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GENOTYPIC AND PHENOTYPIC VARIATION OF THE FLORIDA SCRUB 

LIZARD (SCELOPORUS WOODI) 

 

by 

 

DEREK B. TUCKER  

 

 

(Under the Direction of Lance D. McBrayer & John Scott Harrison) 

ABSTRACT 

In my 1
st
 chapter I investigate the phenotypic variation of the Florida scrub lizard by 

examining sprinting and jumping ability.  These are key performance measures that have 

been widely studied in vertebrates.  The vast majority of these studies, however, use 

methodologies that lack ecological context by failing to consider the complex habitats 

many animals live in.  Here, I filmed running lizards to address how behavioral and 

performance strategies change as lizards approach obstacles of varying height.  Obstacle 

size had a significant influence on both behavior (e.g. obstacle crossing strategy, 

intermittent locomotion) and performance (e.g. sprint speed, jump distance).  Researchers 

should thus consider the complexity of a species’ habitat in designing studies of 

locomotion.  In the 2
nd

 chapter I examine the genotypic variation of S. woodi in the Ocala 

National Forest.  The loss of natural habitat due to fragmentation is a major threat to the 

conservation of species.  The Florida scrub lizard (Sceloporus woodi) is restricted to 

open, sunny, scrub habitat, historically maintained through frequent wildfires.  The ONF 

is fragmented from clearcut logging, fire suppression, and by major roadways.  I 

examined five microsatellite loci to estimate genetic differentiation across the forest and 

near a major roadway (Florida State Route 40).  The results suggest that there is a 

considerable amount of isolation among S. woodi populations in the ONF.  Decades of 
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fire suppression have resulted in overgrown forest that hinders lizard dispersal and 

separates populations by expanses of unsuitable habitat.  Though SR-40 may act as a 

barrier for wildlife, my findings do not denote any added genetic differentiation caused 

by the road. 

 

 

INDEX WORDS: Bipedal locomotion, Florida scrub lizard, Genetic differentiation, 

Genetic patchiness, Habitat fragmentation, Intermittent locomotion, Jumping, 

Microsatellite, Roads, Sceloporus woodi, Sprinting 
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CHAPTER 1 

Overcoming obstacles: the effect of obstacle size on the behavioral repertoire and 

locomotor performance of running lizards 

 

ABSTRACT 

Sprinting and jumping ability are key performance measures that have been widely 

studied in vertebrates.  The vast majority of these studies, however, use methodologies 

that lack ecological context by failing to consider the complex habitats many animals live 

in.  In complex environments, animals must avoid or overcome obstacles in order to 

effectively escape predators or capture prey.  Here, I filmed running lizards to address 

how behavioral and performance strategies change as lizards approach obstacles of 

varying height.  Obstacle size had a significant influence on both behavior (e.g. obstacle 

crossing strategy, intermittent locomotion) and performance (e.g. sprint speed, jump 

distance).  Jumping frequency and jump distance increased with obstacle size.  Jumping, 

as opposed to climbing onto a large obstacle, is likely beneficial because it reduces time 

and distance to reach a target position.  Jump angle, jump velocity, and approach velocity 

accounted for 58% of the variation in jump distance on the large obstacle and only 33% 

on the small obstacle. Although the variables placed in the multiple regression models 

have been shown in previous studies of static jumping to significantly influence jump 

distance, they did not account for a large amount of variation on my small obstacle.  I 

demonstrate that obstacle size has a significant impact on both lizard behavior and 

performance.  Researchers should thus consider the complexity of a species’ habitat in 

designing studies of locomotion. 



   

12 

 

INTRODUCTION 

Sprint performance has been well documented in vertebrates due to its ecological 

relevance for gathering food and avoiding predators (Arnold, 1983; Huey & Stevenson, 

1979).  However, most of these studies have been conducted on flat, uniform trackways 

(Goodman, 2009; Husak, Fox & Van Den Bussche, 2008).  In nature, terrestrial 

vertebrates navigate through complex habitats that contain highly variable terrain (e.g. 

rocky outcrops, woody debris, shrubs with many branches, etc.).  In complex 

environments, animals must avoid or overcome obstacles and/or move intermittently in 

order to effectively escape predators or capture prey (Kohlsdorf & Biewener, 2006).  The 

ability for small vertebrates such as lizards to overcome obstacles by jumping or other 

means is likely under selection due to its involvement in foraging, territory defense, and 

predator escape (Irschick & Losos, 1999; Pounds, 1988).  Unfortunately knowledge of 

how, and when, animals modulate their behavior and performance to negotiate obstacles 

is lacking. 

Animals possess a range of behaviors (i.e. a behavioral repertoire) to negotiate 

obstacles and move about their environment (Garber & Pruetz, 1995; Pace & Gibb, 

2011).  This repertoire could consist of but is not limited to walking, sprinting, pausing, 

hopping, jumping, flying, quadrupedal, or bipedal locomotion, depending on the 

organism and the environment.  Most terrestrial vertebrates are quadrupedal and thus 

walk and run with their body parallel to the substrate (Reilly & Delancey, 1997), making 

even relatively small obstacles visually obtrusive.  In particular, lizards have been shown 

to climb, run bipedally, or jump over small obstacles (Kohlsdorf & Biewener, 2006).  

Little is known regarding the frequency of each of these behaviors and how they might 
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change as animals approach obstacles of varying height, especially large obstacles that 

reduce their visual field.   

A possible strategy that may enhance the visual field over or around obstacles is 

bipedal locomotion (Kohlsdorf & Biewener, 2006).  It has been hypothesized that bipedal 

locomotion has arisen at least six times within vertebrates (Snyder, 1962).  In each case, 

there is either an advantage over quadrupedal locomotion, or the front limbs are co-opted 

for some other function (e.g. flight in birds, tool use in humans, etc.; Bennett, 1985; 

Howell, 1944).  Since lizards only use forelimbs for locomotion, it is not clearly 

understood why bipedalism has evolved in multiple lizard clades.  Early research 

proposed that bipedal locomotion allowed lizards to sprint faster or conserve energy by 

not using forelimbs (Snyder, 1949; Snyder, 1952; Snyder, 1954; Snyder, 1962), although 

subsequent studies have provided conflicting evidence (Irschick & Jayne, 1998; Irschick 

& Jayne, 1999; Roberts, Kram, Weyand & Taylor, 1998). Recent studies indicate that 

bipedal locomotion in lizards may be a result of high velocity and acceleration (Aerts, 

Van Damme, D'Aout & Van Hooydonck, 2003; Clemente, Withers, Thompson & Lloyd, 

2008). 

