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by 
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ABSTRACT 
River floodplain habitats of the Southeastern United States are sites of high biological productivity that 
rely on a predictable flooding event as a keystone process.  This study took place in a river-floodplain 
area of the Altamaha River, an unimpounded large-order river in the Coastal Plains region of the US.  

This study aims to investigate how aquatic macroinvertebrate communities changed over the course of the 
annual flood pulse.  I predicted that the communities would be different and that the differences would be 
driven by hydrology at the main stem and organic matter standing stock availability.  I took quantitative 
samples of benthic macroinvertebrates monthly from December 2011-April 2012 and from December 
2012- April 2014.  Invertebrate abundance was assessed and biomass was obtained using published 
length-mass regressions.  Year 1 (2011-2012) was characterized by severe drought. And Year 2 was 

characterized by a large flooding event. There was a significant difference between the communities.  In 
year 1 the community was influenced by hydrology and high FBOM standing stocks.  In year 2 the 

community was influenced by hydrology and low CBOM standing stocks. This study shows the 
importance of a flooding event in river floodplain systems and supports the idea that floodplains act as a 
source of organic matter to the main stem and are sites of high biological productivity especially from 
aquatic macroinvertebrates.  As unimpounded rivers are becoming increasingly rare, it is important to 

understand how these systems function in both normal and abnormal (i.e., drought vs. flood) conditions. 
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CHAPTER 1 

LITERATURE REVIEW 

 Floodplains are prominent physical features of many riverine landscapes.  Floodplains of the 

Coastal Plain are highly abundant habitats (Hunt, 1967) that are low-gradient landscape adjacent to the 

main channel of a river that experience inundation or flooding.  They are ecologically important features 

as they provide a multitude of resources (e.g., food, habitat) for aquatic and terrestrial biota.  In the 

southeastern United States, riverine floodplains are an abundant habitat type that also acts as an important 

conduit for energy to the adjacent river and riparian areas (Hunt, 1967; Baxter, 2005).  Increased demands 

on freshwater resources, alteration and modification of river systems, as well as natural disturbances such 

as drought are all factors that can negatively influence the ecological functioning of floodplain habitats. 

Understanding the temporal patterns of aquatic ecosystems during such disturbances is necessary to 

consider when dealing with management issues and conservation of riverine floodplain habitat.   

 Coastal plain floodplains become inundated annually in the winter months (December-March) 

due to decreased evapotranspiration and water usage from riparian vegetation (Smock, 1999).  Seasonal 

flooding (the “flood pulse”), as described by Junk et al. (1989), is a key process in floodplain ecosystems.  

Inundation of floodplains provides essential habitat for aquatic biota (fish, macroinvertebrates) to spawn, 

develop, feed, and seek refugia.  Flooding provides increased habitat and nutrient availability as well as 

organic matter transport to the main channel (Cuffney, 1988; Jones and Smock 1991).  Flooding also 

increases surface area which makes floodplains a major energetic contributor to riverine ecosystems per 

unit area (Benke, 2001).  

 Ecosystem functions provided by riverine floodplains are associated with both riparian and 

riverine ecosystems.  Riparian zones provide allochthonous inputs to floodplains which serve as a 

substantial energy and carbon subsidy. Coastal plain floodplains receive approximately 4643 g m-2 yr-1of 

litter fall of which 55-80% is derived from autumnal leaf fall (Cuffney, 1988; Benfield, 1997; Meyer et 

al., 1997; Webster and Meyer, 1997).  Studies conducted on the Ogeechee River suggest that coastal plain 

river floodplains act as sources of organic matter due to high transport of suspended particulates to the 
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main channel (Benke and Meyer, 1988; Cuffney, 1988; Tockner et al., 1999).   Breakdown of terrestrial 

litter fall in floodplains provides particulate organic matter to both the floodplain and the riverine system.   

 In addition to energy obtained from the riparian zone, riverine floodplains are sites of high 

biological productivity.  Due to high surface area during inundation, biomass is higher per unit area in the 

floodplain than in the main channel (Benke, 2001).  Fallen trees and large woody debris (commonly 

referred to as snags) are abundant in coastal plain river floodplains and are also a main driver of 

invertebrate biomass in floodplain systems by providing a stable substrate necessary for colonization 

(Meyer, 1990; Braccia and Batzer, 2001).    Since annual net primary production in riverine floodplains of 

the Coastal Plain can be fairly low (Sharitz and Pennings, 2006), production from macroinvertebrates is 

vital to the overall productivity of the system.  

 Aquatic macroinvertebrates in floodplains form assemblages that are specially adapted to the 

periodic nature of flooding floodplain ecosystems and play a major role in ecosystem functions.  

