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ASSESSMENT OF ANTI-SACCADES WITHIN 24 TO 48 HOURS POST-CONCUSSION 

by 

NATHAN D’AMICO 

(Under the Direction of Nicholas Murray) 

ABSTRACT 

INTRODUCTION: Oculomotor control dysfunction is present in about 90% of concussed athletes, 

with anti-saccades being the most prominent. PURPOSE: To investigate anti-saccades, reflexive 

gaze deviations from a fixed point or area of interest, between NCAA Division I athletes 24 to 48 

hours post-concussion (PC) and healthy, matched controls (MC). METHODS: 10 PC (4 female, 6 

male; age: 18.9 ± 0.9 years) and 10 MC (4 female, 6 male; age: 18.3 ± 0.6 years) wore a monocular 

eye tracker (240Hz) while performing 2 trials of the 60-second WiiFit Soccer Heading game. 

During play, participants were instructed to not deviate their gaze away from the center area of 

interest. Ocular raw point of gaze coordinates were tracked during play for specific areas of interest 

(left, right, and center) to determine gaze deviations away from the center area of interest. 

RESULTS: One-way ANOVAs revealed significantly greater anti-saccades (p = 0.031) in PC 

(15.2 ± 7.1) when compared to MC (5.4 ± 5.2), significantly greater anti-saccade durations (p = 

0.023) in PC (11.2 ± 8.8s) when compared to MC (1.2 ± 1.3 s), and significantly greater average 

anti-saccade durations (p < .0001) in PC (0.671 ± 0.205s) when compared to MC (0.133 ± 0.042s). 

CONCLUSIONS: These results suggest that anti-saccades are significantly more prevalent in PC 

compared to MC. The great number and duration of anti-saccades could suggest a major deficiency 

in oculomotor control and could be a candidate marker for concussion. 

 

INDEX WORDS: Concussion, Oculomotor Control, Anti-Saccades, Eye Tracking, WiiFit 
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CHAPTER 1: INTRODUCTION AND PURPOSE STATEMENT 

 

1.1 CONCUSSION EPIDEMIOLOGY 

1.6 to 3.8 million sports-related concussions are reported annually in the United States,1-3 

which account for 5% to 9% of all sports-related injuries.4-6 Concussions also account for 

approximately one-third of all injuries in high school and collegiate athletics.7-9 The prevalence 

of concussion in sport is expected to be even higher as undiagnosed sport-related concussions 

range from 50% to 85%.10,11 This is primarily due to the reliance on the clinical presentation of 

signs and symptoms following concussion because very little, if any, physical damage is able to 

be detected by imaging devices.10 As such, concussion is a growing health concern, particularly 

among athletic populations.  

 Concussion is defined as a complex pathophysiological process affecting the brain, 

induced by traumatic biomechanical forces that result in transient neurologic signs or symptoms, 

and reflect a functional disturbance of the brain rather than a structural injury.11-13 Dizziness is 

the second most commonly reported symptom, following headache, after sustaining a 

concussion.9 Dizziness may represent an underlying impairment of the vestibular system, which 

is directly linked with the visual system.14,15 About 81% of concussed athletes complain of 

dizziness7,16-20 and over 30% of concussed athletes complain of visual issues.6,15,16,20-25 However, 

about 90% of concussed athletes would be diagnosed with at least one visual impairment if they 

were to be assessed, regardless of whether the athlete complained of having a visual issue.26-33 

Visual impairments are one of the most robust discriminators for the identification of 

concussion.34-36 Injury to the brain can negatively affect sensory processing, and 70% of all 

sensory information is collected by the eyes.37 Impairments to the visual system following 
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concussion is associated with a 6.4-times greater risk in protracted recovery (>21 days) and 

further risk of injury,16,25,34-36,38,39 a 1.5-times greater risk for depression,37 and a 4.5-times 

greater risk for Alzheimer’s-like symptoms.40-42 There is also a direct correlation between visual 

impairments and neuropsychological deficits,43 short-term and long-term cognitive 

impairments,44 and self-reported quality of life37,45 following concussion. 

Impairment of the visual system refers to a general disorder pertaining to the eye, and 

oculomotor dysfunction is the most common form of visual impairment.35,36,38,39 Oculomotor 

dysfunction involves the inability to control and coordinate eye movements rapidly, accurately 

and smoothly, and may manifest as blurred vision, diplopia, impaired eye movements, difficulty 

in reading, dizziness, headaches, ocular pain, and poor visual-based concentration.31 The eyes are 

considered to be windows into the brain,29,46,47 with more than 50% of the brain being directly or 

indirectly involved in visual processes.21,48-52 Over 30 areas of the brain53-55 and over half of the 

cranial nerves26,53-57 are responsible for vision. Thus, oculomotor dysfunction is prevalent 

following concussion and, therefore, may play an integral role in the assessment of concussion. 

 

1.2 OCULOMOTOR CONTROL 

 Success and safety in sport requires oculomotor control (robust vision tracking, 

substantial intake of visual information, and rapid analysis of visual information).58-60  

Oculomotor control is closely related to the functional integrity of the brain46,61,62 and provides 

insights into the neural control of volitional, reflexive, and anticipatory processes.63,64 

Concussions can cause oculomotor control dysfunctions13,44 and have direct and measurable 

impacts on the oculomotor control system.46,61 Oculomotor control dysfunctions are independent 

of intellectual ability and occur independently of neuropsychological impairment after a 
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concussion.34 There are several different types of oculomotor control such as vergence, 

vestibular ocular reflex, smooth pursuit, and saccades. 

 Saccades are the rapid, accurate, ballistic shifting of eye movements to bring an object of 

interest into the center of sight and are important for safely navigating through the 

environment.46,50,65-67 Saccades require complex coordination and timing in several different 

areas of the brain, including primarily the frontal lobe, basal ganglia, superior colliculus, and the 

cerebellum.65,68 The network involved in saccades includes cortical (frontal, parietal, and 

supplementary cortices) and subcortical (thalamus, pons, superior colliculus, midbrain, 

brainstem, and cerebellum vermis) structures.23,43,46,50,51,69 Saccade dysfunctions are present in 

over 30% of patients with concussion,6,22,23,70 and are correlated with brain injury severity.71,72 

Anti-saccades are the most common oculomotor dysfunction following concussion and 

may play a key role in the assessment of concussion.6,30,34,50,65 There are several advantages in 

the assessment of anti-saccades following concussion. Anti-saccades are easily recorded, can be 

precisely quantified, their neural substrates are well understood, and they provide information 

about both low-level, subcortical function and high-level, executive functions.66,72 Patients with 

anti-saccades cannot safely navigate through their environment and are susceptible to more 

severe impacts.46,50,65-67Anti-saccades also have the benefit of providing valuable information 

and correlations with aspects of executive function including: memory, attentional processes, 

impulse control, decision making, and initiation and control of behaviors.73  

 

