
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2011

Efficient Control of DC Servomotor Systems Using
Backpropagation Neural Networks
Yahia Makableh

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation
Makableh, Yahia, "Efficient Control of DC Servomotor Systems Using Backpropagation
Neural Networks" (2011). Electronic Theses and Dissertations. 771.
https://digitalcommons.georgiasouthern.edu/etd/771

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/771?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

1

EFFICIENT CONTROL OF DC SERVOMOTOR SYSTEMS USING

BACKPROPAGATION NEURAL NETWORKS

by

YAHIA MAKABLEH

(Under the Direction of Fernando Rios-Gutierrez)

ABSTRACT

DC motor systems have played an important role in the improvement and development

of the industrial revolution, making them the heart of different applications beside AC

motor systems. Therefore, the development of a more efficient control strategy that can

be used for the control of a DC servomotor system, and a well defined mathematical

model that can be used for off line simulation are essential for this type of systems

Servomotor systems are known to have nonlinear parameters and dynamic factors,

such as backlash, dead zone and Coulomb friction that make the systems hard to

control using conventional control methods such as PID controllers. Also, the dynamics

of the servomotor and outside factors add more complexity to the analysis of the

system, for example when the load attached to the control system changes. Due to

these parameters and factors new intelligent control techniques such as Neural

Networks, genetic algorithms and Fuzzy logic methods are under research

consideration in order to solve the complex problems related to the control of these

nonlinear systems.

2

In this research we are using a combination of two multilayer neural networks to

implement the control system: a) The first network is used to build a model that mimics

the function of DC servomotor system, and b) a second network is used to implement

the controller that controls the operation of the model network using backpropagation

learning technique. The proposed combination of the two neural networks will be able to

deal with the nonlinear parameters and dynamic factors involved in the original

servomotor system and hence generate the proper control of the output speed and

position. Off line simulation using MATLAB Neural Network toolbox is used to show final

results, and to compare them with a conventional PID controller results for the same

model.

INDEX WORDS: Neural Networks, Controller, DC Servomotor, Non-Linear Systems

Modeling.

3

EFFICIENT CONTROL OF DC SERVOMOTOR SYSTEMS USING

BACKPROPAGATION NEURAL NETWORKS

by

YAHIA MAKABLEH

B.S, The University of Jordan, Jordan, 2009

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2011

4

© 2011

YAHIA MAKABLEH

All Rights Reserved

5

EFFICIENT CONTROL OF DC SERVOMOTOR SYSTEMS USING

BACKPROPAGATION NEURAL NETWORKS

by

YAHIA MAKABLEH

Major Professor: Fernando Rios-Gutierrez

Committee: M. Rocio Alba-Flores

 Robert Cook

Electronic Version Approved:

May 2011

6

DEDICATION

To my Mom and Dad, I will always be as you know me, and I will be always searching

for new knowledge and science. I love you both as you supported me all the way to this

day. I miss you all.

To my wife Rana, I love you so much, and I will be with you for the rest of my life, as

you have been supporting me through my studies. It was a tough year for us, but for the

best. With all my Love

7

AKNOWLEDGMENTS

I would like to thank all the people that supported me through my academic way, and

helped me to understand the engineering concepts needed that were needed for our

engineering life. My special thanks to Professor Fernando Rios-Gutiérrez, as he was

beside me in every step throughout my research, and for his great effort to show me the

best techniques and sources to solve different problems. Also I would like to thank Dr.

Frank Goforth, for his great support to the graduate students and for his effort to keep

us on track and to be on time. Many thanks also goes to Dr. Biswanath Samanta, as he

was leading me through different control techniques and gave me great ideas to help

me succeed in my research.

I will never forget the great support from my family, from my parents, brothers, sisters

and my loved wife, they helped me a lot, I would like to thank you all to be on my side,

and for all of your great support, with you I can always succeed.

8

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS…………..……………………………………………………………7