Macroinvertebrate communities in coastal plain river floodplains are dominated by obligate wetland 

invertebrates such as predaceous beetles (Dytiscidae), amphipods (Crangonyctidae), and isopods 

(Asellidae) (Reese and Batzer, 2007).  These organisms have developed specialized life history strategies 

that allow them to survive brief periods of inundation followed by longer periods of limited water 

availability (Wissinger, 1999).  Some of these strategies include quick turn-over rates, resistance to 

desiccation, resting egg stages, or the ability to survive in the hyporheic zone (Smock et al., 1985; Smock, 

1999; Griswold et al., 2008). Specialized life history strategies give these macroinvertebrates an 

advantage under stressful environmental conditions. 

Aquatic macroinvertebrates play a major role in ecological functions in river floodplains as 

consumers of organic matter.  Organic matter breakdown is an important process in stream ecosystems as 

it converts large items such as leaves into smaller, easily consumed particles.  Previous studies have 

shown that fine benthic organic matter (FBOM; leaf litter and organic matter from 250 µm to 1mm) are 

important food sources to many of the invertebrates common to lentic river-floodplain habitat (Taylor and 

Batzer, 2010).  The roles of macroinvertebrates in aquatic food webs can be described using functional 
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feeding groups, or FFGs (Batzer and Wissinger, 1996; Wallace and Webster, 1996).  Functional feeding 

groups classify aquatic macroinvertebrates based on their feeding habits (i.e., shredding, collecting, 

predation) rather than the food source (i.e., leaves, organic matter particles, animal tissue).  Functional 

feeding groups are a relatively rapid classification method used to obtain relative trophic position within 

the macroinvertebrate food web as well as a way to link these organisms to ecosystem processes such as 

leaf breakdown (Lugthart and Wallace, 1992; Cummins et al., 2005).  

Due to the high volume of terrestrial input from riparian forests, as well as the lentic nature of 

floodplains, organic matter breakdown is due to consumers more than physical breakdown from flowing 

water (Cuffney and Wallace, 1987).   Since forested floodplains of the Coastal Plain do not contain 

preferred habitat for the suite of typical shredding macroinvertebrates (e.g., Plecoptera and 

Ephemeroptera), other invertebrates that are typically classified as omnivorous (e.g. Isopoda and 

Amphipoda) must assume the role of shredders.  The functional plasticity of these macroinvertebrates is 

necessary in order for organic matter breakdown to occur. 

Physical and biological processes in river floodplains depend on flooding.  Hydrology is often 

referred to as the “master variable” in freshwater ecosystems that influences both physical and biological 

components of freshwater ecosystems (Poff et al., 1997).  Flooding assists in organic matter 

accumulation, breakdown, and transport from the floodplain to the main channel (Benke and Meyer, 

1988; Cuffney, 1988; Meyer et al., 1997; Golladay et al., 2000; Golladay et al., 2007).  Additionally, 

natural flooding provides increased habitat availability in floodplains and promotes biological diversity 

(Ward 1998; Benke, 2001; Lytle and Poff, 2004).   

Today many rivers in the United States are subject to alterations in flow that are either 

anthropogenic (dams and channelization) or natural (drought) in origin.  Anthropogenic stressors (e.g. 

dams and channelization) are becoming increasingly common due to increasing demand on freshwater 

resources and human development.  As a result approximately 2% of rivers in the United States are 

unmodified and naturally flowing (Graf, 1993).  In the past decade natural disturbances, specifically 

drought, have gained attention as frequency of drought is predicted to increase as a result of climate 
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change (Lake 2003; Lake 2008; Thorp, 2014).  	
  Alteration of the natural flow regime causes a shift in the 

magnitude, frequency, and duration of hydrologic events which can result in negative ecological 

responses such as reduced biological diversity and loss of ecosystem function (Poff et al., 1997; Cardinale 

et al., 2012).  

From 2009 to 2012 Georgia experienced a multi-year drought (US Drought Monitor, 2014).  This 

type of multi-year, unpredictable drought event is referred to as a supraseasonal drought and is less well 

understood than the more predictable seasonal drought (Lake, 2003).  Supraseasonal droughts are 

becoming more prevalent with human modified flow regimes and low precipitation years (Lake, 2008).  

Disturbances such as drought have the potential to affect standing crop biomass (macroinvertebrates and 

benthic organic matter), taxonomic richness, and trophic-functional diversity and it is therefore necessary 

to examine these factors when investigating the impact of drought (Resh et al., 1988). 

The purpose of this study is to identify trends in aquatic macroinvertebrate community 

composition and function and benthic organic matter standing stock in a river floodplain of the Altamaha 

River in southeastern Georgia during severe drought and flooding conditions.  The Altamaha River basin 

consists of approximately 738,000 hectares of which 44% is forested cover, 17% is wetlands, 1.4% is 

urbanized and 19% is agricultural (Georgia DNR, 2003).  It is the largest river basin in the state, draining 

approximately 25% of Georgia.  Its two major tributaries are the Oconee and the Ocmulgee Rivers that 

originate in the Piedmont physiographic region of the state and converge in the Coastal Plain region to 

form the main stem of the Altamaha. While there are several small dams on the Oconee and the 

Ocmulgee Rivers, there are no impoundments on the main stem of the Altamaha which allows the flow 

regime to occur naturally.  This large river is a valuable resource as it falls within the 2% of rivers in the 

United States that flow naturally.  