1.3 OCULOMOTOR ASSESSMENTS 

 Eye tracking is a user friendly, low cost, non-invasive, quantitative assessment of 

oculomotor control that may provide a fast, accurate, and reliable way to screen for 
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concussion.61,65,66,74 This oculomotor control assessment provides a neuro-ophthalmological 

method of assessing the integrity of cortical and subcortical areas and pathways that are 

important for the successful execution of saccades.75,76 Successful execution requires the ability 

to inhibit anti-saccades, gaze deviations away from a fixed point or area of interest and towards a 

peripheral or distracting target.43,59,61,74,75,77 Good eye tracking is characterized by overall tight 

clustering of gaze around the area of interest (saccades).66,75 Poor eye tracking is characterized 

by a wide distribution of unwanted, reflexive eye movements away from the area of interest 

(anti-saccades).64,66,75,78-80 

There is previous literature that has assessed anti-saccades in concussed individuals, but 

not without several limitations. Many of these studies included a wide age range of sedentary 

individuals, did not assess anti-saccades until well after 48 hours post-concussion, compared 

concussed participants to volunteers, included a broad spectrum of traumatic brain injury 

patients, did not investigate anti-saccades during a dual task. The investigators of this study tried 

to address these limitations and investigated anti-saccades in concussed student-athletes 24-48 

hours post-concussion using a dual task, and the anti-saccade data was reduced by hand. 

There was a very wide age range of participants included in these previous studies that 

have assessed anti-saccades in concussions. Participants were as young as 13 years old9,81 and as 

old as 70 years old.61 No previous research has specifically looked at college-aged individuals 

and all the studies included an age range of at least 20 years. The great differences in the ages of 

the participants in these studies is a limitation that may have impacted the results of the studies. 

Our study only looked at college students, with all of our participants being between the ages of 

18 and 21 years old.  
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The previous studies also did not necessarily assess anti-saccades in active individuals. 

Only 2 studies assessed anti-saccades in concussed collegiate athletes.9,46 One study assessed 

anti-saccades in military veterans,65 one study assessed anti-saccades in recreational athletes,82 

and all the other studies assessed anti-saccades in sedentary individuals.61,67,74,75,81,83,84 

Oculomotor control is important for sport and for being active.58-60 Therefore, the execution of 

oculomotor control may be different between active and inactive individuals. Also, many of 

participants in these previous studies were healthy volunteers for the controls or were recruited 

from clinics for the concussed group. This method led to the participation of both sedentary and 

active individuals. Our study only included elite collegiate athletes for both the concussed and 

control participants. 

Previous literature that has investigated anti-saccades in concussed participants also did 

not define concussion very well. Anti-saccades were assessed in participants with mild traumatic 

brain injury,67,83,84 moderate traumatic brain injury,75 traumatic brain injury,75 and in participants 

with post-concussion syndrome.61,65,74 These are more severe head injuries and may not 

accurately represent findings in a concussed participant. Many of these participants were also 

recruited from concussion clinics, further supporting that these studies may have studied anti-

saccades in participants with more severe cases of concussion. This also led to several different 

mechanisms of injury including motor vehicle accidents and falls. Only two studies investigated 

anti-saccades in participants with a sport-related concussion.9,46 

Even if participants with concussion were assessed, they were assessed well after 48 

hours post-injury. Only two studies assessed anti-saccades within a week following 

concussion.9,83 All of the other studies did not assess anti-saccades until at least one week post-

concussion. Some studies did not assess anti-saccades until several months post-



12 
 

  

concussion.61,65,81,84 One study did not assess anti-saccades until 5 years following concussion.74 

Understanding the pathophysiology of concussion and the neurometabolic cascade of events 

following injury, the brain is most vulnerable within the first 48 hours after injury.85-87 Therefore, 

our study assessed anti-saccades within 48 hours following concussion. 

Additionally, the previous studies only assessed either the amount of anti-saccades or the 

duration of anti-saccades. Seven only assessed the amount of anti-saccades9,61,65,74,75,81,83 and 

three only assessed the duration of anti-saccades.67,82,84 Only one other study has assessed both 

the amount and the duration of anti-saccades in concussed individuals.46 All of these studies 

reduced the anti-saccade data by hand frame-by-frame, typically in Microsoft Excel. The anti-

saccade data in our study was reduced automatically by Applied Science Laboratories, which 

helped reduce human error. 

 

1.4 PURPOSE STATEMENT 

 Therefore, the purpose of this study was to investigate anti-saccades, anti-saccade 

durations, and average anti-saccade durations between NCAA Division I athletes 24 to 48 hours 

post-concussion and healthy, matched NCAA Division I athletes during an environmentally-

relevant dynamic postural assessment using an eye tracker.  

 

1.5 QUESTIONS AND HYPOTHESES 

 Question 1: Is there a significant difference in the total amount of anti-saccadic eye 

movements between athletes with concussion and healthy athletes? 

 Hypotheses 1: It is expected that there will be significantly greater anti-saccadic eye 

movements in athletes with concussion when compared to healthy athletes. 
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 Question 2: Is there a significant difference in the total time spent outside of the center 

area of interest during all anti-saccadic eye movements between athletes with concussion and 

healthy athletes? 

 Hypotheses 2: It is expected that there will be significantly longer total time spent outside 

of the center area of interest during all anti-saccadic eye movements in athletes with concussion 

when compared to healthy athletes. 

Question 3: Is there a significant difference in the average time spent outside of the center 

area of interest during each individual anti-saccadic eye movement between athletes with 

concussion and healthy athletes? 

 Hypotheses 3: It is expected that there will be significantly longer average time spent 

outside of the center area of interest during each individual anti-saccadic eye movement in 

athletes with concussion when compared to healthy athletes. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

 Every year in the United States 1.6-3.8 million sports-related concussions occur,1-3 which 

accounts for 5% to 9% of all sports-related injuries.4-6 Additionally, concussions account for 

approximately one-third of all injuries in high school and collegiate athletics.7-9 The prevalence 

of concussion in sport is expected to be even higher with undiagnosed sport-related concussions 

ranging from 50% to 85%.10,11 Clearly concussion is a growing concern, especially among 

athletic populations, and is increasing.46 Unfortunately, concussion cannot be detected by any 

imaging devices and the assessment of concussion is reliant upon the presentation of clinical 

signs and symptoms.10 

Dizziness is the second most commonly reported symptom following headache after 

sustaining a concussion.9 About 81% of concussed athletes complain of dizziness7,16-20 and over 

30% of concussed athletes complain of visual issues.6,15,16,20-25 Dizziness is directly linked with 

the visual system,14,15 and 6.4-times greater risk in protracted recovery (>21 days) and further 

risk of injury,16,25,34-36,38,39 a 1.5-times greater risk for depression,37 and a 4.5-times greater risk 

for Alzheimer’s-like symptoms.40-42 There is also a direct correlation between visual impairments 

and neuropsychological deficits,43 short-term and long-term cognitive impairments,44 and self-

reported quality of life37,45 following concussion. 