LIST OF TABLES…………………………………………………………………………...…10

LIST OF FIGURE………………………………………………………………………………11

CHAPTER

 1 INTRODUCTION TO THE STUDY………………………………………………..14

DC Servomotor Systems………..…………………………………………..15

Artificial Neural Networks…….……………..……………………………...16

Mathematical Modeling of an ANN.………………………………………..17

2 REVIEW OF RELATED LITERATURE…………………………………………..21

 DC Servomotor Literature Review………..………………………………21

 Artificial Neural Networks Literature Review…..………………………..23

3 METHODOLOGY………………...…………………………………………………27

 Multi Layer Neural Network Model…….………………………………...27

 Neural Network Transfer Functions…….…………………………….…29

4 Feed Forward ANN and Backpropagation Training Algorithm….……………32

 PID Control………………..…………………………………….…………33

DC SERVOMOTOR………………………………………………….....…37

 DC Servomotor Model………………..….………….…………………….37

DC Servomotor Response.………….....…………………………………39

5 ANN MODELS STRUCTURES…………………………………………………41

 Servomotor Neural Network Model….…..………………………………41

 Neural Network Controller Model………….………..……………………52

9

 6 CONTROLLER DESIGN AND SIMULATION RESULTS……………………57

 Neural Network System…………………………….…………………….57

 Complete System Results with Sine Wave Input….….………………60

 Complete System Results with Step Input…………………………….63

 PID Controller Response…………………………...……………………64

 NN Controller Response…………………………………………………66

 7CONCLUSIONS, DELIVERIES, FUTURE WORK AND SUMMARY……..…70

Conclusions…….………………..…………………………………………70

Deliveries…….………………….…………………………………………71

Future Work…….………………….………………………………………71

 Summary……………………………...……………………………………70

REFERENCES…………………………………………………………………………………71

APPENDIX A………………......………………………………………………………………72

10

LIST OF TABLES

Page

Table 3.1. List of Neural Network Transfer Functions……………………………………..31

Table 5.1 DC Servomotor parameter values……………………………………………….42

11

LIST OF FIGURES

Page

Figure 1.1. Servomotor circuit diagram……………………………………………………...15

Figure 1.2 . Biological neuron model………………………………………………………..17

Figure 1.3. Artificial neuron structure………………………………………………………..18

Figure 1.4. Multi input neuron………………………………………………………………..19

Figure 1.5. Neural network structure………………………………………………………...19

Figure 2.1. Servo mechanism basic structure………………………………………………22

Figure 2.2. Servomotor circuit diagram……………………………………………………...24

Figure 2.3. Structure of single neuron network……………………………………………25

Figure 2.4. single neuron structure………………………………………………………….25

Figure 2.5. Basic ANN structure……………………………………………………………..26

Figure 3.1. Three layer neural network……………………………………………………...28

Figure 3.2. Hard-Limit transfer function……………………………………………………..29

Figure 3.3. The Linear transfer function……………………………………………………..30

Figure 3.4 The Log-Sigmoid transfer function……………………….……………………..30

Figure 3.5. Proportional and Derivative terms effect………………………………………34

Figure 3.6. Integral term effect……………………………………………………………….35

Figure 3.7 Derivative term effect…………………………………………………………….35

Figure 4.1. Servomotor SIMULINK block Diagram…………………………...……………39

Figure 4.2. Second order system response………………………………………………...40

Figure 5.1. Servomotor SIMULINK model…………………………………………………..41

Figure 5.2. Input sin wave input……………………………………………………………..43

Figure 5.3. Input signal after dead zone effect…………………………………………….43

12

Figure 5.4. Output Speed……………………………………………………………………..44

Figure 5.5 Step input before dead zone…………………………………………………….45

Figure 5.6. Input signal after dead zone…………………………………………………….45

Figure 5.7. Speed output signal……………………………………………………………...46

Figure 5.8. Network response before training………………………………………………47

Figure 5.9. Network response after training………………………………………………...48

Figure 5.10. Performance Plot……………………………………………………………….49

Figure 5.11. Regression plot………………………………………………………………….49

Figure 5.12. Training tool window of the NN motor model…………….………………….50

Figure 5.13. PID Controller SIMULINK diagram……………………………………………51

Figure 5.14. PID input data…………………………………………………………………...52

Figure 5.15. PID output plot…………………………………………………………………..53

Figure 5.16. NN controller response before training……………………………………….53

Figure 5.17. NN controller response after training…………………………………………54

Figure 5.18. Performance plot of the NN controller………………………………………..54

Figure 5.19. Training tool window of the NN controller model……………………………55

Figure 6.1 NN motor model………………………………………………............................58

Figure 6.2. Internal NN structure……………………………………………………………..58

Figure 6.3. NN motor model complete diagram…………………………………………….59

Figure 6.4. Output signal of NN motor model………………………………………………59

Figure 6.5. Complete system diagram………………………………………………………60

Figure 6.6 Input signal………………………………………………………………………...61

Figure 6.7. NN Controller Input………………………………………………………………61

Figure 6.8. NN Controller output……………………………………………………………..62

Figure 6.9. Output speed signal (controlled)………………………………………………..62

13

Figure 6.10. Step input response of the NN controller…………………………………….63

Figure 6.11. Output speed with step input…………………………………………………..64

Figure 6.12. PID controller input and output signals……………………………………….65

Figure 6.13. Output speed with PID controller……………………………………………...65

14

CHAPTER 1

INTRODUCTION TO THE STUDY

Automatic systems are common place in our daily life, they can be found in almost any

electronic devices and appliances we use daily, starting from air conditioning systems,

automatic doors, and automotive cruise control systems to more advanced technologies

such as robotic arms, production lines and thousands of industrial and scientific

applications.

DC servomotors are one of the main components of automatic systems; any automatic

system should have an actuator module that makes the system to actually perform its

function. The most common actuator used to perform this task is the DC servomotor.

Historically, DC servomotors also played a vital role in the development of the

computer’s disk drive system; which make them one of the most important components

in our life that we cannot live without it. Due to their importance, the design of controllers

for these systems has been an interesting area for researchers from all over the world.

However, even with all of their useful applications and usage, servomotor systems still

suffer from several non-linear behaviors and parameters affecting their performance,

which may lead for the motor to require more complex controlling schemes, or having

higher energy consumption and faulty functions in some cases. For these purposes the

controller design of DC servomotor system is an interesting area that still offers multiple

topics for research, especially after the discovery of Artificial Neural Networks (ANN)

and their possible usage for intelligent control purposes. From this point of view and the

importance of having high efficient servomotor systems, the use of ANN played a vital

15

role in designing smart controllers that can eliminate or cope with the non-linear effects

found in servomotor systems and improve the functions they are used for.

DC Servomotor Systems

A Servomotor system consists of different mechanical and electrical components, the

different components are integrated together to perform the function of the servomotor,

Figure 1.1 bellow shows a typical model of a servomotor system (Nise, 2008)

Figure 1.1. Servomotor circuit diagram.

Its clear that the servomotor has two main components, the first is the electrical

component; which consists of resistance	�, inductance �, input voltage ��(�) and the

back electromotive force ��. The second component of the servomotor is the

mechanical part, from which we get the useful mechanical rotational movement at the

shaft. The mechanical parts are the motor’s shaft, inertia of the motor and load inertia �

and damping �. � Refers to the angular position of the output shaft which can be used

later to find the angular speed of the shaft 	.

DC Servomotors have good torque and speed characteristics; also they have the ability

to be controlled by changing the voltage signal connected to the input. These

characteristics made them powerful actuators used everywhere. The main concern

16

about DC servomotors is how to eliminate the non-linear characteristics that affect both

the output speed and position. Another important non-linear behavior in servomotors is

the saturation effect, in which the output of the motor cannot reach the desired value.

For example, if we want to reach a 100 rpm angular speed when we supply a 12 volt

input voltage, but the motor can only reach 90 rpm at this voltage. The saturation effect

is very common in almost all servomotor systems. Other non-linear effect is the dead

zone; in which the motor will not start to rotate until the input voltage reaches a specific

minimum value, which makes the response of the system slower and requires more

controllability. A mathematical type of non-linear effect found in the servomotors is the

backlash in the motor gears. Some of the servomotors use internal gears connections in

order to improve their torque and speed characteristics, but this improvement comes

over the effect in the output speed and position characteristics.

The goal here is to find a smart controller that is capable of eliminating as much as

possible from these non-linearties, so that we will have a better controllability of

servomotor drives.