 The Altamaha River supports animal life that is of economic, recreational and conservation 

importance.  Approximately 93 species of fish including many sport fish (redbreast, bluegill, warmouth 

and other centrarchids), the economically important American shad and the endangered Atlantic and 

shortnose sturgeon inhabit the Altamaha (Benke and Cushing, 2010).  In total there are 25 endangered 
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species in the Altamaha River including several fish and invertebrates species such as the Altamaha 

spinymussel which was listed as an endangered species in 2011 (Benke and Cushing, 2010; USFWS, 

2011).  The lower reaches of the Altamaha are characterized by a wide, meandering main channel that is 

bordered by large bottomland hardwood forests, swamp and floodplain habitat.  Approximately 10,000 

hectares of riparian forest along the Altamaha are designated as wildlife management areas (WMAs) by 

the Georgia Environmental Protection Division.  This acreage is divided into three WMAs (upstream to 

downstream): Bullard Creek WMA, Moody Forest Natural Area, and Big Hammock WMA.  Wildlife 

management areas provide hunting and recreation opportunities as well as minimally developed habitat 

for scientific investigation. 

Research on aquatic ecosystems has been conducted at both Bullard Creek and Big Hammock 

WMA.  Reese and Batzer (2007) identified longitudinal patterns in aquatic macroinvertebrate 

communities by investigating a series of habitat ranging from the headwaters of the Oconee River in 

northern Georgia to Big Hammock WMA.  Results of this study concluded that there are predictable 

differences in community composition from the headwaters to the lower reaches of the Altamaha (Reese 

and Batzer, 2007).  In a study that included data from Bullard Creek and Big Hammock WMA, Bright et 

al. (2010) identified unique fish and macroinvertebrate communities in the river-floodplain and the 

upland-floodplain ecotones.  Both of these studies have provided spatial analysis of aquatic 

macroinvertebrate communities in river-floodplain areas of the Altamaha however assessments of 

temporal patterns in these communities are still lacking. 

Due to the prevalence of drought disturbance in the state, there is a need to characterize aquatic 

communities and their response to this disturbance since this is still a growing area of research (Lake, 

2008).  Sampling for this study occurred during the 2011-2012 and the 2012-2013 flood pulse.  The 2011-

2012 flood pulse was characterized by lower than average flows at the main stem, followed by a small 

flooding event.  The 2012-2013 flood pulse was characterized by a wet summer and a large flooding 

event in the winter.  This contrast between drought and flood provided a unique research opportunity to 
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determine the potential resiliency of the aquatic macroinvertebrate communities that inhabit the 

floodplains of the Moody Forest. 

 I addressed the question of how aquatic macroinvertebrate communities and their associated food 

resources change throughout the course of the annual flood pulse in the river floodplain area of the 

Altamaha River.  Since river-floodplains depend on a predictable flood event, the temporal aspect of this 

study makes it unique compared to previous research that has been conducted in similar habitats.  I 

predicted that there would be discernible differences in community structure and function between 

sampling years.  These changes are predicted to be driven by variation in food resource availability as 

well as gauge height in the main channel of the river.   
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CHAPTER 2 

BENTHIC MACROINVERTEBRATE COMMUNITY RESPONSE TO FLOODING AND DROUGHT 

 

Introduction 

Floodplains are low gradient areas adjacent to the main channel of a river that can be both 

ecologically and economically valuable.   Floodplains provide habitat, food resources, and ecosystem 

functions such as organic matter processing and nutrient cycling (Junk et al., 1989; Benke, 2001). 

Ecosystem functions provided by floodplains are valued at approximately $19,500 ha-1 yr-1, which is 

second only to ecosystem services provided by estuaries (Costanza et al., 1997).  Freshwater coastal 

floodplains are characterized by a predictable hydrological event in which lateral overbank flooding 

occurs.   In the Southeastern Coastal Plain of the United States seasonal flooding typically begins in the 

winter months (December-March) and is coupled with decreased evapotranspiration and water usage from 

riparian vegetation  (Smock, 1999).  This flood pulse event, as described by Junk et al. (1989), provides 

increased habitat and nutrient availability as well as organic matter transport to the main channel 

(Cuffney, 1988; Jones and Smock 1991).  Due to their large surface area during inundation, floodplains 

are highly productive making them a major energetic contributor to riverine ecosystems (Benke, 2001).  