 It is estimated that about 90% of concussed athletes would be diagnosed with at least one 

oculomotor dysfunction if they were to be assessed, regardless of whether the athlete complained 

of having a visual issue.26-33 Anti-saccades are the most common oculomotor dysfunction 

following concussion and may play a key role in the assessment of concussion.6,30,34,50,65,74,79 

Oculomotor dysfunction is one of the most robust discriminators for the identification of 
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concussion.34-36 Greater than 50% of the brain,21,48-52 more than 30 areas of the brain53-55 and 

over half of the cranial nerves26,53-57 are directly or indirectly responsible for vision. Therefore, it 

is no surprise that visual disturbances are so prevalent following concussion.  

 

2.2 ANATOMY AND PHYSIOLOGY 

 Diffuse axonal injury is considered to be a key underlying cause of the more lasting signs 

and symptoms of concussion, including oculomotor dysfunction.28 This injury involves the 

stretching, twisting, and tearing of the axons, which results in microscopic lesions, axonal 

swelling/degeneration, myelin loss, compromised cerebral vasculature, and even neuronal cell 

death.21,28,30,78 Both cortical and sub-cortical pathways are disrupted43,75 and the most common 

sites of injury include the corpus callosum and the superior colliculi in the frontal region of that 

brain at the white-gray matter junctions.26,88 The frontal region of the brain is highly susceptible 

to deformation, which may impair concentration, attention, memory, and high-level executive 

functions such as planning and decision making.74 Diffuse axonal injury also disrupts the overall 

speed, efficiency, and integration of mental and central nervous system function.42 

  The disrupted white matter integrity caused by diffuse axonal injury reduces the strength, 

number, and organization of the neural synapses. This causes the neuronal synchrony and firing 

rate to be compromised, which results in inaccurate, variable, and slowed executive functioning. 

In particular, motor functioning is lost, causing the concussed patient to not respond in a time-

optimal manner. Therefore, patients with diffuse axonal injury following concussion will need to 

constantly exert considerable effort to try to perform simple lower-level tasks, such as saccades, 

and will most likely exhibit an oculomotor dysfunction.30,72 
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 Cerebral structures concerned with oculomotor control are well-mapped and form 

extensive and highly complex networks that encompass the entire brain spanning cortical and 

subcortical structures.42,44,59,61,69 The widespread architecture of these neural networks makes 

them vulnerable to the diffuse and pervasive nature of concussion,25,43,46,50,51,75,89 with the frontal 

cortex (specifically the prefrontal cortex) being the most susceptible to dysfunction following 

concussion.75,90 The cortical structures involved in oculomotor control and saccades include: 

primary visual cortices, dorsolateral prefrontal cortices, extrastriate cortices, middle temporal 

area, occipital lobe, striate cortices, posterior parietal cortices, and frontal eye fields, and 

supplementary eye fields.23,43,46,50,51,75,79,83,89 The subcortical structures include: thalamus, pons, 

superior colliculus, midbrain, brainstem, and cerebellum vermis.23,43,46,50,51,69,75,79,83,89 

The frontal and parietal cortices of the brain play crucial roles in the execution of 

oculomotor control and saccades.62,75,83 The dorsolateral prefrontal cortex is the central site for 

the synthesis of executive functions including: saccades, attention, cognition, working memory, 

and the suppression of anti-saccades.23,72,74,77,83,90-92 The posterior parietal cortex and 

supplementary eye fields connect information between sensory and motor structures to play an 

important role in the integration of oculomotor control and postural control coordination.83,91-93 

The supplementary motor area is also directly involved in planning and execution of oculomotor 

control.93 The functional integrity of all of these neural networks could be damaged following 

concussion and may compromise the execution oculomotor control.83 Additionally, the most 

affected regions of the central nervous system following concussion are the diencephalon and 

midbrain, which is where the cranial nerves responsible for oculomotor control originate.13  

 The pathways for the execution of oculomotor control starts in the occipital lobe when it 

receives the visual information from the optic tract.52,69,79 This information travels from the 
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occipital lobe to posterior parietal cortex for further processing.50,52 Saccades are then generated 

by the frontal eye fields and executed through subcortical circuits.50,52,79 The dorsolateral 

prefrontal cortex (area highly vulnerable to concussion) is the highest cortical area responsible 

for motor planning and working memory, and has an established link with saccades.23,52,75,79 The 

dorsolateral prefrontal cortex is responsible for three primary oculomotor control functions: 

inhibition of anti-saccades, production of voluntary saccades, and maintaining memorized visual 

information for ongoing saccades.50,52,62,79,91  

 Generating saccades requires coordinated actions between many control centers.50,79,84 

Successful completion requires the inhibition from higher cognitive systems in the frontal and 

parietal areas of the brain, which is compromised during anti-saccades.50,52,79,84,91 Saccades 

assess frontal function (especially of the prefrontal cortex), which requires inhibition of anti-

saccades and the deliberation, planning, and initiation of voluntary saccades.75,76 Anti-saccades 

are generated from the parietal eye field, unlike saccades which are generated from the frontal 

eye fields, and involve hyperactivation of the cerebellum and V5/V1 cortical areas.50,52,84 

Literature has suggested that concussed patients exhibit deficits in the generation of saccades and 

difficulty inhibiting eye movements toward a distracting stimulus (anti-saccades).50,52,79,84,91 

Other areas involved in oculomotor control that are susceptible to injury following 

concussion include: anterior cingulate gyrus, orbital frontal gyrus, hippocampus, anterior corona 

radiate, superior longitudinal fasciculus, uncinate fasciculus, genu of the corpus callosum, 

forceps major, superior cerebellar peduncle, and cingulum bundle.43,72,74,75,81,84,90 The anterior 

cingulate gyrus and the orbital frontal gyrus (as well as the dorsolateral prefrontal cortex) are 

important prefrontal sites of executive and cognitive functions including oculomotor control.72,90 

The forceps major and superior cerebellar peduncle are also correlated with oculomotor 
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control.74 The corpus callosum is important for many cognitive functions, especially in the 

transfer and coordination of information between the prefrontal cortices.81,84 These cognitive 

functions are important in sustaining attention and working memory, which oculomotor control 

is dependent upon.74,81,82 

 

2.3 OCULOMOTOR CONTROL 

 Oculomotor control is responsible for stabilizing and optimizing vision relative to the 

movement of the visual world,66 and is achieved through extensive and complex networks that 

encompass the entire brain.42,44,59,61,69 The networks responsible for oculomotor control and 

executive functioning (attention, concentration, cognition, working memory, planning, decision 

making) all overlap in these cortical and subcortical structures.23,43,46,50,51,75,83,89,94 With over 30 

areas of the brain53-55 and over half of the cranial nerves26,53-57,94 being responsible for vision, 

oculomotor control is closely related to the functional integrity of the brain.46,61,62 All of these 

structures are vulnerable following concussion and diffuse axonal injury to these networks may 

be imminent.25,42,43,46,50,51,89,94 In fact, some form of oculomotor control dysfunction is present in 

about 90% of concussed athletes.26-33,94 

 There are several types of oculomotor control including: vergence, vestibular ocular 

reflex, smooth pursuit, and saccades. Vergence is the ability to coordinate and focus both eyes on 

a single point in space moving toward or away from the eyes.50,52,95 Vergence dysfunctions are 

detected in up to 90% of patients with concussion.96 Convergence abnormalities have been 

reported in 64% of concussed patients.33,51 Vestibular ocular reflex allows the eyes to maintain 

steady focused gaze on a fixed visual point while the head is moving.9,95,97 The vestibular ocular 

reflex is a fast-acting reflex that keeps the eyes stable by generating compensatory eye 
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movements in the precisely and proportionally opposite direction of the head movement.50,98 

