b) Horizontal shortening in 

the x-direction applied after gravitational equilibrium is reached.  Shortening continues 

until the desired pericline aspect ratio is achieved (c).  Note that the horizontal shortening 

has caused the overburden thickness to increase to 500m.  (d) Erosional unloading step 

where the gravitational acceleration and pore pressure are gradually decreased in the 

overburden layer.  Roller boundary conditions are applied at the y-boundaries in each 

loading step.   
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(3) Erosional unloading step where the pore pressure and gravitational acceleration of 

the overburden layer are gradually reduced at a rate consistent with an 

erosion/exhumation rate of 1 mm/yr (Burbank, 2002).  The erosional unloading 

step concludes when the gravitational acceleration of the overburden layer reaches 

zero (i.e., complete erosion of the overburden layer).  The boundary conditions for 

the erosional unloading step are the same as those used during pre-stressing so 

that the final fold shape at the end of shortening may be preserved during 

erosional unloading (Figure 3.2d).   

Lastly, the initial pore pressure condition for each model is hydrostatic, and can be 

calculated for any depth using the following equation: 

 

z

p f

0

P = ρ (z)gdz           (43) 

 

where ρf(z) = ρw. 
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4. RESULTS 

In order to predict the timing and location of fracture initiation within a fold, a 

thorough analysis of the principal stress evolution during the initiation and growth of the 

fold is necessary.  This series of simulations employs the fracture potential method (see 

Section 2.3.2) to simultaneously combine the principal stress evolution obtained from the 

3D FEM with a particular set of rock strength parameters, and ultimately determine 

fracture characteristics (e.g., timing of initiation, location, type, orientation) for an 

individual fold.   

 The results presented in this study can be divided into two sections.  The first 

section examines the stress evolution for the base model pericline, and introduces the 

analysis procedure used throughout the remainder of the study.  The second section 

highlights the findings from a series of parametric studies designed to pinpoint which 

subsurface conditions have the greatest influence on fracture initiation.  The parameters 

included in this study are permeability magnitude, degree of permeability anisotropy, 

viscosity contrast, pericline aspect ratio, shortening percentage, overburden stress, and 

erosional unloading.   

 

  

4.1.      BASE MODEL RESULTS ANALYSIS 

After 50% shortening at a constant strain rate of 10
-14 

s
-1

, the folding layer of the 

base model has evolved into a series of alternating domes and basins with a centrally 

located pericline (Figure 4.1).  This pericline will serve as the focal point of stress 

analysis for each model in this study.  The geometric evolution of the pericline can be 

seen in Figure 4.2, where the initial dominant wavelength perturbation with an amplitude 

of 2.5 m gradually develops into a pericline with steeply dipping limbs (~70°) and a final 

fold amplitude of 56.5 m.    

In order to reduce the quantity of finite elements to be analyzed, two 

simplifications are made for the stress analysis procedure:  first, due to the pericline being 

symmetric about its axial plane and central profile plane, the analysis can be restricted to 

a quarter section of the pericline (Figure 4.3a); second, within the quarter section of the  
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Figure 4.1. Folding layer with a centrally located pericline after 50% shortening.   

 

 

 

Figure 4.2. Pericline shape prior to shortening (a), after 25% shortening (b), and after 

50% shortening (c).  Pericline hinge length remains fixed at 477.75 m resulting in a final 

aspect ratio of 1:5 after 50% shortening. 
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pericline, the analysis is further restricted to a section of finite elements along the hinge 

and a section of finite elements along the limb (Figure 4.3b-d).  Simplification two is 

deemed appropriate since the primary motivation for this study is to help explain the 

timing and likelihood of occurrence for conceptual fracture sets that are located in the 

hinges and limbs of buckle folds (i.e., Cosgrove and Ameen, 1990), and not to provide a 

comprehensive fracture analysis for the entire fold structure.  The specific locations of the 

hinge and limb elements are along the crest (top of the hinge) and inflection surface 

(where the fold changes from an anticline to a syncline) of the pericline, respectively.  

 

 

 

Figure 4.3. Locations for stress analysis and fracture prediction. (a) Plan view of the 

pericline showing fold symmetry about the central profile plane and axial plane.  (b) 

Quarter section of the pericline highlighting the hinge (c) and limb (d) sections to be 

analyzed.  Limb elements in (d) have been rotated for optimal viewing purposes.  
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4.1.1.  Stress Analysis.  The principal stress evolution becomes of importance  

for pinpointing the timing of stress conditions that are most likely to cause fracture 

initiation.  The minimum principal stress (σ'3) and the differential stress (σd = σ'1 - σ'3) are 

the main indicators used to determine the likelihood of fracture initiation.  Tensile 

fractures initiate, when σ'3 equals the tensile strength (T) of the rock, and thus the point 

when σ'3 becomes tensile   (σ'3 < 0) is identified as the start of a period when tensile 

failure is possible.  The indicator for potential shear fracture initiation is not as clear cut 

as that for tensile fractures, but in general, shear fracture initiation is most likely to occur 

for higher magnitudes of differential stresses and/or lower magnitudes of σ'3. 

 For the hinge of the pericline, six elements are examined to see how the principal 

stress evolution changes at different locations along the hinge line.  Elements 1, 3, and 5 

are located at the outer arc of the hinge where extensional strains will be highest, and 

elements 2, 4, and 6 are located in the inner arc where compressional strains will be 

highest (Figure 4.4a).  It can be seen that the principal stress evolution for elements 1 

(Figure 4.4b) and 3 (Figure 4.4d) follow similar trajectories.  σ'3 magnitudes initially 

increase before steeply decreasing in the early stages of shortening (~13-15%) and then 

gradually increase again.  σ'1 magnitudes sharply decrease in the early stages of 

shortening until reaching a pronounced minimum at ~13-15% shortening, at which point 

the magnitudes steadily increase during the remainder of shortening.  σ'3 magnitudes 

become tensile for elements 1 and 3 at ~18% and ~24% shortening, respectively, and 

reach respective minimums at ~27% and ~33% shortening, indicating that tensile fracture 

initiation is most likely to occur during these shortening windows.  The largest 

magnitudes of differential stress for elements 1 and 3 are present during the earliest 

stages of shortening (< 5%) and during later stages of shortening when σ'3 minimums are 

reached (~27% and ~33%); however, shear fracture initiation is unlikely during the 

earliest stages of shortening considering that σ'3 magnitudes are also the highest during 

this period.  Element 5 (Figure 4.4f) exhibits markedly different principal stress 

trajectories than elements 1 and 3.  The magnitude of σ'1 decreases gradually from ~7% 

shortening on while the magnitude of σ'3 steadily increases until ~22% shortening, at 

which point it gradually decreases for the remainder of shortening.  It can be seen that σ'3 

only becomes tensile at the end of shortening (50%), indicating that tensile fracture  
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Figure 4.4. Principal stress history of select elements in the hinge of the pericline. 

Elements 1 (b), 3 (d), and 5 (f) are selected to see how σ'1 and σ'3 evolution changes in the 

outer arc of the hinge at different locations along the pericline. Elements 2 (c), 4 (e), and 

6 (g) are selected to see how σ'1 and σ'3 evolution changes in the inner arc of the hinge at 

different locations along the pericline.  
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initiation is possible, but unlikely for element 5.  Differential stress magnitudes are again 

highest at the start of shortening (< 7%), but shear fracture initiation becomes more likely 

during later stages of shortening (> 22%) when the magnitude of σ'3 decreases.  Elements 

2 (Figure 4.4c), 4 (Figure 4.4e), and 6 (Figure 4.4g), in the inner arc of the hinge, are 

characterized by large magnitudes of σ'1, and σ'3 magnitudes that never become tensile 

during buckling.  The highly compressive nature of σ'1, combined with the lowest 

magnitudes of σ'3 during the early stages of shortening (~10-20%), indicate that shear 

fracture initiation is most likely to occur in elements 2 and 4 during this time period.  

Element 6 reaches the same conditions that condone shear fracture initiation during late 

stages of shortening (~40-50%).  An additional phenomenon of interest can be observed 

at ~14% shortening in element 1 (Figure 4.4b), where σ'1 and σ'3 have approximately the 

same magnitudes.  This point represents a complete rotation of the principal stresses in 

Element 1, whereby the vertical stress changes from σ'3 to σ'1, and the horizontal stress 

changes from σ'1 to σ'3. 

 In a similar fashion as for the fold hinge, six elements are selected in the limb of 

the pericline to see how the principal stress evolution changes at different locations along 

the limb (Figure 4.5a).  One result of interest from the principal stress evolution that can 

immediately be noted is that σ'3 magnitudes never become tensile in the limb of the 

pericline.  Also, due to the layer parallel strain distribution within a single layer buckle 

fold (Ramsay, 1967), the principal stress evolution is nearly identical for elements 1 and 

2 (Figures 4.5b and c), elements 3 and 4 (Figures 4.5d and e), and elements 5 and 6 

(Figures 4.5f and g).  It can clearly be seen that the highest differential stress magnitudes 

appear during the early stages of shortening (< 15%) for elements 1-4; however, the 

early, relatively large magnitudes of σ'3, make fracture initiation during this time period 

unlikely.  Elements 5 and 6 can be characterized by much higher magnitudes of σ'1 and 

σ'3 than elements 1-4, but are still unlikely to experience shear fracture initiation given 

that σ'3 magnitudes increase in a similar fashion as σ'1, and the resulting differential stress 

does not change much.   

 The qualitative analysis of the principal stress evolution indicates that fracture 

initiation will be more likely to occur in the hinge of a pericline than the limb during the 

buckling process.  Initial results also indicate that within the hinge, fractures will first  
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Figure 4.5. Principal stress history of select elements in the limb of the pericline. 

Elements 1 (b), 3 (d), and 5 (f) are selected to see how σ'1 and σ'3 evolution changes in the 

outer edge of the limb at different locations along the pericline. Elements 2 (c), 4 (e), and 

6 (g) are selected to see how σ'1 and σ'3 evolution changes in the inner edge of the hinge 

at different locations along the pericline. 
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initiate at the central portion of the pericline where the amplitude is the highest, and will 

progressively initiate along the hinge line towards the end portion of the pericline, where 

the amplitude is the lowest.  From this point forward it becomes necessary to utilize an 

approach that can effectively quantify whether fractures will initiate for each element 

within the hinge and limb of the pericline.   

4.1.2. Fracture Potential Results.  The fracture potential method presented in 

Section 2.3.2 is utilized to provide a quantitative means for predicting fracture initiation, 

and to avoid the necessity of performing a thorough qualitative analysis of the stress 

evolution for thousands of finite elements.  Since this study seeks to characterize the 

actual initiation of fractures, only fracture potential values of -1 (tensile) and 1 (shear) are 

considered; the fracture potential is assumed to be 0 for all other cases.   

 Because the constitutive material model used for this study does not include 

plasticity, and permits the continuous growth of viscoelastic stresses even when failure 

conditions are met, two assumptions must be made before the fracture potential method 

can be applied.  First, the element boundaries are assumed to be fracture propagation 

boundaries, simultaneously ensuring that fracture initiation is confined to an individual 

element and that the stress evolution in adjacent elements remains undisrupted (Figure 

4.6a).  Second, because the FEM does not simulate the stress changes associated with 

fracture initiation, the stress evolution after a fracture potential of -1 or 1 has been 

reached is assumed to be invalid, thus permitting only a single fracturing event within an 

individual element (Figure 4.6b).   

The basis for these assumptions comes from a description of fracture sizes 

observed in periclines by Stearns and Friedman (1972).  A large number of the observed 

fractures exhibit lengths in the range of a few inches to a few feet.  Since the shortest 

dimension of the finite elements in this study is approximately six feet, it is reasonable to 

state that fractures of similar size to the ones just described can be initiated within an 

element, without propagating beyond the element boundaries.  Bearing that in mind, it is 

important to mention that this cannot be stated for all cases.  There are many fractures 

observed by Stearns and Friedman (1972) that exhibit lengths in the range of tens of feet 

to hundreds of feet.  Clearly the assumptions made would fall short in these situations, 

since fractures of these lengths could easily propagate beyond the element boundaries,         
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Figure 4.6. Necessary assumptions for the fracture potential approach. (a) Element 

boundaries are assumed to restrict fracture propagation once fractures have initiated 

within an individual element. (b) The stress evolution after a fracture has been initiated 

within an individual element is assumed to be invalid since the FEM does not simulate 

plastic failure or the stress changes that accompany plastic failure. 

 

 

and subsequently influence the state of stress in adjacent elements.  Even so, the 

assumptions are deemed appropriate based on the abundance of smaller size fractures 

observed in folds (Stearns and Friedman, 1972).          

 For the fracture potential analysis, the angle of internal friction (ψ) is assumed to 

be 30° (Jaeger et al., 2009), and three combinations of rock cohesion (C0) and tensile (T) 

strength are selected to represent a weak rock (C0 = 6MPa, T = 3MPa), an intermediate 

strength rock (C0 = 9MPa, T = 4.5MPa), and a strong rock (C0 = 12MPa, T = 6MPa).  

These rock strength parameters are selected based on experimental data from Bieniawski 

(1984), Pollard and Fletcher (2005), and Fossen (2010). 

