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EFFICIENT CONTROL OF DC SERVOMOTOR SYSTEMS USING 

BACKPROPAGATION NEURAL NETWORKS 

by 

YAHIA MAKABLEH 

(Under the Direction of Fernando Rios-Gutierrez) 

 

ABSTRACT 

DC motor systems have played an important role in the improvement and development 

of the industrial revolution, making them the heart of different applications beside AC 

motor systems. Therefore, the development of a more efficient control strategy that can 

be used for the control of a DC servomotor system, and a well defined mathematical 

model that can be used for off line simulation are essential for this type of systems 

Servomotor systems are known to have nonlinear parameters and dynamic factors, 

such as backlash, dead zone and Coulomb friction that make the systems hard to 

control using conventional control methods such as PID controllers. Also, the dynamics 

of the servomotor and outside factors add more complexity to the analysis of the 

system, for example when the load attached to the control system changes. Due to 

these parameters and factors new intelligent control techniques such as Neural 

Networks, genetic algorithms and Fuzzy logic methods are under research 

consideration in order to solve the complex problems related to the control of these 

nonlinear systems. 
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In this research we are using a combination of two multilayer neural networks to 

implement the control system: a) The first network is used to build a model that mimics 

the function of DC servomotor system, and b) a second network is used to implement 

the controller that controls the operation of the model network using backpropagation 

learning technique. The proposed combination of the two neural networks will be able to 

deal with the nonlinear parameters and dynamic factors involved in the original 

servomotor system and hence generate the proper control of the output speed and 

position. Off line simulation using MATLAB Neural Network toolbox is used to show final 

results, and to compare them with a conventional PID controller results for the same 

model. 

INDEX WORDS: Neural Networks, Controller, DC Servomotor, Non-Linear Systems 

Modeling. 
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CHAPTER 1  

INTRODUCTION TO THE STUDY 

Automatic systems are common place in our daily life, they can be found in almost any 

electronic devices and appliances we use daily, starting from air conditioning systems, 

automatic doors, and automotive cruise control systems to more advanced technologies 

such as robotic arms, production lines and thousands of industrial and scientific 

applications.  

DC servomotors are one of the main components of automatic systems; any automatic 

system should have an actuator module that makes the system to actually perform its 

function. The most common actuator used to perform this task is the DC servomotor. 

Historically, DC servomotors also played a vital role in the development of the 

computer’s disk drive system; which make them one of the most important components 

in our life that we cannot live without it. Due to their importance, the design of controllers 

for these systems has been an interesting area for researchers from all over the world. 

However, even with all of their useful applications and usage, servomotor systems still 

suffer from several non-linear behaviors and parameters affecting their performance, 

which may lead for the motor to require more complex controlling schemes, or having 

higher energy consumption and faulty functions in some cases. For these purposes the 

controller design of DC servomotor system is an interesting area that still offers multiple 

topics for research, especially after the discovery of Artificial Neural Networks (ANN) 

and their possible usage for intelligent control purposes. From this point of view and the 

importance of having high efficient servomotor systems, the use of ANN played a vital 
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role in designing smart controllers that can eliminate or cope with the non-linear effects 

found in servomotor systems and improve the functions they are used for.  

DC Servomotor Systems 

A Servomotor system consists of different mechanical and electrical components, the 

different components are integrated together to perform the function of the servomotor, 

Figure 1.1 bellow shows a typical model of a servomotor system (Nise, 2008) 

 

 

 

Figure 1.1. Servomotor circuit diagram. 

Its clear that the servomotor has two main components, the first is the electrical 

component; which consists of resistance	�, inductance �, input voltage ��(�) and the 

back electromotive force ��. The second component of the servomotor is the 

mechanical part, from which we get the useful mechanical rotational movement at the 

shaft. The mechanical parts are the motor’s shaft, inertia of the motor and load inertia � 

and damping �. � Refers to the angular position of the output shaft which can be used 

later to find the angular speed of the shaft 	. 

DC Servomotors have good torque and speed characteristics; also they have the ability 

to be controlled by changing the voltage signal connected to the input. These 

characteristics made them powerful actuators used everywhere. The main concern 
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about DC servomotors is how to eliminate the non-linear characteristics that affect both 

the output speed and position. Another important non-linear behavior in servomotors is 

the saturation effect, in which the output of the motor cannot reach the desired value. 

For example, if we want to reach a 100 rpm angular speed when we supply a 12 volt 

input voltage, but the motor can only reach 90 rpm at this voltage. The saturation effect 

is very common in almost all servomotor systems. Other non-linear effect is the dead 

zone; in which the motor will not start to rotate until the input voltage reaches a specific 

minimum value, which makes the response of the system slower and requires more 

controllability. A mathematical type of non-linear effect found in the servomotors is the 

backlash in the motor gears. Some of the servomotors use internal gears connections in 

order to improve their torque and speed characteristics, but this improvement comes 

over the effect in the output speed and position characteristics. 

The goal here is to find a smart controller that is capable of eliminating as much as 

possible from these non-linearties, so that we will have a better controllability of 

servomotor drives. 

Artificial Neural Networks 

Artificial Neural Networks or ANN’s is a very powerful technique for solving complex 

dynamic systems. The idea of developing artificial neural networks was started by the 

early understanding of the human nervous system in the 1800’s, later scientists started 

to have a clearer image of how the nervous system looks like, and later in the 20th 

century (J.J Hofield, 1982) proposed the first Neuron model. When we talk about neural 

networks we need to relate their behavior to the actual biological neural system that 
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exists, which consists of neuron cell, axons and synapses (Kandel E, Schawrtz JH and 

Jessel TM. 2000). The neurons act as the processing elements, they receive the 

message though the axons, process it and then resend another message to the next 

neuron. The message first is received by the synapses, which produces some kind of 

chemicals called neurotransmitters. 

