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ABSTRACT

Linear matrix inequalities and convex optimization techniques have become

popular tools to solve nontrivial problems in the field of adaptive control. Specif-

ically, the stability of adaptive control laws in the presence of actuator dynamics

remains as an important open control problem. In this thesis, we present a linear

matrix inequalities-based hedging approach and evaluate it for model reference adap-

tive control of an uncertain dynamical system in the presence of actuator dynamics.

The ideal reference dynamics are modified such that the hedging approach allows

the correct adaptation without being hindered by the presence of actuator dynam-

ics. The hedging approach is first generalized such that two cases are considered

where the actuator output and control effectiveness are known and unknown. We

then show the stability of the closed-loop dynamical system using Lyapunov based

stability analysis tools and propose a linear matrix inequality-based framework for

the computation of the minimum allowable actuator bandwidth limits such that the

closed-loop dynamical system remains stable.

The results of the linear matrix inequality-based heading approach are then

generalized to multiactuator systems with a new linear matrix inequality condition.

The minimum actuator bandwidth solutions for closed-loop system stability are the-

oretically guaranteed to exist in a convex set with a partially convex constraint and

then solved numerically using an algorithm in the case where there are multiple ac-

tuators. Finally, the efficacy of the results contained in this thesis are demonstrated

using several illustrative numerical examples.
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1. INTRODUCTION

In recent years, the utilization of linear matrix inequalities (LMIs) and convex

optimization techniques to solve engineering related problems has become increasingly

popular since they are widely available [31, 32] and are capable of finding solutions

that are otherwise intractable or prohibitively conservative. In the context of adaptive

control, linear matrix inequalities present a new methodology to analyze the stability

of systems with inherent uncertainties more rigorously such that their performance

limits are guaranteed and well-posed.

1.1. COMPUTINGACTUATOR BANDWIDTH LIMITS IN ADAPTIVE
CONTROL

The presence of actuator constraints, which include actuator amplitude con-

straints, actuator rate constraints, and actuator bandwidth constraints (i.e., actu-

ator dynamics), can seriously limit the stability and the achievable performance of

adaptive controller laws. Although actuator amplitude and rate constraints are well

studied in the adaptive control literature (see, for example, [1, 2, 3, 4, 5, 6] and

references therein), actuator dynamics present a serious challenge to the design and

implementation of adaptive controllers. Specifically, if the actuator dynamics have

sufficiently high bandwidth, then they can be neglected in the design of model refer-

ence adaptive controllers. However, if the actuator dynamics do not have sufficiently

high bandwidth or the control system is used for safety-critical applications, stability

verification steps must be taken in order to rigorously show the allowable bandwidth

range for actuators such that adaptive controllers work correctly (i.e., the closed-loop

dynamical system remains stable).
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The authors of [6, 10, 11, 12, 13] present notable contributions that allow the

design of model reference adaptive controllers in the presence of actuator dynamics.

In particular, the authors of [10, 11, 12] present direct approaches to this problem

such that the resulting closed-loop dynamical systems, which are explicitly affected

by the presence of actuator dynamics, are analyzed. The framework presented in

[13], while not explicitly applied to the problem of actuator dynamics, provides a

novel approach using linear matrix inequalities to compute a minimum filter band-

width and guarantee system stability. A similar analysis employed in this thesis can

then be applied to the problem of actuator dynamics such that a minimum actuator

bandwidth can be calculated while ensuring stability of the system.

The authors of [6] propose a novel hedging approach that enables adaptive

controller laws to be designed such that their adaptation performance (i.e., their

learning performances of the system uncertainties) is not affected by the presence of

actuator dynamics. Specifically, this is accomplished by modifying the ideal refer-

ence model dynamics with a hedge signal such that standard adaptation dynamics

are achieved even in the presence of actuator dynamics. Yet, it has not been an-

alyzed that this modification to the ideal reference model dynamics does not yield

unbounded reference model trajectories in the presence of actuator dynamics. Only

the authors of [14] highlight similarities between the hedging approach and the L1

adaptive control approach so that methods from the latter approach can be used for

the former approach to analyze the boundedness of the closed-loop dynamical system

with the hedge signal. Although this is possible when the actuator output is known,

an analysis is not provided in [14] and since methods from the latter approach are

based on small-gain type arguments they can lead to significant conservatism in the

analysis (see [13, 15] for details).

