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IMPROVED FULL-NEWTON-STEP INFEASIBLE INTERIOR-POINT

METHOD FOR LINEAR COMPLEMENTARITY PROBLEMS

by

MUSTAFA OZEN

(Under the Direction of Goran Lesaja)

ABSTRACT

In this thesis, we present an improved version of Infeasible Interior-Point Method

(IIPM) for monotone Linear Complementarity Problem (LCP ). One of the most

important advantages of this version in compare to old version is that it only requires

feasibility steps. In the earlier version, each iteration consisted of one feasibility step

and some centering steps (at most three in practice). The improved version guarantees

that after one feasibility step, the new iterated point is feasible and close enough to

central path. Thus, the centering steps are eliminated. This improvement is based

on the lemma proved in [1]. Thanks to this lemma, proximity of the new point after

the feasibility step is guaranteed with a more strict upper bound. Another advantage

of this method is that it uses full-Newton steps, which means that no calculation

of the step size is required at each iteration and that the cost is decreased. The

implementation and numerical results demonstrate the reliability of the method.

Key Words : linear complementarity problem, interior-point method, infeasible

interior-point method, full Newton-step
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CHAPTER 1

INTRODUCTION

In this chapter, we present Linear Complementarity Problem (LCP ) and solution

methods with brief historical background.

1.1 Problem

Linear Complementarity Problem actually is not an optimization problem. Instead

of optimizing an objective function, our aim is to find a vector satisfying given set

of relationships which are linear equality constraints, nonnegativity conditions and

complementarity conditions. The problem basically has the following standard form:

s = Mx+ q ≥ 0

xT s = 0,

x ≥ 0, s ≥ 0

(1.1)

where x, s ∈ Rn, M ∈ Rn×n and q ∈ Rn. We denote (1.1) as LCP (M, q). More

specifically, as seen in the system (1.1), we seek a nonnegative vector pair (x, s)

satisfying the linear equation s = Mx + q and complementarity condition which is

also orthogonality condition xT s = 0.

As we mentioned, LCP is not an optimization problem, but it has robust relation-

ship with both linear programming(LP ) and quadratic programming(QP ) problems.

This strong relationship is based on the fact that Karush-Kuhn-Tucker (KKT) opti-

mality conditions for LP and QP can be converted into LCP . Many optimization

problems from engineering, finance, transportation, etc. can be directly written as

LCP . Therefore, solving LCPs has been very important topic for many years.

To illustrate, LP can be converted into LCP thanks to KKT conditions:
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Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

s.t xT s = 0

(1.2)

with variables x, s ∈ Rn, y ∈ Rm, and input parameters c ∈ Rn, b ∈ Rm and A ∈

Rm×n. The conversion into LCP is given as follows:

LCP (M, q) : s̄ = Mx̄+ q

x̄T s̄ = 0

where s̄ =

 s

0

 ,M =

 0 −AT

A 0

 , x̄ =

 x

y

 , and q =

 c

−b


in which M is skew symmetric matrix. Also, Quadratic Programming (QP ) problems

can be converted into LCP in a similar way [2]. This means that if we can solve LCP ,

then we can solve both LP and QP problems.

1.2 Solution Methods

In this thesis, we mention two different solution methods. The first method is

Lemke’s Method connected to Simplex method and the second method is Interior

Point Method (IPM) connected to Newton’s method.

Lemke’s Method is pivot based algorithm. Unfortunately, pivot based algorithms

are not polynomial algorithms. They are successful in practice for low dimension

problems, but when the dimension of problem increases, efficiency and numerical

stability decrease. On the other hand, IPM is an iterative method. It is polynomial

algorithm and very successful in practice. We will introduce an improved version of

IPM which is very effective both theoretically and in practice and compare it with
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the old version. These two methods will be explained in detail in Chapter 3 and

Chapter 4 respectively.

1.3 Historical Overview

The existence of optimization methods can be traced back to the days of Newton, La-

grange and Cauchy. Studies on calculus of variations, which deals with the minimiza-

tion of functions, were first considered by Bernoulli Euler, Lagrange and Weierstrass.

Lagrange invented the method of optimization for constraint problems involving the

addition of unknown multipliers. The first application of steepest descent method

to solve unconstrained optimization problems was made by Cauchy. Following these

contributions, optimization problems have been very popular for many years [4]. In

the remaining part of this section, some major developments with a few milestones

are given.

In 1947, Simplex Method (SM) which is one of the most famous optimization

methods was developed by George Dantzig for LP [3]. This advancement initiated a

strong research activity in the area of optimization. The main idea of this method is

to travel from vertex to vertex along the boundary of a feasible region on which the

minimization or the maximization process is achieved if the objective function is de-

creasing or increasing respectively [5]. SM is very popular because of its efficiency in

solving large scale practical problems. According to some computational experiences,

the number of iterations to solve the problem is O(n) or sometimes O(logn), with n

being the number of variables in the problem.

SM is a pivot based algorithm. However, pivoting algorithms, unfortunately, are

not polynomial algorithms. If the worst case complexity theory is considered, they

are good in practice when the size of the problem is low. However, when the size

of the problems increases, complexity and number of iterations increase as well. In
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1971, an LP example for which some pivot based algorithms require an exponential

number of pivots was shown by Klee and Minty [6]. A similar example was shown by

Murty [7] for LCP , in 1978 (For more detail see [5]). However these examples have

never appeared in practice.

More than 30 years after the appearance of the SM , Khachiyan [8] developed

the first polynomial algorithm for LP which is called the Ellipsoid Algorithm, by

applying Shor’s original method [9], in 1979. Although it is theoretically better than

SM , computational experiments showed that Ellipsoid Algorithm is not practical for

solving LP problems. Nevertheless, Ellipsoid Algorithm still maintains its importance

because of being a tool for developing polynomial time algorithms for a large class of

convex optimization problems which are more general than linear programming [10].

One of the most important milestones in optimization is development of Interior

Point Methods (IPM) for LP . The first IPM was proposed by Karmarkar [11], in

1984. The main idea of the algorithm differs from SM . It uses projective transforma-

tions and Karmarkar’s potential function. IPM is an iterative method and iterates

are calculated in the interior of feasible region. After development of Karmarkar’s

algorithm, huge number of papers were published about IPMs for LP and related

areas initiating the field of interior-point methods.

In 1986, it was proved that the Karmarkar’s algorithm is connected to barrier

and Newton-type methods [13]. Then, in 1988, Renegar [14] developed a first path-

following Newton-type algorithm. These developments motivated the development

of Newton method based IPMs and different versions were proposed by many re-

searchers. These various IPMs can be classified into two main groups. The first

group is potential reduction algorithms [15] based on the constant reduction of some

potential function at each iteration. The second group is path-following algorithms

[16] based on following central path which was studied first by Megiddo [17]. Both
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groups contain algorithms based on primal, dual, or primal-dual formulation of LP .

After first appearance of IPM , its different types have been generalized to solve

other optimization problems. The most important is the work of Nesterov and Ne-

mirowski [20] that provided a general theory of polynomial IPM for convex pro-

gramming problems. Also, IPMs have been used for Nonlinear Complementarity

Problems (see [21, 22, 23]). Nowadays, IPMs have been used to solve many different

types of optimization problems such as Conic optimization problems, LCPs, etc.

Concentrated study of LCP has begun in the mid 1960’s [18]. To solve LCPs, in

1965, Lemke [19] proposed an algorithm so-called Lemke’s Algorithm similar to SM .

For many years, researchers have been searching for other methods to solve LCP .

Eventually, many different and efficient IPMs have been developed to solve LCP .

In this thesis we will focus on improved version of one of these IPMs which is called

Full-Newton step Infeasible Interior Point Method.



CHAPTER 2

LINEAR COMPLEMENTARITY PROBLEM

In this chapter, we introduce the Linear Complementarity Problem (LCP ) with its

different classes and several applications. The organization of this chapter is as fol-

lows: in Section 2.1, we define the LCP in detail. Then, we present classes of LCP

in Section 2.2. Finally, we finish this chapter by demonstrating LCP examples.

2.1 Linear Complementarity Problem

LCP is not an optimization problem, but it is closely related to optimization prob-

lems. It was shown that Karush-Kuhn-Tucker (KKT) optimality conditions for LO

and convex QP can be written as LCPs. Besides, some classes of variational inequal-

ities can be written as an LCP . Moreover, many important practical problems from

engineering, finance, transportation, economics theory etc. can be directly written as

LCP [24].

As we mentioned in Chapter 1, LCP in standard form is shown as follows: for

a given matrix M ∈ Rn×n and a vector q ∈ Rn, we seek a pair of vectors x, s ∈ Rn

satisfying the following system:

s = Mx+ q ≥ 0

xs = 0,

x ≥ 0, s ≥ 0

(2.1)

or equivalently

s = Mx+ q, 0 ≤ x ⊥ s ≥ 0.

where xs denotes the componentwise (Hadamard) product of vectors x and s as

follows:

xs = (x1s1, x2s2, ..., xnsn)T .
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The unique solution pair (x∗, s∗) of the system (2.1) exist if the matrix M is

symmetric positive definite. The set of points satisfying the system (2.1) except

complementarity condition is called feasible region and is denoted as:

F = {(x, s) ∈ R2n : s = Mx+ q, x ≥ 0, s ≥ 0} (2.2)

and the solution set of the system (2.1) can be written as:

F ∗ = {(x∗, s∗) ∈ F : x∗
T

s∗ = 0}. (2.3)

2.2 Classes of LCP

In this section, we present classes of matrices from the point of view of the LCP . For

different type of matrix M , LCP type and solution method can change. Therefore,

we need to define some types of matrix M for which IPM perform well. Here, we

consider P0 matrices and its subclasses. They can be defined as follows:

Let M be an n× n matrix and I be an index set. Then,

• P0-matrix: If all the principal minors of M are non-negative, then M is called

P0 −matrix [25]. Equivalently,

x ∈ Rn and x 6= 0,∃ i ∈ I s.t. xi(Mx)i ≥ 0. (2.4)

• P-matrix: If all the principle minors of M are strictly positive, then M is

called P −matrix [26]. Equivalently,

x ∈ Rn and x 6= 0,∃ i ∈ I s.t. xi(Mx)i > 0. (2.5)

• Positive semi-definite matrix (PSD): The matrix M is called positive semi-

definite matrix if it satisfies:

∀x ∈ Rn, xTMx ≥ 0. (2.6)
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Additionally, if xTMx > 0, M is called positive definite.

• Skew-symmetric matrix (SS): The matrix M is called skew-symmetric if it

satisfies:

∀x ∈ Rn, xTMx = 0. (2.7)

• P∗(κ): is the another class of matrices M such that

(1 + 4κ)
∑

i∈I+(x)

xi[Mx]i +
∑

i∈I−(x)

xi[Mx]i ≥ 0 (2.8)

where x ∈ Rn, κ ≥ 0, [Mx]i is the i-th component of Mx and I+ = {i ∈ N :

xi[Mx]i > 0}, I− = {i ∈ N : xi[Mx]i < 0}. Moreover, if κ ≥ 0, then the union of

P∗(κ) is called P∗ −matrices.

• Sufficient matrices (SM): There are two types of sufficient matrices which

are row sufficient (RS) and column sufficient (CS) matrices.

The matrix M is called column sufficient if

∀x ∈ Rn,∀i ∈ I s.t. xi(Mx)i ≤ 0 ⇒ xi(Mx)i = 0 (2.9)

and M is called row sufficient if MT is column sufficient. Moreover, a matrix

which is both row sufficient and column sufficient is called sufficient matrix [27].

These sub-classes of P0 matrices are related to each other. Some relationship

between classes are shown below.