Artificial Neural Networks

Artificial Neural Networks or ANN’s is a very powerful technique for solving complex

dynamic systems. The idea of developing artificial neural networks was started by the

early understanding of the human nervous system in the 1800’s, later scientists started

to have a clearer image of how the nervous system looks like, and later in the 20th

century (J.J Hofield, 1982) proposed the first Neuron model. When we talk about neural

networks we need to relate their behavior to the actual biological neural system that

17

exists, which consists of neuron cell, axons and synapses (Kandel E, Schawrtz JH and

Jessel TM. 2000). The neurons act as the processing elements, they receive the

message though the axons, process it and then resend another message to the next

neuron. The message first is received by the synapses, which produces some kind of

chemicals called neurotransmitters.

 Any neuron cell can then be excited and will act in return to the message received. The

message generated from the neuron will be either a decision that has been made or just

resending the same message that has been received. The connection of multiple

neurons to other neurons throughout the human body will form the biological neural

networks or the nervous system (Kandel E, Schawrtz JH and Jessel TM. 2000).

Figure 1.2 . Biological neuron model.

Mathematical Modeling of an ANN

Artificial neurons have almost the same structure as the biological neurons, but with

different names and added elements. An ANN mimics the function of a biological neural

network and hence it is considered as a very powerful tool that a control engineer can

18

use to solve difficult non-linear problems. The ANN architecture consists of multiple

neurons connected together; each neuron has a similar structure to other neurons

(Fukushima Kunihiko, 1975). Figure 1.3 shows a single artificial neuron.

Figure 1.3. Artificial neuron structure.

Each neuron consists of input
, weight �, bias �, transfer function � and the output a.

The output of the neuron a can be written in terms of the other elements as (Hagan,

1996):

(Equation1.1)

The network input can be written as:

 (Equation 1.2)

	is the transfer function used by the neuron to process the input with the weight and

bias to produce the output. There are different types transfer functions used with the

ANN’s, we will describe them in more details in chapter 3.2. The network input can be a

single element, a vector or a matrix consisting of many input values; each one of these

� = �(��+ �)

� = �� + �

19

input values has a weight value associated with it. In case of a multi input neuron the

weight element will be a weight matrix, and the input will be in vector form.

Figure 1.4. Multi input neuron.

The interconnections of single neurons to other neurons form the architecture of the

neural network. The interconnection of multiple single neurons to form an ANN is shown

in Figure 1.5.

Figure 1.5. Neural network structure.

20

As mentioned before, ANN’s are very powerful tools to solve complex problems and

therefore complex control systems. They have a parallel structure that makes them

capable to accept large data and process it at one time; which will reduce the time

needed for the whole control process to be done. One other important advantage of

ANN’s is that they are capable to “generalize”, which makes them act as a smart

controller, this means that the controller is able to deal with new type of input data, this

means that the controller has not been trained with that type of data and is let by itself to

decide how to deal with any change in the non-linear parameters to reduce their effect.

Although, many controllers have been implemented for servomotors, they are not

efficient enough in some cases, especially when the servomotor used in a critical

application requires a high efficient motor.

21

CHAPTER 2

REVIEW OF RELATED LITERATURE

DC Servomotor Literature Review

DC motors are widely used in many applications that we use in our daily life. We can

find them everywhere, from house appliances to our vehicles, desktops and laptops,

and industrial applications such as production lines, remote control airplanes, automatic

navigation systems and many other applications. DC motors are well known for their

torque-speed characteristics, and their wide operation voltage and current range (David

G. Alciatore and Michael B. Histand, 2007). DC motors can be specified into different

types: Permanent magnet motors, Shunt motors, Series motors and Compound motors.

For these DC motor types, each one of them has different speed-torque characteristics

and different categories of motors. DC servomotors are permanent magnet motors, in

which speed and position are typically the most common parameters to control.

DC Servo motors are DC motors that are modified to work using a closed loop control

system in which the shaft position or angular velocity are the control variables. A digital

or analog controller can be used to direct the operation of the servo motor by sending

position or velocity command signals to the amplifier which drives the motor. An integral

feedback device (resolver) or devices (encoder or tachometer) are either incorporated

within the servo motor or are remotely mounted, often on the load itself. These devices

provide the servo motor’s position and velocity feedback to the controller, which in turn

22

use these data to compare them with a programmed motion profile and use them to

alter the velocity signal.

A servomechanism, or servo, is an automatic device that uses error sensing negative

feedback to correct the performance of a mechanism. The term is correctly applied only

to systems where the feedback or error correction signal helps to control a specific

parameter of the mechanism. Due to their useful function, servo mechanisms were used

long time ago, the Greek were the first to use servo mechanism in their windmills, and

they have used this mechanism in adjusting the heading of the windmill (Edward L.

Owen, 2002). In 1868 Farcot in his work on hydraulic steam engines for ship steering

used the term “Le-Servomoteur” for the first time. A few years later H. Calendar

developed his first electro servo mechanism and in 1911 Henry Hobart defined the term

“servo-motor” in his electrical engineering dictionary (Otto Mayr, 1970).

Figure 2.1. Servo mechanism basic structure.

DC servomotors are Permanent magnet motors (PM) in which the stator field is

generated by the effect of a permanent magnet. When the PM motor has a position

and/or speed control it is called servomotor (David G. Alciatore and Michael B. Histand,

23

2007). For this speed and position control advantage of the servomotor, the use of the

negative loop feedback can minimize the output error to minimum values.

Figure 2.2. Servomotor circuit diagram.

With the use of servomotors, the development of power amplifiers has become also an

important component in servomotors; to use them in controlling and powering. Solid

state amplifiers are the most used type of amplifiers to power up and control

servomotors.

Artificial Neural Network Literature Review

At the beginning of 1800’s scientists started to discover the nervous system in the

human body, their work on knowing the structure and function of the nervous system

continued until 1906 when they started to understand the basic operation of the neuron,

and had a clear overview of how it operates and how the basic interconnection of

neurons in the nervous systems looks like (J.J Hofield, 1982). After this great discover,

McCulloch and Pitts in 1943 came up with the concept of artificial neural networks,

when they used it in their primitive artificial neural network (McCulloch, & Pitts, 1943).

The first practical neural network was built in the late 1950’s at Cornell University, a

neurobiologist called Frank Rosenblatt built it, to be the first one to deal with practical a

practical application of a neural network (K. Warwick, G.W Irwin and K.J Hunt, 1992).

24

From that time neural networks had gained big attention from scientist in different fields.

The term Artificial Intelligence (AI) has a strong relationship with neural networks, as the

neural network functions and abilities are similar to the nervous system; which in turn

has the same function as the human brain. The use of neural network in AI applications

was started when John Hopfield first used the ANN in AI applications (W.T. Miller, R.S.