 Any neuron cell can then be excited and will act in return to the message received. The 

message generated from the neuron will be either a decision that has been made or just 

resending the same message that has been received. The connection of multiple 

neurons to other neurons throughout the human body will form the biological neural 

networks or the nervous system (Kandel E, Schawrtz JH and Jessel TM. 2000). 

 

 

 

 

 

Figure 1.2 . Biological neuron model. 

Mathematical Modeling of an ANN 

Artificial neurons have almost the same structure as the biological neurons, but with 

different names and added elements. An ANN mimics the function of a biological neural 

network and hence it is considered as a very powerful tool that a control engineer can 
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use to solve difficult non-linear problems. The ANN architecture consists of multiple 

neurons connected together; each neuron has a similar structure to other neurons 

(Fukushima Kunihiko, 1975). Figure 1.3 shows a single artificial neuron. 

 

 

 

 

 

Figure 1.3. Artificial neuron structure. 

Each neuron consists of input 
, weight �, bias �, transfer function � and the output a. 

The output of the neuron a can be written in terms of the other elements as (Hagan, 

1996): 

(Equation1.1) 

The network input can be written as: 

                                                   (Equation 1.2) 


	is the transfer function used by the neuron to process the input with the weight and 

bias to produce the output. There are different types transfer functions used with the 

ANN’s, we will describe them in more details in chapter 3.2. The network input can be a 

single element, a vector or a matrix consisting of many input values; each one of these 

 

� = �(��+ �) 

� = �� + � 
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input values has a weight value associated with it. In case of a multi input neuron the 

weight element will be a weight matrix, and the input will be in vector form.  

 

 

 

 

 

 

Figure 1.4. Multi input neuron. 

The interconnections of single neurons to other neurons form the architecture of the 

neural network. The interconnection of multiple single neurons to form an ANN is shown 

in  Figure 1.5. 

 

 

 

 

 

Figure 1.5. Neural network structure. 
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As mentioned before, ANN’s are very powerful tools to solve complex problems and 

therefore complex control systems. They have a parallel structure that makes them 

capable to accept large data and process it at one time; which will reduce the time 

needed for the whole control process to be done. One other important advantage of 

ANN’s is that they are capable to “generalize”, which makes them act as a smart 

controller, this means that the controller is able to deal with new type of input data, this 

means that the controller has not been trained with that type of data and is let by itself to  

decide how to deal with any change in the non-linear parameters to reduce their effect. 

Although, many controllers have been implemented for servomotors, they are not 

efficient enough in some cases, especially when the servomotor used in a critical 

application requires a high efficient motor.  
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

 

DC Servomotor Literature Review 

DC motors are widely used in many applications that we use in our daily life. We can 

find them everywhere, from house appliances to our vehicles, desktops and laptops, 

and industrial applications such as production lines, remote control airplanes, automatic 

navigation systems and many other applications. DC motors are well known for their 

torque-speed characteristics, and their wide operation voltage and current range (David 

G. Alciatore and Michael B. Histand, 2007). DC motors can be specified into different 

types: Permanent magnet motors, Shunt motors, Series motors and Compound motors. 

For these DC motor types, each one of them has different speed-torque characteristics 

and different categories of motors. DC servomotors are permanent magnet motors, in 

which speed and position are typically the most common parameters to control.  

DC Servo motors are DC motors that are modified to work using a closed loop control 

system in which the shaft position or angular velocity are the control variables. A digital 

or analog controller can be used to direct the operation of the servo motor by sending 

position or velocity command signals to the amplifier which drives the motor. An integral 

feedback device (resolver) or devices (encoder or tachometer) are either incorporated 

within the servo motor or are remotely mounted, often on the load itself. These devices 

provide the servo motor’s position and velocity feedback to the controller, which in turn 
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use these data to compare them with a programmed motion profile and use them to 

alter the velocity signal. 

A servomechanism, or servo, is an automatic device that uses error sensing negative 

feedback to correct the performance of a mechanism. The term is correctly applied only 

to systems where the feedback or error correction signal helps to control a specific 

parameter of the mechanism. Due to their useful function, servo mechanisms were used 

long time ago, the Greek were the first to use servo mechanism in their windmills, and 

they have used this mechanism in adjusting the heading of the windmill (Edward L. 

Owen, 2002). In 1868 Farcot in his work on hydraulic steam engines for ship steering 

used the term “Le-Servomoteur” for the first time. A few years later H. Calendar 

developed his first electro servo mechanism and in 1911 Henry Hobart defined the term 

“servo-motor” in his electrical engineering dictionary (Otto Mayr, 1970).  

  

 

          

 

Figure 2.1. Servo mechanism basic structure. 

DC servomotors are Permanent magnet motors (PM) in which the stator field is 

generated by the effect of a permanent magnet. When the PM motor has a position 

and/or speed control it is called servomotor (David G. Alciatore and Michael B. Histand, 
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2007). For this speed and position control advantage of the servomotor, the use of the 

negative loop feedback can minimize the output error to minimum values.  

 

 

 

Figure 2.2. Servomotor circuit diagram. 

With the use of servomotors, the development of power amplifiers has become also an 

important component in servomotors; to use them in controlling and powering.  Solid 

state amplifiers are the most used type of amplifiers to power up and control 

servomotors. 