SS ⊂ PSD, P ∩ SS = ∅, (PSD ∪ P ) ⊂ P∗ ⊂ CS ⊂ P0 (2.10)

Figure 5.1 presents the the relationship between types of M graphically. For

different types of M matrix, LCP has different outcomes. For instance, if M is a

column sufficient matrix, then the solution set of LCP is convex for every q ∈ Rn

[28]. In addition, if M belongs to class of P −matrices, then the LCP has a unique
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Figure 2.1: Relations and examples of the classes of matrix M .

solution for every q ∈ Rn [29]. For more detail of classes of LCP see [30]. In practice,

most commonly used LCP is monotone LCP with a positive semi-definite matrix M

because the LCP with positive semi-definite matrix M has a unique solution. That’s

why, we consider PSD matrix M in this thesis.

2.3 Examples

In this section we present some examples for the LCP . It has many applications in

many areas. As we mentioned before, many important problems from engineering,

finance-economy, transportation etc. can be directly written as LCP . First of all, we

will give Quadratic Programming example. Also, we will show Bimatrix games as an

application of LCP .

Example 1: Quadratic Programming

Quadratic Programming (QP ) problems are one of the most common application
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area of LCP . Basically, QPs optimize an quadratic objective function of several

variables with respect to some set of constraint inequalities. The general QP can be

written as:

min f(x) =
1

2
xTQx+ pTx

subject to Ax ≥ b,

x ≥ 0

(2.11)

where A ∈ Rm×n is constraint matrix, Q ∈ Rn×n is symmetric coefficient matrix of

quadratic terms, x ∈ Rn is vector of decision variables, p ∈ Rn is coefficient vector of

linear terms in objective function and b ∈ Rm is vector of right-hand-side of constraint

inequalities. When Q is a positive semi-definite matrix, then QP is called as convex

quadratic program [2]. Also note that when Q = 0, then QP is reduced to LP .

In 1956, Frank and Wolfe proved the following theorem giving conditions that

ensure the existence of a global solution to the QP in [31].

Theorem 2.1. Let S := {x : Ax ≥ b, x ≥ 0} be be a nonempty polyhedral set and f

given by (2.11). Then either (2.11) has a global solution, or there is a feasible half

line in S along which f approaches −∞(that is, there are vectors x and d 6= 0 such

that x(λ) = x + λd ∈ S for all λ ≥ 0 and f(x(λ)) → −∞asλ → ∞). Hence, if f is

bounded below on S, it attains its minimum value on S.

The KKT conditions are necessary conditions for any QP problem. Any local

optimal solution will satisfy the KKT conditions. These conditions are also sufficient

conditions for convex quadratic programs. More specifically, let Q be positive semi-

definite matrix and x∗ be a local solution for (2.11). Then, there exist a vector u ∈ Rm

such that (x∗, u) pair satisfies the KKT optimality conditions:

0 ≤ x∗ ⊥ Qx∗ − ATu+ p ≥ 0

0 ≤ u ⊥ Ax∗ − b ≥ 0

(2.12)
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where “ ⊥ ” states the complementarity condition. Conversely, x∗ is global solution

of (2.11) if a pair (x∗, u) ∈ Rn × Rm satisfies (2.12) and Q is a positive semi-definite

[2].

As we mentioned, QP problem shown in the system (2.11) can be written as

LCP thanks to KKT optimality conditions. This conversion is presented as follows:

LCP (M̄, q̄) : s̄ = M̄x̄+ q̄, x̄, s̄ ≥ 0 and x̄T s̄ = 0

where

M̄ =

 Q −AT

A 0

 , x̄ =

 x

u

 and q̄ =

 c

−b

 .
QP problem is only one of many problems that can be written as LCP . Note that if

Q = 0 then QP reduces to LP . Therefore, solving LCP is very important.

Example 2: Bimatrix Games

Bimatrix games are one of the direct applications of LCP . In the real world,

some problems can be modelled with two objectives which are opposed to each other.

For instance, we consider a game with two players called as Player 1 and Player 2.

There are large number of plays and in each play, there are many choices so-called

pure strategies. Player 1 picks one of m choices and Player 2 picks one of n choices. In

a certain play, if Player 1 selects ithpurestrategy and Player 2 selects jthpurestrategy,

then Player 1 loses Aij dollars and Player 2 loses Bij dollars where Aij and Bij are an

element in ith-row and jth-column of matrices A and B respectively. If Aij > 0, then

it represents a loss for Player 1 and if Aij < 0, then it represents a gain for Player

1. This situation is the same for Player 2 and Bij. The game is determined by the

matrix pair (A,B) where A and B are called loss matrices.

The game is called zero-sum game, if A + B = 0. If A + B 6= 0, then the game
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is known as bimatrix games or two-person nonzero-sum game with a finite number of

pure strategies [2]. In this game, it is not efficient for players to choose a pure strategy

which results the same play on every moves. Following a mixed strategy is generally

better, in which the opponent cannot guess the next move easily. With this strategy

the player chooses randomly moves available to him/her. Let Player 1 chooses play i

with probability xi and Player 2 chooses play j with probability yj where the vectors

x and y define the mixed strategies for each player and
∑m

i=1 xi =
∑n

j=1 yi = 1.

Then, summation of all possible combinations of strategies for both players gives us

the expected loss of Player 1 and Player 2 which are xTAy and xTBy respectively.

The (x̄, ȳ) pair is called Nash equilibrium pair of strategies and aim is to minimize

loss by changing his/her own strategy while the opponent’s strategy is fixed, i.e,

x̄TAȳ ≤ xTAȳ ∀x ≥ 0, eTmx = 1,

x̄TAȳ ≤ x̄TAy ∀y ≥ 0, eTny = 1.

(2.13)

where em and en are vectors of length m and n respectively whose elements are all 1.

The following lemma shows that the Nash equilibrium pairs for bimatrix games

can be found by using LCP .

Lemma 2.2. Suppose A,B ∈ Rm×n are positive loss matrices representing a game

(A,B), and suppose that (s, t) ∈ Rm × Rn solves LCP (M, q), where

M =

 0 A

BT 0

 , q = −em+n ∈ Rm+n.

Then, (x̄, ȳ) is an equilibrium pair of (A,B) if

x̄ =
s

eTms
and ȳ =

t

eTn t
.

Proof. Let write out the LCP conditions explicitly:

0 ≤ At− em ⊥ s ≥ 0,

0 ≤ BT s− en ⊥ t ≥ 0.

(2.14)
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It is obvious that since At − em ≥ 0, t must be non-zero and similarly s must be

non-zero. Hence, x̄ and ȳ are well defined. From definitions of x̄, ȳ, em and en we

have that x̄ ≥ 0, ȳ ≥ 0, eTmx̄ = 1 and eTn ȳ = 1. Thus, x̄ and ȳ are mixed strategies.

By complementarity condition, we have

x̄T (At− em) =
st

eTms
(At− em) = 0.

Thus x̄TAt = x̄T em = 1. By using this relation, we obtain that

Aȳ − (x̄TAȳ)em =
1

eTn t
(At− (x̄TAt)em) =

1

eTn
(At− em) ≥ 0.

So, given any strategy x, we have from x ≥ 0 and from the expression above that

0 ≤ xT (Aȳ − em(x̄TAȳ))→ xTAȳ ≥ (eTmx)x̄TAȳ = x̄TAȳ.

Hence the first equation in (2.13) is satisfied. The second equation of (2.13) can be

shown in a similar way. Thus, as claimed, the pair (x̄, ȳ) is a Nash equilibrium pair.

For detail see [2].

Thanks to this result, we can solve the bimatrix games by the following procedure:

1. To obtain A and B having positive entries, increase all the entries in each loss

matrix by a constant amount.

2. Set

M =

 0 A

BT 0

 , and q =

 −em
−en

 ,
and solve LCP (M, q).

3. Set

x̄ =
s

eTms
and ȳ =

t

eTn t
.



CHAPTER 3

LEMKE’S METHOD

In this chapter, we present a well known pivot based algorithm that is called Lemke’s

Method which is the first algorithm proposed to solve LCPs. It was proposed in 1965

by Lemke [19]. Some related definitions, algorithm of Lemke’s Method and related

examples are given in this chapter.

3.1 Definitions

Before giving the algorithm, we need to make the following definitions:

Let consider the pair (x, s) where x, s ∈ Rn.

(a) A pair (x, s) is called feasible for LCP (M, q) if it satisfies the following:

s = Mx+ q, x ≥ 0, s ≥ 0.

(b) A component si of vector s is called the complement of component xi of vector

x, and vice versa, for i = 1, 2, ..., n.

(c) A pair (x, s) is called complementary if x ≥ 0, s ≥ 0, and xT s = 0. (Note that

the Hadamard product of vectors x and s is 0, i.e., xisi = 0 for i = 1, 2..., n.)

(d) A pair (x, s) is called almost complementary if x ≥ 0, s ≥ 0 and xisi = 0 for

i = 1, 2, ..., n except for a single index j, where 1 ≤ j ≤ n.

3.2 Algorithm

First recall the standard form of LCP denoted as LCP (M, q) described in (2.1):

s = Mx+ q ≥ 0

xs = 0,

x ≥ 0, s ≥ 0

(3.1)
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If matrix M in the system (3.1) is positive semi-definite, then Lemke’s method gen-

erates a finite sequence of feasible almost complementary pairs that terminates at a

complementary pair or an unbounded ray.

This algorithm has two phases: Phase I and Phase II. As in the SM , we must

find an initial pair to run the algorithm. This initial pair is usually obtained via Phase

I. Depending on particular structures of LCPs, there are different Phase I schemes.

Here, we included the most widely applicable scheme requiring only one pivot. On the

other hand, unlike Phase I, Phase II performs several pivots. It generates a sequence

of almost complementary vector pairs. At each iteration, the pivot row is selected

by means of ratio test as we do in SM . Purpose of using ratio test is to guarantee

the nonnegativity of components of vectors x and s. The algorithms for Phase I and

Phase II can be summarized as follows:

Phase I: Generates a feasible almost complementary tableau

1. If q ≥ 0, STOP: the feasible complementary pair (x, s) = (0, q) is a solution

pair of LCP (M, q).

2. Otherwise, add the artificial variables x0 and s0 satisfying the following rela-

tionships:

s = Mx+ ex0 + q, s0 = x0

where e ∈ Rn is the vector of ones. Then the initial tableau is as follows:

x x0 1

s = M e q

s0 = 0 1 0

Table 3.1: Initial tableau for Phase I.
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3. Make this tableau feasible by carrying a Jordan exchange (see Chapter 2 in [2])

on the x0 column and the corresponding row having the most negative qi.(This

is the only pivoting step in Phase I and corresponds to the special pivot in Phase

I of SM for LP .)

4. Continue to Phase II without removing the artificial variables from the tableau.

Phase II: Generates a feasible complementary or unbounded tableau

It starts with a feasible almost complementary pair (x, s) and corresponding tableau

in Jordan exchange form. The tableau obtained via Phase I is used as an initial

tableau here. The general form of initial tableau is as follows:

sI1 xJ2 1

xJ1 = HI1J1 HI1J2 hI1

sI2 = HI2J1 HI2J2 hI2

Table 3.2: General form of initial tableau

Record the variable that become a column label(become nonbasic) at the previous

iteration.

1. Pivot column selection: Choose the column s which is the complement of the

variable that became nonbasic at the previous pivot.

2. Pivot row selection: Choose the row r satisfying

−hr/Hrs = min
i
{−hi/His|His < 0}.

An unbounded ray has been found if all His ≥ 0, STOP.

3. Perform a Jordan exchange on element Hrs. If the pair (x, s) is complementary

then (x, s) is a solution, STOP: else, go to Step 1.
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More specifically, in this algorithm, Step 1 ensures the almost complementarity by

moving a component into the basis as soon as its complement is moved out. By doing

this, we guarantee that exactly one of xi and si is basic while the others are nonbasic.

This fact ensures the almost complementarity property, i.e., xisi = 0 for all except

one since nonbasic variables are assigned the value 0. In Step 2, similar to SM , we use

ratio test to maintain nonnegativity of all the components in the last column. Thus,

the nonbasic variable in the column s increases away from zero until it causes one of

the basic variables to become zero. This basic variable is determined by using ratio

test. In addition, in practice, we don’t need to insert s0 row into tableau because s0

is always equal to x0 and it remains in the basis throughout.