Sutton, and P. J. Werbos, 1990).

Since then ANN’s started to be one of the most powerful techniques a control engineer

may use, many types of neural networks have been invented and used, such as back-

propagation and recurrent neural networks.

The basic structure of an artificial neuron is composed of three parts, inputs, weights

and outputs, each one of these parts has a unique purpose compared to the other parts.

The input layer has to accept the input data. The second components are the weights

that are used to modify the values of inputs according to how important they are to

produce the corresponding output of the neuron. In this layer the input is propagated to

the output through the neuron, each input value is multiplied by the weight value and

added to the bias. The output is calculated by applying a particular transfer function to

the modified inputs. The overall process performed by the neuron can be defined by the

following equation (Martin T. Hagan):

 � = �(��+ �) (Equation 2.1)

Where W represents the weights values, p represents the inputs, b the biases and � the

function to apply. Then the transfer function calculates the value and sends it to the

25

output of the neuron. The function of the output layer is to send this final value to a

specific location that is defined from the user.

Figure 2.3. Structure of single neuron network.

Figure 2.4. Single neuron structure.

An Artificial Neural Network (ANN) is the interconnection of several neurons that are

used to solve more complex problems. The basic structure of an ANN is composed of

three layers, namely: input layer, hidden layer and output layer, each one of these

layers has a unique function. The input layer has to accept the input data; which are the

training set of data, or the set of data will be used to simulate the network. The hidden

layers, there may be several layers, are used to modify the inputs and define the

26

interconnections of the neurons; and the final layer is the output layer that produces the

single output of the ANN. The basic structure of the ANN is shown in Figure 2.5.

Figure 2.5. Basic ANN structure.

27

CHAPTER 3

METHODOLOGY

Multi Layer Neural Network Model

Practical neural networks have a structure that traditionally is composed of multi layers.

The most common ANN implementation consist of a three layer network: The input

layer which accepts the training or simulation data; the hidden layer, which is used to

process the input data and modify the weights values; and the output layer, which sends

the processed data to a display, control system or any other data storage device. It has

been demonstrated that any two-layer network that has a sigmoid transfer function in

the first hidden layer and a linear function in the second layer can be used to find the

solution to most of the practical applications (Martin T. Hagan, 1996).

Hidden layers are the layers of neurons that exist between the input data and the output

layer, these hidden layers have the same structure as any other layer, and each one of

them has its own weight matrix, bias and transfer function. Adding more hidden layer to

the network makes it more powerful and able to solve more complex problem but it adds

more complexity to the controller design, and hence requires more processing time. The

control engineer have the tasks to design the network characteristics, and also to think

about the complexity and efficiency of the controller, taking into consideration the

criticality of the application he is working on. So it is a compromise between the

efficiency, time to process the data, cost and complexity of the controller.

28

Figure 3.1. Three layer neural network.

Each one of the network layers has an input, weight matrix, bias, transfer function and

output. The notation used to specify the output of each different layer is � with a small

number as a subscript to show the number of the layer. For example in Figure 3.1 the

output from the first layer is ��. The letter s is used to specify the number of neurons

and R is the number of inputs. This notation applies to all layers (Howard Demuth and

Mark Beale, 2004). The complete output of the neural network can be found using the

following equation:

 �� =
�(��
�(��
�(��p + ��) + ��) + ��) (Equation 3.1)

In this equation, a is the output, f is the transfer function used to process the values, W

is the weight value and b is the bias. This equation can be extended to find the output

for more layers. There is no rule or law to show the number of neurons in each layer

and the number of layers in each network that is best for a specific application, the only

29

way is to do that by trial and error until we reach the optimal network design for an

application.

Neural Network Transfer Functions

The transfer function is one of the main components of an ANN. There are different

types of transfer functions used in ANN’s, each one of these functions will have a

different output from the others. The most common transfer functions used with ANN’s

are the Hard-Limit, Linear and Log-Sigmoid transfer functions. The Hard-Limit transfer

function takes the input data n process it and gives one of two output values, if the

value of n is less than zero, then the output is zero, and if the input data more than zero,

then the output is one.

Figure 3.2. Hard-Limit transfer function

The Linear transfer function has an output value that has a linear behavior in respect to

the input, regardless of the sign of the input value; this function is very powerful to be

used with linear approximation functions. The linear transfer function characteristics are

shown in Figure 3.3.

30

The Log-Sigmoid function (shown in Figure 3.4) takes the input data which may have

any value and generates an output in the range of 0 – 1 (or -1, 1), this transfer function

is one of the most used in backpropagation neural networks, since it’s an infinite

differentiable function.

Figure 3.3. The Linear transfer function

Figure 3.4. The Log-Sigmoid transfer function.

Other transfer functions with different capabilities are used with different neural network,

Table 3.1 shows more transfer functions used with ANN’s. The selection of each layer’s

transfer function is very critical in the network’s performance and may lead to both a

successful network training and simulation or to fail both. As there is no predefined

method to find the number of neurons and layers for each network, also there is no

31

predefined method to choose the transfer function in each layer. The best match of

transfer function for any application comes from initial guess for the functions, then by

testing different functions to get the best network performance.

Table 3.1. List of Neural Network Transfer Functions.

32

Feed Forward ANN and Backpropagation Training Algorithm

A feed forward network, as the one shown in Figure 3.1, is a network in which the data

moves only in one forward direction from the input layer to the hidden to the output

layer, with no internal cycles or loops inside the network (Simon Haykin, 1998).

Backpropagation is a method used in the training process of ANN’s. Backpropagation

can be described as supervised learning; in which we have an input/output data pairs

used to train the network. In Backpropagation each input data has a corresponding

output data relates to it. After the training step using backpropagation the network

should be able to find a correct output value to a new input value that it has not been

trained for it before, so the network act as a classifier.

Backpropagation method works to update the values of the weights and biases in the

same direction as the performance function decreases more rapidly. The equations that

shows how backpropagation works is:

 (Equation 3.2)

Where ��	is the vector of current weights values, �� is the learning rate and �� is the

current gradient.

The way of updating the weights relates to the gradient decent algorithm, in which we

have two different ways to implement it. The first way called incremental training; in

which the weights and biases are updated after a new input sent to the network. The

second way called batch mode training, in which all the inputs are applied to the

network before changing the weights and biases values. Batch mode training can be

used if the all the input data is ready to be sent to the network, the gradients are

����	 = 	 �� + 	����

33

calculated at each training data and then added together to determine the value of the

weights and biases, which is the case of our data.