 The aquatic consumer communities (e.g., fish, macroinvertebrates) that inhabit floodplains are 

highly productive.  Snag habitat (i.e., deposited woody debris), which is characteristic of river floodplains 

in the southeastern US, facilitates high macroinvertebrate production that can at times exceed that of the 

main channel (Benke et al., 1984; Benke, 2001).  Benthic macroinvertebrate communities in southeastern 

floodplains are dominated in abundance and biomass by Oligochaeta, Isopoda, chironomid larvae, 

mollusks and crustaceans (Smock, 1999; Batzer and Wissinger 1996; Benke 2001). This 

macroinvertebrate biomass can be an important energetic source that links basal resources to higher 

trophic levels (Ross and Baker, 1983; Batzer and Wissinger 1996;   

The Altamaha River Basin is one of the largest watersheds in the U.S. Atlantic coast, originating 

in the northern Piedmont physiographic region, continuing through the coastal plain region, and 
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terminating at the Atlantic Ocean. The Altamaha River is a 6th order river with low topographic relief with 

abundant floodplain habitat.  Furthermore, unlike in other major river basins in the southeastern Coastal 

Plain (e.g., Savannah River), there are no major impoundments on the main stem of the Altamaha River 

making it an ideal system for studying natural flow regimes in the Coastal Plain.   

From 2009- 2013, Georgia experienced a multi-year, supraseasonal drought disturbance (US 

Drought Monitor, 2013). Supraseasonal droughts are becoming more prevalent with human modified 

flow regimes and low precipitation years (Lake, 2003; Lake, 2008).  During this time, discharge on the 

main stem of the Altamaha River near Baxley, Georgia, was well below the 42-year average (USGS, 

2013).  Human-mediated or natural disturbances can have impacts on the floodplain ecosystem and thus 

affect the ecosystem function and services they provide.   

In this study I assessed temporal patterns of aquatic macroinvertebrate community structure in a 

floodplain of the Altamaha River, at the Moody Forest Natural Area in Appling Co., Georgia.  The study 

was conducted over the course of an annual flooding event during a two year period (December 2011-

April 2012 and December 2012-April 2013). December 2011-April 2012, hereafter referred to as “year 

1”, was characterized by severe to extreme drought while December 2012-April 2013, hereafter referred 

to as “year 2”, was characterized by higher than average discharge at the main stem.  I examined 

macroinvertebrate community abundance and biomass as well as quantified benthic organic matter 

standing stocks.  I hypothesized that aquatic macroinvertebrate abundance and biomass would differ 

between the two years and that hydrology at the main channel and organic matter resource availability 

would be the most influential mechanisms determining the structure of macroinvertebrate communities. 

 

Methods 

Study Location 

The study site was located in a floodplain area at the Moody Forest Natural Area (Moody Forest) 

in Appling County, GA (31° 55’ 47.24” N, 82° 16’ 12.14” W).  The Moody Forest consists of 

approximately 1,780 hectares of land designated as Wildlife Management Area (GA DNR).  Land cover 
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is comprised of primarily old-growth longleaf pine forests, bottomland hardwood forests, and cypress-

tupelo sloughs.  Dominant tree species at the Moody Forest include bald cypress (Taxodium distichum), 

water tupelo (Nyssa aquatica), and overcup oak (Quercus lyrata).  Approximately, three river kilometers 

of the Altamaha River and adjoining floodplains run though the Moody Forest.  The area has been co-

managed by the Georgia Department of Natural Resources and The Nature Conservancy since 2001 (The 

Nature Conservancy, 2005).  The sampling area for the study was a backwater slough that consistently 

retains water throughout the year and experiences an increase in water level continuously.   

 

Hydrology and Water Quality 

Temperature (°C), dissolved oxygen (mg/L), conductivity (µS/cm), and pH were recorded 

monthly using a handheld YSI Professional Plus Multi-parameter Water Quality Meter (YSI, Inc).  

Hydrologic data (discharge, gauge height, multi-year averages) were obtained from USGS gauge 

02225000 near Baxley, GA (waterdata.usgs.gov/nwis). This gauge is located at the bridge crossing the 

Altamaha River on US Highway 1, approximately 5-10 km upstream of the site. Temperature was 

monitored continuously every 90 minutes using a HOBO pendant temperature logger.  Diel oxygen 

curves were also obtained during year 1 of the study using a YSI XLM900 multi-parameter sonde. 

 

Benthic Macroinvertebrate and Organic Matter Standing Stocks 

Macroinvertebrates were collected monthly using a benthic corer (sampling area 0.032 m2) from 

December 2011 to April 2012 and December 2012 to April 2012.  During collections, the core was placed 

into the water, inserted and secured into the substrate, and all benthic macroinvertebrates and organic 

matter down to approximately 10 cm below the substrate surface were removed and placed into a 5 gal 

bucket.   Three samples were taken each month in approximately the same place each month.  The 

volume of sample material removed from the core and placed in the bucket was recorded and contents of 

the bucket were poured through a 250µm sieve.  To collect very fine benthic organic matter (VFBOM; < 

250µm) a 50-100 ml subsample of water filtered through the sieve was collected and frozen until further 
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processing.   All other materials retained in the sieve were placed in a plastic bag, preserved with ~70% 

ethanol and transported to the laboratory for further processing.    