Artificial Neural Network Literature Review 

At the beginning of 1800’s scientists started to discover the nervous system in the 

human body, their work on knowing the structure and function of the nervous system 

continued until 1906 when they started to understand the basic operation of the neuron, 

and had a clear overview of how it operates and how the basic interconnection of 

neurons in the nervous systems looks like (J.J Hofield, 1982). After this great discover, 

McCulloch and Pitts in 1943 came up with the concept of artificial neural networks, 

when they used it in their primitive artificial neural network (McCulloch, & Pitts, 1943).  

The first practical neural network was built in the late 1950’s at Cornell University, a 

neurobiologist called Frank Rosenblatt built it, to be the first one to deal with practical a 

practical application of a neural network (K. Warwick, G.W Irwin and K.J Hunt, 1992). 
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From that time neural networks had gained big attention from scientist in different fields. 

The term Artificial Intelligence (AI) has a strong relationship with neural networks, as the 

neural network functions and abilities are similar to the nervous system; which in turn 

has the same function as the human brain. The use of neural network in AI applications 

was started when John Hopfield first used the ANN in AI applications (W.T. Miller, R.S. 

Sutton, and P. J. Werbos, 1990). 

Since then ANN’s started to be one of the most powerful techniques a control engineer 

may use, many types of neural networks have been invented and used, such as back-

propagation and recurrent neural networks. 

The basic structure of an artificial neuron is composed of three parts, inputs, weights 

and outputs, each one of these parts has a unique purpose compared to the other parts. 

The input layer has to accept the input data. The second components are the weights 

that are used to modify the values of inputs according to how important they are to 

produce the corresponding output of the neuron. In this layer the input is propagated to 

the output through the neuron, each input value is multiplied by the weight value and 

added to the bias. The output is calculated by applying a particular transfer function to 

the modified inputs. The overall process performed by the neuron can be defined by the 

following equation (Martin T. Hagan): 

                                                        � = �(��+ �)                                   (Equation 2.1) 

Where W represents the weights values, p represents the inputs, b the biases and � the 

function to apply. Then the transfer function calculates the value and sends it to the 
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output of the neuron. The function of the output layer is to send this final value to a 

specific location that is defined from the user. 

 

 

 

 

 

Figure 2.3. Structure of single neuron network. 

 

 

 

 

Figure 2.4. Single neuron structure. 

An Artificial Neural Network (ANN) is the interconnection of several neurons that are 

used to solve more complex problems. The basic structure of an ANN is composed of 

three layers, namely: input layer, hidden layer and output layer, each one of these 

layers has a unique function. The input layer has to accept the input data; which are the 

training set of data, or the set of data will be used to simulate the network. The hidden 

layers, there may be several layers, are used to modify the inputs and define the 
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interconnections of the neurons; and the final layer is the output layer that produces the 

single output of the ANN. The basic structure of the ANN is shown in Figure 2.5. 

 

 

 

 

 

Figure 2.5. Basic ANN structure. 

 

 

 

 

 

 

 

 

 

 

 



27 

 

CHAPTER 3 

METHODOLOGY 

Multi Layer Neural Network Model 

Practical neural networks have a structure that traditionally is composed of multi layers. 

The most common ANN implementation consist  of a three layer network: The input 

layer which accepts the training or simulation data; the hidden layer, which is used to 

process the input data and modify the weights values; and the output layer, which sends 

the processed data to a display, control system or any other data storage device. It has 

been demonstrated that any two-layer network that has a sigmoid transfer function in 

the first hidden layer and a linear function in the second layer can be used to find the 

solution to most of the practical applications (Martin T. Hagan, 1996).  

Hidden layers are the layers of neurons that exist between the input data and the output 

layer, these hidden layers have the same structure as any other layer, and each one of 

them has its own weight matrix, bias and transfer function. Adding more hidden layer to 

the network makes it more powerful and able to solve more complex problem but it adds 

more complexity to the controller design, and hence requires more processing time. The 

control engineer have the tasks to design the network characteristics, and also to think 

about the complexity and efficiency of the controller, taking into consideration the 

criticality of the application he is working on. So it is a compromise between the 

efficiency, time to process the data, cost and complexity of the controller.  
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Figure 3.1. Three layer neural network. 

Each one of the network layers has an input, weight matrix, bias, transfer function and 

output. The notation used to specify the output of each different layer is � with a small 

number as a subscript to show the number of the layer. For example in Figure 3.1 the 

output from the first layer is ��. The letter s is used to specify the number of neurons 

and R is the number of inputs. This notation applies to all layers (Howard Demuth and 

Mark Beale, 2004). The complete output of the neural network can be found using the 

following equation: 

                            �� = 
�(��
�(��
�(��p + ��) + ��) + ��)                  (Equation 3.1) 

In this equation, a is the output, f is the transfer function used to process the values, W 

is the weight value and b is the bias. This equation can be extended to find the output 

for more layers. There is no rule or law to show the number of neurons in each layer 

and the number of layers in each network that is best for a specific application, the only 
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way is to do that by trial and error until we reach the optimal network design for an 

application.  

Neural Network Transfer Functions 

The transfer function is one of the main components of an ANN. There are different 

types of transfer functions used in ANN’s, each one of these functions will have a 

different output from the others. The most common transfer functions used with ANN’s 

are the Hard-Limit, Linear and Log-Sigmoid transfer functions. The Hard-Limit transfer 

function takes the input data n process it and gives one of two output values, if the 

value of n is less than zero, then the output is zero, and if the input data more than zero, 

then the output is one.  