In theory, Lemke’s method depends on whether or not the algorithm terminates

at an unbounded ray. More specifically, termination of the algorithm depends on

some conditions on the matrix M . The following theorem presents two fundamental

results under some conditions on the matrix M .

Theorem 3.1. (i) If M ∈ Rn×n is positive semi-definite matrix, then Lemke’s

algorithm terminates at a solution of LCP (M, q) or at an unbounded ray. Ad-

ditionally, if the set {x|Mx + q ≥ 0, x ≥ 0} is empty, then there is no feasible

pair (x, s).

(ii) If M ∈ Rn×n is positive definite matrix, then Lemke’s method terminates at the

unique solution of LCP (M, q) for any q ∈ Rn.

Proof. See [32].

Note: When the LCP is obtained from QP problem, then the matrix M is

positive semi-definite if and only if the matrix Q is positive semi-definite.

Proof. First recall the QP example from the Section 2.3 in which the matrix M is
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defined by

M =

 Q −AT

A 0

 . (3.2)

Then, [
xT uT

]
M

 x

u

 = xTQx− xTATu+ uTAx = xTQx.

Therefore, If Q is positive semi-definite, then xTQx ≥ 0 which concludes the positive

semi-definiteness of M .

3.3 Example

In this section we solve a simple LCP example using Lemke’s method.

Consider LCP (M, q) with

M =

 1 0

−1 1

 , q =

 −2

−1


Then, we can write LCP (M, q) : s = Mx+ q as follows: s1

s2

 =

 1 0

−1 1


 x1

x2

+

 −2

−1


with initial tableau

x1 x2 1

s1 = 1 0 -2

s2 = -1 1 -1

Apply Lemke’s method to find a feasible, complementary solution pair (x, s).

1. Since q < 0, we need to apply Phase I. Then LCP (M, q) becomes s = Mx +

ex0 + q with corresponding tableau
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x1 x2 x0 1

s1 = 1 0 1 -2

s2 = -1 1 1 -1

The pivot is x0 with the row 1 that has been chosen corresponding to the most

negative qi in the last column. Then, the following tableau represents an almost

complementary solution.

x1 x2 s1 1

x0 = -1 0 1 2

s2 = -2 1 1 1

2. Now, we have a feasible almost complementary pair (x, s). We can continue

with Phase II of Lemke’s method.

Since at the last pivot step, s1 became nonbasic, we choose its complement to

become nonbasic which is x1. Therefore, the pivot column is s = 1.

Apply ratio test to identify the pivot row.

min
i
{−2

−1
,
−1

−2
}

The ratio test chooses row r = 2 as the pivot row. With these current selections,

after performing Jordan exchange, we have the following tableau:

s2 x2 s1 1

x0 = 0.5 -0.5 0.5 1.5

x1 = -0.5 0.5 0.5 0.5

Since the current pair is still almost complementary, we carry out another pivot.

At the last pivot, s2 left the basis, that’s why we need to choose its complement

x2 to enter at this pivot (s = 2).
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By applying ratio test

min
i
{−1.5

0.5
,
−0.5

−0.5
}

we choose row r = 1 as the pivot row. Hence, the pivot is performed on the

element in position (1, 2). Then, we have the following tableau:

s2 x0 s1 1

x2 = 1 -2 1 3

x1 = 0 -1 1 2

The resulting pair (x, s) is both feasible and complementary. Therefore, the

solution to the LCP (M, q) is x1 = 2, x2 = 3.

As seen from the example above, Lemke’s method finds a feasible and comple-

mentary solution to the LCP under some conditions on matrix M . Since a lot of

problem can be written as LCP and Lemke’s method solves LCP , we can solve

many problem via Lemke’s method. For more examples see [2]. As we mentioned

in Section 1.2, since Lemke’s method is a pivot based algorithm, it is not a polyno-

mial algorithm. Although it is successful for low dimension problems, in practice,

efficiency and numerical stability decreases when the dimension of the problem in-

creases. Therefore, we prefer more stable, efficient and polynomial algorithm which

we introduce in the next Chapter.



CHAPTER 4

IMPROVED INFEASIBLE FULL NEWTON-STEP INTERIOR-POINT

METHOD

In this chapter, we discuss the main part of this thesis which is infeasible full Newton-

step interior point method (IIPM) to solve monotone LCP . We take step size α = 1,

thus we call this method as full Newton-step. Also, this algorithm finds a solution

for all feasible or infeasible initial starting point. Hence, this method is an infeasible

method. First, we will explain idea of this method, then we will introduce feasibility

step of this method. In the old version of this method, each iteration requires a

feasibility step and few centring steps. Here, we improved the algorithm thanks to

the lemma proved in [1]. After the improvement, this algorithm ensures that the new

iterated point is close enough to the central path immediately after feasibility step

so centering steps are no longer needed. In the following section, we introduce the

concept of this new version.

4.1 Idea of the Method

First, recall the monotone LCP :

s = Mx+ q,

xs = 0,

x ≥ 0, s ≥ 0

(4.1)

where M ∈ Rn×n is a positive semi-definite matrix, q ∈ Rn is a constant vector. Our

aim is to find a pair of vectors x, s ∈ Rn satisfying the system (4.1). The pair (x, s)

is called ε-solution if the following inequalities are satisfied:

||s−Mx− q|| ≤ ε and xT s ≤ ε



22

As we introduced in Chapter 2, xT s = 0 is equivalent to xs = 0 which represents the

Hadamard product of vectors x and s.

It is known that IPMs are Newton’s method(NM) based algorithms. Therefore,

they are iterative algorithms. The NM is essential part of the IPMs. They use NM

to find approximated solutions to the systems. In our case IIPM uses NM to solve

system (4.1). However, the complementarity condition in the system (4.1) can be a

problem for NM . If any component of vectors x and s become 0, it stays 0 forever

and the iteration sequence never converges to the solution. Hence, to prevent this

problem we replace the complementarity condition by so-called centring condition

xs = µe, where µ can be any positive number. Then the system (4.1) becomes

s = Mx+ q,

xs = µe,

x ≥ 0, s ≥ 0

(4.2)

It is known that if matrix M is positive definite, then the system (4.2) has a unique

solution. Additionally, if (4.2) has a solution for some µ > 0, then there exist a

solution for every µ > 0. This happens if and only if the system (4.2) satisfies the

Interior point condition(IPC), i.e., there exist a pair (x0, s0) such that s0 = Mx0 + q

and x0 > 0, s0 > 0. In this case, the IPM is called feasible IPM . The only drawback

of feasible IPM is that it is not easy to find an initial feasible pair. Therefore, we

consider infeasible IPM which works for every initial starting pairs. Before explaining

one iteration of this algorithm, we give the following definition to make the concept

more precise.

Definition 4.1. (i) The parametric solution (x(µ), s(µ)) to the system (4.2) is

called µ-center and the set of all µ-centers is called central path.

(ii) For some µ > 0, let (x0, s0) be a random starting pair such that x0s0 = µ0e.
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Then, we denote the residual r0 as:

s0 −Mx0 − q = r0 (4.3)

The main idea of IIPM is to follow central path by reducing µ to 0. How-

ever, it is not efficient to find exact µ-centers because to find exact µ-center, NM

performs infinitely many iteration which is not possible in practice. Thus, we follow

the central path approximately. More specifically, we measure the proximity of new

iterated points to the central path and restrict it to be less than a certain threshold

τ . Formulations for proximity will be given later.

Let’s consider a positive random starting pair (x0, s0) such that x0s0 = µ0e where

the duality gap µ0 = x0
T
s0

n
. Then, for any ν with 0 < ν ≤ 1 we consider a small

perturbation which we call perturbed LCP , denoted by LCPν . The LCPν is defined

by

s−Mx− q = νr0,

xs = 0,

x ≥ 0, s ≥ 0

(4.4)

where r0 is defined as in (4.3). It is easy to show that when ν = 1, the initial pair

(x0, s0) is a µ0-center. Namely, the pair (x0, s0) is strictly feasible solution for LCPν=1.

Therefore, the IPC is satisfied when ν = 1.

Lemma 4.2. The original problem (4.1) is feasible if and only if the LCPν in (4.4)

is feasible for 0 < ν ≤ 1.

Proof. (⇒): Let the original problem (4.1) be feasible. Let (x∗, s∗) be a feasible

solution to (4.1). Then,

s∗ = Mx∗ − q such that x∗ ≥ 0, s∗ ≥ 0.

For 0 < ν ≤ 1, we consider convex combinations of x∗, x0 and s∗, s0, i.e.,

x = (1− ν)x∗ + νx0, s = (1− ν)s∗ + νs0.
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Also, since x∗, s∗ > 0 and x0, s0 > 0, then obviously x, s > 0. Then we have

s−Mx− q = (1− ν)s∗ + νs0 −M [(1− ν)x∗ + νx0]− q

= (1− ν)s∗ + νs0 − (1− ν)Mx∗ − νMx0 − q

= (1− ν)(s∗ −Mx∗) + ν(s0 −Mx0)− q

= (1− ν)(s∗ −Mx∗ − q + q) + ν(s0 −Mx0 − q + q)− q

(Since (x∗, s∗) and (x0, s0) are feasible,

then s∗ −Mx∗ − q = 0) and s0 −Mx0 − q = r0)

= (1− ν)(q) + ν(r0 + q)− q

= (1− ν)(q) + νr0 + qν − q

= q(1− ν + ν) + νr0 − q

= q + νr0 − q

= νr0.

This shows that (x, s) is feasible for LCPν (4.4).

(⇐) : To prove the inverse implication, suppose LCPν is feasible for 0 < ν ≤ 1.

Then, letting ν go to zero it follows that LCP is feasible.

Since we consider to solve LCPν (4.4) via IPM , complementarity condition

xs = 0 can be a problem for NM because of the same reason as in (4.2). Hence, we

consider central path for LCPν . Lemma 4.2 implies that the LCPν satisfies the IPC.

Thus, the central path exists, i.e., for some positive µ, we modify the system (4.4) as

follows:

s−Mx− q = νr0,

xs = µe,

x ≥ 0, s ≥ 0

(4.5)

This system has a unique solution for every µ > 0 if M is positive semi-definite matrix
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and this solution is denoted by (x(µ, ν), s(µ, ν)). These pairs are (µ, ν)-centers of

LCPν .

Instead of finding exact solution, here we consider to find iterates that are in the

τ -neighbourhood of (µ, ν)-centers. Then, we simultaneously reduce µ and ν with a

positive so-called barrier parameter θ ∈ [0, 1), i.e.,

µ+ = (1− θ)µ

ν+ = (1− θ)ν

Note that when µ and ν approach zero, we will obtain the approximate solution for

LCP (4.1). Note that, when µ = µ0 and ν = 1, (x(µ0, 1), s(µ0, 1)) = (x0, s0). In what

follows the parameters µ and ν are connected as ν = µ
µ0

.

We also need to define the proximity of (x, s) to the µ-centers. The proximity

which is denoted by δ(x, s;µ) is defined as:

δ(x, s;µ) = δ(v) =
1

2
||v − v−1||, where v =

√
xs

µ
. (4.6)

Note that δ(x, s;µ) = 0 means (x, s) is µ-center. One main iteration of IIPM is

explained in the following Section.

4.1.1 One main iteration of the algorithm

We assume that at the start of each iteration, δ(x, s;µ), defined in (4.6), is less than

or equal to a threshold τ > 0. As we established before, when µ = µ0 and ν = 1,

(x0, s0) is µ-center of LCPν . Thus, initially we have δ(x0, s0;µ0) = 0 < τ which

satisfies our assumption at the first iteration.