At the laboratory, samples were washed through stacked 1mm and 250µm sieves to further 

separate the sample into coarse benthic organic matter (CBOM; >1mm) and fine benthic organic matter 

(FBOM; <1mm, but >250µm). CBOM was further separated into wood, leaves, or miscellaneous 

components.  All macroinvertebrates were sorted from organic matter, identified to the lowest taxonomic 

level possible (usually genus for insects, order/family for non-insects) using Merritt et al. 2008 and Thorp 

and Covich 2010, and preserved in ~70% ethanol. To estimate biomass, individual invertebrates were 

measured to the nearest 1mm.  Biomass was estimated using published length-mass regressions for 

specific taxa (when available) or length-mass regressions for a similarly-sized taxon within the same 

classification group (Pace and Orcutt, 1981; Hodar, 1996; Benke et al. 1999; Mercer et al., 2001; Sabo et 

al., 2002; Stead et al., 2003; Chimney et al., 2007). After all macroinvertebrates were removed, organic 

matter components were placed in a drying oven at 60°C for at least 48h and weighed to the nearest 0.01g 

to obtain dry mass (DM). Organic materials were later combusted in a muffle furnace at 500°C for 1h and 

weighted to obtain ash free dry mass (AFDM; Benfield 2006).  

Statistical analysis 

Biomass and Abundance data were log transformed to meet assumptions of equal variance and 

normality.  After transformation equal variance and normality were tested using Levene’s test and the 

Shapiro-Wilk test, respectively.  Differences between sampling months and sampling years were tested 

using a factorial Analysis of Variance (ANOVA) in JMP Pro 10 and differences between groups were 

assessed with a Tukey-Kramer post-hoc test (SAS Institute Inc., Cary, NC, USA).  Differences in aquatic 

macroinvertebrate communities between sampling years were examined with nonmetric multi-

dimensional scaling (NMDS) based on abundance and biomass data using PRIMER6 software (McCune 

and Grace, 2002; Primer-E Ltd., Plymouth, UK). Community dissimilarities were calculated using the 

Bray-Curtis Index (Bray and Curtis 1957).  
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When a grouping among sampling years was suggested by NMDS, Analysis of Similarity (ANOSIM) 

was used to determine significant results.  Similarity Percentages (SIMPER) was used to identify the 

percent of the total community each taxon were contributing during both sampling years.  Both ANOSIM 

and SIMPER tests were run with Primer 6 software (Primer-E Ltd., Plymouth, UK)    

In order to determine the amount of variation that environmental factors were contributing to the 

overall biomass and abundance of the invertebrate community, a Principal Components Analysis (PCA) 

was performed (Gauch, 1982).  The environmental factors used were:  temperature, dissolved oxygen, 

discharge at the main stem, as well as CBOM, FBOM and VFBOM standing stock data.  PCA was run 

with JMP Pro 10 (SAS Institute Inc., Cary, NC, USA).  Scree plots and vector scores were examined to 

determine which axes were contributing a majority of the variance. 

Results 

Hydrology and Water Quality 

While there was a noticeable hydrologic event, gauge height in the main stem of the Altamaha 

near the study site did not reach or exceed flood stage during year 1(Figure 2.1).  During the second year 

of the study, 2012-2013, the main stem of the Altamaha exceeded flood stage in March and April (Figure 

2.2).  

Temperature increased in both years, as expected, as the sampling period progressed.  Overall, 

dissolved oxygen rates in year 1 were lower compared to year 2 and ranged from 2.9-5.4 mg/L (Table 

2.1).  In year 2 dissolved oxygen ranged from 3.6-10.8 mg/L which was, at times, twice as high as 

dissolved oxygen from Year 1.  Conductivity in year 1 remained constant, but in year 2 there was a drop 

in conductivity coupled with the flooding event.  pH at the study site remained stable in both years. 
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Benthic Organic Matter Standing Stocks 

Organic matter was highly variable within samples (Table 2.2).  Overall there was a trend towards higher 

standing stocks of CBOM during year 1 than during year 2.  Both years showed a similar trend of less 

CBOM in March than in any other month.  In both years FBOM standing stocks were lowest during 

December and April and highest in March. There was low VFBOM availability (< mg/m2) during all 

months in both years except for December of year 1.    