 

 

 

 

Figure 3.2. Hard-Limit transfer function  

The Linear transfer function has an output value that has a linear behavior in respect to 

the input, regardless of the sign of the input value; this function is very powerful to be 

used with linear approximation functions. The linear transfer function characteristics are 

shown in Figure 3.3. 
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The Log-Sigmoid function (shown in Figure 3.4) takes the input data which may have 

any value and generates an output in the range of 0 – 1 (or -1, 1), this transfer function 

is one of the most used in backpropagation neural networks, since it’s an infinite 

differentiable function.  

 

 

 

 

Figure 3.3. The Linear transfer function 

 

 

 

 

Figure 3.4. The Log-Sigmoid transfer function.  

Other transfer functions with different capabilities are used with different neural network, 

Table 3.1 shows more transfer functions used with ANN’s. The selection of each layer’s 

transfer function is very critical in the network’s performance and may lead to both a 

successful network training and simulation or to fail both. As there is no predefined 

method to find the number of neurons and layers for each network, also there is no 
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predefined method to choose the transfer function in each layer. The best match of 

transfer function for any application comes from initial guess for the functions, then by 

testing different functions to get the best network performance.  

Table 3.1. List of Neural Network Transfer Functions. 
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Feed Forward ANN and Backpropagation Training Algorithm 

A feed forward network, as the one shown in Figure 3.1, is a network in which the data 

moves only in one forward direction from the input layer to the hidden to the output 

layer, with no internal cycles or loops inside the network (Simon Haykin, 1998). 

Backpropagation is a method used in the training process of ANN’s. Backpropagation 

can be described as supervised learning; in which we have an input/output data pairs 

used to train the network. In Backpropagation each input data has a corresponding 

output data relates to it. After the training step using backpropagation the network 

should be able to find a correct output value to a new input value that it has not been 

trained for it before, so the network act as a classifier.  

Backpropagation method works to update the values of the weights and biases in the 

same direction as the performance function decreases more rapidly. The equations that 

shows how backpropagation works is: 

                                                     (Equation 3.2) 

Where ��	is the vector of current weights values, �� is the learning rate and �� is the 

current gradient.  

The way of updating the weights relates to the gradient decent algorithm, in which we 

have two different ways to implement it. The first way called incremental training; in 

which the weights and biases are updated after a new input sent to the network. The 

second way called batch mode training, in which all the inputs are applied to the 

network before changing the weights and biases values. Batch mode training can be 

used if the all the input data is ready to be sent to the network, the gradients are 

����	 = 	 �� + 	���� 
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calculated at each training data and then added together to determine the value of the 

weights and biases, which is the case of our data.  

PID Control 

The Proportional, Integral, Derivative controller (or the PID controller) is the most 

popular type of controller used in different engineering applications. The PID controller 

is a form of control loop that has a feedback mechanism. The PID controller works by 

calculating the error signal between an output measured value and a reference value, 

the controller works to minimize the error signal or the difference between the output 

signal and the reference signal to a minimum value; such that the output measured 

value will be as close as possible to the input reference signal (Robert N. Baterson, 

1999). 

The mathematical representation of the PID controller is: 

                          ���� = ��. ���� + �� � �� �! 
�

	
+ 	�!	





�
�(�)                      (Equation 3.3) 

Where U(t) is the controller output signal, e(t) is the error signal, Kp is the proportional 

gain, Ki is the integral gain and Kd is the derivative gain. 

As shown in Eq. 3.3 above, the PID controller has three parameters, P or Proportional 

term, I or Integral term and D or Derivative term, each one of these terms has a gain 

value related to it, and it makes the controller system to react in a different way from the 

others. The proportional term depends on the present error value, the proportional gain 

have a direct relationship to the controller sensitivity, the higher P gain value leads to 

faster change for the systems’ output, which makes the controller to be more sensitive. 
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A pure proportional controller will have a steady state error and depending on the gain it 

could generate an overshoot in the output signal. Figure 3.5 shows the response of a 

system when a proportional term and D term is applied, while keeping the integral and 

derivative values constant.  

The integral term depends on summation over time of the present and the previous 

errors. The action of the integral term makes the system to reduce its steady state error 

in the output and to have a smoother slope that reached the final value faster. Figure 

3.6 shows the integral effect on the output signal.  

The last term of the PID controller is the derivative term, which depends on the rate of 

change of the error. Both the value of the current error and the duration of the error are 

taken into account, it speeds up the controller response, but can make the overshoot in 

the system higher.  

 

 

 

 

 

 

 

Figure 3.5. Proportional and Derivative terms effect 
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        Figure 3.6. Integral term effect. 

 

 

 

 

 

 

 

 

Figure 3.7 Derivative term effect.  
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By combining the three terms and their effect together we can get the PID controller 

function. PID controllers can be found everywhere now, in many different industrial 

process and applications. Even though they are widely used and well developed, but 

they still not the perfect choice for some critical time and high efficient applications.  
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CHAPTER 4 

DC SERVOMOTOR 

DC Servomotor Model 

Recalling the DC servomotor diagram from Figure 1.1, the transfer function of the DC 

servomotor can be derived using Kirchhoff’s voltage law and Laplace transforms     

(Nise, 2008) as the following: 

                                                                     (Equation 4.1) 

 

The Back-electromotive force (emf) Vb can be found by using the equation shown 
below. 

                                                                     (Equation 4.2) 

 

Where Vb is the induced voltage, Km is the motor torque constant, and ωm is the angular 
rotating speed. It can be seen that ωm can be calculated by the Eq. uation shown below 

                                                                       (Equation 4.3)     

And Using Laplace Transform 

                                                          	�"� = 		"�(")                                    (Equation 4.4) 

Our concern in this stage is to control the angular rotating speed ωm, by controlling the 
input voltage Vm. 