 Figure 4.7 shows the fracture potential results for the hinge of the base model, 

with the fold shape representing the final fold shape that is generated after 50% 

shortening.  In order to characterize the timing of fracture initiation the buckling process 

is divided into three stages: early-stage (0-15% shortening), mid-stage (15-30% 

shortening), and late stage (>30% shortening).  Fracture sets can subsequently be 

classified according to the shortening period in which they were initiated.  For a weak 

rock, shear fractures are initiated along the entire length of the inner arc of the hinge, with  
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Figure 4.7. Fracture potential results in the hinge of the base model.  Results are shown 

for the final fold shape that develops after 50% shortening. 

 

 

early stage fractures initiating closer to the central portion, eventually giving way to the 

initiation of mid and late stage fractures towards the end portion.  The outer arc is 

characterized by mid-stage shear fractures that initiate near the central portion, and late 

stage shear fractures near the end portion.  For intermediate strength rocks, mid-stage 

tensile fractures initiate near the central portion of the outer arc, and late-stage shear 

fractures initiate near the end portion of the inner arc.  Fractures are not observed in the 

hinge of strong rocks, and are not observed for any case in the limb.    
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4.2. PARAMETRIC ANALYSIS 

This series of parametric studies present the fracture potential plots generated 

for each analysis.  For the sake of saving space only the fracture potential plots for the 

weak rock are presented in this section.  The fracture potential plots for the intermediate 

strength rocks and the strong rocks can be found in Appendices B-G.   

4.2.1. Influence of Permeability Magnitude.  Variations in the permeability  

magnitude are assigned for different models to investigate how higher and lower 

permeability formations can influence fracture initiation.  Permeabilities are varied from 

10
-13 

m
2 
– 10

-21
 m

2 
(Table 4.1),

 
reflecting a wide range for sedimentary rocks (Jaeger et 

al., 2009), where the folding layer, matrix, overburden, and base are assigned 

permeabilities of the same order of magnitude for each respective model; all other 

material properties in Table 3.1 remain fixed.  The different permeability magnitudes can 

be accounted for by using a modified version of equation (35).  In addition, the 

permeability for this particular analysis is considered to be isotropic.  The initial 

geometric properties for each model are the same as the base model, which results in a 

centrally located pericline with a final aspect ratio of 1:5 after 50% shortening.  Table 4.1 

shows some of the final geometric properties at the central portion of the pericline for 

each model.  It can be seen that the permeability magnitude has only a minor influence on 

the final fold geometry, with lower permeabilities leading to slightly higher fold 

amplitudes, slightly steeper limb dips, and slightly thinner folding layers.       

 

 

Table 4.1. Geometric properties for the permeability magnitude models (base model is 

shaded gray). Measurements are representative of the central portion of the pericline.   
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 Figure 4.8 shows the fracture potential results for the hinge of a weak rock, where 

a permeability of 10
-15 

m
2
 represents the base model.  It can be seen that the fracture 

distribution for permeabilities of 10
-13 

m
2
, 10

-17 
m

2
, and 10

-19 
m

2
 all approximate the 

distribution for the base model, with only minor variations observed for the locations of 

early and mid-stage shear fractures along the inner arc.  The fracture distribution is much 

more extensive for the lowest permeability case (10
-21 

m
2
).  Early-stage shear fracturing is 

observed along the entire length of the inner arc, and extend well into the interior of the 

fold.  Mid-stage shear fracturing spans nearly the entire thickness of the fold in the end 

portion, and extends slightly inwards at the interior of the folding layer.  The outer arc 

can be characterized by mid-stage shear and tensile fractures near the central portion, that 

give way to late-stage shear and tensile fractures almost halfway along the hinge line.    

 Figure B.1 shows the fracture potential results for the hinge of an intermediate 

strength rock.  As with the weak rock, the fracture distribution for permeabilities of 10
-13 

m
2
, 10

-17 
m

2
, and 10

-19 
m

2
 is approximately the same as the base model.  An exception 

exists for a permeability of 10
-19 

m
2
 where late stage shear fractures are observed near the 

end portion of the outer arc.  The lowest permeability model exhibits early-stage shear 

fracturing that extends from the central portion of the inner arc, along a majority of the 

hinge line, to the end portion which contains mid-stage and late-stage shear fractures.  

The outer arc is dominated by mid-stage and late-stage tensile fractures, with late-stage 

shear fractures only initiating near the end portion. 

 Figure B.2 shows the fracture potential results for the hinge of a strong rock.  

Only the lowest permeability model is capable of initiating fractures in a strong rock.  

Mid-stage tensile fracturing is observed in the outer arc, extending from the central 

portion to nearly halfway along the hinge line.  The late-stage fractures include tensile 

fractures near the halfway point of the hinge line in the outer arc, tensile and shear 

fractures near the end portion of the outer arc, and shear fractures near the end portion of 

the inner arc.  

 No scenario gives rise to the initiation of fractures in the limb during the 

permeability magnitude analysis.         
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Figure 4.8. Fracture potential results in the hinge for a weak rock with varying 

permeability magnitudes. The final fold shape is approximately the same for each model.  
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4.2.2. Influence of Anisotropic Permeability.  Because rock formations 

typically exhibit noticeable differences in vertical and horizontal permeabilities (Tiab and 

Donaldson, 2015), a set of models is established to test the influence of the degree of 

permeability anisotropy on fracture initiation.  These models are set up to where the ratio 

of horizontal permeability to vertical permeability is 5:1, 10:1, and 20:1, which can be 

representative of highly cemented sandstones (Chapman, 2000) or laminated shale layers 

(Tiab and Donaldson, 2015).  To accomplish this, the horizontal permeability is set 

equivalent to the permeability calculated for Table 3.1, and the vertical permeability is 

decreased accordingly while all other material properties remain fixed.  The varying 

permeability anisotropy ratios are applied to three separate cases:  buckling for high 

permeability models (10
-15

 m
2
), buckling for low permeability models (10

-21
 m

2
), and 

erosional unloading for high permeability models.  Initial geometric properties remain the 

same as the base model, and 50% shortening is once again applied resulting in a centrally 

located pericline with a final aspect ratio of 1:5.  The final geometric properties for high 

permeability models are given in Table 4.2.  These properties indicate that the degree of 

permeability anisotropy has little to no influence on the final fold shape.        

 

 

Table 4.2. Geometric properties for the anisotropic, high permeability models (base 

model is shaded gray). Measurements are representative of the central portion of the 

pericline. 

 
 

 

4.2.2.1 High permeability buckling.  Figure 4.9 shows the fracture potential   

results for the hinge of a weak rock, where the isotropic case represents the base model.  

It becomes immediately apparent that the fracture distributions for the anisotropic 

permeability models deviate very little from the base model.  The only difference can be  
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Figure 4.9. Fracture potential results in the hinge for a high permeability (10
-15

 m
2
) weak 

rock, with varying degrees of permeability anisotropy. The final fold shape is 

approximately the same for each model.  

 

 

observed in the inner arc, close to the end portion, where shear fracturing extends slightly 

farther into the folding layer for the anisotropic permeability models.  It is also observed 

that the fracture distributions for all the anisotropic permeability models are identical.  
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 Figure C.1 shows the fracture potential results for the hinge of an intermediate 

strength rock.  The fracture distribution for the anisotropic permeability models are 

nearly the same as the base model, with mid-stage tensile fractures initiating near the 

central portion of the outer arc, and late stage shear fractures initiating near the end 

portion of the inner arc.  A minor deviation from the base model distribution can be 

observed for an anisotropic permeability ratio of 10:1 where tensile fracturing extends 

slightly farther along the hinge line of the outer arc.   

 Fractures are not observed in the hinge for strong rocks, and are not observed in 

the limb for any scenario during the anisotropic permeability analysis for high 

permeability folds.        

4.2.2.2 Low permeability buckling.  Figures 4.10 and 4.11 show the fracture 

potential results for the hinge and limb, respectively, of a weak rock.  Initial observations 

at the fold hinge clearly show that the permeability magnitude plays a role in determining 

how much of an impact anisotropic permeability has on fracture initiation.  The extensive 

fracturing for each model in Figure 4.10 is reflective of the low permeability magnitudes, 

as seen in Section 4.2.1, but there are noticeable changes in fracture distribution for the 

low permeability models that are not observed in the high permeability models.  In 

contrast to high permeability models, where anisotropic permeability had very little 

influence on fracture initiation, low permeability models show more extensive fracturing 

for increasing anisotropic permeability ratios.  Further inspection reveals that higher 

anisotropic permeability ratios lead to more widespread early-stage fracturing in the inner 

arc, and more widespread mid-stage fracturing in the outer arc, replacing what would 

have respectively been mid-stage and late-stage fractures for models with lower 

anisotropic permeability ratios.  Fracturing in the models is too extensive to provide a 

detailed description of the timing and location of fractures, but the general distribution of 

shear and tensile fractures is similar for each model.  The inner arc consists of early-stage 

shear fracturing that extends well into the interior of the fold.  The outer arc exhibits 

varying combinations of mid-stage and late-stage tensile fracturing beginning at the  

central portion and extending along a majority of hinge line, eventually giving way to 

late-stage shear fractures near the end portion.  The end portion is characterized by shear  
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Figure 4.10. Fracture potential results in the hinge for a low permeability (10
-21

 m
2
) weak 

rock, with varying degrees of permeability anisotropy. The final fold shape is 

approximately the same for each model. 

 

 

fractures that grade from early-stage in the inner arc, to mid and late-stage in the outer 

arc.  Early stage shear fractures are also initiated in the limb for the anisotropic 

permeability models.  Figure 4.11 shows that the fractures initiate in the top and bottom 

of the limb near the end portion, and fracturing extends both along the length of the limb  
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Figure 4.11. Fracture potential results in the limb for a low permeability (10
-21

 m
2
) weak 

rock, with varying degrees of permeability anisotropy.  The final fold shape is 

approximately the same for each model. 

 

 

and inwards toward the interior of the fold as the anisotropic permeability ratio is 

increased.   

Figures C.2 and C.3 show the fracture potential results for the hinge of an 

intermediate strength rock and strong rock, respectively.  While not as noticeable as it is 



 

 

66 

for a weak rock, anisotropic permeability still exhibits the same influence for 

intermediate strength rocks and strong rocks, where fracturing is more widely distributed 

for higher anisotropic permeability ratios.  Mid to late-stage tensile fractures and shear 

fractures still persist along the outer arc for both intermediate strength rocks and strong 

rocks, but the extent of inner arc shear fracturing decreases a great deal for intermediate 

strength rocks, and all but disappears for strong rocks.  Fracture initiation is not observed 

in the limb for intermediate strength rocks or strong rocks. 

4.2.2.3 Erosion.  The erosional unloading step from Section 3.2.3 is applied to 

high permeability models to test the influence on fracture initiation in folds with 

anisotropic permeability.  Erosional unloading for low permeability models is not 

examined in this study following observations by Eckert et al. (2014), which show that 

the pore pressure evolution for low permeability folds during erosional unloading gives 

rise to a state of effective stress that is unlikely to cause fracture initiation.  It is important 

to note that the overburden thickness increases significantly during the lateral shortening 

step.  Thus, the amount of overburden to be eroded, and the duration of the erosional 

unloading step are dependent on both the initial thickness of the overburden, and the 

amount of lateral shortening.  The overburden thickness prior to erosion, and duration of 

erosion for the anisotropic, high permeability models are given in Table 4.3.  Since the 

initial geometric properties are the same for each model, and the same amount of 

shortening is applied, the pre-erosion overburden thickness and the duration of erosion 

are also the same for each model.      

 

 

Table 4.3. Erosion characteristics for the anisotropic, high permeability models.  
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 It is recalled that the assumptions for this study permit only one fracturing event 

for an individual element.  This assumption also applies during erosional unloading such 

that an element, which is fractured during buckling, will not fracture during erosion.  

Because the exact timing of fracture initiation during erosional unloading is beyond the 

scope of this study, fracture potential plots for erosion only consider two scenarios for the 

timing of fracture initiation: fractures that initiate prior to erosion (i.e., during buckling), 

and fractures that initiate during erosion.   

 Figures 4.12 and 4.13 show the fracture potential results for the hinge and limb, 

respectively, of a weak rock.  The fracture potential plots reveal that erosional unloading 

leads to the initiation of new fractures in the hinge and limb, but these fractures appear to 

be independent of the degree of permeability anisotropy since they initiate in the exact 

same manner for each model.  Erosional fractures in the hinge include shear fractures that 

initiate in the end portion near the outer arc, and tensile fractures that initiate along the 

outer arc.  In the limb, erosional shear fracturing extends across the entire thickness of the 

fold near the central portion, and extends towards the end portion at select locations 

within the folding layer.   

 Figures C.4 and C.5 show the fracture potential results for the hinge of an 

intermediate strength rock and strong rock, respectively.  The results for the intermediate 

strength rock and strong rock show less extensive fracturing than for a weak rock, but 

present the same general observation; new fractures are initiated during erosional 

unloading but they are independent of the degree of permeability anisotropy.  Fracture 

initiation is not observed in the limb for intermediate strength rocks or strong rocks.     