Table 2.2. Benthic organic matter standing stocks at Moody Forest during both sampling years.  CBOM 
(> 1mm); FBOM (< 1mm, > 250µm); VFBOM (< 250µm)  

Sample 
Month 

Sampling 
Year CBOM FBOM VFBOM 

December 2011-2012 591.446 (472.626) 9.534 (3.428) 14.781 (5.583) 
January 2011-2012 395.948 (503.661) 33.681 (11.048) 5.230 (1.552) 

February 2011-2012 674.698 (746.417) 90.475 (24.079) 2.529 (1.695) 
March  2011-2012 80.114 (112.134) 108.633 (45.490) 1.240 (0.181) 
April 2011-2012 915.021 (299.920) 32.961 (11.478) 2.910 (0.551) 

     December 2012-2013 388.031 (169.926) 1.695 (0.191) 4.427 (1.887) 
January 2012-2013 214.898 (176.016) 85.730 (79.173) 3.023 (0.986) 

February 2012-2013 152.4588 (5.327) 77.954 (22.936) 1.915 (0.561) 
March  2012-2013 23.053 (1.204) 3.147 (0.066) 1.900 
April 2012-2013 97.601 (65.618) 15.3190 (8.144) 1.640 (0.540) 

 

Benthic Macroinvertebrate Communities 

In year 1, macroinvertebrate mean monthly abundance was highest at the beginning of the 

sampling period (December) and lowest during the rest of the sampling period (Figure 2.2).  The opposite 

pattern was seen in year 2, when there was highest macroinvertebrate biomass at the end of the sampling 

period (April).  There was a significant correlation between discharge and abundance for both sampling 

years (Figure 2.3; r2= 0.373, p = 0.006).  In year 1 Oligochates contributed to 20.5% of the total 

abundance, whereas copepods contributed 18.9%, non-Tanypodinae chironomids contributed 9.6% and 

ostracods contributed 7.9%.  These four taxa contributed to 50% of the total abundance in year 1.  In year 

2 copepods contributed 17.72% of the total abundance, oligochaets contributed 15.3%, non-Tanypodinae 

chironomids contributed 12% and clacadocerans contributed 10.6% 
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Figure 2.2. Average monthly benthic invertebrate abundance (±SE) at Moody Forest.  Year 1 (2011-2012) 
indicated by white bars.  Year 2 (2012-2013) indicated by solid bars.   
 

 
 
Figure 2.3.  Regression of macroinvertebrate abundance and discharge for year 1 and year 2.  Discharge 
data was obtained from USGS gauge 02225000 near Baxley, Georgia.   
 

Overall, average monthly biomass was less than 50 mg/m2 during the entirety of year 1.  There were no 

significant differences in biomass between months in year 1.  In year 1 Oligochaeta contributed 16.5% of 

the total macroinvertebrate biomass, Copepoda contributed 14.9%, non-Tanypodinae chironomids 
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contributed 12%, and asellid isopods contributed 10.6%.  These five taxa represented 54% of the total 

biomass for year 1.In year 2 average monthly biomass ranged from 9.9-145.5 mg/m2 (Figure 2.2).   There 

was significantly more biomass in April of year 2 than in December, January, February, and March of 

year 1 (ANOVA; F9,18= 6.0895; p= 0.0006).  Non-Tanypodinae chironomids contributed 16.7% of the 

total biomass, asellid isopods contributed 14.2%, Oligochaeta contributed 13.2% and copepods 

contributed 12.7%.  These four taxa contributed 56% of the total biomass to the community in year 2.    

 

 

Figure 2.4. Average monthly benthic invertebrate biomass (±SE) at Moody Forest.  Year 1 (2011-2012) 
indicated by white bars.  Year 2 (2012-2013) indicated by solid bars.   
 

 Aquatic macroinvertebrate communities were significantly different in year 1 and year 2 based on 

abundance (ANOSIM; Global R= 0.151; p= 0.005) and biomass (ANOSIM; Global R= 0.176; p= 0.003).  

NMDS ordination plots suggest a distinct clustering of macroinvertebrate communities based on 

abundance (Figure 2.2)	
  and biomass (Figure 2.4) data for each sampling year.   

PCA analysis of physiochemical parameters (temperature, dissolved oxygen, and pH), discharge at the 

main stem and organic matter standing stocks (CBOM, FBOM, and VFBOM) during year 1revealed that 
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principal component axis 1 (PC1) is characterized by high discharge and high VFBOM standing stock 

(Table 2.3).  PC2 was characterized by high dissolved oxygen, high VFBOM, high CBOM, low 

temperature and explains 30.4% of the total variation in macroinvertebrate biomass for year 1.   

 

 

Figure 2.5. Non-metric multidimensional scaling (NMDS) ordinations in terms of macroinvertebrate 
abundance for year 1 (solid triangles) and year 2 (open triangles) 
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Figure 2.6. Non-metric multidimensional scaling (NMDS) ordinations in terms of macroinvertebrate 
biomass for year 1 (solid circles) and year 2 (open circles).   
 

Table 2.3. Eigen loadings for each principal component (PC) vector of year 1 based on physiochemical 
parameters and invertebrate biomass standing stocks. 

  PC1 PC2 
Temperature 0.276 -0.502 

DO 0.295 0.542 
pH -0.056 0.280 

Discharge 0.570 0.044 
VFBOM -0.210 0.515 
FBOM 0.611 -0.035 
CBOM 0.302 0.328 

Percent Variation to Biomass 32.806 27.063 
Total Percent Variation 32.806 59.869 
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Figure 2.7. Principal component vectors for year 1.  PC axis 1 was characterized by high discharge and 
high FBOM standing stocks. 
 