Where: 

J     =  moment of inertia of the rotor 

b     =  dampening ratio of the mechanical system 

T     =   motor torque  

I     =   Current 

�� = ��

!�

!�
= ��	� 

�
 = �� = ���� + ��
!�

!�
+ �� 

	� = �#  
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Vm     =   back emf 

θ     =   shaft position  

K     =   electromotive force constant 

	�     =   Measured angular Speed 

R     =   Motor Armature Resistance 

L     =   Inductance 

V     =   Source Voltage 

The transfer function of the output angular speed is derived using Laplace transform 
using the second order system equation:  

                

(Equation 4.4) 

The resulting transfer function: 

                                                                        (Equation 4.5) 

 

 From Equation 4.3, the relationship between the angular position and the speed can be 

found by multiplying the angular position by 
�

�
. Our major concern on this research is the 

proper control of the angular speed of the motor; since the angular speed is the part that 

suffers the most from the non-linearties.  The angular non-linear effect on the angular 

position tends to be less due to the term used to derive it 
�

�
, which adds an integral 

effect or filter effect to this part. Figure 4.1 shows the block diagram which represents 

the servomotor system using MATLAB SIMULINK. 
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Figure 4.1. Servomotor SIMULINK block diagram. 

DC Servomotor Response 

The response of the servomotor, as mentioned before in section 4.1, can be considered 

as a second order system. A second order system will have a natural frequency ω, a 

damping factor ς. The general response of a second order system with a step input is 

shown in Figure 4.6.  From the response of the second order system we can get some 

of the characteristics of the system, and the design criteria can be implemented using 

these characteristics.  

 

 

 



 

Figure 4.2

Different parameters can be used to evaluate the response of the servomotor; by 

adjusting the value of these parameters we can reach our design goal. 

overshoot value, ts is the settling time and 

three parameters can define the design criteria and output response for any second 

order system response.   

The ideal system response will have a zero overshoot, zero settling time and zero 

tolerance, but in real life achieving the ideal response will be hard to achieve and will 

have a high cost of implementation. So the solution can be found by defining an 

accepted range for the values of the three parameters mentioned before to reach a 

good system response for a sp

 

4.2. Second order system response 

Different parameters can be used to evaluate the response of the servomotor; by 

adjusting the value of these parameters we can reach our design goal. 

is the settling time and β is the allowable error tolerance. These 

three parameters can define the design criteria and output response for any second 

The ideal system response will have a zero overshoot, zero settling time and zero 

fe achieving the ideal response will be hard to achieve and will 

have a high cost of implementation. So the solution can be found by defining an 

accepted range for the values of the three parameters mentioned before to reach a 

good system response for a specific application.  
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Different parameters can be used to evaluate the response of the servomotor; by 

adjusting the value of these parameters we can reach our design goal. Mp is the 

is the allowable error tolerance. These 

three parameters can define the design criteria and output response for any second 

The ideal system response will have a zero overshoot, zero settling time and zero 

fe achieving the ideal response will be hard to achieve and will 

have a high cost of implementation. So the solution can be found by defining an 

accepted range for the values of the three parameters mentioned before to reach a 
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CHAPTER 5 

ANN MODELS STRUCTURES   

In this research we are proposing a neural network controller design to control the DC 

servomotor. The training algorithm used in the ANN is the back-propagation method. 

Two feed-forward neural networks are used, the first neural network is called the Model 

Network; the function of this network is the same function as the DC servomotor. The 

second network used is called the PID neural network controller, this network has the 

same function as a PID tuned controller, but the difference is that this network is 

capable of updating itself in a manner to improve the controller function this is why it is 

considered to be a smart controller.  

Servomotor Neural Network Model: 

In this part we have built a neural network that has same function as the servomotor, 

input/output data pairs used to train this network and simulate it. The first stage was to 

build SIMULINK model that represents the servomotor system.  

 

 

 

 

 

Figure 5.1. Servomotor SIMULINK model 
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This model has been derived from the Servomotor speed transfer function, Equation 

3.7: 

The parameter values used in the SIMULINK model were taken from a practical 

servomotor. The parameters are: 

Table 5.1 DC Servomotor parameter values. 

Parameter Value 

Moment of Inertia J 0.0062 N •m•s²/rad 

Damping Coefficient b 0.001 N•m•s/rad 

Torque constant Kt 0.06 N•m/A 

Electromotive force constant Ke 0.06 V•s/rad 

Electrical Resistance R 2.2 Ohms 

Electrical Inductance 0.5 Henry  

 

From the SIMULINK model it is clear that we can divide the transfer function into two 

transfer functions, the first one is the electrical transfer function; which consists of the 

electrical resistance and the inductance. The second transfer function is the mechanical 

transfer function; which consists of the moment of intertie and the damping coefficient. 

By dividing the transfer function into the two parts mentioned above, we can add the 

non-linear parameters to the system to see their effect.  

The input/output data pairs are generated from this model in order to train the Neural 

Network model. The data is sent to m files in the form of matrices, stored in a specified 

location, so we can call them or use their data when needed. The model is simulated for 

ω

�
= 	

�

��� + ��. �	� + 
�+��
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10 seconds to generate the data. With a predefined sine wave frequency of 6 rad/sec, 

we can make sure to have enough data points to fully represent the system.  

 

 

 

 

 

 

 

Figure 5.2. Input sine wave input. 

 

 

 

 

 

 

 

Figure 5.3. Input signal after dead zone effect 
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Figure 5.4. Output Speed 

In Figures 5.2 to 5.4 we can see the effects of the non-linear parameters affecting the 

input signal. The first change for the input signal can be seen on Figure 5.3, which 

represents the signal after the dead zone. The dead zone value is 1.5 volts, which is 

very common in this size of servomotors. After applying this input signal to the whole 

system including the other non-linear parameters, we can see the big distortion to the 

output signal compared to the input signal.  