In this thesis, a novel hedging approach is developed using linear matrix in-

equalities and evaluated for model reference adaptive control of uncertain dynamical
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systems in the presence of actuator dynamics. Specifically, our first contribution

is to generalize the hedging approach to cover a variety of cases in which actua-

tor output and the control effectiveness matrix of the uncertain dynamical system

are both known and unknown. Our second contribution is to show the stability of

the closed-loop dynamical system, which includes the modified reference model tra-

jectories, using tools from Lyapunov stability analysis and propose a linear matrix

inequality-based framework for the computation of the minimum allowable actuator

bandwidth limits such that the closed-loop dynamical system remains stable. In par-

ticular, the proposed linear matrix inequality-based hedging framework characterizes

the fundamental stability interplay between the allowable system uncertainties and

the bandwidth of the actuator dynamics. This allows a rigorous treatment necessary

for safety-critical applications of model reference adaptive controllers. Although this

thesis considers a particular model reference adaptive control formulation to present

its main results, the proposed linear matrix inequality-based hedging framework can

be used in a complimentary way with many other approaches in adaptive control

(including but not limited to [16, 17, 18, 19, 20, 21]).

1.2. AN AFFINE QUADRATIC STABILITY CONDITION FOR A
LINEARMATRIX INEQUALITY-BASEDHEDGINGAPPROACH
TO NONCONVEX MULTIACTUATOR DYNAMICS

In the contributions stated in Section 1.1, the hedging approach is analyzed

with linear matrix inequalities to compute the minimum actuator bandwidth of an

uncertain dynamical in presence of actuators dynamics. However, these results are

strictly limited to single, first-order actuators. This thesis also generalizes those re-

sults to multiple, independent actuator bandwidths by introducing an affine quadratic

stability condition (AQS) for linear matrix inequalities with time invariant parameter
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uncertainties. Specifically, we convexify a generally nonconvex hedged control prob-

lem by introducing the affine quadratic stability condition and develop an algorithm

that can solve the specific case where there are three actuators that have their own

independent bandwidths. To the best of our knowledge, this is the first time anyone

has addressed this problem using our approach.

1.3. ORGANIZATION

The organization of this thesis is as follows. Chapter 2 covers all the neces-

sary mathematical preliminaries, Chapter 3 introduces the proposed linear matrix

inequality-based hedging approach for uncertain dynamical systems subject to actu-

ator dynamics with known and unknown outputs, Chapter 4 generalizes these results

specifically to multiactuator systems, Chapter 5 contains all of the illustrative exam-

ples for all cases, and Chapter 6 contains our conclusions and some suggestions for

future research.
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2. NOTATION AND MATHEMATICAL PRELIMINARIES

We briefly begin by providing the notation used throughout this thesis. Specif-

ically, R denotes the set of real numbers, Rn denotes the set of n × 1 real column

vectors, Rn×m denotes the set of n×m real matrices, R+ (resp., R+) denotes the set of

positive (resp., non-negative-definite) real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the

set of n×n positive-definite (resp., non-negative-definite) real matrices, Sn×n denotes

the set of n × n symmetric real matrices, Dn×n denotes the set of n × n real matri-

ces with diagonal scalar entries, (·)T denotes the transpose operator, (·)−1 denotes

the inverse operator, tr(·) denotes the trace operator,
∣∣∣∣·∣∣∣∣

2
denotes the Euclidian

norm,
∣∣∣∣·∣∣∣∣

F
denotes the Frobenius matrix norm, [A]ij denotes the ij-th entry of the

real matrix A ∈ Rn×m, λmin(A) (resp., λmax(A)) for the minimum (resp. maximum)

eigenvalue of the real matrix A ∈ Rn×m, and “,” denotes the equality by definition.

Next, we introduce some fundamental results that are needed to develop the

main results of this thesis. We begin with the following definition.