Smooth pursuit is the ability to accurately and smoothly pursue a slowly moving target50,52,99 and 

requires attention, anticipation, working memory, and saccades to continuous stabilize the eyes 

on a moving target.51,66,92 Some form of smooth pursuit dysfunction is present in up to 60% of 

concussed patients.33 

However, saccade dysfunctions are the most common oculomotor dysfunction following 

concussion.6,30,34,50,65,74,79 Saccades are the rapid, accurate, ballistic shifting of eye movements to 

bring an object of interest into the center of sight and are important for safely navigating through 

the environment.46,50,65-67,94 Saccades require voluntary control of eye movements and the 

successful inhibition of reflexive saccades toward the periphery (anti-

saccades).43,59,61,74,75,77,100,101 Concussed patients have difficulty inhibiting anti-saccades, 

specifically with releasing attention from one visual target and/or difficulty locking onto another 

target.102 These inaccurate and interruptive saccades are considered abnormal and are indicative 

of central nervous system dysfunction.103 Detecting anti-saccades may provide a fast, accurate, 

and reliable way to screen for concussion.66 

Anti-saccades are the most common oculomotor dysfunction following concussion and 

may play a key role in the assessment of concussion.6,30,34,50,65 Anti-saccades are present in over 

30% of patients with concussion,6,22,23,70 and are correlated with brain injury severity.71,72,94 

There are several advantages in the assessment of anti-saccades following concussion. Anti-

saccades are easily recorded, can be precisely quantified, their neural substrates are well 

understood, and they provide information about both low-level, subcortical function and high-

level, executive functions.66,72 Patients with anti-saccades can’t safely navigate through their 

environment and are susceptible to more severe impacts.46,50,65-67,102 Anti-saccades also have the 
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benefit of providing valuable information and correlations with aspects of executive function 

including: memory, attentional processes, impulse control, decision making, and initiation and 

control of behaviors.73  

 Successful completion of saccades is directly related to attention.66 Saccades require the 

rapid disengagement of attention on a fixation point, the movement of attention to the area of 

interest, and the reengagement of attention on that fixation point.96 These processes have been 

shown to engage a diffuse network of cortical (primary visual, extrastriate, parietal cortices, and 

frontal and supplementary eye fields) and subcortical (thalamus, superior colliculus, striatum, 

and cerebellum vermis) structures of the brain.46,69,104,105 These neural networks overlap the 

structures responsible for both saccades and attention, suggesting that visual attention and 

saccades are closely associated.23,43,46,50,51,75,79,83,89,94,98 Therefore, quantitative and objective 

measurements of anti-saccades may important information regarding the health and integrity of 

the brain.13,62,65,66,74,92,93,106 

 

2.4 OCULOMOTOR ASSESSMENTS 

 Quantification of eye movements can provide valuable information related to the function 

of the brain following concussion.36,61,65,66,74  Recent technological advances have produced non-

invasive eye tracking measures capable of recording eye positions with high resolution.66,94 

Three-dimensional rotation of the eye is captured using changes in the locations of two specific 

landmarks. The pupil can be quickly identified, frame-by-frame, using a computer because is a 

dark and elliptical in shape.50-52,66 The other landmark is a bright spot produced by the reflection 

of a light source called a corneal reflection point, and it moves in relation to the eye’s rotation.50-

52,66 Therefore, when the dots created from these two landmarks are connected, there is a straight 
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line pointing directly to where the eye is looking. The coordinates are then mapped to physical 

coordinates created by a motion capture system.66,94 With proper calibration, combined tracking 

of the pupil and corneal reflection can produce a very precise measurement.50-52,66,94 

 Eye tracking involves the combination of both smooth pursuit and saccades, and 

collectively they stabilize the moving object of interest onto the fovea and into the center of 

sight.50-52,66,94 Good eye tracking is characterized by overall tight clustering of gaze around the 

area of interest (saccades).66,75 Poor eye tracking is characterized by a wide distribution of 

reflexive eye movements away from the area of interest (anti-saccades).66,75,78,79 Eye tracking is a 

user friendly, low cost, non-invasive, rapid, convenience, portable, definitive approach for the 

objective assessment of the brain after a concussion.61,65,66,74 

There are several emerging measures for the assessment of oculomotor control including: 

infrared oculography (OBER-2 system),76 infrared videography and dynamic retinoscopy (Power 

Refractor II, GA),45 a head mounted video-based binocular eye tracker (Eyelink II, Canada),65,74 

DIOPSYS NOVA-TR system (Diopys Inc., NJ),106 EyeLink 1000 eye tracker,107 IRIS infrared 

limbus tracker (Skalar Medical, Netherlands),61 infrared corneal reflection device (Iris 

Skalar),77,82 infrared scleral reflection oculography technique (Skalar Medical, Netherlands),83 

MRI compatible eye tracking system (PC-60, AZ),46 integrated stimulus presentation-eye 

tracking apparatus (EyeLink CL, Canada),81 head-mounted eye-tracker (SensoMotoric 

Instruments, Germany)72 Vistagraph reading eye movement system (Taylor Associates, NY),30 

Arrington eye movement recording system,89 Saccadometer Advanced (Ober Consulting),84 and 

monocular eye tracking system (Applied Science Laboratories, MA)9.  

 Eye tracking has quantified that patients have a higher amount of oculomotor dysfunction 

following concussion.9,30,46,61,65,67,74,75,81-84,89,106 Anti-saccades were all measured differently in 
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each study, but were generally characterized by amount, duration, accuracy, and velocity. More, 

longer, larger, and faster anti-saccades were indicative of diffuse axonal injury and oculomotor 

dysfunction. Literature has shown that concussed patients have significantly more anti-

saccades,9,46,61,65,74,75,81,83 significantly longer anti-saccade durations,46,67,82,84 significantly larger 

anti-saccades,46,61,65,74,83 and significantly faster anti-saccades61 when compared to controls. 

Previous studies have also revealed that concussed patients have significantly more anti-saccades 

when compared to sleep-deprived individuals,81 and that oculomotor training improves most 

visual impairments following concussion.30,89,106 

 Other emerging visual assessments include the King-Devick test, the Vestibular Ocular 

Motor Screening (VOMS), and the Display Enhance testing for Concussion and mild traumatic 

brain injury system (DETECT). The King-Devick test is an innovative reading efficiency test 

that has been recently recommended and utilized for sideline diagnosis of sport-related 

concussion.35,108-110 The VOMS compares oculomotor tasks to clinical signs and symptoms, and 

has recently been suggested to be a sensitive marker for identifying patients with concussion.108 

DETECT is a virtual reality oculomotor test that creates an immersive environment free from 

visual and auditory distractions.111 More research is needed to evaluate these measures. All of 

these oculomotor tests show promise; however, more objective and accurate measurements of 

oculomotor control dysfunction following concussion are still warranted.  