4.2.3. Influence of Viscosity Contrast.  Using a constant folding layer viscosity 

of 1.2 x 10
21

 Pa ∙ s, the viscosity for the matrix, overburden, and base is varied so that 

fracture initiation can be observed and compared for models with different viscosity 

contrasts (Rμ = 25, 50, 75, 100).  All other material properties in Table 3.1 remain fixed, 

and the permeability is considered to be isotropic.  The vertical dimensions of the initial 

model geometry remain unchanged for each model, but horizontal dimensions must be 

altered to ensure that a pericline with a final aspect ratio of 1:5 still develops after 50% 

shortening.  It is recalled that Rμ governs the dominant wavelength selection.  The 

wavelength of the initial perturbations in the x-direction for each model varies according  
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Figure 4.12. Fracture potential results in the hinge for a high permeability (10
-15

 m
2
) weak 

rock, with varying degrees of permeability anisotropy, after erosional unloading. The 

final fold shape is approximately the same for each model. 

 

 

to the Biot dominant wavelength relationship given in equation (1).  Initial perturbations 

in the y-direction are adjusted for each model to ensure the desired final aspect ratio is 

achieved.  The resulting final geometries for the viscosity contrast models are given in 

Table 4.4.  Aside from the larger wavelengths and hinge lengths needed to satisfy initial  
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Figure 4.13. Fracture potential results in the limb for a high permeability (10
-15

 m
2
) weak 

rock, with varying degrees of permeability anisotropy, after erosional unloading.  The 

final fold shape is approximately the same for each model. 

 

 

geometry requirements, higher viscosity contrasts also result in noticeably higher fold 

amplitudes, slightly thinner folding layers, and moderately steeper limb dips.     
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Table 4.4. Geometric properties for the viscosity contrast models (base model is shaded 

in gray). Measurements are representative of the central portion of the pericline. 

 
 

 

 Figures 4.14 and 4.15 show the fracture potential results for the hinge and limb, 

respectively, of a weak rock, with the viscosity contrast of 50 representing the base 

model.  In the hinge, each model demonstrates noticeable deviations from the fracture 

distribution in the base model.  For the model with the lowest viscosity contrast (Rμ = 

25), mid-stage shear fracturing extends farther into the interior of the fold along the inner 

arc, but is not observed near the central portion of the outer arc.  The model with a 

viscosity contrast of 75 is characterized by the disappearance of mid-stage shear fractures 

in the inner arc, and a decrease in the extent of mid-stage shear fracturing near central 

portion of the outer arc.  The model with the highest viscosity contrast (Rμ = 100) exhibits 

the same disappearance of mid-stage shear fractures in the inner arc, as well as the 

additional disappearance of mid-stage shear fractures near the central portion of the outer 

arc.  Furthermore, the model with a viscosity contrast of 100 features the initiation of 

mid-stage tensile fractures near the central portion of the outer arc, and late-stage tensile 

fractures near the end portion of the outer arc.  Shear fracturing is only observed in the 

limb for the lowest viscosity contrast model.  Figure 4.15 shows that the shear fracturing 

initiates during the late stage of buckling in the folds interior, but does not extend to the 

central or end portions.   

 Figures D.1 and D.2 show the fracture potential results for the hinge of an 

intermediate strength rock and a strong rock, respectively.  For intermediate strength 

rocks, the lowest viscosity contrast model exhibits mid and late-stage shear fracturing 

along the entire length of the inner arc, and late stage shear fracturing near the end  
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Figure 4.14. Fracture potential results in the hinge for a weak rock with varying values of 

Rμ. Increasing the viscosity contrast will result in folds with larger wavelengths and hinge 

lengths, higher amplitudes, thinner folding layers, and steeper limb dips. 

 

 

portion of the outer arc.  Once Rμ increases to values greater than 50, fracture initiation all 

but ceases for intermediate strength rocks, with only late-stage shear fractures initiating 

near the end portion of the inner arc for the model with a viscosity contrast of 100.  The 

only fractures initiated in strong rocks are late-stage shear fractures near the end portion  
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Figure 4.15. Fracture potential results in the limb for a weak rock with varying values of 

Rμ. Increasing the viscosity contrast will result in folds with larger wavelengths and hinge 

lengths, higher amplitudes, thinner folding layers, and steeper limb dips. 

 

 

of the inner arc for the lowest viscosity contrast model.  Fracture initiation is not 

observed in the limb for intermediate strength rocks or strong rocks.   

 Viscosity contrast models that include erosion are excluded from this study due to 

asymmetric fold shapes that develop during the erosional unloading procedure.     
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4.2.4. Influence of Pericline Aspect Ratio.  Because periclines in nature exhibit  

a range of different aspect ratios, a set of models is established to test the influence of the 

pericline aspect ratio on fracture initiation.  These models are set up such that periclines 

with aspect ratios of 1:3, 1:5, and 1:7 are generated after 50% shortening.  Fracture 

initiation is investigated during both buckling and erosional unloading for the pericline 

aspect ratio analysis.  To ensure that the pericline aspect ratio is the only parameter that is 

varied, all models are assigned material properties and initial model dimensions in the x 

and z-directions that are identical to the base model (refer to Figure 3.1).  Only the initial 

perturbation length in the y-direction is modified to achieve the final desired aspect ratio 

for each respective model.  Final fold geometries for the aspect ratio models are given in 

Table 4.5.  As expected, the most significant geometric change is the considerable 

increase in hinge length that accompanies an increase in the aspect ratio.  Increasing the 

final aspect ratio also results in slightly higher fold amplitudes, and slightly steeper limb 

dips; the largest increase for both cases is observed during the jump from an aspect ratio 

of 1:3 to an aspect ratio of 1:5.  The final aspect ratio appears to have very little influence 

on the thickness of the folding layer.    

 

 

Table 4.5. Geometric properties for the aspect ratio models (base model is shaded in 

gray). Measurements are representative of the central portion of the pericline. 

 
 

 

4.2.4.1 Buckling.  Figure 4.16 shows the fracture potential results for the hinge of  

a weak rock, with an aspect ratio of 1:5 representing the base model.  Overall fracture 

distributions are similar for each model, although there are two noteworthy deviations 

from the base model distribution.  First, the lowest aspect ratio model (1:3) contains mid 

and late-stage shear fractures that span nearly the entire thickness of the fold at the end  
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Figure 4.16. Fracture potential results in the hinge for a weak rock with varying final 

aspect ratios.  Increasing the aspect ratio will result in folds with longer hinge lengths.  

 

 

portion.  Second, the highest aspect ratio model (1:7) exhibits mid-stage shear fracturing 

that extends slightly farther into the interior of the fold near the end portion of the outer 

arc.   

 Figure E.1 shows the fracture potential results for the hinge of an intermediate 

strength rock.  The intermediate strength rock exhibits identical mid-stage tensile 

fracturing near the central portion of the outer arc for each model, but the locations of 

shear fracturing vary for different aspect ratios.  Along the inner arc, shear fracturing is 

observed near the central portion and end portion for the lowest aspect ratio model, but is 

not observed at all in the highest aspect ratio model.  Outer arc shear fractures are only 
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initiated in the highest aspect ratio model; these fractures initiate during the late stages of 

buckling near the end portion.     

Fractures are not observed in hinge of a strong rock, and are not observed in the 

limb for any scenario during the buckling process.     

4.2.4.2 Erosion.  The erosion characteristics for the aspect ratio models are given  

in Table 4.6.  Overburden thickness prior to the onset of erosion shows slight thinning as 

aspect ratios increase, but the changes are relatively insignificant, and the duration of the 

erosion remains approximately the same for each model.   

 

 

Table 4.6. Erosion characteristics for the aspect ratio models. 

 

 

 

Figures 4.17 and 4.18 show the fracture potential results for the hinge and limb, 

respectively, of a weak rock.  The hinge exhibits erosional fracturing of various 

combinations of type and location in the outer arc for each model.  In general, outer arc 

erosional fractures appear to become slightly more dispersed as the aspect ratio increases.  

For instance, the highest aspect ratio model (1:7) shows patchy tensile fracturing along 

the outer arc, while the lowest aspect ratio model (1:3) displays localized tensile 

fracturing halfway along the hinge line and localized shear fracturing near the end 

portion.  The limb of each model contains erosional shear fractures near the central 

portion.  A clear relationship between shear fracturing in the limb and the aspect ratio is 

observed.  As the aspect ratio increases, shear fracturing disappears in the fold interior 

and the distribution becomes increasingly thin at the top and bottom of the limb.   

Figures E.2 and E.3 show the fracture potential results for the hinge and limb, 

respectively, of an intermediate strength rock.  The lowest aspect ratio model exhibits  
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Figure 4.17. Fracture potential results in the hinge for a weak rock, with varying final 

aspect ratios, after erosional unloading. Differences in the final fold shape are a result of 

the different aspect ratios considered and not due to erosional unloading.   

 

 

erosional shear fracturing near the end portions of the inner and outer arcs.  In the highest 

aspect ratio model, shear fractures initiate near the end portions of the inner and outer 

arcs, and tensile fractures initiate at two separate locations closer to the end portion. In 

the limb, the only erosional fractures that initiate are shear fractures near the top and 

bottom of the central portion for the lowest aspect ratio model. 

 Figure E.4 shows the fracture potential results for the hinge of a strong rock.  The 

lowest aspect ratio model only shows erosional shear fracturing near the end portions of 

the inner and outer arcs.  The erosional fracture distribution in the highest aspect ratio 

model is identical to the distribution for the base model.  Fracture initiation is not 

observed in the limb of a strong rock for any model.   
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Figure 4.18. Fracture potential results in the limb for a weak rock, with varying final 

aspect ratios, after erosional unloading. Differences in the final fold shape are a result of 

the different aspect ratios considered and not due to erosional unloading.   

 

 

4.2.5. Influence of Shortening Percentage.  Each analysis up to this point has 

assumed that the final desired aspect ratio is achieved after 50% shortening, resulting in 

folds with relatively high amplitudes and steep limb dips.  Keeping a constant final aspect 

ratio of 1:5, models are set up with various percentages of lateral shortening (10, 20, 30, 

40, 50) to see how fracture initiation changes for lower amplitude folds with gentler limb 

dips.  Fracture initiation in these models is tested for both buckling and erosional 

unloading.  Each model is assigned material properties and initial geometric dimensions 

in the x and z-direction that are identical to the base model.  To ensure that a final aspect 

ratio of 1:5 develops for each model, the length of the initial perturbation in the y-
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direction is varied accordingly.  Final geometric properties for the centrally located 

periclines in each respective model are given in Table 4.7.  Models with lower shortening 

percentages result in folds with larger final wavelengths, and therefore require longer 

hinge lengths to achieve the desired aspect ratio.  In addition, increasing the shortening 

percentage leads to higher amplitudes, thicker folding layers, and steeper limb dips.       

 

 

Table 4.7. Geometric properties for the shortening percentage models (base model is 

shaded in gray). Measurements are representative of the central portion of the pericline. 

 
 

 

4.2.5.1 Buckling.  Figure 4.19 shows the fracture potential results at the hinge of  

a weak rock, with the 50% shortening model representing the base case.  It should be 

noted that the timing of fracture initiation for the buckling analysis is not very meaningful 

since lower shortening percentages are considered (i.e., based on the definition of early, 

mid, and late-stage fractures only early stage fractures are initiated for the 10% 

shortening model).  What becomes of primary interest is how the distribution and extent 

of fracturing changes with the increasing amplitudes and limb dips that accompany 

higher shortening percentages.  Shear fracturing along the inner arc is observed for all 

models, but the extent of fracturing changes with shortening percentage.  Shear fracturing 

in the inner arc of the 10% shortening model extends from the central portion to a point 

approximately halfway along the hinge line.  Shear fracturing in the 20 and 30 % models 

nearly spans the entire length of the inner arc, only ceasing near the end portion.  The 

40% model and the base model both display shear fracturing along the entire length of 

the inner arc, but near the end portion the fracturing does not extend as far into the fold  
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Figure 4.19. Fracture potential results in the hinge for a weak rock with varying amounts 

of lateral shortening. Increasing the shortening percentage will result in folds with 

smaller wavelengths and hinge lengths, higher amplitudes, thicker folding layers, and 

steeper limb dips. 
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interior for the base model.  Shear fracture initiation is only observed in the outer arc for 

models that experience greater than 20% shortening.  These include fractures near the 

central portion that appear for 30, 40, and 50% shortening, and fractures near the end 

portion that only initiate for the base model.   

 Figure F.1 shows the fracture potential results at the hinge for an intermediate 

strength rock.  Tensile fractures in the central portion of the outer arc initiate for all 

models with shortening percentages greater than 20%.  The only other fractures observed 

for intermediate strength rocks are shear fractures that initiate near the end portion of the 

inner arc for the base model.   

 Fracturing is neither observed in the hinge of strong rocks, nor in the limb for any 

combination of rock strength and shortening percentage.       

4.2.5.2 Erosion.  The erosion characteristics for the shortening percentage models 

are given in Table 4.8.  Initial overburden thickness is the same for each model, but 

increasing the shortening percentage results in more significant thickening of the 

overburden during buckling, and therefore longer periods of erosion.   