A host of animals use jumping as a means to overcome obstacles.  Jumping 

performance has been widely studied in an array of vertebrates including primates 

(Demes, 1995; Peters & Preuschoft), squirrels (Essner Jr, 2002; Essner Jr, 2007; Scheibe 

& Essner Jr), cats (Harris & Steudel, 2002), frogs (Emerson, 1978; Gomes, Rezende, 

Grizante & Navas, 2009; Lutz & Rome, 1994; Lutz & Rome, 1996; Marsh & Johnalder, 

1994; Wilson, 2001; Wilson, Franklin & James, 2000), and lizards (Kohlsdorf & Navas, 

2007; Toro, Herrel & Irschick, 2004).  In these studies, subjects are induced to jump from 
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a motionless state.  High-speed cameras or force platforms are utilized to quantify 

important jump variables (e.g. takeoff angle, velocity, acceleration, force, power, and 

distance) as the animal leaps off of a takeoff platform.  In nature, animals also jump or 

hurdle obstacles as they encounter them during a run.  The capacity to overcome 

obstacles while running has been far less studied.  Kohlsdorf & Biewener (2006) showed 

that lizards altered limb kinematics (e.g. angle, motion) and behavioral strategies while 

crossing obstacles of varying heights, but did not measure sprinting and jumping ability.  

To my knowledge, no studies have been conducted that measure sprint and/or jump 

performance as animals approach obstacles in which they must climb over, or jump on, in 

order to move past. 

In addition to obstacle-crossing strategies, intermittent locomotion is an important 

component of an animal’s behavioral repertoire that is frequently used during locomotion 

through complex habitats.  It seems to confer an advantage in prey detection and predator 

avoidance (Vasquez, Ebensperger & Bozinovic, 2002). However, intermittent locomotion 

is thought to also potentially increase energy expenditure due to repeated bouts of 

acceleration/deceleration, while at the same aiding in fatigue recovery (Kramer & 

McLaughlin, 2001).  Since obstacles are common in many complex habitats, it is likely 

that the presence and size of obstacles may influence an animal’s decision to move 

intermittently.  Understanding the frequencies at which animals alter behavior based on 

various obstacle sizes can provide insight into how habitat composition influences 

behavioral decisions. In turn, these behavioral strategies can increase understanding of 

the conditions under which animals alter their sprinting and/or jumping performance due 

to obstacles. 
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In this study, I investigate the effect of obstacle size on behavior and locomotor 

performance.  I incorporate both sprinting and jumping performance of lizards as they run 

towards obstacles of varying heights.  Although sprinting and jumping ability have been 

extensively studied, scant information exists on the relationship between them, or relative 

to negotiating obstacles for lizards or any other taxa.  I will test the following hypotheses: 

1) If obstacle height increases, then obstacle-crossing strategies will favor jumping and 

intermittent locomotion will increase. 2) If obstacle height increases, then lizards should 

increase jump distance but decrease sprint performance. 3) If running jumps are different 

from stationary jumps, then jump angle and velocity should not accurately predict jump 

distance in running lizards.  To address these hypotheses, lizards were placed in a custom 

built arena and induced to sprint toward obstacles of different heights.  High-speed video 

was used to record trials for behavior and performance quantification.     

MATERIAL AND METHODS 

STUDY ANIMALS 

The Florida scrub lizard (Sceloporus woodi Stejneger 1918) was chosen as the study 

species because this species uses flat, sandy areas in which they commonly sprint to flee 

from predators.  Their habitat preferences range from relatively open sand pine scrub 

where they are highly terrestrial, to longleaf pine where they are semi-arboreal.  In both 

habitats, lizards are frequently observed jumping onto, and over, obstacles such as 

downed wood or course woody debris, during feeding and when escaping predators 

(Williams, 2010). 

Fifty adult, male lizards (50.6 ± 0.55 mm; range = 45 – 57 mm snout-vent length) 

were captured via noose from six sites in the Ocala National Forest, FL from April – June 



   

16 

 

2009.  Lizards were taken to Georgia Southern University and housed in 10 gallon glass 

aquaria with a loose sandy substrate. Heat lamps created a gradient of temperatures from 

32 - 41 ˚C and UV lighting provided a 12:12 light-dark cycle.  Lizards were fed vitamin-

dusted crickets three times weekly and sprayed with water daily. 

OBSTACLE PERFORMANCE TRIALS 

Performance trials began on the day after arriving at the facility.  A linear jump arena (90 

cm length, 20 cm width, 61 cm height) was constructed from acrylic to test behavior and 

performance.  To mimic natural conditions, I used a packed sandy substrate.  Some 

minimal slippage was apparent in a few trials, but lizards were able to sprint and jump 

with ease.  Logs with diameters of 5.70 cm and 9.55 cm were cut to the width of the 

arena to serve as obstacles.  A third obstacle (diameter = 15.92 cm) was also used 

initially, but in trials, 17 out of 20 lizards attempted to hide under or run around it, thus it 

was discarded.  Prior to trials, lizards were warmed to their field active body temperature 

(35 ˚C) for a minimum of 30 minutes.  Upon removal from the incubator, warmed lizards 

were placed in the jump arena 38 cm from the obstacle and chased toward the obstacle by 

tail tapping or hand waving once lizards had initiated locomotion (Fig. 1).  This distance 

was chosen because other studies have shown that lizards can reach near maximum 

velocity (Huey & Hertz, 1984), and acceleration (McElroy & McBrayer, 2010) within 30 

– 40 cm.   

Trials were filmed at 300 frames s
-1
 using two Casio EXILIM EX-F1 cameras.  

One camera was placed above the jump chamber (dorsal view) while the other was 

placed in lateral view.  Lizards were run 5 – 10 times on each obstacle size over a five 

day period with a minimum of two hours rest between trials.  Individuals were not tested 
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more than twice on each sized obstacle per day.  All trials were classified as either 

‘successful’ or ‘unsuccessful’.  ‘Unsuccessful’ trials (e.g. lizard attempted to hide under 

the obstacle) were only used in analysis of intermittent locomotion.  ‘Successful’ trials 

were those in which the lizard ended the trial at any location on or beyond the obstacle.  

Upon review of the video (see below), successful trials were further separated into 3 

obstacle-crossing strategies: climbing, jumping, or bipedal locomotion.  Jumping required 

that all limbs were airborne during the transition between the substrate and the obstacle, 

and that the airborne phase exceeded the individual’s snout-vent-length.  Bipedal 

locomotion required that the lizard take a minimum of 3 steps in which the front limbs 

were not touching the substrate prior to reaching the obstacle.  The number of pauses (i.e. 

intermittent locomotion) while the lizard approached the obstacle was also recorded. 

VIDEO ANALYSIS 

Each successful trial was trimmed using Adobe Premier Elements software.  Trials were 

trimmed to the frame prior to any lizard movement until the frame that the lizard 

remained motionless on the obstacle or had moved beyond it and out of camera view.  

The dorsal, lateral trimmed videos were imported into DLTdataviewer3 software 

(Hedrick, 2008).  A landmark painted on the lizard’s snout was used to manually digitize 

the positional data from each frame and thus generate three dimensional coordinate data 

from the video.  A quintic spline function (GCVSPL software; Woltring, 1986) was used 

to smooth to the output coordinate data and calculate the instantaneous velocities for each 

frame.  Because minimal movement occurred in the y and z planes during the lizard’s 

approach, average velocity, peak velocity, and peak acceleration were calculated using x 



   

18 

 

values only.  Smoothing was not required to calculate jump distance because I was only 

interested in the distance between takeoff and the obstacle. 