  

2.5 POSTURAL ASSESSMENTS 

 The second most commonly reported symptom following concussion is dizziness with 

over 75% of concussed athletes complaining of dizziness.7,9,16-20,34 Dizziness may represent an 

underlying impairment of the vestibular system, which is neurologically related and directly 
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linked to dysfunction of the oculomotor and vestibular systems.9,14,15,97,112 The vestibular system 

is a complex network that includes small sensory organs of the inner ears (utricle, saccule, and 

semicircular canals) and connections to the brainstem, cerebellum, cerebral cortex, oculomotor 

system, and postural system.16,61 The vestibular system is also organized into two functional 

units: the vestibulo-ocular system (oculomotor control) and the vestibulo-spinal system (postural 

control).16,61 Due to the organization and neurophysiology of the vestibular system, dysfunction 

to this system manifests as symptoms of dizziness, visual instability, and balance deficits,16,61 so 

postural assessments following concussion may also be warranted. 

Postural assessments have been used extensively to assess the health and integrity of the 

vestibular system because balance provides an ideal model for determining vestibular 

dysfunctions following concussion.113,114 Balance is the ability to stand with upright posture 

without deviating outside the limits of the base of support.19,112,114 Postural control requires the 

continuous complex integration of several sensory feedback and feedforward sources (vision, 

proprioception, and vestibular function) and regulation of motor responses to ensure that the 

center of mass of the body maintains within its base of support for upright posture.19,110,112-115 

Scientific-grade force plates quantify postural control based on measured changes in body sway 

during standing and are considered the gold standard for the assessment of posture.113,116-119  

 Unfortunately, force plates are expensive (up to $15,000), difficult to set up, and 

cumbersome to transport.113,118 Therefore, the BESS and SOT have been implemented in most 

sport-related concussion assessment batteries.80,113,120 Although the BESS is more cost-effective 

and more portable than the force plate, evidence regarding its validity and reliability are 

poor.113,121-124 Additionally, these measures are only reprehensive of the vestibulo-spinal aspect 

of the vestibular system and are quiet, static stance assessments. Postural control involves the 
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integration of three separate entities: the individual, task, and environment.112 The BESS and 

SOT do incorporate an environmental component; however, the environment is not heavily 

weighed because the examiner controls for environmental variables that may affect the results. 

An assessment that more heavily weighs the environmental component, such as in sport, may 

provide a better understanding of the health and integrity of the vestibular system. 

There is convincing evidence that a low-cost ($50) Wii Balance Board (WBB) has been 

determined to be a valid and reliable force plate alternative.113,118,119,121,125,126 Comparably, the 

WBB proved to be superior to the BESS19,113 and had an almost perfect agreement with the gold 

standard force plate.113,118,119,121,125,126 The WBB is inexpensive, portable, and contains four 

transducers to assess force distribution and resultant movement just like a laboratory-grade force 

plate.113,118,119,127 Originally designed as a video game controller, the WBB can be isolated from 

the Wii gaming system and wirelessly interfaced with a computer as a peripheral device as a 

clinical balance test.113,118 

The WBB is an enjoyable postural assessment that provides instant feedback and 

enhances motivation levels.118,127,128 These benefits have advocated for this assessment to be 

integrated into rehabilitation program for neurologically-impaired patients with balance 

deficits.118,129 In addition, the WBB is a virtual reality gaming system, which is defined as the 

use of interactive simulations created with computer hardware and software to present users with 

opportunities to engage in environments that appear to be, and feel familiar to, real world objects 

and events.127,130 Therefore, the WBB may provide a more heavily weighed environmental 

component to the postural assessment when compared to the BESS and SOT. 
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CHAPTER 3: METHODOLOGY 

 

3.1 RESEARCH SETTING 

 Two groups of NCAA Division I athletes were evaluated in this cross-sectional design. 

This design allowed the researchers to evaluate the gathered data between each of the two 

cohorts. The cohorts in this study included athletes with concussion and healthy, matched 

athletes without concussions. All participants were student-athletes at a university located in 

southeast Georgia and the university’s certified Athletic Trainers assessed for each concussion. 

Athletes with concussion reported to the Athletic Training Room for initial evaluation and were 

referred to the Biomechanics Laboratory where all assessments were conducted for this study. 

 

3.2 PARTICIPANTS 

 Ten athletes with concussion (4 female, 6 male; age: 18.9 ± 0.9 years) and ten position-

matched, healthy athletes (4 female, 6 male; age: 18.3 ± 0.6 years) participated in this study 

(Table 1). The healthy and concussed athletes were matched based off of age, gender, and sport. 

The healthy athletes were not currently participating in their sporting season to decrease the risk 

of sustaining sub-concussive hits during the respective season.  

 

Table 1. Participant Demographics 

 Gender Age Sport 

Participant Male Female 18 19 20 21 Football Soccer Cheer Track 

Concussed Athletes 
6 4 

4 4 1 1 
6 1 1 2 

Healthy Athletes 7 2 1 0 
Notes. 6 male and 4 female athletes with concussion were matched to healthy controls based on gender, age, & sport 

 

 

 The primary investigator recruited all of the healthy athletes and the athletes with 

concussion that participated in this study. After an athlete sustained a concussion, the attending 
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certified Athletic Trainers would inform the athlete about the study and would ask if he/she 

would like to participate. If the athlete agreed to participate, the Biomechanics Laboratory staff 

was notified and set up a time for the athlete to be tested. All healthy athletes were tested in the 

preseason during pre-participation physicals. This was to allow for testing to occur while athletes 

were not physically engaged in their respective sporting season, decreasing the risk of sustaining 

any hits that may cause a concussion or negatively impact the results of this study. All 

participants in this study satisfied all of the following inclusion and exclusion criteria (Table 2): 

 

Table 2. Inclusion and exclusion criteria for healthy controls and concussed athletes 

Participation Criteria 

Inclusion Criteria Exclusion Criteria 
 Between the ages of 18-30 

 Athletes under care of athletic training staff 

 Free of musculoskeletal/neuromuscular injury 

 No diagnosis of learning disorders or ADHD 

 No history of psychiatric illnesses or seizures 

 Documented concussion (concussed athletes) 

 Documented head injury (including 

concussion) within past 12 months 

 Loss of consciousness within past 6 months 

 Report any symptoms during healthy 

questionnaire and interview 

 In current sporting season (concussed athletes) 

Notes: All participants were student-athletes at a NCAA Division I university in southeast Georgia. The controls were 

assessed during pre-participation physicals and the concussed athletes were assessed 24 to 48 hours following a 

diagnosed concussion. Participants were free of pathologies or previous injuries that may impact oculomotor control. 