 

 

Table 4.8. Erosion characteristics for the shortening percentage models. 

 
 

 

 Figures 4.20 and 4.21 show the fracture potential results for the hinge and limb, 

respectively, of a weak rock.  The most obvious relationship that can be observed is the 

regression of erosional shear fracture distributions along the inner arc as final fold 

amplitude and limb dip increase.  For the 10% shortening model, which exhibits the 

lowest amplitude and gentlest limb dips, erosional shear fracturing spans the entire  
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Figure 4.20. Fracture potential results in the hinge for a weak rock, with varying amounts 

of lateral shortening, after erosional unloading. Differences in the final fold shape are a 

result of the differences in lateral shortening percentage and not due to erosional 

unloading. 
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Figure 4.21. Fracture potential results in the limb for a weak rock, with varying amounts 

of lateral shortening, after erosional unloading. Differences in the final fold shape are a 

result of the differences in lateral shortening percentage and not due to erosional 

unloading. 
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thickness of the fold near the end portion, and extends along the entire length of the inner 

arc.  A similar, but less extensive distribution can be observed in the 20% shortening 

model, with erosional fracturing only extending from the end portion to a point 

approximately halfway along the hinge line of the inner arc.  The inner arc erosional 

fracturing becomes even less extensive for the 30 and 40% shortening models, and 

completely disappears for the base model.  No erosional fracturing is observed near the 

central portion of the outer arc for the 10% model, but shear and tensile fracturing can be 

observed along the outer arc towards the central portion for the remainder of the models.  

The maximum extent of these outer arc fractures, both inwards and towards the end 

portion, are observed for the 40% shortening model.  Pervasive, erosional shear 

fracturing is observed in the limb of the 10% shortening model and the base model.  

Fracturing in the 10% shortening model spans the entire thickness of the limb near the 

end portion, as opposed to the base model where shear fracturing spans the entire 

thickness of the limb near the central portion.  The only other erosional fractures in the 

limb are shear fractures that appear in the top and bottom of the end portion for the 20% 

shortening model.   

 Figure F.2 shows the fracture potential results at the hinge of an intermediate 

strength rock.  Inner arc erosional shear fractures are initiated for the 10, 20, and 30% 

shortening models.  In the 10% shortening model these fractures extend from the central 

portion to slightly over halfway along the hinge line.  For the 20% shortening model, 

inner arc shear fracturing extends along nearly the entire hinge length, disappearing only 

near the end portion.  The inner arc erosional shear fractures for the 30% model are 

concentrated near the end portion.  Erosional tensile fracturing is observed in the outer 

arc for shortening percentages of 20, 30, and 40%.  In all cases, fracturing extends from 

the central portion towards the end portion, with the 40% shortening model showing  

fracturing that extends the farthest.  No erosional fractures are observed in the limb for 

intermediate strength rocks.     

 Figure F.3 shows the fracture potential results at the hinge of a strong rock.  

Excluding the base model, the only fractures that are initiated during erosional unloading 

for strong rocks are found along the outer arc for shortening percentages of 20, 30, and 
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40%.  These fractures are tensile, and are concentrated more towards the central portion.  

No erosional fractures are observed in the limb for strong rocks.  

4.2.6. Influence of Overburden Stress.  The final parameter that is varied for the 

parametric analysis is the overburden thickness.  Overburden thickness for this particular 

analysis is the total thickness of the portion of the model that overlies the folding layer, 

and should not be confused with the thickness of the overburden layer.  Models with 

initial overburden thicknesses of 500, 1000, 1500, and 2000 meters are set up to test the 

influence of overburden stress on fracture initiation.  For all models, fracture initiation is 

analyzed during buckling and erosional unloading.  The material properties and initial 

geometric dimensions in the x and y-directions for each model are identical to the base 

model.  The only parameter that changes is initial thickness of the overburden layer.  A 

final aspect ratio of 1:5 is once again achieved after 50% shortening.  Final geometric  

properties for the overburden stress models are given in Table 4.9.  These properties 

clearly show that initial overburden thickness has very little influence on the final fold 

geometry. 

 

 

Table 4.9. Geometric properties for the overburden stress models (base model is shaded 

in gray). Measurements are representative of the central portion of the pericline. 

 
 

 

4.2.6.1 Buckling.  Figures 4.22 and G.1 show the fracture potential result for the  

hinge of a weak rock and intermediate strength rock, respectively, with an overburden 

thickness of 500 meters representing the base model.  For both weak rocks and 

intermediate strength rocks fracturing is only initiated during buckling for the base  
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Figure 4.22. Fracture potential results in the hinge for a weak rock with varying amounts 

of overburden thickness. The final fold shape is approximately the same for each model. 

 

 

model.  Fracturing during buckling is not observed in the hinge of strong rocks and is not 

observed in the limb for any scenario.   
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4.2.6.2 Erosion.  Erosional characteristics for the overburden stress models are 

given in Table 4.10.  Since 50% shortening is applied to all models during buckling, the 

pre-erosion overburden thickness is only a function of the initial overburden thickness, 

and thus a steady increase in the duration of erosion is observed as initial overburden 

thickness increases.      

 

 

Table 4.10. Erosion characteristics for the overburden stress models. 

 
 

 

 Figures 4.23 and 4.24 show the fracture potential results in the hinge and limb, 

respectively, of a weak rock.  Immediately it can be noted that erosional tensile fracturing 

is not initiated for initial overburden thicknesses greater than 500 meters.  Erosional shear 

fractures are initiated for all models, and the extent of these fractures appears to be 

heavily influenced by overburden thickness and the duration of the erosion period.  In the 

1000m overburden model, erosional shear fracturing is predominantly concentrated near 

the end portion of the outer arc but also appears near the end portion of the inner arc.  The 

fracturing becomes much more extensive for the 1500 and 2000 meter overburden 

models, spanning the entire length of the outer arc for both models and the entire 

thickness of the end portion of the fold for the 2000 meter overburden model.  Highly 

pervasive erosional shear fracturing is observed in the limb for all models, beginning in 

the central portion and extending closer to the end portion as the initial overburden 

thickness increases. 

Figures G.2 and G.3 show the fracture potential results in the hinge and limb, 

respectively, of an intermediate strength rock.  In the hinge, erosional shear fracturing  
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Figure 4.23. Fracture potential results in the hinge for a weak rock, with varying amounts 

of overburden thickness, after erosional unloading. The final fold shape is approximately  

the same for each model. 

 

 

exhibits the same pattern that is observed for the weak rock.  Fracturing is initially 

concentrated near the end portions of the outer and inner arc for the 1000 meter 

overburden model, and becomes more extensive through the end portion and along the 

outer arc as initial overburden thickness increases.  With the exception of the base model,  
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Figure 4.24. Fracture potential results in the limb for a weak rock, with varying amounts 

of overburden thickness, after erosional unloading. The final fold shape is approximately 

the same for each model. 

 

 

erosional tensile fractures are only initiated near the end portion of the outer arc for the 

1000 meter overburden model.  Fracturing in the limb is slightly less extensive towards 

the end portion than for a weak rock, but the general distribution remains the same.  No 

shear fractures are observed in the limb of the base model. 
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 Figures G.4 and G.5 show the fracture potential results for the hinge and limb, 

respectively, of a strong rock.  Erosional shear fracturing appears near the end portions of 

the inner and outer arcs of each model, and only initiates along the outer arc for the 2000 

meter overburden model.  With the exception of the base model, erosional tensile 

fractures are only initiated near the end portion of the outer arc for the 1500 meter 

overburden model.  Once again, fracturing in the limb is distributed in the same manner 

as it is for weak rocks and intermediate strength rocks, just to a slightly lesser extent in 

the direction of the end portion.  No shear fractures are observed in the limb of the base 

model.   
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5. DISCUSSION 

The 3D modeling approach presented in this study shows that a non-cylindrical 

fold geometry can be generated for a single-layer buckle fold with a single unidirectional 

shortening event, which is in agreement with experimental studies by Dubey and 

Cobbold (1977), and Blay et al. (1977); and is also in agreement with numerical 

modeling studies by Kaus and Schmalholz (2006), and Schmid et al. (2008).  Moreover, 

the effective stress evolution can be effectively simulated during the processes of 

buckling and erosional unloading.  Furthermore, given the assumptions made regarding 

fracture initiation and propagation, the effective stresses from the numerical simulations 

can be extracted and applied to the combined Griffith/Navier-Coulomb failure criterion to 

document fracture characteristics (e.g., location, type, timing of initiation) within the 

fold.  These fracture characteristics can help provide a better understanding of the 

occurrence of various fracture sets observed in folds that are partially or fully exposed at 

the surface (e.g., Stearns, 1964; Bergbauer and Pollard, 2004; Bellahsen et al., 2006; 

Cooper et al. 2006; Stephenson et al. 2007; Al-Mahmoud et al. 2009).  When considering 

these natural fracture sets, two primary points of interest arise that cannot readily be 

explained by surface field studies or subsurface geophysical investigations: what 

conditions promote the initiation of each fracture set, and when do the fracture sets 

initiate (i.e., are they associated with buckling, erosional unloading, or another process)?  

A variety of studies have attempted to link fracture initiation to the state of strain in a 

folded layer using curvature analysis (e.g., Lisle, 1994; Hennings and Olson, 1997; 

Fischer and Wilkerson, 2000), or the neutral surface concept (e.g., Lisle et al., 2009; 

Frehner, 2011).  An important shortcoming of such studies is that the results are based on 

strain distributions within the fold, and the in-situ stress magnitudes are not taken into 

account.  While folds may exhibit extensional or compressional states of strain at any 

given instance, the in-situ state of stress may not promote the initiation of fractures, and 

thus a thorough understanding of the stress evolution is necessary to effectively predict 

fracture initiation.  Eckert et al. (2014) presents one of the few studies that simulates the 

stress evolution during single-layer buckling, while including the influence of gravity and 

pore pressure.  Their modeling approach successfully demonstrates that the stress 
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evolution can help provide a better understanding of tensile fracture initiation and 

occurrence in 2D cylindrical folds.  This study follows a similar approach to that 

presented by Eckert et al. (2014), but introduces an additional dimensional component, 

therefore allowing for the generation of non-cylindrical fold geometries.  The results 

presented thus far have demonstrated the influence of various parameters on the location, 

type, and extent of fracturing in the hinge and limb of a pericline, as well as the general 

timing of fracture initiation.  In order to relate the fractures observed during the 

numerical simulations to the those presented in Cosgrove and Ameen’s (1999) conceptual 

model for fractures associated with buckle folds (see Figure 5.1), as well as those 

observed in other conceptual models and field studies, an examination of the fracture 

orientation relative to the folding layer is still necessary. 

Fracture orientations are presented in the form of stereographic projections, which 

show the strike and dip of the expected fracture planes, and the average poles to the 

bedding planes.  A stereographic representation of fracture orientation within the 

periclines in this study can be accomplished by substituting the x and y-axes for the 

cardinal directions (i.e., north, south, east, west) that are used for traditional stereographic 

projections, where the y-direction is equivalent to the north/south line (+ y is north and – 

y is south), and the x-direction is equivalent to the east/west line (+ x is east and – x is 

west; Figure 5.2a).  Given the relationship between the principal stresses and the fracture 

planes defined for the combined Griffith/Navier-Coulomb failure criterion, only the 

orientations of the principal stresses at the time of failure are necessary to calculate the 

strike and dip of the fractures.  Figures 5.2b and 5.2c demonstrate how the orientations of 

two of the principal stresses (σ'1 and σ'3) are extracted at a specific time (50% shortening 

in this case), and plotted as lines on a stereonet for 9 element sets along the top of the 

folding layer.  Similarly, the principal stress orientations can be extracted for an 

individual element in the hinge or limb the moment a fracture potential of -1 or +1 is 

reached, and the strikes and dips of the fracture planes can be subsequently calculated.   

Combining the fracture orientation with the fracture location and timing of 

initiation allows for a complete discussion of the different types fracture sets that initiate, 

where and when they initiate, and whether or not they are observed in conceptual 

fold/fracture models or field studies.  The fracture sets observed in this study are divided  
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Figure 5.1. Fracture sets associated with buckle folding. (a) Extensional fractures with 

inferred orientations of σ3. (b & c) Shear fractures, normal faults, and thrusts with 

inferred orientations of σ1 and σ3 (After Cosgrove and Ameen, 1999). 