Jump distance was quantified as the distance between the lizard’s snout and the 

face of the obstacle at toe-off during takeoff (Fig. 2A). Average sprint velocity was 

calculated as the mean of all smoothed instantaneous velocities during the approach to 

the obstacle.  Peak sprint velocity and acceleration were calculated as the maximum 

instantaneous values reached during the approach obtained from smoothed data 

coordinates.  Jump velocity was calculated by averaging instantaneous velocities over the 

8 frames (26.66 ms) prior to toe-off.  This time frame was chosen because for all trials, 8 

frames were most representative of the entire takeoff phase (Bels, Theys, Bennett & 

Legrand, 1992; Toro et al., 2004).  To calculate jump angle, three markers were digitized 

in each camera view to represent the three vertices of a right triangle (Fig. 2B; Lutz & 

Rome, 1996).  Steps were numbered sequentially as one hindfoot contacted the substrate 

until the opposite hindfoot made contact. Because some, although minimal, slippage was 

apparent on the video, force and power calculations were not made as any slippage would 

bias those estimates. 

STATISTICAL ANALYSES 

This study has two major parts.  The first focuses on how obstacle size influences the 

behavioral repertoire.  To address this, I quantify differences in obstacle-crossing strategy 

(climb, jump, bipedal) and intermittent locomotion between obstacles.  All successful 

trials, including multiple runs from each lizard, were used to define the behavioral 

repertoire.  Hence, I used contingency analysis to test for the effect of obstacle size on the 

frequency of behavioral strategies.  Contingency analysis was also used to compare the 
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frequency of intermittent locomotion between obstacles (both successful and 

unsuccessful trials).  In the second part of the study I focus on the influence of obstacle 

size on locomotor performance (e.g. sprint and jump ability). To quantify locomotor 

performance, only trials in which the lizard did not pause or run into the sides of the 

arena during the approach were analyzed for jump and sprint ability.  If lizards had 

multiple trials that fit these criteria, only the trial with the longest jump distance was 

retained.  Students T-tests were used to analyze step frequency, jump distance, jump 

velocity, jump angle, average velocity, and peak velocity between obstacles.  A Mann-

Whitney U-test was used to test peak acceleration.  Average sprint velocity, jump 

velocity, and jump angle were placed in a multiple regression analysis to predict jump 

distance (square root transformed).  No lizards with broken tails were used in any 

analyses.  Analyses were conducted using JMP8 software and values presented below are 

mean ± 1 SE.   

RESULTS 

BEHAVIORIAL REPERTOIRE 

Lizards successfully negotiated the small obstacle in 88% of trials compared to only 52% 

for the large obstacle (χ
2
 = 92.09, P < 0.001, N = 610).  The obstacle-crossing strategy 

used differed significantly by obstacle size (χ
2
 = 17.79, P = 0.001, N = 419).  Lizards 

jumped more often onto the large obstacle, climbed more often onto the small obstacle, 

and used bipedal locomotion more often on the small obstacle (Fig. 3).  The difference 

was due to the high proportion of jumps onto the large obstacle.  Hence, all jumping trials 

were removed to test the effect of obstacle size on climbing versus bipedal frequency.  
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There was no significant effect (χ
2
 = 0.001, P = 0.9787, N = 170).  Intermittent 

locomotion increased with obstacle size (χ
2
 = 33.93, P < 0.0001, N = 611; Table 1).   

SPRINT AND JUMP PERFORMANCE 

Sprint performance was greater for the small obstacle (Fig. 4).  Sprint velocities were 

slower for the large obstacle ( x = 0.95 ± 0.05 m s
-1
) than for the small obstacle ( x = 1.11 

± 0.04 m s
-1
; t = 2.683, P = 0.011, N = 34).  Peak sprint velocities averaged 1.45 ± 0.06 m 

s
-1 

 for the large obstacle and 1.59 ± 0.05 m s
-1 

for the small obstacle (t = 1.696, P = 

0.099, N = 34).  Peak accelerations were greater for the large obstacle ( x = 54.5 ± 6.34 m 

s
-2
) than the small obstacle ( x = 77.0 ± 5.64 m s

-2
; U = 215, P = 0.013, N = 34).  Lizards 

jumped significantly further onto the large obstacle ( x = 7.44 ± 0.65 cm) than the small 

obstacle ( x = 4.25 ± 0.58 cm; t = -3.420, P = 0.002, N = 34; Fig. 4).  Jump velocity did 

not significantly differ between obstacles (t = 1.165, P = 0.252, N = 34).  Jump angle 

increased for the large obstacle ( x = 49.9 ± 2.9˚) compared to the small obstacle ( x = 

37.4 ± 2.6˚; t = -3.229, P = 0.003, N = 34).  

The multiple regression analysis indicated that jump angle, jump velocity, and 

approach velocity, differed in importance between obstacles.  The model explained 

58.3% of the variation in jump distance onto the large obstacle (Table 2).  Lower jump 

angle had the greatest effect on increased jump distance, with jump velocity and average 

sprint velocity having similar effects.  For the small obstacle, however, the model only 

explained 32.6% of the variation in jump distance.  Average velocity was most 

predictive, followed by jump velocity, and jump angle.   

For jumping trials, obstacle size had no effect on the number of steps taken to 

reach the obstacle (7.40 ± 0.31 = large obstacle, 7.68 ± 0.36 = small obstacle; t = 0.583, P 
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= 0.564, N = 34).  The step at which peak sprint velocity was reached was also not 

significantly different between the large and small obstacle (t = 1.175, P = 0.249, N = 34; 

large: x = 5.13 ± 0.42, small x = 5.95 ± 0.52).  However, a comparison between total 

number of steps until toe-off and the step at peak velocity demonstrates that peak velocity 

is reached roughly 2 steps prior to takeoff (t = 2.764, P = 0.009, N = 38, small obstacle; t 

= 4.338, P = 0.0002, N = 30, large obstacle).   

DISCUSSION 

Although sprint and jump performance have been widely investigated, this study is the 

first to examine how obstacles of varying sizes influence the behavior and locomotor 

performance of running lizards.  To my knowledge, Kohlsdorf & Biewener (2006) 

published the first and only study to investigate how lizards modify behavior when 

crossing obstacles of varying height.  I add insight to their study by examining the effect 

of obstacle size on locomotor performance and by quantifying intermittent locomotion.  

By using relatively large obstacles, the potential benefits of using bipedal locomotion to 

negotiate obstacles could also be examined.   Here, I show that obstacle size has 

substantial impacts on S. woodi behavior and performance, and that bipedal locomotion is 

important for rapidly overcoming smaller obstacles. 

BEHAVIORAL REPERTOIRE 

Like earlier work, lizards used three principal obstacle-crossing strategies to negotiate 

obstacles: climb, jump, or bipedal locomotion (Kohlsdorf & Biewener, 2006).  My results 

also show that obstacle-crossing behavioral strategy is dependent upon obstacle height 

and that jumping frequency increases with obstacle size.  I hypothesize that increased 

jump frequency on larger obstacles is beneficial because it reduces the amount of time to 



   

22 

 

reach the target position (Higham, Davenport & Jayne, 2001).  If lizards jump at a 45˚ 

angle and initiate takeoff at a distance equal to the obstacle’s height, then to climb over a 

10 cm obstacle a lizard would travel a total distance of 20 cm to complete this task (10 

cm horizontally, 10 cm vertically).  If the lizard instead jumps in a straight line from a 

distance of 10 cm, it will only travel 14.1 cm to reach the top of the obstacle, reducing the 

distance traveled by nearly 6 cm.  The distance (and/or time) saved by jumping instead of 

climbing increases linearly with obstacle size (as long as it can jump to a height equal to 

the linear distance away from the obstacle). Even on small obstacles, it is plausible that 

jumping engenders a similar result because jump frequency (51%) is much greater than 

climbing frequency (20%; Fig. 3).  Climbing an obstacle (principally a large obstacle), 

has an additional disadvantage because it requires a high degree of deceleration to 

transition from horizontal to vertical running.  Although there is evidence of deceleration 

associated with jumping (see below), it likely does not have as substantial of an impact 

on the time required to cross the obstacle.  Reducing the distance to the obstacle, and in 

turn the amount of time to the obstacle, has the benefit of a more rapid predator escape.  