PID Control

The Proportional, Integral, Derivative controller (or the PID controller) is the most

popular type of controller used in different engineering applications. The PID controller

is a form of control loop that has a feedback mechanism. The PID controller works by

calculating the error signal between an output measured value and a reference value,

the controller works to minimize the error signal or the difference between the output

signal and the reference signal to a minimum value; such that the output measured

value will be as close as possible to the input reference signal (Robert N. Baterson,

1999).

The mathematical representation of the PID controller is:

 ���� = ��. ���� + �� � �� �!
�

	
+ 	�!	

�
�(�) (Equation 3.3)

Where U(t) is the controller output signal, e(t) is the error signal, Kp is the proportional

gain, Ki is the integral gain and Kd is the derivative gain.

As shown in Eq. 3.3 above, the PID controller has three parameters, P or Proportional

term, I or Integral term and D or Derivative term, each one of these terms has a gain

value related to it, and it makes the controller system to react in a different way from the

others. The proportional term depends on the present error value, the proportional gain

have a direct relationship to the controller sensitivity, the higher P gain value leads to

faster change for the systems’ output, which makes the controller to be more sensitive.

34

A pure proportional controller will have a steady state error and depending on the gain it

could generate an overshoot in the output signal. Figure 3.5 shows the response of a

system when a proportional term and D term is applied, while keeping the integral and

derivative values constant.

The integral term depends on summation over time of the present and the previous

errors. The action of the integral term makes the system to reduce its steady state error

in the output and to have a smoother slope that reached the final value faster. Figure

3.6 shows the integral effect on the output signal.

The last term of the PID controller is the derivative term, which depends on the rate of

change of the error. Both the value of the current error and the duration of the error are

taken into account, it speeds up the controller response, but can make the overshoot in

the system higher.

Figure 3.5. Proportional and Derivative terms effect

35

 Figure 3.6. Integral term effect.

Figure 3.7 Derivative term effect.

36

By combining the three terms and their effect together we can get the PID controller

function. PID controllers can be found everywhere now, in many different industrial

process and applications. Even though they are widely used and well developed, but

they still not the perfect choice for some critical time and high efficient applications.

37

CHAPTER 4

DC SERVOMOTOR

DC Servomotor Model

Recalling the DC servomotor diagram from Figure 1.1, the transfer function of the DC

servomotor can be derived using Kirchhoff’s voltage law and Laplace transforms

(Nise, 2008) as the following:

 (Equation 4.1)

The Back-electromotive force (emf) Vb can be found by using the equation shown
below.

 (Equation 4.2)

Where Vb is the induced voltage, Km is the motor torque constant, and ωm is the angular
rotating speed. It can be seen that ωm can be calculated by the Eq. uation shown below

 (Equation 4.3)

And Using Laplace Transform

 	�"� = 		"�(") (Equation 4.4)

Our concern in this stage is to control the angular rotating speed ωm, by controlling the
input voltage Vm.

Where:

J = moment of inertia of the rotor

b = dampening ratio of the mechanical system

T = motor torque

I = Current

�� = ��

!�

!�
= ��	�

�
 = �� = ���� + ��
!�

!�
+ ��

	� = �#

38

Vm = back emf

θ = shaft position

K = electromotive force constant

	� = Measured angular Speed

R = Motor Armature Resistance

L = Inductance

V = Source Voltage

The transfer function of the output angular speed is derived using Laplace transform
using the second order system equation:

(Equation 4.4)

The resulting transfer function:

 (Equation 4.5)

 From Equation 4.3, the relationship between the angular position and the speed can be

found by multiplying the angular position by
�

�
. Our major concern on this research is the

proper control of the angular speed of the motor; since the angular speed is the part that

suffers the most from the non-linearties. The angular non-linear effect on the angular

position tends to be less due to the term used to derive it
�

�
, which adds an integral

effect or filter effect to this part. Figure 4.1 shows the block diagram which represents

the servomotor system using MATLAB SIMULINK.

2 2

()
2

n

n n

G s
s s

ω
ξω ω

=
+ +

ω

�
= 	

�

��� + ��. �	� +
�+��

39

Figure 4.1. Servomotor SIMULINK block diagram.

DC Servomotor Response

The response of the servomotor, as mentioned before in section 4.1, can be considered

as a second order system. A second order system will have a natural frequency ω, a

damping factor ς. The general response of a second order system with a step input is

shown in Figure 4.6. From the response of the second order system we can get some

of the characteristics of the system, and the design criteria can be implemented using

these characteristics.

Figure 4.2

Different parameters can be used to evaluate the response of the servomotor; by

adjusting the value of these parameters we can reach our design goal.

overshoot value, ts is the settling time and

three parameters can define the design criteria and output response for any second

order system response.

The ideal system response will have a zero overshoot, zero settling time and zero

tolerance, but in real life achieving the ideal response will be hard to achieve and will

have a high cost of implementation. So the solution can be found by defining an

accepted range for the values of the three parameters mentioned before to reach a

good system response for a sp

4.2. Second order system response

Different parameters can be used to evaluate the response of the servomotor; by

adjusting the value of these parameters we can reach our design goal.

is the settling time and β is the allowable error tolerance. These

three parameters can define the design criteria and output response for any second

The ideal system response will have a zero overshoot, zero settling time and zero

fe achieving the ideal response will be hard to achieve and will

have a high cost of implementation. So the solution can be found by defining an

accepted range for the values of the three parameters mentioned before to reach a

good system response for a specific application.

40

Different parameters can be used to evaluate the response of the servomotor; by

adjusting the value of these parameters we can reach our design goal. Mp is the

is the allowable error tolerance. These

three parameters can define the design criteria and output response for any second

The ideal system response will have a zero overshoot, zero settling time and zero

fe achieving the ideal response will be hard to achieve and will

have a high cost of implementation. So the solution can be found by defining an

accepted range for the values of the three parameters mentioned before to reach a

41

CHAPTER 5

ANN MODELS STRUCTURES

In this research we are proposing a neural network controller design to control the DC

servomotor. The training algorithm used in the ANN is the back-propagation method.