 

 

into two classes: fractures associated with buckling, and fractures associated with 

erosional unloading; the possible existence of pre-existing fractures is discussed later on. 
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Figure 5.2. Stereographic projections applied to the pericline geometry. (a) Reference 

orientation of the pericline for stereographic projections. The y-direction is equivalent to 

the traditional north/south line and the x-direction is equivalent to the traditional 

east/west line. (b) 9 element sets from which the orientations of σ'1 and σ'3 are extracted 

to be plotted as lines on a stereonet. (c) Trend and plunge of σ'1 and σ'3 for the 9 element 

sets at the top of the folding layer.  These orientations correspond to the σ'1 and σ'3 

orientations after 50% shortening.    
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5.1. FRACTURES ASSOCIATED WITH BUCKLING 

Fracture potential results indicate that the type and extent of fracturing in the  

hinge and limb during buckling is heavily dependent on the permeability of the folding 

layer, and the thickness of the overburden.  Low permeability (10
-21

m
2
) folds develop 

significant amounts of overpressure during buckling, and thus the extent of fracturing 

becomes much more widespread; a condition that is further amplified for higher 

anisotropic permeability ratios. Conversely, a large overburden thickness results in a 

highly compressive state of stress, making fracturing in high permeability folds (10
-15

m
2
) 

impossible for overburden thicknesses greater than 500 meters.  Both observations are 

consistent with the findings of Eckert et al. (2014).  The remaining parameters have 

notable influences on the type and location of fractures that appear during buckling, but 

the extent of fracturing is not as heavily influenced by these parameters as it is for models 

with low permeabilities or high overburden thicknesses. 

 Eight fracture sets associated with buckling are identified based on the analysis of 

each parametric variation/rock strength combination (Fracture Sets A-H in Figures 5.3-

5.10).  It is important to note that Figures 5.3 -5.10 each depict a cumulative summation 

of the respective fracture sets observed for all buckling scenarios, and the geometry and 

fracture distributions shown are not representative of a unique buckling scenario.     

5.1.1. Tensile Fractures.  Fracture Set A comprises tensile fractures in the outer  

arc of the hinge that are perpendicular to the bedding planes, and parallel to the fold axis 

(Figures 5.3a-c).  These fractures are identical to Fracture Set 1 presented in Cosgrove 

and Ameen’s (1999) conceptual model (see Figure 5.1a), and are initiated during the mid 

to late-stages of buckling (>15% shortening; also observed by Eckert et al., 2014).  The 

extent of observed fracturing can be seen in Figure 5.3b (blue outline).  In general, the 

earliest fractures initiate in the outermost arc at the central portion, where the fold 

amplitude is the highest.  Subsequent fractures progressively initiate along the outermost 

arc towards the end portion, as well as inwards toward the fold interior.  Fracture Set A is 

observed in weak rocks for the cases of low permeability (10
-21

 m
2
), or a high viscosity 

contrast (Rμ = 100); intermediate strength rocks for all cases except for a low competence 

contrast (Rμ = 25), greater than 500m of initial overburden, or less than 30% shortening; 

and strong rocks for only low permeability cases.  The extent of fracturing is related to 
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permeability, with the most extensive fracturing being observed for low permeability 

folds, and significantly less extensive fracturing being observed for higher permeability 

folds (> 10
-21 

m
2
).  This fracture set also features in other conceptual models (e.g., Stearns 

and Friedman, 1972; Twiss and Moores, 2007), and has been observed in numerous field 

studies of natural folds (e.g., Stearns, 1964; Bellahsen et al., 2006; Cooper et al., 2006).            

 

 

 

Figure 5.3. Depiction of the characteristics associated with Fracture Set A. (a) Location 

of hinge elements in the pericline. (b) Oblique view of the hinge elements showing the 

extent of fracturing from the central portion to over hallway along the hinge line (blue 

outline).  The stereographic projection includes the average pole to the bedding planes in 

the fracture region during mid to late-stage buckling, and shows that the fractures strike 

parallel to the fold axis, and are normal the bedding planes. (c) Cut section from (a) used 

to present a conceptual illustration of the orientation of fracture planes with respect to the 

folding layer and bedding planes. This illustration is only meant to enhance conceptual 

understanding, and should not be used as an indicator for the true fracture location.    

 

 

 Fracture Set B comprises tensile fractures in the outer arc of the hinge that are 

perpendicular to the bedding planes, and perpendicular to the fold axis (Figures 5.4a-c).  
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These fractures are identical to Fracture Set 3 presented in Cosgrove and Ameen’s (1999) 

conceptual model (see Figure 5.1a), and are initiated during the mid to late-stages of 

buckling (>15% shortening).  Fracture initiation is observed along the back half of the 

outer arc, beginning nearly halfway along the hinge line, and progressively extending 

towards the end portion during later stages of folding (see Figure 5.4b; blue outline).  

Low permeability folds are capable of producing these fractures for weak, intermediate 

strength, and strong rocks.  The only other scenario for which Fracture Set B is observed, 

is for the case of a weak rock combined with a high viscosity contrast (Rμ = 100).  

Fracture Set B could not generally be explained using the 2D modeling approach 

presented by Eckert et al. (2014), but has been observed along the hinges of natural folds 

(e.g., McQuillan, 1974; Stephenson et al., 2007; Wennberg et al., 2007), and is classified 

as a commonly observed fracture set in the Stearns and Friedman (1972) conceptual 

model of fractures associated with a pericline.   

5.1.2. Shear Fractures.  Fracture Set C comprises shear fractures in the outer arc 

of the hinge that strike parallel to the fold axis, and have dips of approximately 60° with 

respect to the bedding planes (Figures 5.5a-c).  These fractures are equivalent to the outer 

arc normal faults in Cosgrove and Ameen’s (1999) conceptual model (Fracture Set 7 in 

Figure 5.1c), and are observed during mid-stage buckling (15-30% shortening).  Fracture 

initiation first occurs at the central portion, and continues along the outer arc towards the 

end portion, ultimately ceasing before reaching the halfway point along the hinge line 

(see Figure 5.5b; red outline).  Fracturing is observed in weak rocks for every buckling 

scenario except for a low viscosity contrast (Rμ = 25), greater than 500m of initial 

overburden, or less than 30% shortening; but is not observed in intermediate strength 

rocks, or strong rocks for any scenario.  The maximum extent of fracturing is observed 

for high permeability folds (10
-15

 m
2
) due to preferential initiation of tensile fractures (Set 

A) for low permeability folds (10
-21

 m
2
).  Fracture Set C also appears in Twiss and 

Moore’s (2007) conceptual fold/fracture model, and has been commonly observed in the 

outer arc of natural folds (e.g., Coleman-Sadd, 1978; Cooper et al., 2006; Morley, 2007).      
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Figure 5.4.  Depiction of the characteristics associated with Fracture Set B. (a) Location 

of hinge elements in the pericline. Fracturing is observed along the back half of the hinge 

(blue outline in b) with the stereographic projection showing that fractures strike 

perpendicular to the fold axis and are normal to the bedding planes (see conceptual 

illustration in c).  

 

 

Fracture Set D comprises shear fractures in the hinge that strike generally parallel  

to the fold axis, and have dips of approximately 30° with respect to the bedding planes 

(Figures 5.6a-c).  These fractures are equivalent to the inner arc thrusts in Cosgrove and 

Ameen’s (1999) conceptual model (Fracture Set 8 in Figure 5.1c).  Fractures initiate 

primarily during the early stages of shortening (< 15% shortening), but can be initiated 

during mid to late-stage shortening (> 15% shortening) in some instances near the end 

portion.  It can be seen in Figure 5.6b (red outlines) that Fracture Set D is observed along 

the entire length of the inner arc, but is also observed near the end portion of the outer 

arc.  The outer arc fractures are only initiated in weak rocks and intermediate strength 

strong rocks for the case of a low viscosity contrast (Rμ = 25).  Inner arc fractures initiate 

in weak rocks for every buckling scenario, except when the initial overburden thickness 

is greater than 500m; and in intermediate strength rocks for the cases of low permeability 
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Figure 5.5. Depiction of the characteristics associated with Fracture Set C. (a) Location of 

hinge elements in the pericline. Fracturing is observed along the front half of the hinge 

(red outline in b), with the stereographic projection showing that fractures strike parallel 

to the fold axis, and have dips of approximately 60° with respect to the bedding planes 

(see conceptual illustration in c).   

  

 

 (10
-21 

m
2
), a low viscosity contrast (Rμ = 25), or a low aspect ratio (1:3).  Set D does not 

initiate in strong rocks for any scenario.  While fracture initiation along the entire length 

of the inner arc is possible for most scenarios involving weak rocks, the inward advance 

of fracture initiation towards the fold interior is much more pronounced for low 

permeability folds than for higher permeability folds (>10
-19 

m
2
).  Fracture Set D also 

appears in the Twiss and Moores’ (2007) conceptual model, and has been observed in the 

inner arc of many natural folds (e.g., Stearns, 1964; Narahara and Wiltschko, 1985; 

Mitra, 2002).       

Fracture Sets E and F comprise mid to late-stage shear fractures in the end portion 

of the hinge that initiate with varying strikes and dips, which are reflective of different σ'3 

orientations and a constant orientation of σ'1 normal to the axial plane.  For Set E (Figures 

5.7a-c), σ'3 lies within the plane of the fold axis, and is nearly parallel to the bedding  
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Figure 5.6. Depiction of the characteristics associated with Fracture Set D. (a) Location 

of hinge elements in the pericline. Fracturing spans the entire length of the inner arc of 

the hinge and is also observed near the end portion of the outer arc (red outlines in b). 

The stereographic projection shows that early stage fractures strike parallel to the fold 

axis, and mid to late-stage fractures strike nearly parallel to the fold axis.  All fractures 

have dips of approximately 30° with respect to the bedding planes (see conceptual 

illustration in c).    

 

 

planes.  The resulting orientations of the fracture planes with respect to the folding layer 

and bedding planes are shown in Figure 5.7c (Notice that a 90° rotation of Set E about 

the x-axis results in Set D).  For Set F (Figures 5.8a-c), σ'3 exhibits rotation within the 

plane of the fold axis, resulting in transitional fractures that lie within the 90° rotation 

window between Set D and Set E (see Figure 5.8c).  Set E is only observed near the outer 

arc of the end portion (see Figure 5.7b; red outline), and only initiates in weak rocks with 

low permeabilities (10
-21

 m
2
) or a viscosity contrast of 75 or higher.  Set F is observed 

throughout the entire fold thickness near the end portion (see Figure 5.8b; red outline), 

and initiates to some extent for all buckling scenarios involving weak rocks or 

intermediate strength rocks, except for cases involving a low viscosity contrast (Rμ = 25),  



 

 

100 

 

Figure 5.7. Depiction of the characteristics associated with Fracture Set E. (a) Location of 

hinge elements in the pericline. Fracturing is only observed near the end portion of the 

outer arc of the hinge (red outline in b). The stereographic projection shows that fractures 

exhibit strikes of approximately 237° and 305°, with dips ranging from 60-70°. Fracture 

orientation with respect to the folding layer and bedding planes can be seen in (c).  

 

 

greater than 500m of initial overburden, or less than 50% shortening.  Set F only initiates 

in strong rocks for the case of low permeability folds.  The orientation of Set F is 

dependent on fracture location with respect to the inner and outer arcs.  Fractures closer 

to the inner arc have orientation more similar to those of Fracture Set D, while fractures 

closer to the outer arc have orientations more similar to those of Fracture Set E.  Neither 

Set E, nor Set F feature in Cosgrove and Ameen’s (1999) conceptual model; however, Set 

E is considered a possible fracture set in periclines based on the conceptual model by 

Stearns and Friedman (1972), and has been observed in the hinges of large scale 

anticlines by Marshak et al. (1982), Hancock (1985), and Wenneberg et al. (2007).  

 Fracture Set G comprises shear fractures in the limb that strike generally parallel 

to the strike of the bedding planes, and have dips of approximately 30° with respect to the 

bedding planes (Figures 5.9a-c).  These fractures are identical to Fracture Set 6 presented  
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Figure 5.8. Depiction of the characteristics associated with Fracture Set F. (a) Location of 

hinge elements in the pericline. Fracturing is observed throughout the entire thickness of 

the folding layer at the end portion of the hinge (red outline in b). The stereographic 

projection shows that fractures exhibit variable strikes (190-220° and 320-350°), with 

dips ranging from 30-45°. Fracture orientation with respect to the folding layer and 

bedding planes can be seen in (c).  

 

 

in Cosgrove and Ameen’s (1999) conceptual model (see Figure 5.1b), and are initiated 

during the early stages of buckling (< 15% shortening).  Fracture initiation is restricted to 

thin sections in the top and bottom of the limb near the end portion (see Figure 5.9b; red 

outlines), and furthermore is only observed in low permeability (10
-21 

m
2
) weak rocks 

with anisotropic permeability ratios of 5 to 1 or higher.  This limited observation could 

help explain why Fracture Set 6 in Cosgrove and Ameen’s (1999) conceptual model is 

classified as a rarely occurring fracture set.  Despite fractures in Set G being classified as 

rarely occurring, they have been observed in the limbs of the Teton Anticline in 

northwest Montana, USA (Stearns, 1964; 1967).   

Fracture Set H comprises late stage shear fractures in the interior of the limb that 

strike parallel to the strike of the bedding planes (Figures 5.10a-c).  At the time of 

initiation, σ'1 is sub-vertical and σ'3 is sub-horizontal, resulting in the relationship between 
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Figure 5.9. Depiction of the characteristics associated with Fracture Set G. (a) Location 

of limb elements in the pericline. Fracturing is observed in thin sections at the top and 

bottom of the limb near the end portion (red outlines in b), with the stereographic 

projection showing that fractures generally strike parallel to the strike of the bedding 

planes, and have dips of approximately 30° with respect to the bedding planes.  (c) 

Conceptual illustration of fracture orientation with respect to the folding layer and 

bedding planes in the limb. It is important to note that the illustration in (c) is only meant 

to enhance conceptual understanding of the fracture orientations, and should not be used 

as an indicator of true fracture location or fold shape. 