Suppose µ ∈ (0, µ0], we have (x, s) pair feasible to the system (4.5) for ν = µ/µ0

and δ(x, s;µ) ≤ τ . Then, we reduce µ to µ+ = (1 − θ)µ and ν = µ+/µ0 = (1 − θ)ν

with θ ∈ [0, 1) and find new iterates (x+, s+) satisfying (4.5) with µ+ and ν+.
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To be more precise, at each iteration, there exists only one feasibility step. This

step serves to get strictly feasible iterates to the LCPν+ denoted by (xf , sf ). In

the old version, after one feasibility step, we must perform a few centering steps to

satisfy δ(x+, s+;µ+) ≤ τ . However, thanks to the lemma proved in [1] our new points

(xf , sf ) after one feasibility step ensure that δ(xf , sf ;µ+) ≤ τ . We will elaborate

the improvement in Chapter 5. The following figure presents one iteration of the

algorithm graphically.

Figure 4.1: Graphical representation of IIPM for LCPν

Now, we describe the feasibility step which is the only required step of this

algorithm in the next Section.

4.2 Feasibility Step

Let (x, s) be an approximate solution to LCPν+ . Our aim is to find a strictly feasible

solution to LCPν+ . First of all, we need to find search directions 4fx and 4fs. In
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line with this purpose, we can rewrite the system (4.5) as follows:

F (x, s) =

 s−Mx− q − ν+r0,

xs− µ+e

 = 0 (4.7)

To solve (4.7), we use NM . When we apply NM , we have the following equation

which gives the search directions:

5F

 4fx

4fs

 = −F (x, s) (4.8)

where 5F is Jacobian of F (x, s). Equivalently, to find search directions we can solve

the system

M 4f x−4fs = θνr0,

s4f x+ x4f s = (1− θ)µe− xs.
(4.9)

This reduction can be shown as follows:

(i) (s+4fs)−M(x+4fx)− q = ν+r0 s.t.

(x+4fx)(s+4fs) = µ+e

(ii) s+4fs−Mx−M 4f x− q = ν+r0 s.t.

xs+ x4f s+ s4f x+4fx4f s = µ+e

(iii) M 4f x−4fs = s−Mx− q − ν+r0 s.t.

x4f s+ s4f x+4fx4f s = µ+e− xs

Since (x, s) is feasible for LCPν , s −Mx − q = νr0, also we can neglect 4fx4f s

term. Thus, we have

(iv) M 4f x−4fs = (ν − ν+)r0 s.t.

x4f s+ s4f x = µ+e− xs
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Since ν − ν+ = ν − (1− θ)ν = θν and µ+ = (1− θ)µ, we have the result (4.9):

(v) M 4f x−4fs = θνr0 s.t.

x4f s+ s4f x = (1− θ)µe− xs

After finding search directions by solving (4.9), we update the new iterates (xf , sf )

by:

xf = x+ α4f x

sf = s+ α4f s

where α is called step size. Since we consider full Newton-step, in our case α = 1.

Thus,

xf = x+4fx

sf = s+4fs

(4.10)

Thanks to improvement that we have done, (xf , sf ) are both feasible and close enough

to central path, i.e., δ(xf , sf ;µ+) ≤ τ . This will be shown in the next Chapter together

with the analysis of feasibility step and entire algorithm.
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4.2.1 Pseudo-code of the Algorithm

The following pseudo-code gives a strictly feasible ε-solution to the LCP . In this ver-

sion, we eliminate the centering steps because after one feasibility step, new iterates

(xf , sf ) are close enough to central path thanks to the improvement. Namely, after

each iteration δ(xf , sf ;µ+) ≤ τ condition is satisfied.

Data: Input

Accuracy parameter ε > 0,

Barrier update parameter θ, 0 < θ < 1,

Initial points:

x0 > 0, s0 > 0,

µ = µ0 with x0s0 = µ0e,

ν = 1.

begin

while max(xT s, ||s−Mx− q||) ≥ ε do
begin

Update µ = (1− θ)µ, ν = (1− θ)ν;

Feasibility step

Calculate 4f
x,4f

s by solving (4.9);

Update (x, s) = (x, s) + (4f
x,4f

s ) as in (4.10);

end
Algorithm 1: Full Newton-step Infeasible IPM Algorithm for LCP



CHAPTER 5

ANALYSIS OF FULL NEWTON-STEP IIPM FOR LCP

In this Chapter, we analyse the feasibility step of the algorithm that is given in Section

4.2. More specifically, we analyse convergence of the algorithm and calculate iteration

number that is required to find an ε-solution.

5.1 Feasibility Step

Analysis of the feasibility step is based on finding an upper bound for the proximity of

iterates. Old version of the algorithm requires two steps. At the first step, we find a

pair (xf , sf ) that is strictly feasible but possibly not close enough to µ-center. Then,

we perform a few centering steps to make this new iterate closer to µ-center under

control of a positive τ , i.e., δ(xf , sf ;µ+) ≤ τ . Since we want to eliminate centering

steps, we find an upper bound for δ(x, s, µ) such that after each feasibility step, new

iterated pair (xf , sf ) is strictly feasible and satisfy δ(xf , sf ;µ+) ≤ τ . In this section,

we show how to find such upper bound, and required number of iterations to have an

ε-solution.

Our assumption is that we choose x0 = γpe and s0 = γde so that µ0 = (x0)T s0

n
.

Then, we start the analysis of feasibility step by presenting the feasibility of new

iterates (xf , sf ), however, before that let us recall the system (4.9),

M 4f x−4fs = θνr0, (5.1a)

s4f x+ x4f s = (1− θ)µe− xs. (5.1b)

The analysis will require the following transformations

v =

√
xs

µ
, dx =

v4 x

x
, ds =

v4 s

s
. (5.2)

where x, s ∈ Rn. Our aim is to transform (5.1) into dx, ds form by using (5.2). Now,
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substitute (5.2) into (5.1). Then we have:

M
xdx
v
− sds

v
= θνr0,

x
sds
v

+ s
xdx
v

= (1− θ)µe− xs.
(5.3)

Let X = diag(x), S = diag(s), V = diag(v) and V −1 = diag(v−1). Then, we

write the system (5.3) in its matrix form as follows:

MV −1Xdx − SV −1ds = θνr0, (5.4a)

XV −1Sds + SV −1Xdx = (1− θ)µe−XSe. (5.4b)

After multiplying both sides of (5.4a) by S−1V and both sides of (5.4b) by X−1V S−1,

we have:

S−1VMV −1Xdx − S−1V SV −1ds = S−1V θνr0,

X−1V S−1XV −1Sds +X−1V S−1SV −1Xdx = X−1V S−1[(1− θ)µe−XSe].

which is equal to:

S−1MXdx − ds = S−1V θνr0, (5.5a)

ds + dx = X−1V S−1[(1− θ)µe−XSe]. (5.5b)

Then, substitute V =
√

XS
µ

into (5.5):

S−1MXdx − ds = S−1X1/2S1/2µ−1/2θνr0,

ds + dx = X−1V S−1(1− θ)µe−X−1V S−1XSe.

which can be written as:

S−1/2X1/2MS−1/2X1/2dx − ds = S−1/2X1/2µ−1/2θνr0, (5.6a)

ds + dx =
µ

XS

√
XS

µ
(1− θ)e− V e. (5.6b)
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Now, let D = S−1/2X1/2, then (5.6) becomes

DMDdx − ds = Dµ−1/2θνr0, (5.7a)

ds + dx =

√
µ

XS
(1− θ)e− V e. (5.7b)

Finally, let M̃ = DMD and rewrite X,S, V as x, s, v. Then we have the dx, ds form

of the system (5.1) which is as follows:

M̃dx − ds = Dµ−1/2θνr0, (5.8a)

dx + ds = v−1(1− θ)− v. (5.8b)

Let, (x, s) be a feasible pair for LCPν . Then, from (4.10), after one feasibility

step we get (xf , sf ) such that:

xf = x+4fx

sf = s+4fs

where 4fx and 4fs are search directions calculated by solving (5.1). Our aim is to

show that (xf , sf ) is strictly feasible and satisfies δ(xf , sf ;µ+) ≤ τ where µ+ = (1−θ)µ

for certain choice of θ and τ . We use transformations in (5.2) and equation (5.1b) to

show the following:

xfsf = (x+4fx)(s+4fs)

= xs+ x4f s+ s4f x+4fx4f s

(from (5.1b))→ = (1− θ)µe+4fx4f s

= (1− θ)µe+
xs

v2
dfxd

f
s

(v2 =
xs

µ
→) = (1− θ)µe+ µdfxd

f
s

= µ[(1− θ)e+ dfxd
f
s ].

(5.9)

The following lemma shows the feasibility of the new iterates.
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Lemma 5.1. The iterates (xf , sf ) are strictly feasible if and only if (1−θ)e+dfxdfs > 0.

Proof. (⇒) : Let (xf , sf ) be strictly feasible. Then, xf > 0 and sf > 0. Therefore,

µ[(1− θ)e+ dfxd
f
s ] > 0.

Thus,

(1− θ)e+ dfxd
f
s > 0.

(⇐) : Let introduce a step length α ∈ [0, 1], and define

xα = x+ α4f x, sα = s+ α4f s.

Then, when α = 0, we have x0 = x, s0 = s and when α = 1, we have x1 = xf , s1 = sf .

Thus, x0s0 > 0. Then,

xαsα = (x+ α4f x)(s+ α4f s)

= xs+ xα4f s+ sα4f x+ α24f x4f s

= xs+ α(x4f s+ s4f x) + α24f x4f s

(by (5.1b)) = xs+ α((1− θ)µe− xs) + α24f x4f s

= xs+ α(1− θ)µe− αxs+ α24f x4f s

= xs(1− α) + α(1− θ)µe+ α24f x4f s

(Since 4f x4f s = µdfxd
f
s ) = xs(1− θ) + α(1− θ)µe+ α2µdfxd

f
s

(Since xs = v2µ) = v2µ(1− α) + α(1− θ)µe+ α2µdfxd
f
s

= µ[v2(1− α) + α(1− θ)e+ α2dfxd
f
s ]
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Now, let (1− θ)e+ dfxd
f
s > 0. Then dfxd

f
s > −(1− θ)e. So, we have

xαsα > µ[v2(1− α) + α(1− θ)e− α2(1− θ)e]

= µ[v2(1− α) + αe− αθe− α2e+ α2θe]

= µ[v2(1− α) + αe(1− α)− αθe(1− α)]

= µ(1− α)[v2 + αe− αθe]

= µ(1− α)[v2 + αe(1− θ)]

Since µ > 0, α ∈ [0, 1], v2 > 0 and e > 0, then µ(1− α)[v2 + αe(1− θ)] ≥ 0 implying

that xαsα > 0 for α ∈ [0, 1]. Thus, none of the entries of xα and sα vanishes for

0 ≤ α ≤ 1. Since x0, s0 are positive, then xα, sα which depend on α linearly are also

positive for 0 ≤ α ≤ 1. Therefore, x1 = xf and s1 = sf must be positive.

We have the following corollary from the Lemma 5.1.

Corollary 5.2. The iterates (xf , sf ) are strictly feasible if ||dfxdfs ||∞ < 1− θ.

Proof. By Lemma 5.1, the iterates xf , sf are strictly feasible if and only if (1− θ)e+

dfxd
f
s > 0. Then,

(1− θ) + dfxid
f
si
> 0 for i = 1, 2, ..., n

dfxid
f
si
> −(1− θ)

By the definition of ∞-norm i.e., ||dfxdfs ||∞ = max{|dfxid
f
si
| : i = 1, 2, ..., n}, and from

the assumption, we have that |dfxid
f
si
| < 1− θ. Equivalently, we have

−(1− θ) < dfxid
f
si
< (1− θ)

which implies that

dfxid
f
si

+ (1− θ) > 0 or dfxd
f
s + (1− θ)e > 0.

Thus, by Lemma 5.1, (xf , sf ) are strictly feasible.
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Our aim is to find an upper bound for δ(xf , sf ;µ+) such that proximity of the

new iterates (xf , sf ) is always less than the threshold τ , for each iteration. In line

with this purpose, we use the notation ω(v) = 1
2
(||dfx||2 + ||dfs ||2). Then, it is a norm

fact that

||dfxdfs ||∞ ≤ ||dfxdfs || ≤ ||dfx|| ||dfs || ≤
1

2
(||dfx||2 + ||dfs ||2) = ω(v) (5.10)

Corollary 5.3. If ω(v) < (1− θ), then (xf , sf ) are strictly feasible.