Two feed-forward neural networks are used, the first neural network is called the Model

Network; the function of this network is the same function as the DC servomotor. The

second network used is called the PID neural network controller, this network has the

same function as a PID tuned controller, but the difference is that this network is

capable of updating itself in a manner to improve the controller function this is why it is

considered to be a smart controller.

Servomotor Neural Network Model:

In this part we have built a neural network that has same function as the servomotor,

input/output data pairs used to train this network and simulate it. The first stage was to

build SIMULINK model that represents the servomotor system.

Figure 5.1. Servomotor SIMULINK model

42

This model has been derived from the Servomotor speed transfer function, Equation

3.7:

The parameter values used in the SIMULINK model were taken from a practical

servomotor. The parameters are:

Table 5.1 DC Servomotor parameter values.

Parameter Value

Moment of Inertia J 0.0062 N •m•s²/rad

Damping Coefficient b 0.001 N•m•s/rad

Torque constant Kt 0.06 N•m/A

Electromotive force constant Ke 0.06 V•s/rad

Electrical Resistance R 2.2 Ohms

Electrical Inductance 0.5 Henry

From the SIMULINK model it is clear that we can divide the transfer function into two

transfer functions, the first one is the electrical transfer function; which consists of the

electrical resistance and the inductance. The second transfer function is the mechanical

transfer function; which consists of the moment of intertie and the damping coefficient.

By dividing the transfer function into the two parts mentioned above, we can add the

non-linear parameters to the system to see their effect.

The input/output data pairs are generated from this model in order to train the Neural

Network model. The data is sent to m files in the form of matrices, stored in a specified

location, so we can call them or use their data when needed. The model is simulated for

ω

�
= 	

�

��� + ��. �	� +
�+��

43

10 seconds to generate the data. With a predefined sine wave frequency of 6 rad/sec,

we can make sure to have enough data points to fully represent the system.

Figure 5.2. Input sine wave input.

Figure 5.3. Input signal after dead zone effect

44

Figure 5.4. Output Speed

In Figures 5.2 to 5.4 we can see the effects of the non-linear parameters affecting the

input signal. The first change for the input signal can be seen on Figure 5.3, which

represents the signal after the dead zone. The dead zone value is 1.5 volts, which is

very common in this size of servomotors. After applying this input signal to the whole

system including the other non-linear parameters, we can see the big distortion to the

output signal compared to the input signal.

To have a clearer image of the non-linear effect, the systems suffers from, we have

used a single step input. The step input has a maximum value of 12 volts, which is the

maximum voltage rating of the servomotor we are using. From Figures 5.5 and 5.6 we

can see how the dead zone limits the signal to 10.5 volts, which is less than the

required voltage, then we can see the slower response of the output signal, which

represents the speed signal. This bad response (shown in Figure 5.7) of the system can

be worse if one or more of the system’s parameters or the outside disturbances are

changed.

45

Figure 5.5 Step input before dead zone

Figure 5.6. Input signal after dead zone.

46

Figure 5.7. Speed output signal.

The neural network model, that mimics the function of the servomotor, has been built

using the data recorded from the original sine wave response mentioned earlier. The

choice of using the training data from the values obtained is due to nature of the sine

wave, since it is the most common wave found in nature, so it has a more general

behavior than the other waves. MATLAB SIMULINK and commands have been used to

store the data and to generate the neural network model. From the type of data used,

sine wave, step input and other signal types, the training data is a two dimensional

matrix, one dimension is the time and the other one is the magnitude. The full code

used to generate the network is available in Appendix A. The network parameters used

to generate the network appear in the MATLAB code bellow:

P = sininput;
T = sineoutput;
net = newff(P,T,25);
Y = sim(net,P);
P1 = sininput(1,:);
Figure1 = plot(P1,Y);
net.trainParam.show = 50;

net.trainParam.epochs = 1000;
net.trainParam.lr = 0.05;
net.trainParam.goal = 1e-5;
net = init(net);
net = train(net,P,T);
Y1 = sim(net,P);
gensim(net,-1)

47

Where P is the input data obtained from the sine wave input signal, T is the target data;

which represents the output speed. The maximum number of epochs used is 1000,

which is the maximum number of trials the training method can apply before stopping.

The training goal was to reach a minimum error value of 0.00005, this error value is

between the input signal and the generated output. The learning rate was chosen to be

0.05. These parameters were chosen to best fit the performances of the network, more

restrict parameters may take the network to have unstable response and it may cause

the training method to diverge. The results from the implemented network are shown

bellow (refer to Appendix A for the training data):

• The plot of data before the training of the network:

Figure 5.8. Network response before training

48

• The plot of data after training:

Figure 5.9. Trained Data plot

From Figure 5.9, and comparing to Figure 5.4, we can see how the neural network

model has the same response than the original servomotor; from here we can be sure

that we can use this network in our system. Figure 5.10 show the performance of the

network training, and how the desired error goal has been achieved within the specified

number of epochs. Figure 5.12 shows the results of the training, where the number of

epochs used to achieve the high performance of the network was 23 epochs, which

makes the response of our network model to be very fast compared to any other model

that represents the servomotor. The regression plot, shown on Figure 5.11 shows a

high data scattering around the regression line, we can see that for R = 0.98969

49

regression line most of the data lies in the range; which is a strong evidence of the

successful training.

Figure 5.10. Performance Plot.

Figure 5.11. Regression plot

50

Figure 5.12. Training tool window of the NN motor model

51

Neural Network Controller Model

The neural network model controller was built based on a tuned PID controller, the first

step was to control the servomotor using PID tuning technique, after reaching a better

performance of the motor with the PID controller, data have been collected to train the

neural network controller. The method of using an embedded PID controller inside the

controller function makes the system more powerful, the neural network after training is

capable of improving the over performance of the system, the advantage of this smart

controller that its able to deal with any new change may occur to the system, and to

eliminate the non-linear effect found in the system.