 

 

the fracture planes and folding layer given in Figure 5.10c.  The stereographic projection 

in Figure 5.10b shows that one of the conjugate shear planes is nearly parallel to the 

bedding planes, while the other dips approximately 60° with respect to the bedding 

planes. These fractures are only observed in weak rocks with a low viscosity contrast (Rμ 

= 25), indicating that Set H might be a rarely occurring fracture set in natural buckle 

folds.  Fracture Set H does not feature in Cosgrove and Ameen’s (1999) conceptual  
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Figure 5.10. Depiction of the characteristics associated with Fracture Set H. (a) Location 

of limb elements in the pericline. Fracturing is observed in the interior of the folding 

layer, away from the central and end portions (red outline in b).  The stereographic 

projection shows that fractures strike parallel to the bedding planes, with one fracture 

plane being nearly parallel to the bedding and the other dipping approximately 60° with 

respect to the bedding (see conceptual illustration in c). 

 

 

model, and does not seem to appear in any field studies of natural buckle folds.  It is 

interesting to note, however, that this fracture set has been generated in the limbs of 

experimentally produced forced folds above the equivalent of a normal basement fault 

(Ameen, 1990).  Ameen (1990) also cites that the experimentally produced fractures 

analogous to Set H were mentioned by Stearns (1970) in a field study of the forced folds 

of Wyoming, USA.       

 

 

5.2. FRACTURES ASSOCIATED WITH EROSIONAL UNLOADING 

Nine fracture sets associated with erosional unloading are identified based on the 

analysis of each parametric variation/rock strength combination, with 6 of those sets 

being identical to fracture sets also associated with buckling (Figures 5.11 and 5.12) and 
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the remaining 3 sets being unique to erosional unloading (Fracture Sets I-K in Figures 

5.13-5.15).  In addition, a large group of diversely oriented shear fractures unique to 

erosional unloading is observed in the limb (Figure 5.16).  It needs to be noted, that all 

erosion scenarios are for high permeability folds (10
-15 

m
2
). 

5.2.1.  Erosional Fractures Also Associated With Buckling.  Tensile Fracture  

Sets A and B, which are observed in the hinge during buckling, are also observed in the 

hinge during erosional unloading.  Set A (Figure 5.11a) initiates in weak, intermediate 

strength, and strong rocks for a combination of low initial overburden thickness (500m) 

and a 20-40% shortening period prior to erosional unloading.  Initiation is also possible 

for a combination of low initial overburden thickness and a 50% shortening period prior 

to erosional unloading, but only in weak rocks.  The observed extent of initiation for Set 

A begins at the central portion of the outer arc and terminates at a point over halfway 

along the hinge line in the direction of the end portion.  Set B (Figure 5.11b) only 

initiates in a small region near the end portion of the outer arc for weak, intermediate 

strength, and strong rocks with a combination of low initial overburden thickness, an 

aspect ratio of 1:5 or higher, and a 50% shortening period prior to erosional unloading.   

Shear Fracture Sets C, D, E, and G, which are observed during buckling, are also 

observed during erosional unloading.  Set C (Figure 5.12a) is observed along the front 

half of the outer arc of the hinge, and only initiates in weak rocks for a combination of 

low initial overburden thickness combined with 20-40% shortening prior to erosional 

unloading.  Set D (Figure 5.12b) is observed along the entire length of the inner arc of the 

hinge, and throughout the entire thickness of the folding layer near the end portion.  

Despite the vast extent of observed Set D fracturing, initiation is only possible in weak 

rocks and intermediate strength rocks for a combination of low initial overburden 

thickness and 10-20% shortening prior to erosional unloading.  Set E (Figure 5.12c) is 

observed throughout the entire thickness of the folding layer near the end portion of the 

hinge.  Fracturing initiates in weak rocks for all erosion scenarios with at least 30% 

shortening prior to erosional unloading, while fracture initiation in intermediate strength 

rocks and strong rocks requires at least 50% shortening prior to erosional unloading.  Set 

G (Figure 5.12d) is observed throughout the entire thickness of the back half of the limb,   
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Figure 5.11. Tensile fracture sets observed in the hinge during erosional unloading that 

are identical to sets also observed during buckling. (a) Fracture Set A is observed along 

the outer arc from the central portion to a point over halfway along the hinge line. (b) 

Fracture Set B is only observed for a small region near the end portion of the outer arc.  

 

 

and only initiates in weak rocks with a combination of low initial overburden thickness 

and 10-20% shortening prior to erosional unloading.    

5.2.2. Tensile Fractures Unique to Erosional Unloading.  Fracture Set I 

represents the only tensile fractures observed in this study that are unique to erosional 

unloading (Figures 5.13a-c).  This set comprises fractures in the outer arc of the hinge 

that trend perpendicular to the fold axis, with dips of approximately 45° with respect to 

the bedding planes.  Initiation is confined to a small region near the outer arc of the end 

portion (see Figure 5.13b; blue outline), and only occurs for two scenarios: in an 

intermediate strength rock with an initial overburden thickness of 1000 meters, and in a 

strong rock with an initial overburden thickness of 1500 meters.  Fracture Set I does not 

feature in Cosgrove and Ameen’s (1999) conceptual model; however, tensile fractures 

with the same orientations relative to the fold axis and bedding planes have been 

observed at select locations near the end portions of large-scale anticlines in the Zagros 

Mountains of Iran (Lacombe et al., 2011).     



 

 

106 

 

Figure 5.12. Shear fracture sets observed during erosional unloading that are identical to 

sets also observed during buckling. (a) Fracture Set C is observed in the hinge along the 

front half of the outer arc. (b) Fracture Set D is observed in the hinge along the entire 

length of the inner arc, and throughout the entire thickness of the folding layer near the 

end portion. (c) Fracture Set E is observed in the hinge throughout the entire thickness of 

the folding layer near the end portion. (d) Fracture Set G is observed throughout the 

entire thickness of the limb from the end portion to a point halfway between the central 

and end portions.  
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Figure 5.13. Depiction of the characteristics associated with Fracture Set I. (a) Location 

of hinge elements in the pericline. Fracturing is only observed in a small region near the 

end portion of the outer arc of the hinge (blue outline in b). The stereographic projection 

shows that fractures strike perpendicular to the fold axis, and have dips of approximately 

45° with respect to the bedding planes (see conceptual illustration in c). 

 

 

5.2.3. Shear Fractures Unique to Erosional Unloading.  Fracture Set J 

comprises conjugate shears in the outer arc of the hinge that are vertical, with the fold 

axis bisecting the acute angles between the fracture planes (Figures 5.14a-c).  These 

fractures are identical to Fracture Set 5 presented in Cosgrove and Ameen’s (1999) 

conceptual model (see Figure 5.1b), where they are classified as infrequently occurring.  

Fracturing is confined to a small region of the outer arc near the central portion, and is 

only initiated in weak rocks for a combination of low initial overburden thickness (500m) 

and 40% shortening prior to erosional unloading.  This highly selective scenario 

necessary to initiate Set J is consistent with Cosgrove and Ameen’s (1999) classification 

of these fractures as being infrequently occurring.  In spite of this classification, Fracture 

Set J features in other conceptual models (e.g., Stearns and Friedman, 1972; Twiss and  
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Figure 5.14. Depiction of the characteristics associated with Fracture Set J. (a) Location 

of hinge elements in the pericline. Fracturing is only observed in a small region near the 

central portion of the outer arc of the hinge (red outline in b). The stereographic 

projection shows that the fracture planes are vertical and normal to the bedding planes, 

with the fold axis bisecting the acute angle between the fracture planes (see conceptual 

illustration in c). 

 

 

Moores, 2007), and is cited as an observed fracture set in numerous field studies (e.g., 

Stearns, 1964; Hancock, 1985, Vitale et al., 2012).           

 Fracture Set K comprises shear fractures in the outer arc of the hinge that strike 

perpendicular to the fold axis, and have varying dips with respect to the bedding planes 

that are dependent on the location along the hinge line (Figures 5.15a-c).  All fractures 

observed in Figure 5.15b initiate with the same orientations of σ'1 and σ'3: σ'1 is 

approximately parallel to the y-axis, and σ'3 is sub-vertical.  These orientations of σ'1 and 

σ'3 result in the acute angle between the fracture planes being bisected by the bedding 

planes near the central portion.  Slight rotations in the dips of the fracture planes relative 

to the bedding are observed for locations farther along the hinge line towards the end 

portion, but the general relationship of the fracture planes with respect to the folding 

layer and bedding planes is approximate to that shown in Figure 5.15c.  The extent of  
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Figure 5.15. Depiction of the characteristics associated with Fracture Set K. (a) Location 

of hinge elements in the pericline. Fracturing is observed in the outer arc of the hinge 

beginning at the central portion, and ending at a point over halfway along the hinge line 

in the direction of the end portion (red outline in b). The stereographic projection shows 

that the fractures strike perpendicular to the fold axis, and have dips that range from 10-

50° relative to the bedding planes (see conceptual illustration in c).   

 

 

fracturing begins at the central portion, and ends at a point over halfway along the hinge 

line (see Figure 5.15b; red outline).  Fracture initiation is observed in weak rocks and 

intermediate strength rocks for initial overburden thicknesses of 1500 meters or higher, 

but is only observed in strong rocks for the highest initial overburden thickness (2000m).  

Fracture Set K does not feature in Cosgrove and Ameen’s (1999) conceptual model, and 

to the author’s knowledge, is not cited as a common fracture set in other conceptual 

models; however, this set has been observed in select field studies (e.g., Hancock, 1985; 

Lacombe et al., 2011).        

In addition to the fracture sets observed in the hinge that are unique to erosional 

unloading, shear fracturing unique to erosional unloading is observed in the limb (Figures 

5.16a-d).  These fractures exhibit a wide range of orientations, as can be seen in the 
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stereographic projection of cumulative fracture orientations in figure 5.15b, but it 

becomes apparent that fracture orientations are solely governed by the orientation of σ'1.  

All fractures exhibit dips in the range of 20-40° with respect to the horizontal, indicating 

that σ'3 is always sub-vertical, and that σ'1 exists within the horizontal plane perpendicular 

to the z-axis.  Furthermore, the ever changing strikes of the fracture planes show that σ'1 

not only lies within the horizontal plane, but is continuously rotated about the z-axis.  

Amongst these many fracture sets exist two end members, where the fracture planes 

strike perpendicular and parallel to the fold axis, respectively.  The resultant orientations 

of the fracture planes for these two end members, relative to the folding layer and 

bedding planes, can be seen in Figures 5.16c and d.  All other fractures represent 

transitional fractures that exist in the 90° rotational window, about the z-axis, between 

end members 1 and 2.  This cumulative group of erosional fractures is observed 

throughout the entire thickness of the folding layer from the central portion to a point 

over halfway along the limb in the direction of the end portion (see Figure 5.16b; red 

outline).  They initiate in weak rocks with a combination of at least 500 meters of initial 

overburden thickness, and 50% shortening prior to erosional unloading; and also initiate 

in intermediate strength rocks, and strong rocks, with initial overburden thicknesses of at 

least 1000 meters.  Although none of these fracture sets feature in Cosgrove and Ameen’s 

(1999) conceptual model, it should be noted that due to the nature of σ'1 and σ'3, fracture  

orientation with respect to the folding layer and bedding planes is highly dependent on 

the orientation of the limb at the time of fracturing.   

 

 

5.3. FRACTURE SETS NOT OBSERVED 

Four fracture sets presented in Cosgrove and Ameen’s (1999) conceptual model  

cannot generally be explained by the modeling results: bedding perpendicular tensile 

fractures in the limb that strike parallel to the fold axis (Set 2 in Figure 5.1a); bedding 

perpendicular tensile fractures in the limb that strike perpendicular to the fold axis (Set 3 

in Figure 5.1a); shear fractures in the limb that initiate with σ'2 normal to the bedding, σ'1 

parallel to the dip of the bedding, and σ'3 parallel to the strike of the bedding (Set 4 in  
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Figure 5.16. Depiction of the characteristics associated with shear fractures in the limb 

that are unique to erosional unloading. (a) Location of limb elements in the pericline. 

Fracturing is observed throughout the entire thickness of the limb from the central portion 

to over halfway along the limb in the direction of the end portion (red outline in b). The 

stereographic projection of cumulative fractures shows that fractures strike anywhere 

from 0-360°, with dips that range from 20-40°. Within these diversely oriented fracture 

sets exists two end members: one that strikes perpendicular to the fold axis (c), and one 

that strikes parallel to the fold axis (d).   

 

 

figure 5.1b); and normal faults above the neutral surface, in the hinge and limb, that are 

generally perpendicular to the fold axis (Set 9 in Figure 5.1c).      