Proof. Due to (5.10), ω(v) < (1 − θ) implies that ||dfxdfs ||∞ < (1 − θ). Then, by

Corollary 5.2, (xf , sf ) are strictly feasible.

Let us recall that the proximity of new iterates (xf , sf ) is given by

δ(xf , sf ;µ+) = δ(vf ) =
1

2
||vf − (vf )−1|| where vf =

√
xfsf

µ+
. (5.11)

Also, we use the function ξ defined by

ξ(t) =
1 + t

1− θ
+

1− θ
1 + t

− 2 =
(θ + t)2

(1− θ)(1 + t)
≥ 0, t > −1. (5.12)

The following Lemma proved by C.Roos in 2015 [1] leads us to find an upper

bound for δ(xf , sf ;µ+) = δ(vf ). Our improvement is based on this lemma.

Lemma 5.4. Let a, b ∈ Rn, r ∈ [0, 1) and f(a, b) =
∑n

i=1 ξ(aibi). If ||a||2 + ||b||2 ≤

2r2, then

f(a, b) ≤ (n− 1)ξ(0) + max{ξ(r2), ξ(−r2)}.

Proof. For proof of the Lemma, see Appendix A in [1].

We use the Lemma 5.4 to prove the following Lemma which denotes the upper

bound for δ(vf ).

Lemma 5.5. If ω(v) < 1− θ, then

4δ(vf )2 ≤ (n− 1)ξ(0) + max{ξ(ω(v)), ξ(−ω(v))}.
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Proof. By using (5.9) and (5.11), (vf )2 can be written as:

(vf )2 =
xfsf

µ+
=

(1− θ)e+ dfxd
f
s

1− θ
µ

µ
= e+

dfxd
f
s

1− θ
.

Since 4δ(vf )2 = ||vf − (vf )−1||2, then

4δ(vf )2 =
n∑
i=1

(
vfi −

1

vfi

)2

=
n∑
i=1

(vfi )2 − 2 +

(
1

vfi

)2


=
n∑
i=1

(vfi )2 +
n∑
i=1

(
1

vfi

)2

−
n∑
i=1

2

= −2n+
n∑
i=1

(
(1− θ) + dfxid

f
si

1− θ

)
+

n∑
i=1

(
1− θ

(1− θ) + dfxid
f
si

)
=

n∑
i=1

ξ(dfxid
f
si
− θ).

As it can be seen from the Figure 5.1, ξ(t) function is an increasing function

when t > −1. Since, θ ∈ [0, 1), we have

Figure 5.1: Graph of ξ(t) for different θ ∈ [0, 1)
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n∑
i=1

ξ(dfxid
f
si
− θ) ≤

n∑
i=1

ξ(dfxid
f
si

).

Then, by Lemma 5.4, we have the result which is

4δ(vf )2 ≤ (n− 1)ξ(0) + max{ξ(ω(v)), ξ(−ω(v))}.

Upper bound for ω(v):

To bound δ(vf ), we search for an upper bound for ω(v). In order to obtain an upper

bound for ω(v), first let us recall that

ω(v) =
1

2
(||dfx||2 + ||dfs ||2).

To bound ω(v), we need to find an upper bound for ||dfx||2 + ||dfs ||2. Thus, we need

to use following lemma which was proved in [21].

Lemma 5.6. We are given the following system

M̃u− z = ã (5.13a)

u+ z = b̃ (5.13b)

Then, the following hold

(1) Du = (1 +DMD)−1(a+ b), Dz = (b−Du)

(2) ||Du|| ≤ ||a+ b||

(3) ||Du||2 + ||Dz||2 ≤ ||b||2 + 2||a+ b|| ||a||.

where D = S−1/2X1/2, b = Db̃, a = Dã and M̃ = DMD.

Proof. First, we start with multiplying (5.13a) and (5.13b) from left with D. Then

we have

DMDDu−Dz = a (5.14a)

Du+Dz = b (5.14b)
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Then, by adding (5.14a) and (5.14b), we obtain equation (1). Since the matrix

I + DMD is positive definite, then inequality (2) follows. Finally, from (5.14) and

by using Cauchy-Schwartz inequality, inequality, (2), and positive semi-definiteness

of DMD, we have

||Du||2 + ||Dz||2 = ||Du+Dz||2 − 2(Du)TDz

= ||b||2 − 2(Du)T (DMDDu− a)

= ||b||2 − 2(Du)TDMDDu+ 2(Du)Ta

≤ ||b||2 + 2||Du|| ||a||

≤ ||b||2 + 2||a+ b|| ||a||.

We apply Lemma 5.6 to the system (5.8) which is

M̃dfx − dfs = Dµ−1/2θνr0,

dfx + dfs = v−1(1− θ)− v.
(5.15)

Let us call

a = D(θνDr0µ−1/2) = D2(θνr0µ−1/2)

b = D((1− θ)v−1 − v)

u = dfx

z = dfs .

Then by Lemma 5.6 part (3), we have

||Ddfx||2 + ||Ddfs ||2 ≤ ||D((1− θ)v−1 − v)||2 + 2||D2(θνr0µ−1/2)

+D((1− θ)v−1 − v)|| ||D2(θνr0µ−1/2)||
(5.16)
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Then, we apply the following norm facts to (5.16).

(i) ||Ddfx|| ≤ ||D|| ||dfx|| , ||Ddfs || ≤ ||D|| ||dfs ||

(ii) ||D2(θνr0µ−1/2)|| ≤ ||D||2||θνr0||µ−1/2

(iii) ||D((1− θ)v−1 − v)|| ≤ ||D|| ||(1− θ)v−1 − v||

where ||D|| represents a matrix norm. By using (i), (ii) and (iii), we have that

||D||2
(
||dfx||2 + ||dfs ||2

)
≤ ||D||2||((1− θ)v−1 − v)||2 + 2||D|| ||D(θνr0µ−1/2)

+ ((1− θ)v−1 − v)|| ||D|| ||D(θνr0µ−1/2)||
(5.17)

After cancelling ||D||2 from both sides of (5.17), we have

||dfx||2 + ||dfs ||2 ≤ ||(1− θ)v−1 − v||2

+ 2
(
||θνr0µ−1/2||+ ||(1− θ)v−1 − v||

)
||D(θνr0µ−1/2)||

(5.18)

As we can see in (5.18), to find an upper bound for ||dfx||2 + ||dfs ||2 we need to find

upper bounds for ||D(θνr0µ−1/2)|| and ||(1− θ)v−1 − v|| respectively.

a) Upper bound for ||D(θνr0µ−1/2)||:

To find an upper bound for ||D(θνr0µ−1/2)||, we reduce it as follows:

||D(θνr0µ−1/2)|| = θν
√
µ
||Dr0||

=
θν
√
µ
||X1/2S−1/2r0||

=
θν
√
µ
||
√
x

s
r0||

(Since ν = µ/µ0) ≤ θ
√
µ

µ

µ0
||
√
x

s
r0||1

=
θ

µ0
||
√
µx

s
r0||1

=
θ

µ0
||
√

µ

xs
xr0||1 →

∣∣∣∣ 1

vi
xir

0
i

∣∣∣∣ ≤ 1

vmin

|xir0i | ≤
1

vmin

|xi| |r0i |
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(Since

√
µ

xs
=

1

v
) ||D(θνr0µ−1/2)|| ≤ θ

µ0

1

vmin

||xr0||1

≤ θ

µ0

1

vmin

||x||1||r0||∞.
(5.19)

Since our initial assumptions are that x0 = γpe and s0 = γde so that µ0 = γpγd, then

we can choose γp and γd such that ||x0||∞ ≤ γp and ||s0||∞ ≤ γd. Then, we have that

r0 = s0 −Mx0 − q

= γde− γpMe− q

= γd

(
e− γp

γd
Me− 1

γd
q

)
.

Thus, we can bound ||r0||∞ as follows

||r0||∞ = γd||e−
γp
γd
Me− 1

γd
q||∞

≤ γd

(
1− γp

γd
||Me||∞ −

1

γd
||q||∞

)
.

By assuming max{||Me||∞, ||q||∞} ≤ γd, we have that

||r0||∞ ≤ γd(1 + 1 + 1)

= 3γd

Then, finally, by substituting upper bound for ||r0|| into (5.19), we have

||D(θνr0µ−1/2)|| ≤ θ

µ0

1

vmin

||x||13γd

=
θ

γdγp

1

vmin

3γd||x||1

=
3θ

γp

||x||1
vmin

.

(5.20)
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b) Upper bound for ||(1− θ)v−1 − v||:

We find an upper bound for ||(1− θ)v−1 − v|| by reducing it as follows:

||(1− θ)v−1 − v||2 = ||(1− θ)v−1||2 − 2(1− θ)(v−1)Tv + ||v||2

= (1− θ)2||v−1||2 − 2(1− θ)n+ ||v||2

= (1− θ)2||v−1||2 − 2n+ 2θn+ ||v||2

≤ ||v−1||2 − 2n+ ||v||2 + 2θn

= ||v−1 − v||2 + 2θn

= 4δ(v)2 + 2θn.

Hence, we have

||(1− θ)v−1 − v|| ≤
√

4δ(v)2 + 2θn (5.21)

Now, we substitute (5.20) and (5.21) into (5.18). Then, we have

||dfx||2 + ||dfs ||2 ≤
(
4δ(v)2 + 2θn

)
+ 2

(
3θ

γp

||x||1
vmin

+
√

4δ(v)2 + 2θn

)
3θ

γp

||x||1
vmin

(5.22)

To find a more strict upper bound for ||dfx||2 + ||dfs ||2, we need to find an upper

bound and a lower bound for ||x||1 and vmin respectively. We achieve this goal in the

following lemma.

Lemma 5.7. Let

q(δ) = δ +
√
δ2 + 1.

Then, the following hold,

(i) q−1(δ) ≤ vi ≤ q(δ)

(ii) ||x||1 ≤ (2 + q(δ))nγp, ||s||1 ≤ (2 + q(δ))nγd

Proof. Since, for each i, vi is positive, from (4.6) we have

−2δvi ≤ 1− v2i ≤ 2δvi
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implying that

v2i − 2δvi − 1 ≤ 0 ≤ v2i + 2δvi − 1.

By adding and subtracting δ2, we can rewrite the above inequality as:

(vi − δ)2 − 1− δ2 ≤ 0 ≤ (vi + δ)2 − 1 + δ2

Then, we obtain

(vi − δ)2 ≤ 1 + δ2 ≤ (vi + δ)2

which implies that

vi − δ ≤ |vi − δ| ≤
√

1 + δ2 ≤ vi + δ.

Hence, we get

−δ +
√

1 + δ2 ≤ vi ≤ δ +
√

1 + δ2

Equivalently, since δ +
√

1 + δ2 = q(δ) we have

q−1(δ) ≤ vi ≤ q(δ)

proving (i). To prove (ii), we know that x, s, x∗ and s∗ are positive. Thus, sTx∗+xT s∗

is positive. Hence,

(s0)Tx+ (x0)T s ≤ v(x0)T s0 +
xT s

v
+ (1− v)((s0)Tx∗ + (x0)T s∗)

By substituting x0 = γpe, s
0 = γde, ||x∗||∞ ≤ γp and ||s∗||∞ ≤ γd, we have

(s0)Tx∗ + (x0)T s∗ ≤ γp(e
T s0) + γd(e

Tx0) = 2nγpγd.

Also, (x0)T s0 = nγpγd. Thus, we have

(s0)Tx+ (x0)T s ≤ xT s

v
+ 2nγpγd − vnγpγd

≤ xT s

v
+ 2nγpγd

=
µ(eTv2)

v
+ 2nγpγd

= γpγd(e
Tv2) + 2nγpγd,
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Since v = µ
µ0

and µ0 = γpγd, the last inequality follows. Moreover,

γpγd(e
Tv2) + 2nγpγd = γpγd(e

Tv2 + 2n)

= γpγd(
n∑
i=1

v2i + 2n)

≤ γpγd(
n∑
i=1

q2(δ) + 2n)

= γpγd(q
2(δ)

n∑
i=1

1 + 2n)

= γpγd(q
2(δ)n+ 2n)

= γpγdn(q2(δ) + 2).