Definition 1. For a convex hypercube in Rn defined by Ω = {θ ∈ Rn : (θmin
i ≤

θi ≤ θmax
i )i=1,2,...,n} where (θmin

i , θmax
i ) represent the minimum and maximum bounds

for the ith component of the n-dimensional parameter vector θ. Additionally, for a

sufficiently small positive constant ε, a second hypercube is defined by Ωε = {θ ∈ Rn :

(θmin
i + ε ≤ θi ≤ θmax

i − ε)i=1,2,...,n} where Ωε ⊂ Ω. Then the projection operator

Proj : Rn × Rn → Rn is defined compenent-wise by

Proj(θ, y) ,



(
θmax
i −θi
ε

)
yi, if θi > θmax

i − ε and yi > 0(
θi−θmin

i

ε

)
yi, if θi < θmin

i + ε and yi < 0

yi, otherwise

(2.1)

where y ∈ Rn [22].
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It follows from Definition 1 that

(θ − θ∗)T(Proj(θ, y)− y) ≤ 0, θ∗ ∈ Rn, (2.2)

holds [22, 23].

Remark 1. Throughout the thesis, we use the generalization of this definition

to matrices as

Projm(Θ, Y ) =
(
Proj(col1(Θ), col1(Y )), . . . , Proj(colm(Θ), colm(Y ))

)
, (2.3)

where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes the i-th column operator. In this

case, for a given Θ∗ ∈ Rn×m, it follows from (2.2) that

tr
[
(Θ−Θ∗)T(Projm(Θ, Y )− Y )

]
=

m∑
i=1

[
coli(Θ−Θ∗)T(Proj(coli(Θ), coli(Y ))− coli(Y ))

]
≤ 0, (2.4)

holds.

We now briefly state the standard model reference control problem. Specifi-

cally, consider the uncertain dynamical system given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (2.5)

where x(t) ∈ Rn is the state vector available for feedback, u(t) ∈ Rm is the control

input restricted to the class of admissible controls consisting of measurable functions,

A ∈ Rn×n is an unknown system matrix, B ∈ Rn×m is an unknown input matrix, and

the pair (A,B) is controllable. The following assumption is standard in the model

reference adaptive control literature.
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Assumption 1. The unknown control input matrix is parameterized as

B = DΛ, (2.6)

where D ∈ Rn×m is a known input matrix and Λ ∈ Rm×m
+ ∩ Dm×m is an unknown

control effectiveness matrix which can be decomposed as

Λ = I + δΛ, (2.7)

where δΛ < I is unknown.

Next, consider the reference system capturing a desired, ideal closed-loop dy-

namical system performance given by

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0, (2.8)

where xr(t) ∈ Rn is the reference state vector, c(t) ∈ Rm is a given uniformly con-

tinuous bounded command, Ar ∈ Rn×n is the Hurwitz reference system matrix, and

Br ∈ Rn×m is the command input matrix. The objective of the model reference

adaptive control problem is to construct an adaptive feedback control law u(t) such

that the state vector x(t) asymptotically follows the reference state vector xr(t). We

now make the following assumption, which is also standard in the model reference

adaptive control literature and is known as the matching condition [22, 24, 25].

Assumption 2. There exists an unknown matrix K1 ∈ Rm×n and a known

matrix K2 ∈ Rm×m such that Ar = A+DK1 and Br = DK2 hold.

Now, (2.5) subject to standard Assumptions 1 and 2 yields

ẋ(t) = Arx(t) +Brc(t) +D(I + δΛ)u(t) +DWT
1 x(t)−DK2c(t)

= Arx(t) +Brc(t) +D
[
u(t) +WT

1 x(t) + δΛu(t)−K2c(t)
]
, (2.9)
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where W1 , −KT
1 ∈ Rn×m and δΛ ∈ Rm×m are unknown. Let the adaptive feedback

control law be given by

u(t) = −(I + δΛ̂(t))−1
(
ŴT

1 (t)x(t)−K2c(t)
)
, (2.10)

where Ŵ1(t) ∈ Rn×m and δΛ̂(t) ∈ Rm×m are the estimates of W1 and δΛ that respec-

tively satisfy the weight update laws

˙̂
W 1(t) = γ1Projm

[
Ŵ1(t), x(t)eT(t)PD

]
, Ŵ1(0) = Ŵ10, (2.11)

δ
˙̂
Λ(t) = γΛProjm

[
δΛ̂(t), DTPe(t)uT(t)

]
, δΛ̂(0) = δΛ̂0, (2.12)

where γ1 ∈ R+ and γΛ ∈ R+ are the learning rate gains, e(t) , x(t) − xr(t) is the

system error state vector, and P ∈ Rn×n
+ ∩Sn×n is a solution of the Lyapunov equation

0 = AT
r P + PAr +R, (2.13)

with R ∈ Rn×n
+ ∩ Sn×n. Note that since Ar is Hurwitz, it follows from the converse