 The inability of the modeling results to explain the occurrence of Set 2 is 

inconsistent with the results of Eckert et al. (2014), which indicate that Set 2 can be 

observed in the limbs of high permeability folds (> 10
-16

 m
2
) during erosional unloading.  

It should be noted, however, that the failure analysis used by Eckert et al. (2014) does not 
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include a shear failure criterion, and considers tensile fracturing a possibility for the case 

where T = 0 so as to avoid making assumptions regarding the rocks’ tensile strength.  In 

this study, tensile stresses are observed in the limbs during erosional unloading , but the 

inclusion of a shear failure criterion, combined with the assumption of a minimum tensile 

strength of 3MPa, results in the conditions for shear fracture initiation being reached 

before σ'3 = -T.  

 Fracture Sets 2 and 3 frequently appear in field studies of natural folds (e.g.,  

Cooper et al., 2006; Stephenson et al., 2007; Al-Mahmoud et al., 2009), and Set 4 is 

classified as a common fracture set (Cosgrove and Ameen, 1999).  Since all three of these 

sets are typically associated with folds, but none are observed during the buckling or 

erosional unloading procedures, an obvious possibility for their occurrence is that they 

are present pre-folding.  Sets 2 and 3 are observed in field studies by Bergbauer and 

Pollard (2004) and Bellahsen et al. (2006), with both studies determining that the 

fractures were initially pre-folding joint sets.  These bedding perpendicular joint sets are 

among the most abundant geologic structures (Davis et al., 2012), which could readily 

explain their common observance in natural folds.  Set 4 may represent a pre-folding 

strike-slip fracture that initiates during a horizontal compression event prior to buckling.  

Set 9 is not as commonly observed as Sets 2-4, but could also have initiated pre-folding 

as a result of regional faulting prior to the onset of buckling (e.g., Cooper et al., 2006).    

 

 

5.4. SYNOPSIS 

A synopsis of the fracture sets observed during the numerical simulations is  

presented in Figures 5.17 and 5.18, and includes the following: fracture type and 

orientation, extent of observed fracturing, timing of fracture initiation, conditions 

required to initiate fractures, and  any conceptual fold/fracture models or field studies that 

document the same fracture sets.  The first group of fracture sets represents fractures that 

are identical to fracture sets that feature in Cosgrove and Ameen’s (1999) conceptual 

model for fractures associated with buckle folds.  The second group of fractures 

represents the remainder of the fracture sets observed during the numerical simulations; 

these fractures do not feature in Cosgrove and Ameen’s (1999) conceptual model. 
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Figure 5.17. Fracture sets observed in the numerical simulations that are identical to 

fracture sets featured in Cosgrove and Ameen’s (1999) conceptual model for fractures 

associated with buckle folds (see Figure 5.1). An explanation of the abbreviations used to 

describe the conditions for fracture initiation, are provided at the bottom of the figure. 
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Figure 5.18. Fracture sets observed in the numerical simulations that do not feature in 

Cosgrove and Ameen’s (1999) conceptual model for fractures associated with buckle 

folds. An explanation of the abbreviations used to describe the conditions for fracture 

initiation, are provided at the bottom of the figure.   
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5.5. LIMITATIONS 

Although the 3D modeling approach presented in this study allows for the  

generation of realistic non-cylindrical fold geometries, and effectively alleviates 

restrictions to the out-of-plane principal stress orientation associated with cylindrical fold 

models (cited as a shortcoming to the 2D modeling approach by Eckert et al., 2014), there 

are still limitations that arise.    

 Considering that this study is primarily geared towards characterizing fracture 

initiation, one of the most important limitations is the inability of the viscoelastic material 

model to simulate plastic failure, consequently leading to an inadequate representation of 

the stress changes associated with failure.  When fractures are initiated in rocks, the 

stresses near the fracture typically decrease rapidly (Jaeger et al. 2009); but the 

viscoelastic stresses in these models are allowed to continuously develop, even when the 

stress conditions required to initiate failure have been met.  In order to provide a 

comprehensive characterization of fracture initiation, this limitation is counteracted using 

an assumption that does not allow fractures to propagate beyond the boundaries of an 

individual finite element (refer to Section 4.1.2).  Although this is considered a major 

assumption, it is still deemed appropriate since the implementation of a plastic 

constitutive relationship is not feasible for this study.   

  Because a 3D modeling approach is utilized, a large number of finite elements 

are introduced for each model (> 350,000).  A resulting set of over 380,000 equations 

must be solved by ABAQUS
TM

 for every specified time increment during the simulation.  

For the sake of executing practical run times for each model, both the number of time 

increments per simulation, and the output frequency of the unknown variables are 

reduced accordingly.  The downside to reducing the runtime is a subsequent decline in 

the resolution of the stress evolution output, and by association, the fracture potential 

results.  Models with higher resolution outputs can be readily acquired using 

ABAQUS
TM

, but the required cumulative run time for such models goes beyond the time 

constraints for this particular study. 

 Additional limitations that do not directly influence the effectiveness of the post-

processing analysis procedure (i.e., calculation of the fracture potential and the 

orientations of the fracture planes), include the following: 
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(1) Only a single, continuous layer-parallel shortening event is applied, and thus 

the influence of stress relaxation is not considered during buckling. 

(2) An initial, isotropic pore pressure distribution is assumed throughout each 

model.  These initial conditions restrict the inclusion of isolated overpressure 

zones, common in natural formations (Twiss and Moores, 2007), prior to the 

onset of shortening.   

(3) Viscosity is the only material property that is heterogeneously distributed 

throughout the model.  All other initial material properties are either assumed 

constant (i.e., specific gravity, Poisson Ratio), or are homogenously 

distributed in a depth dependent fashion throughout the model (i.e., porosity, 

permeability, Young’s Modulus).    

(4) Both buckling and erosional unloading are assumed to be isothermal 

processes, and thus thermal stresses are not included in this study.   

(5) The failure criterion used only predicts the initiation of new fractures; 

consequently, the reactivation of optimally oriented, pre-existing fracture sets 

is not accounted for. 

These five limitations represent a simplified geologic setting that may not be 

characteristic of most natural subsurface environments.  The methodology presented is 

capable of being altered to simulate folding for more complex (i.e., realistic) geologic 

environments; however, the addition of more complex features is beyond the scope of 

this study, since the main purpose is to determine the relative impact of individual 

parameters on fracture initiation characteristics, and not to evaluate fracture initiation for 

a specific geologic environment.    

 

 

 



 

 

117 

6. CONCLUSIONS AND FUTURE WORK 

6.1. CONCLUSIONS 

The numerical modeling results presented in this study demonstrate the 

importance of utilizing a 3D approach when conducting an analysis of fracture initiation, 

based on effective stress evolution; especially when considering periclines, where the 

complex geometry has a significant influence on the state of stress.  The 3D approach 

allows for the generation of periclinal fold geometries, which effectively mitigates any 

restrictions on principal stress orientations; a shortcoming that is associated with 2D 

cylindrical folding models.  Moreover, the 3D approach permits the initiation of fracture 

sets that exist in nature, but cannot be explained using a cylindrical folding approach.  

 An extensive analysis of the fracture potential results reveals 11 unique fracture 

sets, and one large group of diversely oriented shear fractures in the fold limb, that are 

observed during the processes of buckling and erosional unloading.  The fracture sets of 

primary interest are those that can be used to help explain the occurrence of fracture sets 

presented in Cosgrove and Ameen’s (1999) conceptual model for fractures associated 

with buckle folds (see Figure 5.1).  Six of the nine fracture sets that appear in Cosgrove 

and Ameen’s (1999) conceptual model, are also observed during the numerical 

simulations (see Figure 5.17), and can be summarized as follows:  

(1) Outer arc tensile fractures parallel to the fold axis (Set 1), outer arc normal 

faults striking parallel to the fold axis (Set 7), and inner arc thrusts striking 

parallel to the fold axis (Set 8) are observed for nearly every buckling 

scenario.   

(2) Outer arc tensile fractures perpendicular to the fold axis (Set 3), and thrusts in 

the fold limb striking roughly parallel to the fold axis (Set 6) require more 

specific buckling scenarios involving low permeabilities (10
-21

 m
2
) or high 

viscosity contrasts (Rμ = 100).  

(3) Fracture Sets 1, 3, 6, 7, and 8 can also be initiated for various scenarios 

involving erosional unloading.   
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(4) Vertical conjugate shears in the outer arc, where the fold axis bisects the acute 

angle between fracture planes (Set 5), are only observed for a single case 

involving erosional unloading. 

Based on these observations, it is concluded that Sets 1, 7, and 8 are common 

fractures sets that should be observed in a majority of periclinal buckle folds.  Sets 3 and 

6 are less common fracture sets, but should still be initiated in most low permeability (≤ 

10
-21

 m
2
) periclinal buckle folds.  Set 5 is a rare fracture set that is not associated with 

buckling, and should only be observed in select periclinal buckle folds during or after 

erosional unloading.  Additionally, based on the results presented in this study, it is 

concluded that the fracture sets in periclinal buckle folds exhibit the following 

hierarchical order of initiation:  

(1) Early-Stage (0-15% Shortening) – Fracture Sets 6 and 8. 

(2) Mid-Stage (15-30% Shortening) – Predominantly Fracture Sets 1 and 7, but                                                                               

also Fracture Sets 3 and 8.  

(3) Late-Stage (> 30% Shortening) – Predominantly Fracture Set 3, but also 

Fracture Sets 1 and 8. 

(4) Erosional Unloading – Fracture Sets 1, 3, 5, 6, 7, and 8 are all possible. 

 The five additional fracture sets, and large group of diversely oriented shear 

fractures in the fold limb, observed during the numerical simulations (see Figure 5.18) 

can be summarized as follows: 

(1) Fracture Sets E (hinge; shear) and H (limb; shear) are late-stage fractures that 

are only observed for specific buckling scenarios. 

(2) Fracture Set F (hinge; shear) are observed for nearly every buckling scenario, 

and can be initiated during mid to late-stage buckling, or during erosional 

unloading. 

(3) Fracture Sets I (hinge; tensile) and K (hinge; shear) are only observed during 

erosional unloading when initial overburden thicknesses are greater than 

500m. 

(4) The large group of diversely oriented shear fractures in the fold limb, are 

observed for every scenario involving erosional unloading for folds that have 

experienced at least 50% shortening.   
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Based on these observations it is concluded that Set F is a common fracture set  

that should be observed in a majority of periclinal buckle folds, although this set is not 

documented in any known conceptual models or field studies.  Sets E, H, I, and K are less 

common fracture sets that require more specific buckling or erosional unloading 

scenarios.  Lastly, the erosional shear fractures in the fold limb are common fractures that 

should be observed in a majority of periclinal buckle folds after erosional unloading.  The 

orientation of these erosional shear fractures in the limb, relative to the folding layer and 

bedding planes, are highly dependent on the orientation of the limb at the time of 

fracturing.  This suggests that a large number of fracture sets in the limbs of periclinal 

buckle folds could be attributed to erosional unloading, even though the fracture sets 

observed in this study are not documented in any known conceptual model or field study.       

 All of these conclusions are drawn without any knowledge of pre-existing fracture 

sets that may be present prior to the onset of buckling. 

           

 

6.2. FUTURE WORK 

While this study has provided valuable insight into fracture initiation during the 

processes of subsurface buckle folding and erosional unloading, the results are still far 

from being able to completely explain fracture patterns associated with buckle folds.  

Additional 3D numerical studies could further contribute to the current body of 

knowledge on this subject, and can be divided into two categories: studies that serve as a 

continuation of this study, which do not require significant alterations to the presented 

methodology; and studies that introduce new geologic aspects, which require significant 

alterations to the presented methodology. 

 To the author’s knowledge, this study is the first to simulate the effective stress 

evolution during non-cylindrical buckle folding, while including the influence of 

overburden stress, pore pressure, and a geologic strain rate.  While this study is extensive 

in regards to the number of parameters considered, additional studies can still be 

conducted as an extension of this study.  These include, but are not limited to: 

 A re-examination of the most influential parameters for fracture initiation (i.e., 

permeability and initial overburden thickness combined with erosional 
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unloading), using a much finer mesh (i.e., more elements) to reduce the 

magnitude of the errors associated with using the finite element method, and 

including more time increments to increase the resolution of the stress 

evolution results.  This will result in more precise predictions for the timing of 

fracture initiation and more reliable predictions for the spatial extent of 

fracturing than is observed in the current study.  

 Inclusion of additional failure criteria in the post-processing stage.  In this 

study, the likelihood of fracture initiation, and the fracture orientations, are 

both controlled by the shape of the combined Griffith/Navier-Coulomb failure 

envelope.  The use of additional failure criteria could result in significantly 

different observations and conclusions with respect to fracture initiation than 

the ones presented in this study. 

 Addition of a failure criterion that accounts for the reactivation of pre-existing 

fracture sets (i.e., T = 0; C0 = 0).  This addition could help explain the 

occurrence of fracture sets that cannot be explained by the current modeling 

results (see Section 5.3).  Furthermore, if the unexplained fracture sets are 

observed while implementing a fracture reactivation criterion, it would further 

support the hypothesis that those fractures are present pre-folding.     