Therefore (s0)Tx+ (x0)T s ≤ γpγdn(q2(δ) + 2) from which we obtain that

(s0)Tx ≤ γpγdn(q2(δ) + 2)

(x0)T s ≤ γpγdn(q2(δ) + 2).

By substituting x0 = γpe and s0 = γde, we have

||x||1 ≤ γpn(q2(δ) + 2)

||s||1 ≤ γdn(q2(δ) + 2)

which proves part (ii).

By applying Lemma 5.7, (5.22) becomes

||dfx||2 + ||dfs ||2 ≤ (4δ2 + 2θn) +
18θ2

γ2p

||x||21
v2min

+
6θ

γp

√
4δ2 + 2θn(2 + q(δ))q(δ)

= (4δ2 + 2θn) + 18θ2n2(2 + q(δ))2q2(δ)

+ 6θn
√

4δ2 + 2θn(2 + q(δ))q(δ).

(5.23)

Finally, we have the upper bound for ω(v) by substituting (5.23) into

ω(v) =
1

2

(
||dfx||2 + ||dfs ||2

)
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which is:

ω(v) ≤ 1

2

[
2(2δ2 + θn) + 18θ2n2(2 + q(δ))2q2(δ) + 6θn

√
4δ2 + 2θn(2 + q(δ))q(δ)

]
= (2δ2 + θn) + 9θ2n2(2 + q(δ))2q2(δ) + 3θn

√
4δ2 + 2θn(2 + q(δ))q(δ)

(5.24)

where

q(δ) = δ +
√
δ2 + 1.

From Lemma 5.5, we have

4δ(vf )2 ≤ (n− 1)ξ(0) + max{ξ(ω(v)), ξ(−ω(v))}.

Thus, the upper bound for δ(vf ) is:

δ(vf ) ≤ 1

2

√
(n− 1)ξ(0) + max{ξ(ω(v)), ξ(−ω(v))} ≤ τ (5.25)

where

ω(v) ≤ (2δ2 + θn) + 9θ2n2(2 + q(δ))2q2(δ) + 3θn
√

4δ2 + 2θn(2 + q(δ))q(δ)

and

q(δ) = δ +
√
δ2 + 1.

Now, we need to find a specific τ and θ such that (5.25) is satisfied. For this

purpose, we have written a MATLAB code to show that the specific τ and θ that

we have found satisfies the inequality (5.25). The result is given in the following table.

θ τ δ(vf ) : n = 2 n = 100 n = 1000

1
39+n

1
5

0.1806 0.0751 0.0468

1
40+n

1
4

0.2483 0.1060 0.0721

1
53+n

1
3

0.3272 0.1787 0.1329

1
170+n

1
2

0.4981 0.4371 0.3708

Table 5.1: Proximity of new iterates to µ-center for certain choice of τ and θ
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As it can be seen from Table 5.1, when τ increases corresponding θ decreases.

Bigger τ means that we increase the range of our τ -neighbourhood of central path.

This helps to decrease number of iterations because for bigger τ , we may perform less

Newton iteration to satisfy proximity condition that is we can take bigger step. On the

other hand, for bigger τ , we have smaller θ. Since µ+ = (1−θ)µ and ν+ = (1−θ)ν, if

θ is small, then we reduce µ and ν slowly. Thus, we reach the ε-solution by performing

more iterations. Another observation is that, as seen in the table, when dimension of

the problem is increased, the new iterates becomes more closer to the central path.

As a result, we have the following theorem.

Theorem 5.8. Let δ and τ be one of the pairs in the Table 5.1 and (x, s) be a current

iterate with δ(x, s;µ) ≤ τ . Then, after the feasibility step the new iterate (xf , sf ) is

strictly feasible and satisfies (5.25), that is δ(xf , sf ;µ+) ≤ τ .

Calculation of the number of iterations

In this part, we calculate required number of iterations of full-Newton step IIPM

algorithm to obtain ε-solution. Before that we need to prove following useful results

and the lemma which we use in the calculation of the number of iterations.

(i) : The first result is that

4xT 4 s ≤ µδ2.

Proof.

4xT 4 s = (xv−1dx)
T (sv−1ds)

=

(√
xµ

s
dx

)T (√
sµ

x
ds

)
= µ

(√
x

s
dx

)T (√
s

x
ds

)
= µdTx ds

≤ µδ2.

(5.26)
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(ii) : The second result is that

xfsf = µe+4x4 s.

Proof.

xfsf = (x+4x)(s+4s)

= xs+ x4 s+ s4 x+4x4 s

= xs+ (µe− xs) +4x4 s

= µe+4x4 s.

(5.27)

Lemma 5.9. Let xf and sf be new iterates after a feasibility step. Then

(xf )T sf ≤ µ(n+ δ2).

Proof.

(xf )T sf = eT (xfsf )

(by (5.27)) = eT (µe+4x4 s)

= µeT e+ eT 4 x4 s

= µn+4xT 4 s

(by (5.26)) ≤ µn+ µδ2

= µ(n+ δ2).

(5.28)

Now, we use the Lemma 5.9 in the proof of the following theorem that shows

the required iteration number for full Newton step Infeasible IPM algorithm to find

ε-solution.
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Theorem 5.10. Let θ = 1
39+n

, τ = 1
5

and µ0 = (x0)T s0

n
. Then, full Newton step

Infeasible IPM algorithm requires at most (39+n) log 51(x0)T s0

50ε
iterations to reach the

ε-solution of LCP (M, q) or equivalently O(n log n
ε
).

Proof. Let xk and sk be the k-th iterates of the algorithm. Then,

xTk sk ≤ µk(n+ δ2)

≤ µk(n+
1

25
)

= (1− θ)kµ0(n+
1

25
)

= (1− θ)k (x0)T s0

n
(n+

1

25
)

≤ (1− θ)k (x0)T s0

n
(n+

1

50
n) (Since n ≥ 2)

= (1− θ)k (x0)T s0

n

51

50
n

= (1− θ)k(x0)T s051

50

≤ ε.

Then by taking logarithm of both sides, we have

log

[
(1− θ)k(x0)T s051

50

]
≤ log ε

log(1− θ)k + log(x0)T s0 + log
51

50
≤ log ε

log(1− θ)k ≤ log ε− log(x0)T s0 − log
51

50

k log(1− θ) ≤ log
50ε

51(x0)T s0

−k log(1− θ) ≥ − log
50ε

51(x0)T s0
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Since − log(1− θ) ≥ θ, then

kθ ≥ log
51(x0)T s0

50ε

k ≥ 1

θ
log

51(x0)T s0

50ε

k ≥ (39 + n) log
51(x0)T s0

50ε

which concludes the number of iteration that is required to get ε-solution.

Similarly, we can calculate the required number of iterations for other θ and τ

values in the Table 5.1. The results for these values are shown in the following table.

θ τ number of iterations

1
40+n

1
4

(40 + n) log 33(x0)T s0

32ε

1
53+n

1
3

(53 + n) log 19(x0)T s0

18ε

1
170+n

1
2

(170 + n) log 9(x0)T s0

8ε

Table 5.2: Required number of iterations for different τ and θ values

As a result, after each feasibility step, improved algorithm guarantees that the

new iterates (xf , sf ) satisfy (5.25). Moreover, the new iterates are close enough to

µ-center after an iteration. Thus, we eliminate the centering steps. Furthermore,

upper bound on the number of iterations to obtain ε-solution is O(n log n
ε
). In the

next Chapter, we show our numerical examples and results.



CHAPTER 6

NUMERICAL RESULTS

In this Chapter, we show our numerical results of full Newton step infeasible IPM

algorithm for random generated LCPs. Then, we compare improved algorithm with

the old version.

We have implemented the pseudocode in Section 4.2.1 via MATLAB. The codes

are included in Appendix A. Then, we generated random positive semi-definite matrix

M with various dimensions. Also, our initial starting vector x and constant vector q

are generated randomly. In the rest of this section, we give a complete example for

2× 2 matrix M and some tables showing results for other dimensions.

Example 1:

For this example, our randomly generated inputs are:

M =

 0.4512 0.6328

0.6328 0.9995

 , x =

 0.0791

0.5094

 and q =

 0.5441

0.6990

 .
As it can be seen that all the eigenvalues {0.0357, 1.4149} of matrix M are positive.

Thus M is positive definite matrix. So, the LCP (M, q) generated with these inputs

have a unique solution. Also, we choose s0 = Mx0 + q. Thus, for this example our

initial pair (x0, s0) is feasible.

After running the code with these inputs and with θ = 1
39+n

= 1
39+2

= 0.0244, τ =

1
5

= 0.2, we reach the ε-solution with 360 iterations where ε = 10−4. Theoretically,

the expected number of iteration by Theorem 5.10 is (39 + 2) log 51(x0)T s0

50ε
= 364.5256.

Table 6.1 includes some iteration steps. In this table, it can be seen that the comple-

mentarity condition xT s is converging to zero at each iteration. Furthermore, it can

be observed that at each iteration, the new iterates are close enough to central path.

More specifically, at each iteration, the new iterates (xf , sf ) satisfy δ(xf , sf ;µ+) ≤ τ .
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iteration xT s µ ν δ(vf )

1 : 0.70044013 0.34745664 0.97560976 0.00891923

2 : 0.67811788 0.33898208 0.95181440 0.00017605

3 : 0.66151292 0.33071423 0.92859941 0.00009034

...
...

...
...

...

358 : 0.00010316 0.00005158 0.00014483 0.00000008

359 : 0.00010064 0.00005032 0.00014130 0.00000008

360 : 0.00009819 0.00004909 0.00013785 0.00000007

Table 6.1: Changes in xT s, µ, ν and δ(vf ) for the example

The solution vectors of this specific LCP (M, q) are:

x = 1.0e− 004×

 0.9022

0.7022

 and s =

 0.5442

0.6991

 .

We also solved this specific example for different θ and τ values given in the Table

5.2. Table 6.2 shows the required number of iterations for those different values. As

it is seen in Table 6.1, different θ values requires different number of iterations. As

seen in Theorem 5.10, in theory expected number of iterations depend on θ. Thus, for

smaller θ, the algorithm performs more iterations. Moreover, since we reduce µ and ν

by using θ i.e., µ+ = (1−θ)µ and ν+ = (1−θ)ν, hence smaller θ increases the number

of iterations that is required both in practice and in theory. As a result, the selection

of θ is basically depends on the dimension of the problem. If you consider the specific

θ values in Table 5.1, it can be observed that for large dimensional problems, this

algorithm is much more efficient then the old version. We show how this improved

version of the algorithm is efficient in the next Section.
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θ τ ε expected num. of iter. computed. num. of iter.

1
39+n

1
5

10−4 364 360

1
39+n

1
5

10−6 553 546

1
40+n

1
4

10−4 374 369

1
40+n

1
4

10−6 567 560

1
53+n

1
3

10−4 490 484

1
53+n

1
3

10−6 744 735

1
170+n

1
2

10−4 1546 1522

1
170+n

1
2

10−6 2338 2312

Table 6.2: Required number of iterations for different θ, τ and ε values

Example 2: In this example, we solve the same example as in Section 3.3 where

it was solved by Lemke’s Method and we compare the results. Let us recall the inputs

from Section 3.3:

M =

 1 0

−1 1

 , q =

 −2

−1

 .
For initial starting pair (x0, s0) we take

x0 =

 1

1

 , s0 =

 1

1

 . (6.1)

We can show that (x0, s0) is an infeasible starting pair by plugging them into LCP (M, q)

in (2.1) which is:

s = Mx+ q

xs = 0, x ≥ 0, s ≥ 0

Mx0 + q =

 1 0

−1 1


 1

1

+

 −2

−1

 =

 −1

−1

 6= s0
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and also

(x0)T s0 =

[
1 1

] 1

1

 = 2 6= 0

Therefore, (x0, s0) is infeasible. Lemke’s Method solves this question very efficiently.