To verify these predictions, future work could focus on quantifying whether obstacle-

crossing strategies do indeed differ in velocity and time to cross obstacles of varying 

height.   

Bipedal locomotion was used more frequently than climbing on both obstacles 

indicating it is a fairly important behavioral strategy for S. woodi.  Recent work suggests 

that bipedal locomotion in lizards may be a result of excessive speed and torque 

(Clemente et al., 2008).  Additional hypotheses are that bipedal locomotion is beneficial 

for improving an animals’ environmental perception and raising its center of mass in 
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preparation for encountering an obstacle (Kohlsdorf & Biewener, 2006).  However, as 

obstacle height surpasses body length, bipedal locomotion would no longer increase 

environmental perception as the obstacle would obstruct the animal’s visual field.  In the 

present study, lizard height (SVL + femur + tibia/fibia + metatarsus) ranged from 6.87 – 

9.02 cm ( x = 7.83 ± 0.77 cm).  This range suggests that it would be possible for all 

lizards in the study to see over the small obstacle (5.70 cm) while running bipedal, but 

none of them would be able to see over the large obstacle (9.55 cm).  This may explain 

why S. woodi uses bipedal locomotion more on the small obstacle (30.6%) than the large 

obstacle (16.8%).  I suggest that lizards utilize facultative bipedalism even at low speeds 

to increase environmental perception or prepare for obstacle negotiation.  Further 

experiments are underway to examine this hypothesis.    

While many potential benefits of intermittent locomotion (e.g. fatigue recovery, 

reduced energy consumption, etc.) have been proposed (Avery, Mueller, Smith & Bond, 

1987; Higham et al., 2001; Kramer & McLaughlin, 2001), an additional hypothesis is that 

moving intermittently contributes to increased time to search out additional travel routes.  

As shown here, lizards are less likely to cross obstacles of increasing size.  The results of 

this study combined with an increase in intermittent locomotion on larger obstacles, 

support the idea that S. woodi likely pauses on the approach to large obstacles to seek out 

alternative travel routes. 

SPRINT AND JUMP PERFORMANCE 

While little is known regarding the similarities and/or differences between stationary and 

running jumps, variables that have been shown to be predictive of jump performance are 

jump angle, velocity, acceleration, force, and power (Emerson, 1978; Toro et al., 2004; 
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Toro, Herrel & Irschick, 2006; Wilson, 2001) .  Certain variables (e.g. jump acceleration) 

become increasingly difficult to quantify during running jumps due to the lack of a 

comparative starting point to stationary jumps.  I focused on takeoff angle and velocity 

(two common and important predictors of jump distance; Emerson, 1985; Marsh & 

Johnalder, 1994) in the multiple regression analysis to predict jump distance.  Further, 

average approach velocity was added preceding the jump because this initial velocity 

likely contributes to jump distance.   

In my study, it is evident that for a large obstacle the principle predictor of jump 

distance is jump angle (see Table 2).  Ballistic motion predicts that if force and 

acceleration are constant during takeoff, the optimal takeoff angle for achieving 

maximum distance is 45˚ (Emerson, 1985).  Hence a tradeoff exists. Greater takeoff 

angles lead to greater jump height and flight duration, whereas lower takeoff angles lead 

to lower jump height and shorter flight duration.  Anolis lizards jump at less than 45˚, 

presumably to reduce flight time and height (Toro et al., 2004).   It is interesting that S. 

woodi jumped at 49.9˚ onto a large obstacle, slightly higher than optimal.  However in 

this study, lizards were gaining elevation following their jump; i.e. increasing the jump 

angle is required when the landing position (obstacle) is at a higher elevation than the 

takeoff location.  The majority of studies investigating jumping ability have studied 

animals as they jump from a platform to an object at the same or lower height (Burrows, 

2006; James & Wilson, 2008; Toro et al., 2004).  When jumping to a lower or higher 

position, which would be common in complex habitats, the height of the obstacle has a 

significant effect on the angle and distance from which the subject should commence 
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takeoff (Toro et al., 2006).  Results on the large obstacle support studies of static jumping 

which show that jump angle is important for traveling long distances. 

 Do running animals decelerate to maximize jump performance onto an obstacle?  

Results indicate that lizards do not continually accelerate and reach peak velocity at 

takeoff.  Lizards in this study reached peak velocity roughly 2 steps prior to jumping and 

then reduced their velocity before jumping.  While the character of this deceleration is 

not clearly understood, it is plausible that lizards must reduce their velocity to get their 

limbs into position to jump onto an obstacle.  Higham, Davenport, & Jayne (2001) 

manipulated perch angle to test if turning had an effect on sprinting ability in Anolis 

lizards.  They found that with increased turn angle running speed decreased, stride length 

decreased, intermittent locomotion increased, and jumping frequency increased.  Another 

interesting discovery was that lizards commonly decelerated and even paused prior to 

jumping, presumably in preparation to jump.  These findings support my results that 

lizards decelerate in preparation to jump, likely to maximize jump distance, velocity, 

and/or accuracy. 

Studies of human athletes have shown that joint movements and power patterns 

do not differ between stationary and running jumps (for both vertical and horizontal 

jumps; Stefanyshyn & Nigg, 1998).  Overall, the multiple regression analysis failed to 

explain a large amount of variation in jump distance.  Although it explained 58% percent 

of jump distance on the large obstacle, jump angle was the only statistically significant 

variable.  On the small obstacle both jump velocity and approach velocity were 

significant, but the entire model only explained 33% of the variation in jump distance.  

This leads me to conclude that variables that have been shown to influence jump distance 
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for static jumps do not share the same predictive relationship with running jumps in 

lizards.  This is likely due to the complex nature of a running jump or the soft, shifting 

substrate.  These complexities include the sprinting velocity prior to jumping, the lack of 

a consistent origin of takeoff, and the deceleration associated with jump preparation.  

When jumping on sand instead of a high traction, solid substrate, lizards might alter their 

velocity and angle to land at a specific location on the obstacle.  I was also unable to 

measure force and power which have been shown influence jump performance (Marsh & 

Johnalder, 1994; Wilson et al., 2000).   