Lyapunov theory [26] that there exists a unique P satisfying (2.13) for a given R. In

addition, the projection bounds are defined such that

∣∣∣[Ŵ1(t)]ij

∣∣∣ ≤ Ŵ1,max,i+(j−1)n, i = 1, ..., n and j = 1, ...,m, (2.14)∣∣∣[δΛ̂(t)]ij

∣∣∣ ≤ δΛ̂max,i+(j−1)m, i = 1, ...,m and j = 1, ...,m (2.15)

where Ŵ1,max,i+(j−1)n ∈ R+ and δΛ̂max,i+(j−1)m ∈ R+ denote (symmetric) element-wise

projection bounds. Note that the results of this thesis can be readily applied to the

case when asymmetric projection bounds are considered.
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Remark 2. The projection bounds on δΛ̂(t) are selected such that I + δΛ̂(t)

is invertible and therefore (2.10) is implementable.

Noting that (2.10) can be given by the equivalent form

u(t) = −ŴT
1 (t)x(t)− δΛ̂(t)u(t) +K2c(t), (2.16)

then (2.16) can be used in (2.9) to yield

ẋ(t) = Arx(t) +Brc(t)−D
[
W̃T

1 (t)x(t) + δΛ̃(t)u(t)
]
, (2.17)

and the system error dynamics is then given using (2.8) and (2.17) as

ė(t) = Are(t)−D
[
W̃T

1 (t)x(t) + δΛ̃(t)u(t)
]
, e(0) = e0, (2.18)

where W̃1(t), Ŵ1(t)−W1 ∈ Rn×m and δΛ̃(t) , δΛ̂(t)− δΛ ∈ Rm×m.

Remark 3. The weight update laws given by (2.11) and (2.12) can be derived

using Lyapunov analysis by considering the Lyapunov function candidate given by

(see, for example, [22, 24, 25])

V(e, W̃1, δΛ̃) = eTPe+ γ−1
1 tr W̃T

1 W̃1 + γ−1
Λ tr δΛ̃TδΛ̃. (2.19)

Note that V(0, 0, 0) = 0 and V(e, W̃1, δΛ̃) > 0 for all (e, W̃1, δΛ̃) 6= (0, 0, 0). Now,

differentiating (2.19) yields

V̇(e(t), W̃1(t), δΛ̃(t))

= −eT(t)Re(t)− 2eT(t)PDW̃T
1 (t)x(t)− 2eT(t)PDδΛ̃(t)u(t)

+2γ−1
1 tr W̃T

1 (t)
˙̂
W 1(t) + 2γ−1

Λ tr δΛ̃T(t)δ
˙̂
Λ(t), (2.20)
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where using (2.11) and (2.12) in (2.20) results in V̇(e(t), W̃1(t), δΛ̃(t)) ≤ −eT(t)Re(t)

≤ 0, which guarantees that the system error state vector e(t) and the weight errors

W̃1(t) and δΛ̃(t) are Lyapunov stable, and are therefore bounded for all t ∈ R+. Since

x(t) and c(t) are bounded for all t ∈ R+, it follows from (2.18) that ė(t) is bounded,

and hence, V̈(e(t), W̃1(t), δΛ̃(t)) is bounded for all t ∈ R+. It then follows from

Barbalat’s lemma that limt→∞ V̇
(
e(t), W̃1(t), δΛ̃(t)

)
= 0, which consequently shows

that e(t)→ 0 as t→∞.

Remark 4. It should be noted that in the case B is known, the uncertainty in

the control effectiveness matrix is equivalently given by δΛ = 0 such that Assumptions

1 and 2 hold. It then follows that the adaptive feedback control simplifies to

u(t) = −ŴT
1 (t)x(t) +K2c(t), (2.21)

satisfying the update law given by (2.11).

In the rest of this thesis, we resort to the mathematical preliminaries stated

in this section for developing our main results.
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3. COMPUTING ACTUATOR BANDWIDTH LIMITS FOR
MODEL REFERENCE ADAPTIVE CONTROL

3.1. INTRODUCTION

Although model reference adaptive control theory has been used in numerous

applications to achieve system performance without excessive reliance on dynamical

system models, the presence of actuator dynamics can seriously limit the stability and

the achievable performance of adaptive controllers. In this chapter, a linear matrix

inequality-based hedging approach is developed and evaluated for model reference

adaptive control of uncertain dynamical systems in the presence of actuator dynam-

ics. The hedging method modifies the ideal reference model dynamics in order to

allow correct adaptation that is not affected by the presence of actuator dynamics.