Figure 5.13. PID Controller SIMULINK diagram

52

The data used for this neural network were obtained from the input of the PID block;

which were used as the input training data. The output from the PID block was used as

the target data for the training process. The neural network controller has the same

structure and training parameters of the servomotor model. It has 25 neurons in the

hidden layer, 1000 epochs, 0.05 learning rate and error value of 0.00005. The MATLAB

code used for the controller network is:

• Simulation Plot of the PID input and output data

Figure 5.14. PID input data

P1 = pidin;
T1 = pidout;
net1 = newff(P1,T1,50);
Ypid = sim(net1,P1);
P1pid = pidin(1,:);

Figure1pid =
plot(P1pid,Ypid);

net1.trainParam.show = 50;
net1.trainParam.epochs =
1000;
net1.trainParam.lr = 0.05;
net1.trainParam.goal = 1e-5;
net1 = init(net1);
net1 = train(net1,P1,T1);
Y1pid = sim(net1,P1);
gensim(net1,-1)
Figure4pid =
plot(P1pid,Y1pid);

53

Figure 5.15. PID output plot

• Neural Network Controller plots

Figure 5.16. NN controller response before training

54

Figure 5.17. NN controller response after training.

Figure 5.18. Performance plot of the NN controller.

55

Figure 5.19. Training tool window of the NN controller model.

From Figure 5.19 we can see that training of the controller NN was successful and

compatible with the simulation results. Also the performance results were successful,

56

the training process took 17 epochs to reach the desired error value, which makes the

controller response very fast.

57

CHAPTER 6

CONTROLLER DESIGN AND SIMULATION RESULTS

After we have discussed the different parts of the system and how each neural network

succeeded in the training process, we will discuss the system as a whole, when both

the NN controller and the NN servomotor model are connected together. In this chapter

we will show all the simulation results from the NN controller system, then we will

compare the results with the same system but while using a conventional PID controller.

Neural Network System:

After we have used MATLAB commands to build and train our neural networks, we use

a very useful command to generate neural network SIMULINK diagram. The function

used the gensim function; this function can be used after successful training of the

neural network, the block generated then can be used to build the total system.

The syntax of this function is: gensim(net,st)

Where the net parameter refers to the trained neural network, and the st represents the

sampling time, in our case st will be set to -1; which means continuous sampling. The

two networks can be generated using this function, but the generated network will

accept only constant input in its initial configuration. To connect both networks together

we will need to add more elements to the SIMULINK model to make sure our networks

accept dynamic input. The generated neural network blocks for the motor model before

connecting them together is shown in the Figures 6.1 & 6.2.

58

Figure 6.1 NN for motor model

Figure 6.2. Internal NN structure

The SIMULINK model for the controller has the same structure as for the motor model,

the only difference that each one has a different function to perform. From the internal

structure we can see all the NN components, input, hidden layer and output. From here

we will see the simulation results for the NN motor model by itself first, to make sure the

network is working correctly then we will build the complete system. In order to simulate

this network we need to have a two-dimensional input, this input can be done by using

two sine wave signals and a Multiplexor (Mux) block. Figure 6.3 shows the new

configuration of the network.

59

Figure 6.3. NN motor model complete diagram

Figure 6.4. Output signal of NN motor model

From Figure 6.4, we can see the sinusoidal behavior of the system, in this system two

sine wave signals are used as input signals, the yellow signal shows the reference

signal used to generate the graph and the purple signal shows the output speed.

60

Complete system results with sine wave input

The complete system; which includes the NN controller and the NN motor model have

been built and simulated in MATLAB SIMULINK, the complete diagram is shown bellow.

Figure 6.5. Complete system diagram.

In this system we have connected the NN controller to the NN motor model, negative

feedback is been used, multi scopes are also used to show the different signals we

obtain from the system in order to compare them. The simulation results for this system

are shown bellow. From Figures 6.6 to 6.9 we can verify that the output signal is

matching the controller output; which confirms that the system is well controlled, from

these Figures we can also see that most of the signal distortion due to the non-linear

parameters was eliminated. The output speed is completely matching the controller

signal.

61

Figure 6.6 Input Signal

Figure 6.7. NN Controller Input

62

Figure 6.7. NN Controller Output

Figure 6.9. Output Speed Signal (Controlled)

63

Complete System Results with Step Input

To confirm our results, we have used other type of common input signal, which is the

step input. All the simulation results obtained from the step input also matching the

results that we obtained from the sine wave input. One important result we can get from

comparing the system behavior before and after using the NN controller, is that the

response time, or the settling time of the system after using the NN controller is less

than two seconds compared to the old response with the PID controller itself.

Figure 6.10. Step input response of the NN controller

The difference of the start point is that NN motor model has a 12 volt input signal and

the input signal we are using here has value of 1 volt maximum, so that the controller

will compensate for the actual value.

64

Figure 6.11. Output speed with step input

From the simulation results it is clear to mention the difference of the response of the

system for both the time needed to reach the desired output and the shape of the

output. The output from the step input has the same as the input signal, which has no

distortion.

PID Controller Response

In order to have clearer image about the difference of the two controllers, the

conventional PID controller and the NN controller, we have simulated the response of

the two systems for the PID controller with step input. The PID controller has been

tuned to get the best response possible from the system, the values obtained for the

PID parameters values are: P = 20. I = 2 and D = 20. From these values we need to

build a controller that consumes more power due to the proportional parameter value.

Even though, this controller can be built, due to high gain value this controller may not

65

be the best solution to our system, taking into consideration the power ratings of the

motor; which may not be able to withstand this value of input voltage.

Figure 6.12. PID controller input and output signals.

Figure 6.13. Output speed with PID controller

From the response of the PID controller we can mention some disadvantages to use

this type of controller. The first one is that we have an overshoot of the input signal to

66

the PID, this overshoot may cause a failure in the controller function, especially this

controller may be running continuously with no stops. The second one is the big

difference of the output speed signal compared to the output from the PID controller

itself, which means that the controller was not completely successful to eliminate all the

non-linear effects. One last important issue of the PID controller is that the response is

still slow, even after tuning the PID, which means that if this is a critical time for the

function being controlled by the PID then the PID controller will be out of question for

this application.

The overall response of the system while using the PID controller is still weak, also this

system will not be able to deal with any outside disturbances or any sudden change in

the load attached to the servomotor, this is clear from the overshoot of the PID input; in

which we can conclude that if any sudden change happen the controller will drain more

power leading to burn the components of the controller, and this may lead for motor

failure.

NN Controller Response

Recalling the step response of the NN controller shown in Figures 6.10 and 6.11, we

can mention the difference in the response compared to the PID controller response.

The first difference is that the NN controller input signal, in this signal we can see that

there is no overshoot in the signal, which means the controller can keep working in a

safe manner without any risk of burning the controller itself. Also this advantage makes

the controller to keep the same power level consumption, which is very critical in some

remote application if we do not have any kind of power source attached to the system.