In conclusion, this study shows that obstacle size has a significant influence on 

lizard behavior and locomotor performance.  Seeing that many vertebrates live in 

complex habitats with obstacles of varying sizes, researchers should consider an 

organism’s environment and behavioral repertoire when constructing studies of 

locomotor performance.  My study draws attention to the relevance of obstacles in studies 

of locomotion and provides insight into how obstacle size influences animal behavior and 

performance.  
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Table 1.1 The degree of intermittent locomotion (number of times a lizard paused) was 

counted for each trial and found to be significantly different between obstacles (χ
2
 = 

33.93, P < 0.0001, N = 611).  The table displays the number of trials for which lizards 

paused 0 – 7 times.  

 
Number of Pauses on Approach to Obstacle   

Obstacle Size 0 1 2 3 4 5 6 7 Trials 

Small  101 113 49 18 5 0 1 1 288 

Large  60 122 86 37 10 3 5 0 323 

 

Table 1.2 Results of a multiple regression of locomotor variables as predictors of jump 

distance.  The adjusted R
2
 values were 0.583 (large obstacle) and 0.326 (small obstacle). 

Variable N β t P 

Large Obstacle:     

   Angle 15 -0.767 -3.94   0.001 * 

   Jump Velocity 15 0.141 0.65 0.531 

   Approach Velocity 15 -0.101 -0.51 0.618 

Small Obstacle:     

   Angle 19 -0.090 -0.46 0.650 

   Jump Velocity 19 -0.579 -1.96 0.069 

   Approach Velocity 19 0.961 3.24    0.006 * 

 

* = significance (P < 0.05) 
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Figure 1.1 Illustration of the test arena for performance trials (not drawn to scale).  Full 

trial description is contained in Methods.
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A 

 

B 

A

BC  

 

Figure 1.2 A, jump distance was measured as the distance between the lizard’s snout and 

the face of the obstacle at toe-off during takeoff.  B, a point was digitized on the lizard’s 

snout (A), another was digitized at the substrate directly below the lizards snout (B), and 

a third at the substrate behind the lizard directly in line with the angle of the body (C).  

Jump angle was calculated by dividing the arcsine of the line segment AB by segment 

AC. 
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Figure 1.3 Frequencies of obstacle crossing strategies in S. woodi.  Behavior was 

influenced by obstacle size (χ
2
 = 17.79, P = 0.001, N = 419) principally due to the 

increase in jumping frequency on the large obstacle. 

Small Obstacle 

Large Obstacle 

N = 252 

N = 167 



   

31 

 

A
v
g
 V
e
lo
c
it
y
 (
m
 s
-1
)

0.6

0.8

1.0

1.2

1.4

1.6

  

J
u
m
p
 D
is
ta
n
c
e
 (
c
m
)

2

4

6

8

10

12

14

 

P
e
a
k
 V
e
lo
c
it
y
 (
m
 s
-1
)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

       

J
u
m
p
 V
e
lo
c
it
y
 (
m
 s
-1
) 

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

Obstacle Size

Small Large

P
e
a
k
 A
c
c
e
l 
(m
 s
-2
)

0

20

40

60

80

100

120

140

   Obstacle Size

Small Large

J
u
m
p
 A
n
g
le
 (
d
e
g
re
e
s
)

10

20

30

40

50

60

70

80

 

Figure 1.4 Box plots comparing sprint and jump performance on large and small 

obstacles.  All performance variables measured were significantly different (P < 0.05) 

between obstacles except for peak velocity and jump velocity.  Although not significantly 
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different, these two variables followed the pattern of higher velocity on the small 

obstacle.  The box margins indicate the 25th and 75
th
 percentiles. The median (solid) and 

mean (dashed) are represented with each.  Whiskers indicate the 90th and 10th 

percentiles.  In addition, outliers are indicated individually by dots. 
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CHAPTER 2 

Chaotic genetic patchiness in a terrestrial landscape 

ABSTRACT 

The loss of natural habitat due to fragmentation is a major threat to the conservation of 

species.  The Florida scrub lizard (Sceloporus woodi) is restricted to open, sunny, scrub 

habitat, historically maintained through frequent wildfires.  The largest remaining 

population of S. woodi is found in the Ocala National Forest, FL.  The ONF is 

fragmented from clearcut logging, fire suppression, and by major roadways.  I examined 

five microsatellite loci to estimate genetic differentiation across the forest and near a 

major roadway (Florida State Route 40).  Pairwise combinations of seven populations 

revealed that 71% of Fst values were significantly different.  I tested for a pattern of 

isolation by distance and discovered that there was no significant relationship between 

geographic and genetic distance.  To investigate the barrier effects of SR-40, I used 

AMOVA to group populations into two clusters based on whether they were situated 

north or south of the road.  My group classifications only explained 0.02% of the genetic 

variation across the forest.  The results suggest that there is a considerable amount of 

isolation among S. woodi populations in the ONF.  Decades of fire suppression has 

resulted in overgrown forest that hinders lizard dispersal and separates populations by 

expanses of unsuitable habitat.  Though SR-40 may act as a barrier for wildlife, my 

findings do not denote any added genetic differentiation caused by the road.  The highly 

dynamic nature of the ONF has resulted in random patterns of genetic differentiation and 

chaotic genetic patchiness. 
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INTRODUCTION 

The loss of natural habitat due to fragmentation is one of the major threats to the long-

term conservation of species (Hanski, 1998; Keller, Nentwig & Largiader, 2004; Wilcox 

& Murphy, 1985).  Habitat fragmentation can render many small, isolated populations.  If 

the distance between isolated populations is too far, or substantial barriers to dispersal 

exist, then gene flow will decrease or cease.  Reduced gene flow and small population 

size can reduce genetic variability and heterozygosity through inbreeding and genetic 

drift (Amos & Balmford, 2001; Corlatti, Hacklander & Frey-Roos, 2009; Frankham, 

2005; Hedrick, 2005).  Drift and inbreeding can result in even smaller populations 

(Gilpin & Soule, 1986).  A loss of genetic diversity and small population sizes reduces 

evolutionary potential and can eventually lead to extinction events (Hartl, Markowski, 

Swiatecki, Janiszewski & Willing, 1992; Johnson & Collinge, 2004).   

Habitat fragmentation is often a result of anthropogenic impacts such as 

residential and commercial development (Bolger, 2002), agriculture (Vitousek, Mooney, 

Lubchenco & Melillo, 1997), logging (St-Laurent, Dussault, Ferron & Gagnon, 2009), 

and road construction (Keller & Largiader, 2003).  The major cause of fragmentation in 

the Ocala National Forest (ONF) is clearcut logging for wood pulp.  Historically, scrub 

habitat that occupies most of central Florida (including the ONF) was maintained by 

frequent, high-intensity wildfires that swept across large areas of the forest (Myers, 

1990).  Fire suppression, which typically increases with urbanization, has promoted forest 

maturation and less open scrub habitat (Myers, 1990).  As fire suppression persists, 

prescribed burns and the logging regime grow increasingly important as a replacement 

for the lost disturbance of frequent wildfires.  Forest management of sand-pine scrub has 
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consisted of cutting stands of 8-25 hectares (Greenberg, Neary & Harris, 1994), leaving 

patches of various shapes and sizes throughout the forest.  Although it is unclear how 

well it mimics a fire maintained ecosystem, logging can provide the open, disturbed 

habitat necessary for scrub dependent organisms. 