Specifically, we first generalize the hedging approach to cover a variety of cases in

which actuator output and the control effectiveness matrix of the uncertain dynam-

ical system are known and unknown. We then show the stability of the closed-loop

dynamical system using Lyapunov based stability analysis tools and propose a linear

matrix inequality-based framework for the computation of the minimum allowable

actuator bandwidth limits such that the closed-loop dynamical system remains sta-

ble.

The organization of this chapter is as follows. Section 3.2 introduces the

proposed linear matrix inequality-based hedging approach for uncertain dynamical

systems subject to actuator dynamics with known and unknown outputs, while Sec-

tion 3.3 generalizes the results of this section to include uncertainty in the control

effectiveness matrix. Lastly, the concluding remarks are stated in Section 3.4
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3.2. A LINEAR MATRIX INEQUALITY-BASED HEDGING
APPROACH TO ACTUATOR DYNAMICS

For the model reference adaptive control framework introduced in the previous

section, we now introduce the actuator dynamics problem. Specifically, consider the

uncertain system given by

ẋ(t) = Ax(t) +Bv(t), x(0) = x0, (3.1)

where B ∈ Rn×m is known for the results of this section and v(t) ∈ Rm is the actuator

output given by the dynamics

ẋc(t) = −Mxc(t) + u(t), xc(0) = xc0,

v(t) = Mxc(t), v(0) = v0,

(3.2)

where xc(t) ∈ Rm is the actuator state vector, M ∈ Rm×m ∩ Dm×m with diagonal

entries λi,i > 0, i = 1, . . . ,m, represents the actuator bandwidth of each control chan-

nel, and u(t) ∈ Rm is the control input restricted to the class of admissible controls

consisting of measurable functions. The objective of the hedging approach [6] is to

construct an adaptive feedback control law such that its adaptation performance (i.e.,

its learning performance of system uncertainty W1) is not affected by the presence of

actuator dynamics.

Remark 5. Note that the actuator dynamics given by (3.2) can be represented

in the following equivalent form

˙̄xc(t) = M
(
−x̄c(t) + u(t)

)
, x̄c(0) = x̄c0,

v̄(t) = x̄c(t), v̄(0) = v̄0,

(3.3)
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where x̄c(t) = Mxc(t). However, the actuator dynamics given by (3.2) are used such

that the resulting linear matrix inequality conditions are simplified in later analysis.

Consider now, by adding and subtracting Bu(t), the following equivalent form

of (3.1) subject to Assumption 2,

ẋ(t) = Arx(t) +Brc(t) +B
[
u(t) +WT

1 x(t)−K2c(t)
]
+B
[
v(t)− u(t)

]
. (3.4)

Using the adaptive feedback control law given by

u(t) = −ŴT
1 (t)x(t) +K2c(t), (3.5)

where Ŵ1(t) ∈ Rn×m satisfies the weight update law

˙̂
W 1(t) = γ1Projm

[
Ŵ1(t), x(t)eT(t)PB

]
, Ŵ1(0) = Ŵ10, (3.6)

with the projection bound defined by (2.14), it follows that the system dynamics

(3.4) can be equivalently rewritten as

ẋ(t) = Arx(t) +Brc(t)−BW̃T
1 (t)x(t) +B

[
v(t)− u(t)

]
. (3.7)

The rest of this section is broken into two subsections in which we will look into

two different cases. First, it will be assumed that the actuator output is known

(Section 3.2.1) and then in the second case this assumption will be removed (Sec-

tion 3.2.2). For each case, a systematic proof is included.

3.2.1. Known Actuator Output Case. Using the hedging approach [6],

the reference system is modified to the following

ẋr(t) = Arxr(t) +Brc(t) +B
[
v(t)− u(t)

]
, xr(0) = xr0, (3.8)
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such that the system error dynamics can be given using (3.7) and (3.8) as

ė(t) = Are(t)−BW̃T
1 (t)x(t), e(0) = e0. (3.9)

The following lemma is needed for the results in this section. For this purpose, let

λ ∈ R+ be such that λ ≤ λi,i for all i = 1, . . . ,m and let ω ∈ R+ be such that

Ŵ1,max,i+(j−1)n ≤ ω for all i = 1, . . . , n and j = 1, . . . ,m.