To have a clearer image of the non-linear effect, the systems suffers from, we have 

used a single step input. The step input has a maximum value of 12 volts, which is the 

maximum voltage rating of the servomotor we are using. From Figures 5.5 and 5.6 we 

can see how the dead zone limits the signal to 10.5 volts, which is less than the 

required voltage, then we can see the slower response of the output signal, which 

represents the speed signal. This bad response (shown in Figure 5.7) of the system can 

be worse if one or more of the system’s parameters or the outside disturbances are 

changed.  
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Figure 5.5 Step input before dead zone 

 

 

 

 

 

 

 

Figure 5.6. Input signal after dead zone. 
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Figure 5.7. Speed output signal. 

The neural network model, that mimics the function of the servomotor, has been built 

using the data recorded from the original sine wave response mentioned earlier. The 

choice of using the training data from the values obtained is due to nature of the sine 

wave, since it is the most common wave found in nature, so it has a more general 

behavior than the other waves. MATLAB SIMULINK and commands have been used to 

store the data and to generate the neural network model. From the type of data used, 

sine wave, step input and other signal types, the training data is a two dimensional 

matrix, one dimension is the time and the other one is the magnitude. The full code 

used to generate the network is available in Appendix A. The network parameters used 

to generate the network appear in the MATLAB code bellow: 

 

 

 

 

P = sininput; 
T = sineoutput; 
net = newff(P,T,25); 
Y = sim(net,P); 
P1 = sininput(1,:); 
Figure1 = plot(P1,Y); 
net.trainParam.show = 50; 

net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.05; 
net.trainParam.goal = 1e-5; 
net = init(net); 
net = train(net,P,T); 
Y1 = sim(net,P); 
gensim(net,-1) 
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Where P is the input data obtained from the sine wave input signal, T is the target data; 

which represents the output speed. The maximum number of epochs used is 1000, 

which is the maximum number of trials the training method can apply before stopping. 

The training goal was to reach a minimum error value of 0.00005, this error value is 

between the input signal and the generated output. The learning rate was chosen to be 

0.05. These parameters were chosen to best fit the performances of the network, more 

restrict parameters may take the network to have unstable response and it may cause 

the training method to diverge. The results from the implemented network are shown 

bellow (refer to Appendix A for the training data): 

• The plot of data before the training of the network: 

 

 

 

 

 

 

 

 

 

Figure 5.8. Network response before training 
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• The plot of data after training: 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Trained Data plot 

From Figure 5.9, and comparing to Figure 5.4, we can see how the neural network 

model has the same response than the original servomotor; from here we can be sure 

that we can use this network in our system. Figure 5.10 show the performance of the 

network training, and how the desired error goal has been achieved within the specified 

number of epochs. Figure 5.12 shows the results of the training, where the number of 

epochs used to achieve the high performance of the network was 23 epochs, which 

makes the response of our network model to be very fast compared to any other model 

that represents the servomotor. The regression plot, shown on Figure 5.11 shows a 

high data scattering around the regression line, we can see that for R = 0.98969 
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regression line most of the data lies in the range; which is a strong evidence of the 

successful training.  

 

 

 

 

 

 

Figure 5.10. Performance Plot. 

 

 

 

 

 

 

 

 

Figure 5.11. Regression plot 
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Figure 5.12. Training tool window of the NN motor model 
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Neural Network Controller Model 

The neural network model controller was built based on a tuned PID controller, the first 

step was to control the servomotor using PID tuning technique, after reaching a better 

performance of the motor with the PID controller, data have been collected to train the 

neural network controller. The method of using an embedded PID controller inside the 

controller function makes the system more powerful, the neural network after training is 

capable of improving the over performance of the system, the advantage of this smart 

controller that its able to deal with any new change may occur to the system, and to 

eliminate the non-linear effect found in the system. 

 

 

 

 

 

 

 

 

Figure 5.13. PID Controller SIMULINK diagram 
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The data used for this neural network were obtained from the input of the PID block; 

which were used as the input training data. The output from the PID block was used as 

the target data for the training process. The neural network controller has the same 

structure and training parameters of the servomotor model. It has 25 neurons in the 

hidden layer, 1000 epochs, 0.05 learning rate and error value of 0.00005. The MATLAB 

code used for the controller network is: 

 

 

 

 

 

• Simulation Plot of the PID input and output data 

 

 

 

 

 

 

 

 

Figure 5.14. PID input data 

P1 = pidin; 
T1 = pidout; 
net1 = newff(P1,T1,50); 
Ypid = sim(net1,P1); 
P1pid = pidin(1,:); 
  
Figure1pid = 
plot(P1pid,Ypid); 
 

net1.trainParam.show = 50; 
net1.trainParam.epochs = 
1000; 
net1.trainParam.lr = 0.05; 
net1.trainParam.goal = 1e-5; 
net1 = init(net1); 
net1 = train(net1,P1,T1); 
Y1pid = sim(net1,P1); 
gensim(net1,-1) 
Figure4pid = 
plot(P1pid,Y1pid);  
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Figure 5.15. PID output plot 

 

• Neural Network Controller plots 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. NN controller response before training 
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Figure 5.17. NN controller response after training. 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Performance plot of the NN controller. 
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Figure 5.19. Training tool window of the NN controller model. 