67

The second advantage of the NN controller over the PID is that the output speed signal

is following the same shape and values of the controller, this makes the system

eliminate any nonlinear effect due to the motor components, or due to any sudden

change in the outside environment of the load attached to the motor.

Comparing the time response of the two controllers, we can notice the big difference in

the time needed for the signal to reach the final value when using the NN controller, this

time tends to be half the time needed when we used the PID controller. This advantage

is also very important since in some critical application a time difference of one second

may cause unwanted response of the system and may lead to malfunction.

68

CHAPTER 7

CONCLUSIONS, DELIVERIES, FUTURE WORK AND SUMMARY

Conclusions

From the results obtained for both the PID controller and the NN controller, it is clear

that the overall performance of the NN controller proposed was better than the

conventional PID controller. The PID controller performance was consistent with old

trials of controlling this type of motors, the change in system’s parameters does not

yield any change in the technique used to tune the PID controller for, but changes the

performance of the PID. The PID controller cannot be improved further, since the tuning

results were the best to get the output shown on Figure 6.4 and 6.13. The tuning results

for the PID controller were best match for the system performance and the ability to

build such a controller. The PID controller can be used with servomotors that are not

components of very efficient systems or time critical systems, since they will require

high power to operate them and may lead to failure in their function due to the high

power used by the controller.

On the other hand the NN controller has shown very good results and improvements of

the system behavior. The NN controller was able to deal with all the non-linear

parameters found on the system, and the output was very consistent with the input of

the controller signal. The efficiency of this controller was also better in terms of the

response time, as shown in Figures 6.11 and 6.13, the response time to reach the

maximum output value was almost 1 second compared to 5 seconds for the PID

controller.

69

The only drawback found in the NN controller is that the output signal was shifted and

does not start to rise from zero. This issue of the NN controller response can be easily

eliminated and improved by adding a bias to the neural network during training, and with

the use of simple components when implementing the controller using hardware.

Deliveries

As deliveries of this research we can mention mainly the following items.

a) An ANN architecture was developed and trained based on the second order

model of a servo motor. This ANN can be used to simulate the operation of a real

servomotor system.

b) A second ANN architecture was developed, that is used to control the operation

of the first neural network, this neural network has a better performance than its

PID control equivalent, and it was shown to reduce the non-linear parameters

and characteristics of a typical servomotor system. It also produces the correct

control signals required for the operation of this kind of systems.

c) Two research papers have been submitted for publication using the results of this

project. At the present time, one paper has already been accepted for

presentation and the second one is under development to be submitted for

acceptance.

Future Work

No further can be done with the PID controller, since the tuning of the controller

parameters resulted in the best match of performance and real implementation. While

the NN controller still offers some opportunity to continue working with. In particular, the

70

NN controller can further be improved by first eliminating any signal shift found in the

output, also the response time may be improved by using other training techniques,

which may be required in some time critical applications.

One Important step to do in the future is to implement both controllers using hardware

components, and to test both of them with a real servomotor. This step will also be very

helpful to test the performance of both controllers, and may lead to more improvements

of the controller function. The most important point about the NN controller is that the

more we use it, the more it improves itself and learns how to deal with any new data

type and parameter changes.

Summary

In this thesis we are able to test the performance of two types of controllers, PID

controller and NN controller, compare them together and show the difference in the

performance of each type of them. The NN controller has shown better performance by

meeting the problem goals; in which we want to eliminate most of the non-linear effect

and to have a kind of a controller that can deal with any new type of data or change in

the working environment.

The results show also that the NN controller can be used in high efficient systems and

time critical system, in which the PID controller will not be the best choice of a controller

for these types of systems.

71

REFERENCES

Nise, Norman S.. Control Systems Engineering. Fifth edition 2008.

Hofield, J.J. Neural networks and physical systems with emergent collective

computational abilities. 1982.

Kandel E, Schawrtz JH, Jessel TM. Principles of neural science. 2000

Halici, Ugur. Artificial neural networks. Ankara 2005

Kunihiko, Fukushima. A self organizing multilayered neural network. 1975

Hagan, Martin T.. Neural network design. 1996.

Owen, Edward L.. “ Origins of servomotor”. August 2002.

Mayr, Otto, The Origins of feedback control. MIT press 1970.

Miller, W.T, Sutton, R.S. and Werbos, P.J. Neural network for control, MIT Press,

Cambridge, MA (1990).

Warwick, K., Irwin, G.W and Hunt, K.J. Neural networks for control and systems, Peter

Peregrines Ltd(1992).

Demuth, Howard and Beale, Mark. Matlab neural network tool box documentation. 2004

Haykin, Simon, 1999. “ An Introduction to Feed Forward Networks”. 1999

Ogata, K, 2005. Modern control engineering. Fourth edition. McGraw Hill.

72

APPENDIX A

MATLAB CODE

% The NN motor model design we have 1-25-1, with tansig function
%for hidden layers and purlin for output layer.

P = sininput;
T = sineoutput;
net = newff(P,T,25);
Y = sim(net,P);
P1 = sininput(1,:);

Figure1 = plot(P1,Y);

net.trainParam.show = 50;
net.trainParam.epochs = 1000;
net.trainParam.lr = 0.05;
net.trainParam.goal = 1e-5;
net = init(net);
net = train(net,P,T);
Y1 = sim(net,P);
gensim(net,-1)
Figure4 = plot(P1,Y1);

% The PID controller NN has also the same structure but with different
% training sets:

% The NN controller design we have is 1-25-1, with tansig function for
%hidden layers and purlin for output layer.
P1 = pidin;
T1 = pidout;
net1 = newff(P1,T1,50);
Ypid = sim(net1,P1);
P1pid = pidin(1,:);

Figure1pid = plot(P1pid,Ypid);

net1.trainParam.show = 50;
net1.trainParam.epochs = 1000;
net1.trainParam.lr = 0.05;
net1.trainParam.goal = 1e-5;
net1 = init(net1);
net1 = train(net1,P1,T1);
Y1pid = sim(net1,P1);
gensim(net1,-1)
Figure4pid = plot(P1pid,Y1pid);

	Efficient Control of DC Servomotor Systems Using Backpropagation Neural Networks
	Recommended Citation

	/var/tmp/StampPDF/iSustARlyR/tmp.1375238981.pdf.GIl3S