It is well known that Lemke’s Method is very efficient for low dimensional problems.

However, its efficiency reduces as dimension of the problem increases. For this ex-

ample, we obtain the result x =

 2

3

 with 3 steps. On the other hand, we solve

this example with improved full Newton step IIPM with θ = 1
39+n

, τ = 1
5
, ε = 10−4

and the initial starting pair (x0, s0) as in (6.1). In theory, the expected number of

iterations is 407 which is calculated by using Theorem 5.10. We have found the re-

sult x =

 1.9999

2.9999

 in 416 iterations. Obviously, this result converges to the exact

solution x =

 2

3

.

Example 3: In this example we apply full Newton step infeasible IPM to the

following QP problem and compare our result with Lemke’s Method.

min
1

2
x21 − x1x2 +

1

2
x22 + 4x1 − x2

such that x1 + x2 ≥ 0, x1, x2 ≥ 0.

Since the general form of the QP is

min
1

2
xTQx+ pTx subject to Ax ≥ b, x ≥ 0

, then the problem above has the form

Q =

 1 −1

−1 1

 , A =

[
1 1

]
, p =

 4

−1

 , b =

[
2

]
.
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Then, by using (3.2), we define the following LCP by setting

M =


1 −1 1

−1 1 −1

1 1 0

 , q =


4

−1

−2

 .
Since Q is positive semi-definite matrix; hence, M is positive demi-definite and

there exist a unique solution. Lemke’s Method solves this problem in 5 steps. The

global solution is x1 = 0 and x2 = 2. Our algorithm with θ = 1
40+n

, τ = 1
4

and

ε = 10−4 solves this question in 448 iterations. We obtain the same global minimizer

x∗ =

 0

2

.

In the following tables, we present some results obtained from MATLAB exper-

iments. We randomly generated matrix M , vectors x0 and q with different sizes. We

analyse these inputs in two different ways. The first way is that we started to solve

these problems with a feasible (x0, s0) pair. The second way is that we generate both

x0 and s0 randomly. This means that our initial starting pair may be (x0, s0) infea-

sible. Thus, for these 2 ways, expected iteration numbers and computed iteration

numbers differ from each other. Moreover, since numbers of iterations are different

according to feasibility of initial pair, elapsed CPU time also differs. Our observations

are given in the Table 6.3 and 6.4.
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size expected iteration number computed iteration number CPU time (sec)

2× 2 340 336 1.0721× 10−2

3× 3 350 345 1.4080× 10−2

4× 4 436 431 1.8200× 10−2

5× 5 489 483 2.0961× 10−2

10× 10 636 630 3.3836× 10−2

20× 20 922 914 7.6644× 10−2

50× 50 1619 1609 40.3594× 10−2

100× 100 2842 2830 1.993561

200× 200 5315 5299 19.068259

Table 6.3: θ = 1
39+n

, τ = 1
5
, ε = 10−4 and (x0, s0) is feasible pair

size expected iteration number computed iteration number CPU time (sec)

2× 2 354 358 1.1410× 10−2

3× 3 391 409 1.8885× 10−2

4× 4 417 477 1.9430× 10−2

5× 5 429 481 2.0452× 10−2

10× 10 489 628 3.4805× 10−2

20× 20 657 856 9.3725× 10−2

50× 50 1032 1496 34.9231× 10−2

100× 100 1723 2582 1.928713

200× 200 3156 4873 17.310426

Table 6.4: θ = 1
39+n

, τ = 1
5
, ε = 10−4 and (x0, s0) is infeasible pair

It can be observed from Table 6.3 and Table 6.4 that if we start with an infeasi-
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ble pair (x0, s0), expected number of iterations decreases, and performed number of

iterations is greater than expected number of iterations. Although performed number

of iterations is bigger than expected, full Newton step IIPM with infeasible starting

pair in most cases requires smaller number of iterations than full Newton step IIPM

with feasible initial pair for θ = 1
39+n

, τ = 1
5

and ε = 10−4.

We performed the same experiment for {θ = 1
40+n

, τ = 1
4
}, {θ = 1

53+n
, τ = 1

3
}

and {θ = 1
170+n

, τ = 1
2
} values with infeasible starting pair. The results are given in

Tables 6.5, 6.6, and 6.7.

size expected iteration number computed iteration number CPU time (sec)

2× 2 356 355 1.2205× 10−2

5× 5 421 464 2.0286× 10−2

10× 10 497 645 3.5290× 10−2

100× 100 1743 2590 1.852735

Table 6.5: θ = 1
40+n

, τ = 1
4
, ε = 10−4 and (x0, s0) is infeasible pair

size expected iteration number computed iteration number CPU time (sec)

2× 2 477 496 1.6991× 10−2

5× 5 543 627 2.6566× 10−2

10× 10 638 804 4.3438× 10−2

100× 100 1893 2845 2.004844

Table 6.6: θ = 1
53+n

, τ = 1
3
, ε = 10−4 and (x0, s0) is infeasible pair
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size expected iteration number computed iteration number CPU time (sec)

2× 2 1149 1463 4.4998× 10−2

5× 5 1632 1934 7.9164× 10−2

10× 10 1863 2357 12.3812× 10−2

100× 100 3352 5020 3.776065

Table 6.7: θ = 1
170+n

, τ = 1
2
, ε = 10−4 and (x0, s0) is infeasible pair

Although, in theory, the convergence is not guaranteed for bigger θ values that

are not in Table 5.1, we performed a MATLAB experiment for θ = 0.2. Results are

shown in Table 6.8.

size expected iteration number computed iteration number CPU time (sec)

2× 2 417 45 0.0035

5× 5 488 54 0.0040

10× 10 577 61 0.0052

100× 100 1938 87 0.0667

1000× 1000 16795 113 41.864310

Example 3 444 48 0.0035

Table 6.8: θ = 0.2, ε = 10−4

Surprisingly, we have seen that for θ = 0.2, improved algorithm is much more

effective. For θ = 1
40+n

, the code solves LCP with 1000× 1000 matrix M in 3 hours

and 8 minutes with around 20000 iterations. When θ = 0.2, it solves the same LCP

in approximately 42 seconds within 113 iterations. As it can be seen from Table 6.8,

for this θ value, algorithm works effectively for almost every size of the matrix M
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even for negative q. We also tried θ = 0.5 and θ = 0.9 values. Like θ = 0.2, these θ

values works very well except θ = 0.9 for the size of M is 1000×1000. X denotes that

the algorithm doesn’t converge to a positive (x, s) pair. Results can be seen from the

Tables 6.9 and 6.10.

size expected iteration number computed iteration number CPU time (sec)

2× 2 417 15 0.00084

5× 5 488 17 0.00279

10× 10 577 20 0.00325

100× 100 1938 28 0.03270

1000× 1000 16795 37 13.56987

Example 3 444 16 0.003193

Table 6.9: θ = 0.5, ε = 10−4

size expected iteration number computed iteration number CPU time (sec)

2× 2 417 5 0.00049

5× 5 488 6 0.00067

10× 10 577 7 0.00269

100× 100 1938 9 0.01194

1000× 1000 16795 X X

Example 3 444 5 0.00212

Table 6.10: θ = 0.9, ε = 10−4

So far, we solved examples that have a unique solution. More specifically, in

our examples the matrix M is positive definite and constant vector q is positive in

most cases. It is obvious that when q > 0, x = 0̄ vector is trivial solution. Although
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the matrix M is positive definite, when constant vector q is completely negative or

have negative components, then the algorithm may not converge to the result. In the

following Section, improved version of the algorithm is compared with old version of

the algorithm.

6.1 Comparison with old version

In this Section, we compare new and old version of full Newton step IIPM algorithm.

Our improvement is based on Lemma 5.4 proved in [1]. The most important difference

between old and new version is that we eliminate the centering steps in new version

thanks to Lemma 5.4. In the old version, we have to perform one feasibility step and

a few centering steps, at each iteration because after one feasibility step new pair

(xf , sf ) may not close enough to central path. In other words, δ(xf , sfµ+) > τ .

The improved version of the algorithm guarantees that after one feasibility step

new iterates xf and sf are close enough to central path i.e., δ(xf , sfµ+) ≤ τ . Hence,

we eliminate centering steps. Eliminating centering steps reduces the required num-

ber of iterations and CPU time that is required to find solution. Comparison between

old version of the algorithm and improved version of the algorithm can be seen in the

Table 6.11.

size old version(iter. num., time) improved version(iter. num., time)

3× 3 385− 1.3239× 10−2 439− 1.9803× 10−2

5× 5 716− 3.2589× 10−2 506− 2.5870× 10−2

10× 10 1626− 7.7880× 10−2 676− 3.7156× 10−2

100× 100 23917− 16.955375 2697− 1.894107

Table 6.11: θnew = 1
40+n

, θold = 1
12n

, τ = 1
4
, ε = 10−4
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The values for old version in the Table 6.11 were generated by the MATLAB

code given in [33]. It can be seen from this table that for large dimensional LCPs,

improved version of full Newton step IIPM is much more efficient than the old

version. It requires smaller number of iteration and consumes less CPU time; thus

reduces the cost. This difference comes from the θ values and eliminating centering

steps at each iteration. In this thesis we use θ = 1
40+n

for τ = 1
4
. On the other hand,

for old version of the algorithm θ = 1
12n

for the same τ . Hence, when n ≥ 4, improved

algorithm is much more efficient than the old version.

Note that for both algorithms, we have performed our computational experiments

with the computer that has Intel(R) core(TM) processor and 4 Gb of RAM running

Windows 7 operating system. MATLAB codes for new version of the algorithm are

given in Appendix A.



CHAPTER 7

CONCLUSION

In this thesis, we consider to solve monotone Linear Complementarity Problems

(LCPs) (2.1) with positive semi-definite matrix M . LCP is not an optimization

problem. However, KKT conditions of several important optimization problems, such

as Linear and Quadratic Programming problems (LP and QP ), can be formulated

as LCP . In addition, many problems from engineering, transportation, finance etc.

can be directly or indirectly written as LCP . Hence, it is of significant interest to

consider LCPs and find efficient methods to solve it.

LCPs can be solved by using some non-polynomial pivot based algorithms such

as Lemke’s Method. These algorithms are very successful in practice. Especially, for

low dimensional problems, these algorithms have very good performance. However,

when dimension of the problem increases, then the complexity of the algorithm and

number of iterations increase as well. Furthermore, if the worst case complexity theory

is considered, these algorithms are not polynomial. They may require exponential

number of iterations. Thus, it is important to consider other methods. The class

of methods that have shown to be very efficient and with polynomial worst case

complexity has been developed in past three decades and are called Interior-Point

Methods (IPM). In this thesis, we consider full Newton step Infeasible IPM .

The most important property of Infeasible IPM algorithm is that it is a polyno-

mial Newton based algorithm. Secondly, we don’t calculate step size because we use

full Newton step i.e., α = 1. Infeasible IPM may find solutions for both feasible and

infeasible initial starting pair (x0, s0). Since it is not easy to find a feasible starting

pair all the time, solving problems with infeasible starting pair is essential. This situ-

ation increase importance of Infeasible IPM . The Newton Method (NM) is essential

part of the IPMs; it is used at each iteration of IPM in essential way. In our case
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IIPM uses NM to solve system (4.1). However, the complementarity condition in

the system (4.1) can be a problem for NM. Hence, to prevent this problem we consider

perturbed complementary condition which then leads to the concept of central path.

The main idea is to follow central path approximately (in a certain neighbourhood of

the central path) until reaching ε-approximate solution.