 

 

 All concussions were confirmed by the head certified Athletic Trainer at a NCAA 

Division I university in southeast Georgia and/or a medical doctor on staff. Athletes with 

concussion that agreed to participate in this study were referred to the Biomechanics Laboratory 

to be tested within 48 hours of their concussion. No athletes with concussion reported 

experiencing an additional concussion injury or any increase in concussion symptoms during the 

time of testing. If the attending certified Athletic Trainers determined that the athletes with 

concussion were too symptomatic 48 hours after concussion, as determined by the university’s 

policies and procedures, they did not participate in this study. All participants signed informed 

written consent to participate in the study as approved by the Institutional Review Board.  



27 
 

  

 
Figure 1. Dynamic, Environmentally-Relevant Postural Assessment: 60-second assessment of the participant playing 

the WiiFit Soccer Heading game while wearing the ASL Eye Tracker, which sampled the anti-saccade data at a 

frequency of 240 Hz. 
 

3.3 STUDY DESIGN 

 As stated previously, two groups of athletes (healthy and concussed) were evaluated in 

this study. All participants performed a total of 3 trials of a dynamic, environmentally-relevant 

postural assessment (WiiFit Soccer Heading game) in the Biomechanics Laboratory (Figure 1.) 

while wearing the Applied Science Laboratories (ASL) Eye Tracker. The first trial was a practice 

trial and the following 2 trials were data collection trials. The healthy athletes performed the 

postural assessment during their pre-participation physicals and the athletes with concussion 

performed the postural assessment 24-48 hours following their concussion.  
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3.4 PROCEDURES 

Participants completed a dynamic, environmentally-relevant postural assessment, the 

WiiFit Soccer Heading game. This dynamic assessment was performed barefoot on the WiiFit 

board while playing the WiiFit Soccer Heading game. The athlete swayed his/her body in the 

mediolateral direction to move his/her associated avatar in a similar fashion to head soccer balls 

coming down the center, left, and right of the screen. No anteroposterior movement is necessary 

to head the soccer balls; the avatar’s head making contact with the soccer balls is all that is 

needed to be successful. The duration of the WiiFit Soccer Heading game lasts about 60 seconds 

with a total of 80 soccer balls being kicked.  

While playing the WiiFit Soccer Heading game, the athletes wore the ASL Desktop 7 

Eye Tracker. ASL was founded in 1962 in Bedford, Massachusetts and is the recognized leading 

authority in eye tracking. The ASL Eye Tracker is user friendly, low cost, non-invasive, 

definitive, rapid, and convenient.61,65,66,74 There are currently two versions: the Desktop 7 Eye 

Tracker, which is more accurate; and the Mobile Eye, which is portable. The Desktop 7 Eye 

Tracking System is ASL’s latest high speed, head mounted optics. This headgear fits like a 

baseball cap and quantitatively assesses the athlete’s eye movement while they performed the 

dynamic, environmentally-relevant balance assessment on the WiiFit board. 

The ASL Eye Tracking Software works in coordination with the Vicon Nexus 1.8.5 8-

camera motion capture system in the Biomechanics laboratory. The Vicon cameras use infrared 

light to detect reflectors on the back of headgear to track head position and determine its 

orientation in space. The ASL Eye Tracking System also uses infrared light with its two cameras 

on the headgear. One camera points forward to see the orientation of the head. The other camera 

points down and reflects off an optical lens into the eye. Once calibrated, the infrared light from 
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the camera pointing down reflects off of the eye and directly onto where the eye is looking using 

the pupil and the corneal reflection point.50-52,66 During the postural assessment, infrared light 

will reflect onto the specific point of the TV screen that the eye is looking while playing the 

WiiFit game. This point where the eye is looking is seen on the forward facing camera and 

picked up by the Vicon Nexus motion capture system, allowing for eye-head integration and the 

collection of gaze coordinates in real time.  

The ASL Eye Tracker captures the oculomotor control movements of the eye in 

conjunction with the Vicon Nexus motion capture system. The researchers analyzed saccades 

(rapid eye movements toward a fixed point or area of interest) and anti-saccades (reflexive gaze 

deviations away from a fixed point or area of interest). The specific variables of interest were the 

total amount of anti-saccades and the total duration of anti-saccades spent away from the fixed 

point or area of interest, and the average duration of anti-saccades spent away from the fixed 

point or area of interest. The TV screen was divided into center, left, and right areas of interest 

using the soccer goal posts (Figure 2). The center area of interest is from where all of the soccer 

balls were being kicked and is where the participants were instructed from which to not deviate 

their gaze. 

The researchers tracked how frequently and how long the eyes of the participants 

deviated away from the center area of interest. The goal posts served as the boundaries between 

areas of interest because they were from where the next soccer ball was being kicked during the 

game. Once the soccer ball coming towards the avatar hit the plane of the goal post, the next 

soccer ball to be headed was kicked from the center area of interest. When this happened, the 

participant would have to make a rapid eye movement toward that soccer ball (saccade) to 

determine its direction and velocity so it can be headed. 
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Every gaze deviation away from the center area of interest was considered an anti-

saccade. At that point, the soccer ball being tracked had gone outside of the goal posts and the 

next soccer ball was kicked from within the center area of interest. Participants should inhibit 

their gaze on the current soccer ball and make a rapid eye movement toward the new incoming 

soccer ball. If this did not occur, then the participants were making a reflexive gaze deviation 

away from this new soccer ball by continuing to track the current soccer ball (anti-saccades). The 

ASL Eye Tracker sampled these anti-saccade data at a frequency of 240Hz. 

Figure 2. WiiFit Soccer Heading game: the TV screen is broken into center (blue), left (red), and right (yellow) areas 

of interest to determine gaze deviations away from the center (total amount of anti-saccades, total duration of anti-

saccades, and average duration of each anti-saccade) between PC and MC. Each green dot represents a gaze fixation 

point (points in which the eye is focusing) and the blue lines represent the path of the participant’s eye movements. 

 

3.5 DATA REDUCTION 

Raw oculomotor data was coded for each area of interest using ASL Results Plus 

(Bedford, MA). Areas of interest included the center, left and right of the screen (Figure 2). Anti-

saccadic eye movements were measured using three variables: the total amount of gaze 
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deviations away from center (anti-saccades), the total duration of gaze deviations away from 

center (anti-saccade durations), and the average duration of each gaze deviation away from 

center (average anti-saccade durations). ASL Results Plus coined these variables as: non-center 

dwells (anti-saccades), non-center dwell durations (anti-saccade durations), and average non-

center dwell durations (average anti-saccade durations). 

ASL Results Plus calculated each of these variables using the information gathered from 

the Vicon Nexus 1.8.5 8-camera motion capture system. While playing the WiiFit Soccer 

Heading game, infrared light from the ASL Eye Tracker was reflected off of the participant’s eye 

(using the pupil and the corneal reflection point) and onto the specific area of interest that his/her 

eye was focusing. This point where the eye is looking is seen on the forward facing ASL Eye 

Tracker camera and picked up by the Vicon Nexus motion capture system, allowing for eye-head 

integration and the collection of gaze coordinates in real time. The ocular raw point of gaze 

coordinates were calculated at a sampling frequency of 240 Hz with a set threshold of 25 Hz to 

control for eye blinks during the data analysis.  