 

 In year 2 PC1 explained 38.6% of the total variation in macroinvertebrate biomass on and was 

characterized by high discharge, high dissolved oxygen, and high VFBOM (Table 2.6, Figure 2.8).  

Principal Component axis 2 (PC2) was characterized by high dissolved oxygen, high VFBOM, and low 

discharge.   

 

Table 2.4. Eigen loadings for principal component (PC) axes1 and 2 for 2012-2013.  Analysis was based 
on physiochemical data and mean aquatic invertebrate biomass across all months. 
 

	
  	
   PC1 PC2 
Temperature 0.458 0.206 

DO -0.263 0.289 
pH 0.515 0.330 

Discharge -0.453 0.219 
VFBOM 0.309 0.355 
FBOM -0.377 0.319 
CBOM 0.114 -0.699 

Percent Variation to Biomass 39.721 21.658 
Total Percent Variation 39.721 61.379 
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Figure 2.8. Principal component vectors for year 2.  PC axis 1 was characterized by high discharge and 
low CBOM standing stocks. 
 

 

In year 1 there was a significant positive relationship between discharge and FBOM standing stocks; there 

was a significant negative relationship between discharge and CBOM and total organic matter standing 

stocks (Table 2.7) 

Table 2.5. Regression values for discharge at USGS gauge 02225000 near Baxley, GA and organic matter 
standing stocks at Moody Forest 

Size Sampling Year r2 p 
CBOM 2011-2012 0.0197 0.9491 
FBOM 2011-2012 0.645 0.0128* 

VFBOM 2011-2012 -0.3337 0.2437 
All OM 2011-2012 -0.6158 0.6663 

    CBOM 2012-2013 -0.6045 0.0374* 
FBOM 2012-2013 0.3412 0.2539 

VFBOM 2012-2013 -0.3051 0.3349 
All OM 2012-2013 -0.5377 0.0474* 
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Discussion 

This this study supports the hypothesis that invertebrate abundance and biomass would differ 

during flooding and drought and that those differences would be due in part to seasonal hydrologic 

variation and availability of organic matter standing stocks.  Poff et al. (1997) identified magnitude, 

frequency, duration, timing, and rate of change in the flow regime as the five master variables in 

freshwater ecosystems upon which ecosystem processing and biodiversity depend on.  In both years of 

this study hydrology was an important component in driving the variation in abundance and biomass of 

aquatic macroinvertebrates.  My results showed that discharge and abundance were positively correlated 

and there was a strong trend towards higher biomass in the second year of the study which was 

characterized by a large flood. 

Furthermore, benthic macroinvertebrate community abundance and biomass was significantly 

different between the drought (year 1) and flood (year 2) year.  Despite the significant differences in 

overall aquatic macroinvertebrate community abundance and biomass, the assemblage of dominant taxa  

(Oligochaeta, non-Tanypodinae Chironomidae, Asellidae, and Copepoda) was similar for both years.  

This suite of taxa is characteristic of the temporarily flooded habitat as in Moody Forest, with many of 

them having specialized life history characteristics (resting egg stages, ability to live in the hyperheos) 

that are advantageous for habitat that experiences periodic wetting and drying (Smock 1999).   The 

assemblage of invertebrates found in the Moody Forest floodplain are predominantly obligate wetland 

occupants that are tolerant of low dissolved oxygen (Batzer and Wissinger, 1999; Reese and Batzer, 

2007).  Other studies in floodplain ecosystems such as Tronstead et al. (2005) suggest that survival in the 

floodplain is due to an organism’s ability to follow the receding waters and/or retreat into the exposed 

soil.  It is important to note that the flood event in the Tronstead et al., (2005) study was of a much shorter 

duration (~8d) than the one observed at Moody Forest in my study.  Nonetheless, these findings highlight 

the importance of adaptation to a changing environment as a key mechanism for survival especially with 

the increasing prevalence of extended drought and a rapidly changing climate (Lytle and Poff, 2004) 
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Since both years exhibited similarities in dominant taxa, it is possible that the ecosystem 

functions provided by the benthic macroinvertebrate assemblages were similar as well.  Oligochaetes and 

non-Tanypodinae chironomids, both collector-gatherers, consume smaller size fractions of deposited 

organic matter and, according to this study, comprised a large amount of biomass especially in the early 

stages of the flood pulse.  Asellid isopods, which were predominant in the later stages of the flood (March 

and April), are considered shredders in floodplain ecosystems that play a major role in organic matter 

breakdown from CBOM to FBOM (Golladay et al., 1999: Griffith et al., 2012).   Battle and Golladay 

(2001) found similar results in a seasonally flooded wetland where shredding invertebrate biomass and 

leaf decomposition in litter bags was high during flooding and that litter decomposition was accelerated 

by flooding events.  The high density and biomass of shredding macroinvertebrates suggests that organic 

matter resources are crucial to the productivity of the Moody Forest floodplain. 