These disturbances often have an influence on the genetic structure of 

populations.  The rate and degree to which subpopulations become genetically 

differentiated from one another is highly dependent upon the vagility of the organism 

(Corlatti et al., 2009), their habitat specificity (Holderegger & Di Giulio, 2010), 

generation time (Loveless & Hamrick, 1984), and the size of the isolated populations 

(Keller et al., 2004).  Patterns in the genetic structure can range from no isolation (i.e. 

panmixia) to complete isolation among populations.  Sometimes these patterns can be 

explained by models such as isolation by distance (IBD), which is often expected in 

contiguous habitats (Slatkin, 1993).  Isolation by distance indicates that the distance 

between populations is the main contributor to genetic differentiation.  In marine systems, 

ocean currents often create complex genetic structures that lack clear geographic trends 

(White, Selkoe, Watson, Siegel, Zacherl & Toonen, 2010).  This phenomenon has been 

termed ‘chaotic genetic patchiness’ (Arnaud-Haond, Vonau, Rouxel, Bonhomme, Prou, 

Goyard & Boudry, 2008; Banks, Piggott, Williamson, Bove, Holbrook & Beheregaray, 

2007; Doherty, Planes & Mather, 1995; Hedgecock, 1994; Johnson & Black, 1982; 

Johnson & Black, 2006; Larson & Julian, 1999; Muths, Jollivet, Gentil & Davoult, 2009; 

Selkoe, Gaines, Caselle & Warner, 2006).  This highly dynamic character of marine 

systems may also exist in some terrestrial landscapes with large amounts of disturbance 

like the ONF. 



   

36 

 

The Florida scrub lizard (Sceloporus woodi) is endemic to Florida and listed as 

threatened in the state (Demarco, 1992).  It thrives in successional habitats and in most 

cases is restricted to those habitats with open, sunny patches (Demarco, 1992; 

Mushinsky, 1985).  Greenberg et al. (1994) demonstrated that S. woodi population 

numbers were positively correlated with open scrub features like bare ground, and 

negatively correlated with factors indicating mature forest such as leaf litter and pine 

canopy.  Sceloporus woodi colonizes an area following a recent clearcut or severe fire, 

but the site only remains suitable habitat for 7-9 years before becoming too overgrown 

with Pinus clausa, Quercus inopina, Aristida stricta, and other scrub plants.  As the site 

closes in, lizards must disperse along forest roads or unsuitable habitat to colonize a new 

site, or experience local extinction.  The scrub lizard has also been shown to have a 

limited dispersal capability.  Hokit et al. (1999) found that S. woodi juveniles rarely 

disperse over 200 m annually and that if suitable habitat patches are separated by more 

than 200 m, occupancy rates drop sharply.  A sympatric lizard, the six-lined racerunner 

(Aspidoscelis sexlineata), can have home ranges up to 13,000 m
2
 (Clark, 1976) compared 

to only 400 – 800 m
2
 in S. woodi (Branch, Hokit & Stith, 1996).  Depending on the 

strength of the barrier (i.e. forest growth), this combination of high habitat specificity and 

low vagility greatly reduces the probability of migrating to a new site when an existing 

site becomes unsuitable. Thus, the amount of suitable habitat is an important factor to 

consider in conservation planning.  

Studies of S. woodi reveal genetic structuring at the regional (Clark, Bowen & 

Branch, 1999) and local level (Hokit, Ascunce, Ernst, Branch & Clark, 2010).  During the 

Pliocene and Pleistocene periods, the coast of Florida expanded and contracted multiple 



   

37 

 

times due to the rising and falling of sea levels (Webb, 1990).  Sand ridges that run north 

and south through the center of the state are remnants of ancient shorelines formed 

millions of years ago.  These sand ridges have become islands of xeric habitats 

surrounded by more mesic and hydric landscapes.  It is thought that these sand ridges 

form the deep genetic structuring of S. woodi observed at the regional scale (Clark et al., 

1999).  Hokit et al. (2010) took a landscape genetics approach to observe genetic 

differentiation on a much finer scale, within a sand ridge.  However, this study was 

conducted on scrub habitat that is naturally fragmented and has had little human 

disturbance over at least the last six decades (Hokit et al., 1999). 

The purpose of the present study is to investigate the degree of isolation among 

populations of S. woodi in a highly disturbed and dynamic landscape.  Organisms with a 

limited dispersal ability, high habitat specificity, and short generation time, can 

experience genetic differentiation among populations quite rapidly due to reduced gene 

flow and increased genetic drift.  I will address the following questions: (1) to what 

degree are populations of S. woodi across the ONF genetically isolated and (2) is Florida 

SR-40 a barrier to gene flow resulting in significant genetic differentiation across the 

road?  To answer these questions, I analyzed multiple microsatellite loci to investigate 

genetic similarity among individuals and populations.   

METHODS 

POPULATION SAMPLING AND GENOTYPING 

Lizards were captured by noose in various populations throughout the ONF (Fig. 1).  The 

aim of the sampling design was to find populations along a north-south gradient 

(coinciding with the Mount Dora sand ridge) and along SR-40.  Upon capture, a small 
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tissue sample (e.g. toe, tail tip) was removed, preserved in 70% EtOH for extraction of 

DNA, and lizards were released at point of capture.  Whole genomic DNA was extracted 

from a total of 138 individuals using a Qiagen DNeasy blood and tissue kit following the 

protocol for animal tissue.  Six polymorphic microsatellite DNA loci (SW614-A1, 

SW614-A4, SW614-A6, SW614-A7, SW614-B1, SW614-B10) were amplified via 

polymerase chain reaction using primers previously isolated by Ernst et al. (2004).  All 

PCR reactions began with an initial denaturization step for 5 min at 94 ˚C, followed by 

30 cycles of 94 ˚C (30 s), 60 ˚C (30 s), and 72 ˚C (50 s), with a final extension for 20 min 

at 72 ˚C. Genotyping was performed at Georgia Southern University using an ABI 3500 

Genetic Analyzer.   

GENETIC DIVERSITY AND DIFFERENTIATION 

All statistical analyses were performed using the computer program GENEPOP v4 

(Rousset, 2008) unless specified otherwise.  The number of alleles, allele frequency, 

observed heterozygosity, and expected heterozygosity were calculated for all of 

populations and loci using the Excel Microsat Toolkit (Park, 2001).  Genotype 

distributions were checked for linkage disequilibrium and deviation from Hardy-

Weinberg equilibrium using Markov chain analysis with 10,000 dememorization steps, 

100 batches, and 5,000 iterations per batch.  The program MICROCHECKER was used 

to test for the presence of null alleles, allelic dropouts, and mis-scoring (van Oosterhout, 

Hutchinson, Wills & Shipley, 2003).  For estimation of genetic differentiation I 

calculated pairwise Fst values among all combinations of populations using a weighted 

ANOVA as in Weir & Cockerham (1984).  Significance was determined using a Fishers 

exact G test (P < 0.05) with and without Bonferroni correction.   
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The subprogram ISOLDE in GENEPOP was used to test for a pattern of isolation 

by distance (IBD) using (Fst / (1 – Fst)) and the natural logarithm of geographic distance.   