 

3.6 DATA ANALYSES 

One-way Analyses of Variances (ANOVAs) were utilized to determine total amount of 

anti-saccadic eye movements (anti-saccades), total time spent outside of the center area of 

interest during all anti-saccadic eye movements (anti-saccade durations), and average time spent 

outside of the center area of interest during each individual anti-saccadic eye movement (average 

anti-saccade durations) between the two cohorts (healthy, matched athletes vs. athletes with 

concussion). This examined if there is a significant difference between the 10 healthy, matched 

control (MC) and the 10 athletes 24-48 hours post-concussion (PC). A sample size of 8-10 was 
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deemed sufficient by G*Power with a beta level of 0.80 and an alpha level of 0.05. It was 

expected there would be significantly more anti-saccadic eye movements, significantly longer 

anti-saccadic eye movement durations, and significantly longer average anti-saccadic eye 

movement durations in the PC group when compared to the MC group.  
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CHAPTER 4: RESULTS 

4.1 ONE-WAY ANOVAS 

One-way ANOVAs revealed significantly greater anti-saccades (F(1,18) = 19.339,  p < 

0.001, η2 = 0.680) in the PC group (11.85 ± 6.89) when compared to the MC group (2.00 ± 1.67), 

significantly greater anti-saccade durations (F(1,18) = 11.459,  p = 0.003, η2 = 0.438) in the PC 

group (8.90 ± 7.88 seconds) when compared to the MC group (0.45 ± 0.43 seconds), and 

significantly greater average anti-saccade durations (F(1,18) = 12.479,  p = 0.003, η2 = 0.547) in 

the PC group (0.83 ± 0.64 seconds) when compared to the MC group (0.12 ± 0.08 seconds). 

 

Table III: One-Way ANOVA for Anti-Saccadic Eye Movements 

Anti-Saccadic Eye Movement Group N F Mean 
Standard 

Deviation 
p-value 

Anti-Saccades 
PC 10 

19.339 
11.85 6.89 <0.001* 

MC 10 2.00 1.67 

Anti-Saccade Durations 
PC 10 

11.459 
8.90 7.88 0.003* 

MC 10 0.45 0.43 

Average Anti-Saccade Durations 
PC 10 

12.479 
0.83 0.64 0.002* 

MC 10 0.12 0.08 
Notes: Athletes with concussion (PC) demonstrated significantly more anti-saccades (p <0.001), anti-saccade 

durations (p = 0.003), and average anti-saccade durations (p = 0.002) when compared to healthy, matched controls 

(MC) while playing the WiiFit Soccer heading game. 

 

 

 

 

 

 

 

 



34 
 

  

CHAPTER 5: DISCUSSION 

 

5.1 REVIEW OF THE PURPOSE 

The purpose of this study was to investigate oculomotor dysfunctions (anti-saccades, 

anti-saccade durations, and average anti-saccade durations) between NCAA Division I athletes 

24 to 48 hours post-concussion and healthy, matched NCAA Division I athletes during an 

environmentally-relevant dynamic postural assessment, the Wii Soccer Heading game, using the 

ASL Eye Tracker. Anti-saccades were defined as the total amount of reflexive gaze deviations 

away from the fixed center area of interest. Anti-saccade durations were defined as the total time 

spent outside of the fixed center area of interest during these reflexive eye movements. Average 

anti-saccade durations were defined as the average time spent outside of the fixed center area of 

interest during each individual reflexive eye movement. 

 

5.2 DISCUSSION OF THE RESULTS 

 Our results found significant differences in anti-saccades, anti-saccade durations, and 

average anti-saccade durations between NCAA Division I athletes 24 to 48 hours post-

concussion and healthy, matched NCAA Division I athletes during an environmentally-relevant 

dynamic postural assessment, the Wii Soccer Heading game, using the ASL Eye Tracker. 

Therefore, athletes with concussion may not have sufficient gaze stability to adequately navigate 

through a dynamic, environmentally-relevant environment and may be at further risk for injury if 

returned to play. The great number and duration of anti-saccades suggests a major deficiency in 

oculomotor control and could be a candidate marker for concussion. 
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 These results are in agreement with previous literature, which suggest that concussed 

patients have a significantly higher degree of oculomotor dysfunction compared to healthy 

controls.9,30,46,61,65,67,74,75,81-84,89,106 Anti-saccades were all measured differently in each study, but 

were generally characterized by amount, duration, accuracy, and velocity. More, longer, larger, 

and faster anti-saccades were indicative of diffuse axonal injury and oculomotor dysfunction. 

Our study looked at the amount and the duration of anti-saccades in athletes with 24 to 48 hours 

post-concussion using a dynamic, environmentally-relevant postural assessment. 

Concussed patients have significantly more anti-saccades,9,46,61,65,74,75,81,83 significantly 

longer anti-saccade durations,46,67,82,84 significantly larger anti-saccades,46,52,61,65,74,83 and 

significantly faster anti-saccades61 when compared to controls. Previous studies have also 

revealed that concussed individuals have significantly more anti-saccades when compared to 

sleep-deprived individuals,81 and that oculomotor training improves most visual impairments 

following concussion.30,89,106 However, all of these studies had several limitations that our study 

tried to address. Anti-saccades were assessed in participants with a wide age range, in sedentary 

participants, in participants with several different severities of brain injury, in concussed 

participants well after 48 hours post-injury, by comparing concussed participants to volunteers, 

using a seated assessment, and the anti-saccade data was reduced by hand. 

There was a very wide age range of participants included in these previous studies that 

have assessed anti-saccades in concussions. Participants were as young as 13 years old9,81 and as 

old as 70 years old.61 No previous research has specifically looked at college-aged individuals 

and all the studies included an age range of at least 20 years. The great differences in the ages of 

the participants in these studies is a limitation that may have impacted the results of the studies. 
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Our study only looked at college students, with all of our participants being between the ages of 

18 and 21 years old.  

The previous studies also did not necessarily assess anti-saccades in active individuals. 

Only 2 studies assessed anti-saccades in concussed collegiate athletes.9,46 One study assessed 

anti-saccades in military veterans,65 one study assessed anti-saccades in recreational athletes,82 

and all the other studies assessed anti-saccades in sedentary individuals.61,67,74,75,81,83,84 

Oculomotor control is important for sport and for being active.58-60 Therefore, the execution of 

oculomotor control may be different between active and inactive individuals. Also, many of 

participants in these previous studies were healthy volunteers for the controls or were recruited 

from clinics for the concussed group. This method led to the participation of both sedentary and 

active individuals. Our study only included elite collegiate athletes for both the concussed and 

control participants. 