For new studies on fracture prediction in 3D fold structures it is also necessary to 

introduce more complicated geologic aspects that are reflective of realistic folding 

scenarios.  These aspects would help to mitigate some of the most important limitations 

in this study, but would require a new methodology and result in more complex  

simulations.  New aspects to investigate include, but are not limited to the following: 

 A plastic constitutive material model that is capable of simulating the initiation 

and propagation of fractures, as well as the associated stress changes.  Finite 

element analysis codes exist that are capable of simulating plastic behavior, 

but it should be noted that simulations involving plasticity require much longer 

run times than a viscoelastic simulation using  the same number of central 

processing units.  This could make the incorporation of plasticity into a 3D 

model with a large number of finite elements very difficult. 
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 Inclusion of thermal stresses during buckling and erosional unloading.  

Significant increases in the temperature are expected during buckling, while 

significant decreases are expected during erosional unloading.  These 

temperature changes may have a large impact on the pore pressure evolution 

and, as a result, the effective stresses will be impacted as well. 

 The influence of multi-layer folding and the flexural slip mechanism.  The 

periclines generated in this study represent a fold geometry that is commonly 

observed in nature.  This geometry can be taken one step further to include 

alternating competent and incompetent layers, which would result in a multi-

layer fold system that is commonly observed in nature.  The addition of the 

flexural slip mechanism allows for the generation of even more realistic fold 

shapes, including chevron folds and box folds. These new folds generated by 

flexural slip have different strain distributions than the tangential longitudinal 

strain folds generated in this study and thus, the stress distributions and 

fracture characteristics could change as well.   

Lastly it should be mentioned that this study, as well as the recommended future 

studies, are only meant to help explain the existence of various fracture sets that are 

commonly observed in buckle folds; the results from these studies should not be used as a 

direct indicator for fracture sets that will appear in a particular natural fold.     
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APPENDIX A 

DERIVATION OF THE GOVERNING EQUATIONS 
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The three-dimensional (3D) numerical model is set up in an x-y-z coordinate system (the 

z axis is vertical). The model consists of a compressible material (rock) saturated with an 

incompressible pore fluid (water) and mass is conserved everywhere. The model has a 

viscoelastic Maxwell rheology and pore pressure is considered by utilizing effective 

stress analysis. The unknowns of the problem comprise the stress tensor components σxx, 

σyy , σzz , σxy , σxz and σyz  , the pore pressure Pp, the material velocities in three directions 

vx, vy and vz, and the material density ρm. For this set of 11 unknowns, 11 equations need 

to be defined to find a unique solution. 

 

The first set of governing equations are obtained from the equilibrium equations using 

effective stresses [e.g. Jaeger et.al, 2007] and are given by: 
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where Fx , Fy and Fz represent the body force components along the x , y, and z axes, 

respectively. σ′xx, σ′yy, σ′zz, σxy , σxz and σyz  are the components of the effective stress 

tensor which is defined as: 
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                                            (4) 

 

where the Biot coefficient α is defined by rock’s bulk modulus K and solid grains bulk 

modulus KS (e.g. Jaeger et.al, 2007): 
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As gravity represents the body force in this study, equations (1) to (3) can be expressed 

using the total stress tensor components as:   
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where σxx, σyy , σzz , σxy , σxz and σyz  are the components of the of the total stress tensor. 

The pore pressure, Pp, is a function of time, t, and of the spatial coordinates x, y and z. gx, 

gy and gz are the gravitational accelerations along the x, y, and z axes respectively with 

gx= gy=0. The stress equilibrium equations are rewritten as: 
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The constitutive equations are used to obtain the next set of governing equations for the 

viscoelastic material described by the Maxwell model. In this model the total stress σ, 

strain ε and strain rate ε̇ are given as [Turcotte and Schubert, 2002]: 
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where the superscript “e” denotes the linear elastic part and the superscript “f” denotes 

the linear viscous part. The elastic strain ε𝑖𝑗
𝑒  of a poro-viscoelastic material is given by: 
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where the superscript “iso” denotes the isotropic part of the stress tensor and the 

superscript “dev” denotes the deviatoric part of the stress tensor. G is the shear modulus. 

Since G, K and α are constant, the elastic strain rate ε̇𝑒 can be expressed as: 
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which can be written explicitly in this 3-D model as: 
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The constitutive equation for a Newtonian viscous fluid depends on shear viscosity (μ) 

and the volumetric viscosity (λ) and is given as [Ockendon, 1995]: 
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where σ
iso

 δij is the isotropic part as would exist in an inviscid fluid. The bulk viscosity is 

not considered here since both the rock grains and the saturated in rock is considered as 

incompressible fluid. Thus, equation (25) can be expressed as: 
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Hence, in terms of the deviatoric and isotropic decompositions, the viscous part of the 

strain can be written explicitly in this 3-D model as: 
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Thus, the total strain rate for Maxwell model is expressed as: 
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The time derivatives of the time-depended effective stress tensor in the constitutive 

equations (33) to (38) are given by using the chain rule of differentiation: 
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Substituting equations (39) to (48) into equations (33) to (38), the constitutive equations 

can be expressed as: 
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As ABAQUS
TM

 utilizes a Lagrangian analysis the time derivatives of the time-dependent 

effective stress tensor in the equations (39) to (48) can be rewritten as: 
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Substituting equations (55) to (64) into equations (33) to (38), the constitutive equations 

can be expressed as: 
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The strain rate is defined as: 
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Since the modeled rock is compressible, the conservation of mass is expressed by: 
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where vx, vy and vz are the unknown functions of the material velocities along the x, y, 

and z axes, respectively. 

The remaining governing equations are obtained from the conservation of fluid mass that 

saturates the rock and Darcy’s law. For an incompressible fluid (i.e. water here) the 

conservation of mass can be expressed as: 
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where ξ is the volumetric fluid content, q is the fluid flux vector, and qx, qy, and qz are the 

fluid discharge velocities along the x, y, and z axes, respectively. 

Fluid flow is described by Darcy's law. For this three-dimensional (3D) numerical model, 

qx, qy, and qz can be expressed as [Jaeger et al., 2007]: 
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where kx, ky, and kz are the permeabilities along the x, y, and z axes, respectively. μf 

represents the fluid viscosity. Substituting equations 79 to 81 into equation 78 yields the 

governing equation for the pore pressure:  
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The pore fluid pressure is related to the deformation of the solid matrix and the variation 

of the liquid content (ξ) using the Biot’s modulus M: 
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where εb is the volumetric strain and is expressed as:  
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Insertion of equation 84 into 83 yields: 
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The diffusion equation for pore pressure can also be express by pressure as: 
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where B is the Skempton coefficient and can be expressed in terms of drained Poisson’s 

ratio (ν) and undrained Poisson’s ratio (νu): 
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In the model discussed here it is assumed that the rock matrix and pore fluid are treated 

as incompressible, which is a reasonable approximation (e.g. Jaeger et al., 2007). In this 
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case, the Biot coefficient (α) equals to 1 and the undrained Poisson ratio (νu) equals to 

0.5. The density of the fully saturated rock is determined by the porosity which is 

depended on the stresses due to the pore compressibility. The Skempton coefficient B 

then becomes: 
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The diffusion equation for pore pressure can then be rewritten as: 
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Thus, a closed system of eleven partial differential equations, (9), (10), (11), (65), (66), 

(67), (68), (69), (70), (77), and (89), is available to find a unique solution for the eleven 

unknown functions vx , vy , vz ,ρr , σxx , σyy , σzz , σxy , σxz ,σyz ,Pp. 

From equation 89 it can be seen that the pore pressure response is coupled to the 

volumetric strain (and hence to the isotropic stress tensor). Fluid flow is then modeled as 

the result of strain related pore volume changes, whereby pore pressure is increased in 

regions of compressional strain (i.e. reduction in volume) and pore pressure is decreased 

in regions of extensional strain (i.e. increase in volume). 
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APPENDIX B 

ADDITIONAL FRACTURE POTENTIAL RESULTS FOR PERMEABILITY 

MAGNITUDE ANALYSIS 
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Figure B.1. Fracture potential results in the hinge for an intermediate strength rock with 

varying permeability magnitudes. The final fold shape is approximately the same for each 

model. 
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Figure B.2. Fracture potential results in the hinge for a strong rock with varying 

permeability magnitudes. The final fold shape is approximately the same for each model. 
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APPENDIX C 

ADDITIONAL FRACTURE POTENTIAL RESULTS FOR ANISOTROPIC 

PERMEABILITY ANALYSIS 
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Figure C.1. Fracture potential results in the hinge for a high permeability (10
-21

 m
2
) 

intermediate strength rock, with varying degrees of permeability anisotropy. The final 

fold shape is approximately the same for each model. 

 

 

 

 

 



 

 

139 

 

Figure C.2. Fracture potential results in the hinge for a low permeability (10
-21

 m
2
) 

intermediate strength rock, with varying degrees of permeability anisotropy. The final 

fold shape is approximately the same for each model. 
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Figure C.3. Fracture potential results in the hinge for a low permeability (10
-21

 m
2
) strong 

rock, with varying degrees of permeability anisotropy. The final fold shape is 

approximately the same for each model. 
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Figure C.4. Fracture potential results in the hinge for a high permeability (10
-15

 m
2
) 

intermediate strength rock, with varying degrees of permeability anisotropy, after 

erosional unloading. The final fold shape is approximately the same for each model. 
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Figure C.5. Fracture potential results in the hinge for a high permeability (10
-15

 m
2
) 

strong rock, with varying degrees of permeability anisotropy, after erosional unloading. 

The final fold shape is approximately the same for each model. 
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APPENDIX D 

ADDITIONAL FRACTURE POTENTIAL RESULTS FOR VISCOSITY CONTRAST 

ANALYSIS 
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Figure D.1. Fracture potential results in the hinge for an intermediate strength rock with 

varying values of Rμ. Increasing the viscosity contrast will result in folds with larger 

wavelengths and hinge lengths, higher amplitudes, thinner folding layers, and steeper 

limb dips 
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Figure D.2. Fracture potential results in the hinge for a strong rock with varying values of 

Rμ. Increasing the viscosity contrast will result in folds with larger wavelengths and hinge 

lengths, higher amplitudes, thinner folding layers, and steeper limb dips 
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APPENDIX E 

ADDITIONAL FRACTURE POTENTIAL RESULTS FOR PERICLINE ASPECT 

RATIO ANALYSIS 
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Figure E.1. Fracture potential results in the hinge for an intermediate strength rock with 

varying final aspect ratios.  Increasing the aspect ratio will result in folds with longer 

hinge lengths. 
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Figure E.2. Fracture potential results in the hinge for an intermediate strength rock, with 

varying final aspect ratios, after erosional unloading. Differences in the final fold shape 

are a result of the different aspect ratios considered and not due to erosional unloading.   
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Figure E.3. Fracture potential results in the limb for an intermediate strength rock, with 

varying final aspect ratios, after erosional unloading. Differences in the final fold shape 

are a result of the different aspect ratios considered and not due to erosional unloading.   

 

 

 

 

 

 



 

 

150 

 

Figure E.4. Fracture potential results in the hinge for a strong rock, with varying final 

aspect ratios, after erosional unloading. Differences in the final fold shape are a result of 

the different aspect ratios considered and not due to erosional unloading.   
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APPENDIX F 

ADDITIONAL FRACTURE POTENTIAL RESULTS FOR SHORTENING 

PERCENTAGE ANALYSIS 
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Figure F.1. Fracture potential results in the hinge for an intermediate strength rock with 

varying amounts of lateral shortening. Increasing the shortening percentage will result in 

folds with smaller wavelengths and hinge lengths, higher amplitudes, thicker folding 

layers, and steeper limb dips. 
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Figure F.2. Fracture potential results in the hinge for an intermediate strength rock, with 

varying amounts of lateral shortening, after erosional unloading. Differences in the final 

fold shape are a result of the differences in lateral shortening percentage and not due to 

erosional unloading. 
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Figure F.3. Fracture potential results in the hinge for a strong rock, with varying amounts 

of lateral shortening, after erosional unloading. Differences in the final fold shape are a 

result of the differences in lateral shortening percentage and not due to erosional 

unloading. 
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APPENDIX G 

ADDITIONAL FRACTURE POTENTIAL RESULTS FOR OVERBURDEN 

PRESSURE ANALYSIS 
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Figure G.1. Fracture potential results in the hinge for an intermediate strength rock with 

varying amounts of overburden thickness. The final fold shape is approximately the same 

for each model. 
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Figure G.2. Fracture potential results in the hinge for an intermediate strength rock, with 

varying amounts of overburden thickness, after erosional unloading. The final fold shape 

is approximately the same for each model. 
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Figure G.3. Fracture potential results in the hinge for an intermediate strength rock, with 

varying amounts of overburden thickness, after erosional unloading. The final fold shape 

is approximately the same for each model. 
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Figure G.4. Fracture potential results in the hinge for a strong rock, with varying amounts 

of overburden thickness, after erosional unloading. The final fold shape is approximately 

the same for each model. 
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Figure G.5. Fracture potential results in the hinge for a strong rock, with varying amounts 

of overburden thickness, after erosional unloading. The final fold shape is approximately 

the same for each model. 
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