Terrestrial litter and organic matter are known to be important basal food resources in floodplain 

ecosystems (Roach, 2013).  Forested floodplains receive a large input of energy from terrestrial 

vegetation.  In the southeastern coastal floodplains, a substantial amount of litter fall is deposited to the 

floodplain annually (4643 g m-2 yr-1) and is a major carbon subsidy that can be transported to the main 

channel or retained in the floodplain (Cuffney, 1988; Benfield, 1997).   In the Moody Forest there was 

higher trend of organic matter standing stocks overall in year 1 than in year 2.  Since year 1 was 

characterized as being the last year of a multi-year drought, the greater organic matter availability in year 

1 may have been due to the accumulation of leaf litter in the dry floodplain that becomes available to 

consumers upon flooding.  The only causal relationship found between organic matter and discharge in 

year 1 was in FBOM standing stocks. This may explain the high abundance of gatherer-collector 

invertebrates (non-Tanypodinae chironomids and oligochaetes).   

 Tockner et al. (1999) identified three distinct phases of the flood pulse: biotic interaction, 

primary productivity, and transport. The transport phase occurs when there is high water level in the main 

stem of the river and consequent overflow into the floodplain.  This is supported by the significant 

negative relationship between discharge and CBOM standing stocks.  There was also a significant 
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negative relationship of total organic matter standing stock and discharge in year 2, however this is 

believed to be caused by the fact that CBOM makes up a majority of the total organic matter standing 

stock.  Low CBOM standing stock was characteristic of year 2 of the study, further supporting the idea 

that river-floodplains act as sources of organic matter during flooding. 

The periodic nature of floodplains makes them disturbance-dependent systems (Tockner et al., 

2000, King et al., 2012).  The results of my study support the idea that the predictable disturbance 

(flooding) is advantageous for the system to function as both a site of high biological productivity by 

macroinvertebrates, as well as a source of organic matter resources within the floodplain and to the main 

channel.  In the first year of my study, I observed low macroinvertebrate biomass compared to the second 

year.  I was able to determine that both the magnitude of flooding and the organic matter resource 

availability were the most probable drivers of differences between the two years. 
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CHAPTER 3 

DISCUSSION 

A natural flow regime is important for ecosystem health and biodiversity.  Lateral flow from the 

main channel to floodplain areas is necessary to provide nutrient transport and maintain structure and 

function of floodplain communities (Bunn and Arthington, 2002).  In addition, high flow conditions have 

been identified as contributing to high sexton quality in a southeastern US floodplain system (Atkinson et 

al., 2009).  Low flow and altered flow conditions, such as that associated with dams and channelization 

have been hypothesized to have negative synergistic impacts on freshwater systems with respect to 

diversity and distribution of biota as well as energy transport from wetlands to rivers (Rolls et al., 2013) 

River-floodplain ecosystems in the southeastern United States are unique habitats that are at high 

risk for anthropogenic disturbances such as habitat alteration and ecosystem destruction (Malmqvist and 

Rundle, 2002).  Forests associated with river floodplains provide habitat for fire dependent plant taxa, as 

well as endangered species such as the red-cockaded woodpecker, and are highly susceptible to alteration 

for agricultural and silvicultural uses (Brinson and Malvarez, 2002).  Protected areas, such as Moody 

Forest, help to protect floodplain habitat as well as the ecosystem functions they provide.  

In addition to human-mediated disturbance on freshwater systems, there is an increased risk of 

extended periods of drought due to climate change with the southeastern US being particularly vulnerable 

(Mulholland et al., 1997).  Due to the unpredictable nature of onset and duration, biotic responses to 

drought are relatively understudied (Lake, 2003).  Despite the difficulties presented by the 

unpredictability of drought, the information garnered can provide valuable information on the resiliency 

of a system to drought.  

Today approximately 2% of the rivers in the United States flow freely (Postel and Richter, 2003).  

Currently, the Altamaha River is part of this small percentage that experiences natural flooding and has 

not been impounded or channelized.  The Altamaha has the potential to serve as a reference to other, more 

heavily managed rivers due to the fact that it is free flowing and contains some of the region’s most 

unique and biologically productive habitat. 
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APPENDIX 

 

 

Appendix 1. Aerial view of Moody Forest Natural Area.  Perimeter of Moody Forest is outlined in orange 
and the blue marker denotes the sampling area 
 

 

 

Appendix 2. Average monthly discharge at USGS gauge 02225000 near Baxley, Ga during the two 
sampling periods (denoted by black dashed horizontal bars). 
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Appendix 3. CBOM (±SE) standing stocks during drought (year 1) and flooding (year 2) at Moody 
Forest. 
 
 

 
Appendix 4. FBOM (±SE) standing stocks during drought (year 1) and flooding (year 2) at Moody Forest. 
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Appendix 5. VFBOM (±SE) standing stocks during drought (year 1) and flooding (year 2) at Moody 
Forest. 
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