 

From Figure 5.19 we can see that training of the controller NN was successful and 

compatible with the simulation results. Also the performance results were successful, 
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the training process took 17 epochs to reach the desired error value, which makes the 

controller response very fast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

CHAPTER 6 

CONTROLLER DESIGN AND SIMULATION RESULTS 

After we have discussed the different parts of the system and how each neural network 

succeeded in the training process, we will discuss the system as a whole, when both 

the NN controller and the NN servomotor model are connected together. In this chapter 

we will show all the simulation results from the NN controller system, then we will 

compare the results with the same system but while using a conventional PID controller.  

Neural Network System: 

After we have used MATLAB commands to build and train our neural networks, we use 

a very useful command to generate neural network SIMULINK diagram. The function 

used the gensim function; this function can be used after successful training of the 

neural network, the block generated then can be used to build the total system. 

The syntax of this function is:   gensim(net,st) 

Where the net parameter refers to the trained neural network, and the st represents the 

sampling time, in our case st will be set to -1; which means continuous sampling. The 

two networks can be generated using this function, but the generated network will 

accept only constant input in its initial configuration. To connect both networks together 

we will need to add more elements to the SIMULINK model to make sure our networks 

accept dynamic input. The generated neural network blocks for the motor model before 

connecting them together is shown in the Figures 6.1 & 6.2. 
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Figure 6.1 NN for motor model 

 

 

 

 

 

Figure 6.2. Internal NN structure 

The SIMULINK model for the controller has the same structure as for the motor model, 

the only difference that each one has a different function to perform. From the internal 

structure we can see all the NN components, input, hidden layer and output. From here 

we will see the simulation results for the NN motor model by itself first, to make sure the 

network is working correctly then we will build the complete system. In order to simulate 

this network we need to have a two-dimensional input, this input can be done by using 

two sine wave signals and a Multiplexor (Mux) block. Figure 6.3 shows the new 

configuration of the network.  
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Figure 6.3. NN motor model complete diagram 

 

 

 

 

 

 

 

Figure 6.4. Output signal of NN motor model  

From Figure 6.4, we can see the sinusoidal behavior of the system, in this system two 

sine wave signals are used as input signals, the yellow signal shows the reference 

signal used to generate the graph and the purple signal shows the output speed.  
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Complete system results with sine wave input 

The complete system; which includes the NN controller and the NN motor model have 

been built and simulated in MATLAB SIMULINK, the complete diagram is shown bellow.  

 

  

 

 

 

Figure 6.5. Complete system diagram. 

In this system we have connected the NN controller to the NN motor model, negative 

feedback is been used, multi scopes are also used to show the different signals we 

obtain from the system in order to compare them. The simulation results for this system 

are shown bellow. From Figures 6.6 to 6.9 we can verify that the output signal is 

matching the controller output; which confirms that the system is well controlled, from 

these Figures we can also see that most of the signal distortion due to the non-linear 

parameters was eliminated. The output speed is completely matching the controller 

signal.  
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Figure 6.6 Input Signal  

 

 

 

 

 

 

 

Figure 6.7. NN Controller Input 
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Figure 6.7. NN Controller Output 

 

 

 

 

 

 

 

 

Figure 6.9. Output Speed Signal (Controlled) 
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Complete System Results with Step Input 

To confirm our results, we have used other type of common input signal, which is the 

step input. All the simulation results obtained from the step input also matching the 

results that we obtained from the sine wave input. One important result we can get from 

comparing the system behavior before and after using the NN controller, is that the 

response time, or the settling time of the system after using the NN controller is less 

than two seconds compared to the old response with the PID controller itself.  

 

 

 

 

 

 

 

Figure 6.10. Step input response of the NN controller 

The difference of the start point is that NN motor model has a 12 volt input signal and 

the input signal we are using here has value of 1 volt maximum, so that the controller 

will compensate for the actual value.  
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Figure 6.11. Output speed with step input 

From the simulation results it is clear to mention the difference of the response of the 

system for both the time needed to reach the desired output and the shape of the 

output. The output from the step input has the same as the input signal, which has no 

distortion.  

PID Controller Response 

In order to have clearer image about the difference of the two controllers, the 

conventional PID controller and the NN controller, we have simulated the response of 

the two systems for the PID controller with step input. The PID controller has been 

tuned to get the best response possible from the system, the values obtained for the 

PID parameters values are: P = 20. I = 2 and D = 20. From these values we need to 

build a controller that consumes more power due to the proportional parameter value. 

Even though, this controller can be built, due to high gain value this controller may not 
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be the best solution to our system, taking into consideration the power ratings of the 

motor; which may not be able to withstand this value of input voltage.  

 

 

 

 

 

Figure 6.12. PID controller input and output signals. 

 

 

 

 

 

 

 

Figure 6.13. Output speed with PID controller 

From the response of the PID controller we can mention some disadvantages to use 

this type of controller. The first one is that we have an overshoot of the input signal to 
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the PID, this overshoot may cause a failure in the controller function, especially this 

controller may be running continuously with no stops. The second one is the big 

difference of the output speed signal compared to the output from the PID controller 

itself, which means that the controller was not completely successful to eliminate all the 

non-linear effects. One last important issue of the PID controller is that the response is 

still slow, even after tuning the PID, which means that if this is a critical time for the 

function being controlled by the PID then the PID controller will be out of question for 

this application.  

The overall response of the system while using the PID controller is still weak, also this 

system will not be able to deal with any outside disturbances or any sudden change in 

the load attached to the servomotor, this is clear from the overshoot of the PID input; in 

which we can conclude that if any sudden change happen the controller will drain more 

power leading to burn the components of the controller, and this may lead for motor 

failure.  

NN Controller Response 

Recalling the step response of the NN controller shown in Figures 6.10 and 6.11, we 

can mention the difference in the response compared to the PID controller response. 