Geographic distance was estimated as the shortest straight line distance between 

sampling populations using GPS coordinates.  A Mantel test with 1,000 permutations was 

used to determine the significance of the Spearman’s rank correlation coefficient (Mantel, 

1967).  This approach ignores the presence of SR-40 and assumes a large single 

population across the ONF.  All pairwise values were subsequently separated into two 

groups dependent upon whether or not the pair of populations was separated by SR-40.  

Separate regressions were performed to acquire a slope and R
2
 for each group (all 

pairwise combinations, pairwise combinations separated by the road, and pairwise 

combinations on the same side of the road).  I used analysis of covariance (ANCOVA) to 

compare slopes to determine if there was a difference in patterns of IBD caused by the 

road.  Taking this approach, the IBD analysis can help address both study questions (i.e. 

overall isolation across forest, barrier effects of road).  As an additional approach to 

examine the effect of SR-40 as a barrier to gene flow, I used analysis of molecular 

variance (AMOVA) in ARLEQUIN (Excoffier & Lischer, 2010).  All populations were 

assigned to one of two groups, ‘North’ if they were north of SR-40, or ‘South’ if they 

were situated south of SR-40. 

RESULTS 

Locus SW614-A6 amplified for fewer than 20 % of lizards and was thus discarded from 

all future analyses.  The other five loci were polymorphic across all populations and the 

number of alleles ranged from 7 to 16.  Observed heterozygosities within populations 

ranged from 0.684 to 0.770 (Table 1).  The linkage disequilibrium test indicated that 4 of 
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70 of pairings had significant non-random associations.  Of these associations, three were 

different combinations of loci and no patterns were seen among populations.  With all 

loci pooled for each population, there were no significant relationships.  Thus, any 

significant linkage is likely due to non-random mating or genetic drift (Frankham, 2005).  

Two of the seven populations (KI & 40N) had loci that deviated significantly from that 

expected under Hardy-Weinberg equilibrium.  For KI the loci were SW614-A1 and 

SW614-A4 and for 40N the loci were SW614-A4 and SW614-B1.  There was no 

evidence of allelic dropout or mis-scoring.  Locus SW614-A1 in population KI had a 

homozygote excess indicative of a possible null allele.  

 Global Fst across all individuals and populations was 0.034.  Geographic 

distances between populations ranged from 2.01 to 36.0 km, Fst ranged from 0.002 to 

0.096, and 71.4% (15 of 21) of pairwise comparisons were significantly different without 

Bonferroni correction (9 of 21 after correction; Table 2).  While there was significant 

genetic isolation among populations, the Mantel test revealed there was no pattern of IBD 

detected (P = 0.87).  After grouping pairwise values based on whether or not they were 

separated by the road, there was still an absence of IBD (Fig. 2).  The ANCOVA verified 

that there was no significant difference in slope among the three regressions (F = 0.0115, 

P = 0.98, DF = 2).  Not only did the regressions lack a pattern of IBD, they exhibited a 

slightly negative relationship between genetic and geographic distance.  I used AMOVA 

to compare components of variance among groups, among populations within groups, 

and within populations.  The AMOVA revealed that the ‘North’ and ‘South’ group 

designations explained the least amount (0.02%) of genetic variation in the model (Table 

3). 
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DISCUSSION 

This study demonstrates a pattern of chaotic genetic patchiness in a terrestrial landscape 

that is anthropogenically fragmented.  Road construction, fire suppression, and logging 

can act as disturbances that can isolate populations, reducing gene flow and genetic 

variability (Forman & Alexander, 1998; Frankham, 2005; Myers, 1990).  The 

combination of these disturbances and the habitat specificity and limited vagility of S. 

woodi has consequences for population dynamics and genetic diversity.  These results 

support previous studies of S. woodi that indicate landscape structure limits their 

distribution resulting in isolated populations (Hokit et al., 2010; Hokit & Branch, 2003; 

Hokit et al., 1999; McCoy, Hartmann & Mushinsky, 2004; Tiebout & Anderson, 1997).  

Pairwise Fst estimates detect a significant degree of genetic isolation throughout the 

forest.  To my knowledge, the only potential barriers to S. woodi dispersal are roads, 

overgrown habitat, and some urbanization.  The major cause of the isolation observed 

across the ONF is overgrown forest that reduces connectivity among suitable habitat 

patches. 

POPULATION DIFFERENTIATION (Fst) 

Tiebout & Anderson (1997) used S. woodi as a model to address the importance of 

connectivity for species that depend on transient and early successional habitat.  Since the 

ONF houses the largest remaining population of S. woodi and is heavily logged, their 

study focused on the importance of the patch geometry of logging clearcuts for 

connectivity.  Their simulations demonstrate that shape, location, and timing of 

neighboring clearcuts, play a vital role on whether lizards can successfully migrate to 
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suitable habitat when a site becomes overgrown.  The results of this study suggest that S. 

woodi populations across the ONF experience little or no gene flow. 

It is interesting that I find both patterns of genetic differentiation and non-

differentiation.  Though fifteen of twenty-one pairwise comparisons among populations 

are genetically different, six are not.  For example, pairwise Fst for populations KI and 

BS is 0.007 (P >> 0.05).  These populations are separated by 36 km of forest and SR-40.  

It is nearly impossible that there is any migration or gene flow occurring between these 

locations without migration among populations closer together.  These populations, and 

others in this study, are likely genetically similar and different due to random chance.  

The term ‘chaotic genetic patchiness’ has been given to systems (mainly marine) that 

lack a clear geographic pattern of genetic structure.  Ocean currents, tides, and 

environmental variables (e.g. habitat quality, temperature, etc.) have been suggested as 

reasons why this genetic patchiness exists (Johnson & Black, 1982; Selkoe, Watson, 

White, Ben Horin, Iacchei, Mitarai, Siegel, Gaines & Toonen, 2010).  The ONF is a 

highly dynamic habitat due to commercial logging.  Suitable habitat is changing 

constantly due to the location, size, and timing of clearcuts.  This random distribution of 

genetically similar populations coupled with multiple extinction and colonization events 

are indicative of metapopulation dynamics.   

A metapopulation has been described as a population of unstable populations 

(Levins, 1969).  It consists of a network of habitat fragments whereby organisms exist as 

discrete local populations connected by varying levels of migration (Hanski, 1998).  

These populations are subject to size fluctuation and extinction caused by environmental 

variation and demographic stochasticity (Leigh, 1981).  Individual populations 
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experience local extinctions but the metapopulation as a whole will persist due to 

emigration and immigration among subpopulations.  Although metapopulation dynamics 

are typically employed to investigate ecological questions, they have profound impacts 

on genetic structure as well.  Gene flow is crucial for maintaining genetic variability 

within populations and curbing inbreeding and genetic drift in populations that have been 

isolated via disturbance (Corlatti et al., 2009; Frankham, 2005).  It is likely that the ONF 

is a metapopulation for many scrub organisms.  In an ecosystem currently maintained by 

logging, suitable habitat appears and disappears at a high rate and species must migrate 

among suitable patches to avoid extinction.  The growth rate and persistence of the 

metapopulation depends upon intrinsic attributes of the species such as habitat specificity 

and migration behavior (Hanski, 1998).  Since S. woodi has strict habitat requirements 

and a low vagility, long-term viability of the metapopulation in the ONF will depend on 

the availability of suitable open habitat (e.g. clearcuts, prescribed burns, etc.) with 

patches in close proximity to enhance connectivity.   