Previous literature that has investigated anti-saccades in concussed participants also did 

not define concussion very well. Anti-saccades were assessed in participants with mild traumatic 

brain injury,67,83,84 moderate traumatic brain injury,75 traumatic brain injury,75 and in participants 

with post-concussion syndrome.61,65,74 These are more severe head injuries and may not 

accurately represent findings in a concussed participant. Many of these participants were also 

recruited from concussion clinics, further supporting that these studies may have studied anti-

saccades in participants with more severe cases of concussion. This also led to several different 

mechanisms of injury including motor vehicle accidents and falls. Only two studies investigated 

anti-saccades in participants with a sport-related concussion.9,46 

Even if participants with concussion were assessed, they were assessed well after 48 

hours post-injury. Only two studies assessed anti-saccades within a week following 
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concussion.9,83 All of the other studies did not assess anti-saccades until at least one week post-

concussion. Some studies did not assess anti-saccades until several months post-

concussion.61,65,81,84 One study did not assess anti-saccades until 5 years following concussion.74 

Understanding the pathophysiology of concussion and the neurometabolic cascade of events 

following injury, the brain is most vulnerable within the first 48 hours after injury.85-87 Therefore, 

our study assessed anti-saccades within 48 hours following concussion. 

Additionally, the previous studies only assessed either the amount of anti-saccades or the 

duration of anti-saccades. Seven only assessed the amount of anti-saccades9,61,65,74,75,81,83 and 

three only assessed the duration of anti-saccades.67,82,84 Only one other study has assessed both 

the amount and the duration of anti-saccades in concussed individuals.46 All of these studies 

reduced the anti-saccade data by hand frame-by-frame, typically in Microsoft Excel. The anti-

saccade data in our study was reduced automatically by Applied Science Laboratories, which 

helped reduce human error. 

Anti-saccades following concussion may be explained due to the damage of the cortical 

and subcortical networks responsible for attentional disengagement and inhibition caused by 

diffuse axonal injury.43,59,61,74,75,77,100,101 Furthermore, increased anti-saccade durations are a 

dysfunction of saccade initiation. The time required for the integration and calculation of anti-

saccades reflects the time needed to process the task involving higher brain structures.84 

Therefore, the concussed patients in our study had a higher amount of anti-saccades and a longer 

duration of anti-saccades because they needed more time to determine the direction and the 

velocity of the soccer balls to carry out the appropriate motor control response to head them. 

Anti-saccades require a high recruitment of cerebral resources at both the cortical and sub-

cortical levels and are directly related to the functional integrity of the brain.9,14,15,46,61,75,84,97,112 
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5.3 LIMITATIONS AND DELIMITATIONS 

This study had some limitations and delimitations. One limitation to this study was that 

the data collection methods of this study included a novel assessment of postural control. There 

is convincing evidence that a low-cost ($50) WBB has been determined to be a valid and reliable 

force plate alternative.113,118,119,121,125,126 Comparably, the WBB proved to be superior to the 

BESS19,113 and had an almost perfect agreement with the gold standard force 

plate.113,118,119,121,125,126 The WBB is inexpensive, portable, and contains four transducers to 

assess force distribution and resultant movement just like a laboratory-grade force 

plate.113,118,119,127 Originally designed as a video game controller, the WBB can be isolated from 

the Wii gaming system and wirelessly interfaced with a computer as a peripheral device as a 

clinical balance test.113,118 

 Second, the sample included a convenience sample that was drawn from the surrounding 

NCAA Division I students-athletes at a university located in southeast Georgia. This presents a 

possible threat to the external validity of the study. The study design did not require blinding for 

the researchers and it is possible that previous injuries may have gone unreported or 

undiagnosed. All previous injuries were accounted for as best as possible and the longitudinal 

cohort study design will help reduce internal validity of the study. The athletes who participated 

in this study were from a variety of sports and were matched healthy controls instead of the gold 

standard baseline comparison. Future research should look at the comparison of oculomotor 

dysfunction following concussion when compared to baseline measures.  

A delimitation of this study was that the instrumentation used in this study potentially 

presented a concern for the internal validity of the research. The ASL Eye Tracker is user 

friendly, low cost, non-invasive, definitive, rapid, and convenient.61,65,66,74 Three-dimensional 
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rotation of the eye is captured using changes in the locations of two specific landmarks. The 

pupil can be quickly identified, frame-by-frame, using a computer because is a dark and elliptical 

in shape.50-52,66 The other landmark is a bright spot produced by the reflection of a light source 

called a corneal reflection point, and it moves in relation to the eye’s rotation.50-52,66 Therefore, 

when the dots created from these two landmarks are connected, there is a straight line pointing 

directly to where the eye is looking. The coordinates are then mapped to physical coordinates 

created by a motion capture system.66,94 With proper calibration, combined tracking of the pupil 

and corneal reflection can produce a very precise measurement.50-52,66,94 We used the most 

accurate ASL Desktop 7 Eye Tracking System, which also happens to be the latest high speed, 

head mounted optics. 

Second, the sample of this study was delimited to NCAA Division I athletes from a 

university located in southeast Georgia. This study is also delimited to the current concussion 

assessment and return-to-play protocol set in place by the athletic department of the university 

located in southeast Georgia. This is a potential threat to the internal validity of the study if an 

athlete returns to play after a concussion and receives sub-concussive blows. However, inclusion 

and exclusion criteria will attempt to recruit athletes out of their athletic season during pre-

participation physicals to reduce this threat. 

 

5.4 ASSUMPTIONS 

 This study had some assumptions that could limit the accuracy of the study. First, it was 

assumed that all participants gave 100% effort during the entire duration of this study. Total 

effort is an assumption of almost every study. However, if effort was compromised in any matter 

during testing, it could have potentially skewed and impacted the results of this study. Second, it 
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was assumed that all participants demonstrated complete honesty with respect to their injuries. 

Again, honesty is an assumption of almost every study. Lying about additional injuries, 

medications, diseases/illnesses, or even sleep could have negatively impacted the results of this 

study. Third, injuries and visual disturbances requiring glassware could worsen oculomotor 

control. Medications or drugs such as alcohol or caffeine could influence oculomotor control. 

History of any nerve, inner ear, eye, metabolic, neuromuscular, or balance disorders and even 

AD/HD could impair oculomotor control. Poor/little sleep, high stress levels, and psychosocial 

factors could negatively affect oculomotor control. It is important that as many variables were 

considered as possible for inclusion into this study. These factors could have contributed to the 

results and pose as a limitation to this study. 

 

5.5 CONCLUSIONS 

 In conclusion, athletes 24 to 48 hours post-concussion had significantly more anti-

saccades, longer anti-saccade durations, and longer average anti-saccade durations when 

compared to healthy, matched controls. These findings suggest that athletes with concussion are 

presented with an abnormal oculomotor dysfunction when compared to their matched controls 

during a dynamic, environmentally-relevant postural assessment, the WiiFit Soccer heading 

game. Anti-saccades require a continuous inhibitory signal to be present to maintain stable gaze 

and prevent reflexive gaze deviations away from a fixed point or area of interest. These results 

may imply that athletes with concussion do not have sufficient gaze stability to adequately 

navigate through a dynamic environmentally-relevant environment and may be at further risk for 

injury if returned to play. The assessment of anti-saccades may provide important information 
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regarding the healthy and integrity of the brain following concussion and could be a candidate 

marker for concussion.  
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