The first difference is that the NN controller input signal, in this signal we can see that 

there is no overshoot in the signal, which means the controller can keep working in a 

safe manner without any risk of burning the controller itself. Also this advantage makes 

the controller to keep the same power level consumption, which is very critical in some 

remote application if we do not have any kind of power source attached to the system. 
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The second advantage of the NN controller over the PID is that the output speed signal 

is following the same shape and values of the controller, this makes the system 

eliminate any nonlinear effect due to the motor components, or due to any sudden 

change in the outside environment of the load attached to the motor.  

Comparing the time response of the two controllers, we can notice the big difference in 

the time needed for the signal to reach the final value when using the NN controller, this 

time tends to be half the time needed when we used the PID controller. This advantage 

is also very important since in some critical application a time difference of one second 

may cause unwanted response of the system and may lead to malfunction.  
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CHAPTER 7 

CONCLUSIONS, DELIVERIES, FUTURE WORK AND SUMMARY 

Conclusions 

From the results obtained for both the PID controller and the NN controller, it is clear 

that the overall performance of the NN controller proposed was better than the 

conventional PID controller. The PID controller performance was consistent with old 

trials of controlling this type of motors, the change in system’s parameters does not 

yield any change in the technique used to tune the PID controller for, but changes the 

performance of the PID. The PID controller cannot be improved further, since the tuning 

results were the best to get the output shown on Figure 6.4 and 6.13. The tuning results 

for the PID controller were best match for the system performance and the ability to 

build such a controller. The PID controller can be used with servomotors that are not 

components of very efficient systems or time critical systems, since they will require 

high power to operate them and may lead to failure in their function due to the high 

power used by the controller. 

On the other hand the NN controller has shown very good results and improvements of 

the system behavior. The NN controller was able to deal with all the non-linear 

parameters found on the system, and the output was very consistent with the input of 

the controller signal. The efficiency of this controller was also better in terms of the 

response time, as shown in Figures 6.11 and 6.13, the response time to reach the 

maximum output value was almost 1 second compared to 5 seconds for the PID 

controller.  
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The only drawback found in the NN controller is that the output signal was shifted and 

does not start to rise from zero. This issue of the NN controller response can be easily 

eliminated and improved by adding a bias to the neural network during training, and with 

the use of simple components when implementing the controller using hardware. 

Deliveries 

As deliveries of this research we can mention mainly the following items. 

a) An ANN architecture was developed and trained based on the second order 

model of a servo motor. This ANN can be used to simulate the operation of a real 

servomotor system. 

b) A second ANN architecture was developed, that is used to control the operation 

of the first neural network, this neural network has a better performance than its 

PID control equivalent, and it was shown to reduce the non-linear parameters 

and characteristics of a typical servomotor system. It also produces the correct 

control signals required for the operation of this kind of systems. 

c) Two research papers have been submitted for publication using the results of this 

project. At the present time, one paper has already been accepted for 

presentation and the second one is under development to be submitted for 

acceptance. 

Future Work 

No further can be done with the PID controller, since the tuning of the controller 

parameters resulted in the best match of performance and real implementation. While 

the NN controller still offers some opportunity to continue working with. In particular, the 
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NN controller can further be improved by first eliminating any signal shift found in the 

output, also the response time may be improved by using other training techniques, 

which may be required in some time critical applications.  

One Important step to do in the future is to implement both controllers using hardware 

components, and to test both of them with a real servomotor. This step will also be very 

helpful to test the performance of both controllers, and may lead to more improvements 

of the controller function. The most important point about the NN controller is that the 

more we use it, the more it improves itself and learns how to deal with any new data 

type and parameter changes. 

Summary 

In this thesis we are able to test the performance of two types of controllers, PID 

controller and NN controller, compare them together and show the difference in the 

performance of each type of them. The NN controller has shown better performance by 

meeting the problem goals; in which we want to eliminate most of the non-linear effect 

and to have a kind of a controller that can deal with any new type of data or change in 

the working environment.  

The results show also that the NN controller can be used in high efficient systems and 

time critical system, in which the PID controller will not be the best choice of a controller 

for these types of systems.  
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APPENDIX A 

MATLAB CODE 

 
% The NN motor model design we have 1-25-1, with tansig function  
%for hidden layers and purlin for output layer. 
  
P = sininput; 
T = sineoutput; 
net = newff(P,T,25); 
Y = sim(net,P); 
P1 = sininput(1,:); 
  
Figure1 = plot(P1,Y); 
  
  
  
net.trainParam.show = 50; 
net.trainParam.epochs = 1000; 
net.trainParam.lr = 0.05; 
net.trainParam.goal = 1e-5; 
net = init(net); 
net = train(net,P,T); 
Y1 = sim(net,P); 
gensim(net,-1) 
Figure4 = plot(P1,Y1);  
  
% The PID controller NN has also the same structure but with different 
% training sets: 
  
% The NN controller design we have is 1-25-1, with tansig function for   
%hidden layers and purlin for output layer. 
P1 = pidin; 
T1 = pidout; 
net1 = newff(P1,T1,50); 
Ypid = sim(net1,P1); 
P1pid = pidin(1,:); 
  
Figure1pid = plot(P1pid,Ypid);  
   
net1.trainParam.show = 50; 
net1.trainParam.epochs = 1000; 
net1.trainParam.lr = 0.05; 
net1.trainParam.goal = 1e-5; 
net1 = init(net1); 
net1 = train(net1,P1,T1); 
Y1pid = sim(net1,P1); 
gensim(net1,-1) 
Figure4pid = plot(P1pid,Y1pid);  
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