ISOLATION BY DISTANCE 

If a pattern of genetic IBD is discovered, then this implies non-random mating and 

restricted gene flow among populations (Wirth & Bernatchez, 2001).  In the ONF, S. 

woodi does not exhibit IBD (Fig. 2a).  On the contrary, I measured a slightly negative 

relationship between geographic and genetic distance (i.e. lizards separated by 20 km 

were as genetically similar or more similar than lizards only 2 km apart).  This may not 

be surprising as a recent study of S. woodi showed that though significant genetic IBD 

was detected, ecological metrics (e.g. patch area, relative isolation) were more predictive 

of genetic structuring than geographic distance (Hokit et al., 2010).  The main difference 
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between their study and the present is likely the influence of human disturbance in the 

ONF.  The commercial logging results in a more dynamic habitat that has led to the 

observed genetic patchiness in S. woodi. 

 The ONF also has the added complexity and disturbance of roads.  Previous 

studies have shown that roads can generate genetic differentiation in rodents (Gerlach & 

Musolf, 2000), marsupials (Lee, Seddon, Corley, Ellis, Johnston, de Villiers, Preece & 

Carrick, 2010), large mammals (Dixon, Oli, Wooten, Eason, McCown & Cunningham, 

2007; Epps, Palsboll, Wehausen, Roderick, Ramey & McCullough, 2005), insects (Keller 

& Largiader, 2003; Keller et al., 2004), amphibians (Marsh, Page, Hanlon, Corritone, 

Little, Seifert & Cabe, 2008), and reptiles (Clark, Brown, Stechert & Zamudio, 2010).  

Pairwise combinations of populations were separated based upon whether they were on 

the same or opposite side of the road.  As evidenced by homogeneity in regression slopes, 

the relationship between geographic and genetic distance is not altered by the presence of 

SR-40.  

Construction on SR-40 began in 1926 and was finished in 1927 (FDOT), leaving 

over 80 years (approximately 62 generations; Jackson & Telford, 1974) to potentially 

restrict movement between northern and southern populations of S. woodi.  If we assume 

a scenario in which SR-40 is the only barrier to dispersal (i.e. northern lizards can mate 

with northern lizards only and southern lizards can mate with southern lizards only), we 

would expect to detect significant genetic differentiation across the road.  This would not 

be unheard of seeing that I examined differentiation over short distances (2 km) between 

populations separated by SR-40 (40N & FEE; CN & CS).  AMOVA allows the 

researcher to partition the total variance into covariance components at different 
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hierarchical levels (Excoffier, Smouse & Quattro, 1992).  The AMOVA indicates that 

partitioning populations into clusters based on the presence of SR-40 only explains 

0.02% of the genetic variation in S. woodi.  This leaves 2 explanations: (1) SR-40 is not a 

barrier to dispersal and lizards are able to traverse the road and exchange genetic material 

or (2) there is not significant gene flow taking place in any area of the forest including 

across SR-40.  The results lend more support to the latter.  Measures of Fst and IBD 

demonstrate that there is a substantial degree of genetic isolation across the forest 

regardless of SR-40.  Furthermore, in over 16 years, wildlife biologists with the Unites 

States Forest Service (USFS) have never spotted S. woodi alive or dead on SR-40 

(personal comm. Carrie Sekerak).   

The Florida Department of Transportation has initiated a widening project to 

increase portions of SR-40 from two lanes to four lanes.  During construction, the USFS 

has received approval to add wildlife passages along SR-40 to promote animal movement 

across the road (www.sr40pde.com).  Previous research has demonstrated that crossing 

structures such as overpasses and underpasses can be effective at reducing wildlife 

roadkills, enhancing connectivity, and reducing genetic structuring around roads (Corlatti 

et al., 2009; Glista, DeVault & DeWoody, 2009).  Anecdotal evidence suggests that 

lizards do not cross SR-40.  Though populations separated by the road do show 

significant differentiation (Fst), the results also indicate significant isolation in all areas 

of the forest.  My best interpretation is that the leading cause of genetic isolation for S. 

woodi is overgrown, mature forest.  It is possible that lizards are not seen crossing SR-40 

because there is little suitable habitat near the road.  While wildlife passages may be 

valuable for increasing connectivity across the road, access to these passages (i.e. suitable 
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habitat) is crucial if they are going to be successful.  Before and after studies to examine 

the effects of roads or effectiveness of wildlife passages are ideal (Glista et al., 2009; 

Keller et al., 2004) but few exist.  These results will be valuable to later evaluate the 

effectiveness of the wildlife passages to increase connectivity and to see how 

metapopulation structure might vary temporally. 
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Table 2.1  Microsatellite summary statistics for all 7 populations. 

 

Population Sample Size 

Expected 

Heterozygosity 

Observed 

Heterozygosity 

Avg. No. 

Alleles 

40N 21 0.6311 0.7476 5.60 

BS 20 0.7754 0.7600 7.80 

CS 23 0.7756 0.7597 7.00 

KI 18 0.7188 0.6841 6.80 

SS 20 0.7597 0.7200 7.00 

FEE 20 0.7800 0.7700 8.00 

CN 17 0.7633 0.7412 7.00 

 

Table 2.2  Pairwise estimates of Fst (below diagonal) and geographic distance (above 

diagonal) in km. 

 40N BS CS KI SS FEE CN 

40N  14.1* 5.95* 20.8 14.5* 2.01* 6.00* 

BS 0.043*  16.7 36.0 29.8 14.2* 18.5 

CS 0.077* 0.010  21.3 15.7 4.53* 2.11* 

KI 0.009 0.007 0.038  6.28 22.0* 19.2 

SS 0.074* 0.015 0.012 0.024  15.9 13.7 

FEE 0.096* 0.032* 0.030* 0.069* 0.014  5.30 

CN 0.074* 0.002 0.018* 0.048 0.014 0.009  

 

BOLD indicates significance using a Fisher’s exact G test (P < 0.05) 

* Indicates significance after Bonferroni correction (P < 0.002) 
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Table 2.3  AMOVA with 2 groups and 7 populations.  Populations were designated in 

the “North Group” if they were North of SR-40 or “South Group” if they were situated 

South of SR-40. 

Source of Variation Sum of Squares 
Variance 

Components 

Percentage 

Variation 

Among Groups 4.417 0.00045 0.02341 

Among Populations 

within Groups 
21.440 0.06491 3.36197 

Within Populations 481.531 1.86524 96.61462 

Total 507.387 1.93060  
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Fig. 2.1  Populations where lizards were caught throughout the Ocala National Forest, 

FL.  Locations of populations were achieved via handheld GPS units and the map was 

created using ArcGIS 9.3.
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Fig. 2.2  Isolation by distance tests comparing genetic and geographic distance among all 

combinations of populations.  A, all Pairwise comparisons ignoring the presence of SR-

40 (i.e. all possible comparisons).  B, all Pairwise comparisons that are on the same side 

of the road.  C, all Pairwise comparisons separated by the road.  There is no statistical 

difference in slope (ANCOVA, P = 0.98) or R
2
 among regressions. 
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