We improved the old version of the algorithm given in [33]. Our improvement is

based on the lemma proved in [1]. In the old version of the algorithm, we perform

one feasibility step and a few centering steps at each iteration. After one feasibility

step, the new iterates are strictly feasible but not close to central path. On the other

hand, in the improved version, we only perform feasibility step. After one feasibility

step, new iterates are both strictly feasible and close enough to central path. This

is achieved for certain values of θ and τ . These values are given in Table 5.1. One

main iteration of this algorithm can be seen in Figure 5.1. Also, pseudocode of the

algorithim is given in Section 4.2.1.

The pseudocode in Section 4.2.1 is implemented via MATLAB. We performed

several experiments for different size of randomly generated matrix M , randomly

generated initial starting pairs (x0, s0), constant vector q and for different values of

θ, τ and ε. We observed that, almost for all test problems, this algorithm converges

to the solution. Although for low dimensional problems, the old version is better,

for large dimensional problems, improved version of the algorithm is much more

efficient. Although theoretically the algorithm doesn’t guarantee the convergence for

θ = O(1), we have shown that the algorithm works very efficiently and solves most of

the problems in much fever number of iteration then in the version of the algorithm

that guarantees convergence. We provided results for θ = 0.2, 0.5, 0.9 in Tables

6.8, 6.9 and 6.10. Results of numerical tests and comments are given in Chapter 6

(Numerical Results).
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The results in this thesis show that the improved version of the full Newton step

IIPM is both efficient in theory and in practice and performs better when compared

to the old version.
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Appendix A

MATLAB CODES

In this part, we present MATLAB codes for the algorithm given in Section 4.2.1.

The first program is LCPmain.m. In this program, we generate random LCP with

positive definite matrix M and initial starting pair (x0, s0). Then, we send these

inputs to FNSIIPM.m. FNSIIPM is abbreviation for full Newton step infeasible

interior point method.

In FNSIIPM.m, we implemented the algorithm in Section 4.2.1. This subrou-

tine takes M , x0, s0, q, θ, τ as inputs and generates solution x with a table showing

each iteration in detail. As it mentioned before, (x0, s0) can be both feasible and

infeasible.

The last MATLAB subroutine is Proximity.m. We implemented this code to

determine θ and tau values which guarantee that δ(xf , sf ;µ+) ≤ τ .

A.1 LCPmain.m

1 % Main Program

2 % Mustafa Ozen

3 % Under d i r e c t i o n o f Prof . Dr . Goran Lesa ja .

4 % Georgia Southern Un ive r s i ty

5 % Applied Mathematics Master Degree Thes i s

6 % 2015−2016 Summer Semester

7 % Ful l Newton Step I n f e a s i b l e I n t e r i o r Point Method f o r Linear

8 % Complementarity Problems (LCP) .

9

10 % This code s o l v e s random generated LCP f o r p o s i t i v e d e f i n i t e matrix M

and

11 % vector q by us ing Ful l−Newton step I n f e a s i b l e I n t e r i o r Point Method .

12



67

13 % Var iab le L i s t :

14 % n : dimension o f the problem .

15 % A: random n x n matrix .

16 % M: random generated p o s i t i v e s em i d e f i n i t e matrix

17 % q : random generated n x 1 constant vec to r .

18 % i n i t x : i n i t i a l s t a r t i n g vec to r x .

19 % i n i t s : i n i t i a l s t a r t i n g vec to r s .

20 % theta : b a r r i e r parameter .

21 % ep s i l o n : accuracy ra t e .

22 % x : output vec to r o f IIPM algor i thm .

23 % s : output cevtor o f IIPM algor i thm .

24 % i t e r a t i o n : number o f i t e r a t i o n .

25 % expected i te r num : t h e o r i t i c a l y expected number o f i t e r a t i o n .

26

27 c l c

28 c l e a r

29 t i c

30

31 % Generating matrix M, constant vec to r q and i n i t i a l pa i r ( x0 , s0 )

32 % Random generated inputs

33 n = 3 ;

34 A = rand (n , n) ;

35 M = A’∗A;

36 q = −1∗rand (n , 1 ) ;

37 i n i t x = rand (n , 1 ) ;

38 i n i t s = rand (n , 1 ) ;

39

40 % Example 1 :

41 %M = [0 . 4 512 0 . 6328 ; 0 . 6 328 0 . 9 995 ]

42 %q = [ 0 . 5 4 4 1 ; 0 . 6 9 9 0 ]

43 %i n i t x = [ 0 . 0 7 9 1 ; 0 . 5 0 9 4 ]
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44 %i n i t s = M∗ i n i t x + q ;

45

46 % Example 2 :

47 %M = [1 0;−1 1 ] ;

48 %q = [−2; −1];

49

50 % Example 3 :

51 %M = [1 −1 −1; −1 1 −1; 1 1 0 ] ;

52 %q = [ 4 ; −1; −2];

53

54 %i n i t x = ones (n , 1 ) ;

55 %i n i t s = ones (n , 1 ) ;

56

57 % Set t ing theta , tau and ep s i l o n va lue s

58 % For d i f f e r e n t theta and ep s i l o n values , expected number o f i t e r a t i o n s

59 % and fo rmu la t i ons change . For p o s s i b l e theta , tau va lue s and number o f

60 % i t e r a t i o n s see Table 5 .1 in Chapter 5 .

61

62 theta = 1/(40 + n) ;

63 %theta = 0 . 2 ;

64 tau = 1/4 ;

65 ep s i l o n = 1e−4;

66 expected i te r num = (40 + n) ∗ l og ((33∗ i n i t x ’∗ i n i t s ) /(32∗ ep s i l o n ) ) ;

67 % Outputs :

68 [ x s i t e r a t i o n tab l e ] = FNSIIPM(M, i n i t x , i n i t s , q , theta , e p s i l o n ) ;

69 x

70 s

71 i t e r a t i o n

72 expected i te r num

73 t ab l e

74 toc
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A.2 FNSIIPM.m

1 f unc t i on [ x s num o f i t e r t ab l e ] = FNSIIPM(M, i n i t x , i n i t s , q , theta ,

e p s i l o n )

2

3 % func t i on [ x s num o f i t e r number ] = FNSIIPM(M, x , q , theta , e p s i l o n )

4 % This subrout ine performs Fu l l Newton Step I n f e a s i b l e IPM Algorithm .

5 % I t s o l v e s LCP(M, q ) : s = Mx + q suct that xs = 0 .

6 % This upgraded algor i thm r e qu i r e s only f e a s i b i l i t y s t ep s .

7

8 % Inputs :

9 % M: n x n p o s i t i v e s em i d e f i n i t e matrix .

10 % i n i t x : n x 1 i n i t i a l s t a r t i n g vec to r x .

11 % i n i t s : n x 1 i n i t i a l s t a r t i n g vec to r s .

12 % q : n x 1 constant vec to r .

13 % theta : b a r r i e r parameter .

14 % ep s i l o n : accuracy ra t e .

15 % Outputs :

16 % x : n x 1 r e s u l t vec to r .

17 % s : n x 1 r e s u l t vec to r .

18 % num of i t e r : performed number o f i t e r a t i o n .

19 % tab l e : r e s u l t t ab l e .

20

21 % Set t ing inputs

22 n = s i z e (M, 1 ) ;

23 x = i n i t x ;

24 s = i n i t s ;

25

26 mu = x ’∗ s /n ;

27 nu = 1 ;

28 r0 = s − M∗x − q ;

29 r = nu∗ r0 ;
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30 e = ones (n , 1 ) ;

31 comp cond = x ’∗ s ;

32 num o f i t e r = 0 ;

33 f l a g = 0 ;

34

35 % Algorithm , f o r Pseudocode see Chapter 4 − Sec t i on 4 . 2 . 1 .

36 whi le max( comp cond , norm( r ) ) >= ep s i l o n

37 f l a g = 1 ;

38 num o f i t e r = num o f i t e r + 1 ;

39

40 X = diag (x ) ;

41 S = diag ( s ) ;

42 dx = (S + X∗M) \((1− theta ) ∗mu∗e − X∗S∗e + X∗ theta ∗nu∗ r0 ) ;

43 ds = M∗dx − theta ∗nu∗ r0 ;

44

45 x = x + dx ;

46 s = s + ds ;

47 mu = (1 − theta ) ∗mu;

48 nu = (1 − theta ) ∗nu ;

49 r = nu∗ r0 ;

50 comp cond = x ’∗ s ;

51 v = sq r t ( x .∗ s . /mu) ;

52 d e l t a f = norm(v .ˆ(−1) − v ) /2 ;

53

54 i f num o f i t e r == 1

55 t ab l e {1} = ’−−−−−−−−−−−−−−−−−IIPM I t e r a t i o n Table

−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ;

56 t ab l e {2} = ’ i t e r a t i o n xs mu nu

d e l t a f ’ ;

57 t ab l e {3} = ’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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’ ;

58 end

59 t ab l e{3+num of i t e r } = . . .

60 s p r i n t f ( ’ %3u : % 5 .8 f % 5 .8 f % 5 .8 f %

5 .8 f ’ , . . .

61 num of i t e r , comp cond ,mu, nu , d e l t a f ) ;

62 end

63

64 i f f l a g == 0

65 di sp ( ’ no r e s u l t ! ’ )

66 e l s e

67 t ab l e = char ( t ab l e ) ;

68 end

69 end
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A.3 Proximity.m

1 % Measuring Proximity f o r d i f f e r e n t theta and tau va lue s

2

3 % This subrout ine measures proximity de l t a o f new i t e r a t e s a f t e r one

4 % f e a s i b i l i t y s tep f o r p o s s i b l e theta , tau and problem dimension n .

5 % We want that a f t e r a f e a s i b i l i t y step , new i t e r a t e s are c l o s e enough

to

6 % cen t r a l path , i . e . , d e l t a f <= tau .

7

8 % Var iab le L i s t :

9 % n : dimension o f the problem .

10 % theta : b a r r i e r parameter .

11 % tau : c e n t r a l path neighbourhood rad iu s .

12 % de l t a : proximity o f new i t e r a t e s to the c en t r a l path .

13 % q , w, l and x i func t i on d e f i n i t i o n s are g iven in Chapter 5 .

14

15 c l c

16 c l e a r

17 n = 2 ;

18 theta = 1/(170+n) ;

19 tau = 1/2 ;

20 de l t a = tau ;

21 q = de l t a + sq r t ( ( d e l t a ˆ2) + 1) ;

22 w = (2∗ de l t a ˆ2 + theta ) + 9∗( theta ˆ2) ∗ ( (2 + q) ˆ2) ∗qˆ2 + 3∗ theta ∗ . . .

23 s q r t (4∗ ( d e l t a ˆ2)+2∗ theta ) ∗(2 + q) ∗q ;

24 %n = 1 : 1 0 0 ;

25 x i = @( t ) (1+t ) /(1− theta ) + (1− theta ) /(1+ t ) − 2 ;

26 l = max( x i (w) , x i (−w) ) ;

27 d e l t a f = (1/2) ∗ s q r t ( ( n−1)∗ x i (0 )+l )

28

29 %
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 % Graphica l r ep r e s en t a t i on o f new de l t a a f t e r a f e a s i b i l i t y s tep :

31 % n = 2 : 1 0 ;

32 % de l t a = 1/5 ;

33 % q = de l t a + sq r t ( ( d e l t a ˆ2) + 1) ;

34 % fo r theta = 0 : 0 . 0 0 1 : 0 . 9 9

35 % w = (2∗ de l t a ˆ2 + theta ) + 9∗( theta ˆ2) ∗ ( (2 + q) ˆ2) ∗qˆ2 + 3∗ theta ∗ . . .

36 % sqr t (4∗ ( d e l t a ˆ2)+2∗ theta ) ∗(2 + q) ∗q ;

37 % xi = @( t ) [(1+ t ) /(1− theta ) ] + [(1− theta ) /(1+ t ) ] − 2 ;

38 % l = max( x i (w) , x i (−w) ) ;

39 % d e l t a f = (1/2) ∗ s q r t ( ( n−1)∗ x i (0 )+l ) ;

40 % plo t ( theta , d e l t a f )

41 % hold on

42 % end

43 % ax i s ( ( [ 0 1 0 1 ] ) )
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