Lemma 1. There exists a set κ1 ,
{
λ : λ ≤ λi,i, i = 1, . . . ,m

} ⋃ {
ω :

Ŵ1,max,i+(j−1)n ≤ ω, i = 1, . . . , n, j = 1, . . . ,m
}

such that if (λ, ω) ∈ κ1, then

A(Ŵ1(t),M) =

Ar +BŴT
1 (t) BM

−ŴT
1 (t) −M

 (3.10)

is quadratically stable.

Proof. We first show that there exists λ such that (3.10) is quadratically

stable. For this purpose, consider the Lyapunov inequality given by

AT(Ŵ1(t),M)P + PA(Ŵ1(t),M) < 0,

P = PT > 0,

(3.11)

with

P =

 P PB

BTP BTPB + ρI

 , (3.12)

where P ∈ Rn×n
+ ∩ Sn×n is a solution of the Lyapunov equation given by (2.13)

with R ∈ Rn×n
+ ∩ Sn×n and ρ ∈ R+. Note that the positive-definiteness of (3.12)

follows from the positive-definiteness of P and the positive-definiteness of the Schur
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complement of (3.12) given by

S1 = BTPB + ρI −BTP (P )−1PB = ρI > 0. (3.13)

Next, note that

Q = AT(Ŵ1(t),M)P + PA(Ŵ1(t),M)

=

 −R AT
r PB − Ŵ1(t)ρ

BTPAr − ρŴT
1 (t) −2ρM

 . (3.14)

Since −R is a negative-definite matrix, it follows from the Schur complement of (3.14)

S2 = −2ρM +
(
BTPAr − ρŴT

1 (t)
)
R−1

(
AT

r PB − Ŵ1(t)ρ
)
, (3.15)

that (3.15) is a negative-definite matrix when λ is sufficiently large, which yields to

the quadratic stability of (3.10).

We next show that there exists ω such that (3.10) is quadratically stable.

For this purpose, we note that (3.10) is quadratically stable when ω = 0, which

follows from the upper triangular structure of (3.10) in this case and the fact that Ar

and −M are Hurwitz matrices. Since (3.10) depends continuously to the variations

in 0 < Ŵ1,max,i+(j−1)n ≤ ω, the quadratic stability of (3.10) is assured when ω is

sufficiently small. Finally, since there exist a (sufficiently large) λ or a (sufficiently

small) ω such that (3.10) is quadratically stable, the existence of set κ1 is immediate.

�

Theorem 1. Consider the uncertain dynamical system given by (3.1) subject

to Assumption 2, the reference system given by (3.8), the actuator dynamics given

by (3.2), the adaptive feedback control law given by (3.5) along with the update
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law (3.6). If (λ, ω) ∈ κ1, then the solution (e(t), W̃1(t), xr(t), v(t)) of the closed-loop

dynamical system is bounded and limt→∞ e(t) = 0.

Proof. To show Lyapunov stability and guarantee boundedness of the system

error state e(t) and the weight error W̃1(t), consider the Lyapunov function candidate

V(e, W̃1) = eTPe+ γ−1
1 tr W̃T

1 W̃1. (3.16)

Note that V(0, 0) = 0 and V(e, W̃1) > 0 for all (e, W̃1) 6= (0, 0). Then, differentiat-

ing (3.16) yields V̇
(
e(t), W̃1(t)

)
≤ −eT(t)Re(t) ≤ 0, which guarantees the Lyapunov

stability, and hence, the boundedness of the solution
(
e(t), W̃1(t)

)
.

To show the boundedness of xr(t) and xc(t) (and therefore v(t)), consider the

reference system (3.8) and the actuator dynamics (3.2) subject to (3.5) as

ẋr(t) = Arxr(t) +B
[
Mxc(t) + ŴT

1 (t)e(t) + ŴT
1 (t)xr(t)

]
, (3.17)

ẋc(t) = −Mxc(t)− ŴT
1 (t)e(t)− ŴT

1 (t)xr(t) +K2c(t), (3.18)

where (3.17) and (3.18) can be rewritten in compact form as

ξ̇(t) = A(Ŵ1(t),M)ξ(t) + ω(·), (3.19)

with ξ(t) = [xT
r (t), xT

c (t)]T and

ω(·) =

 BŴT
1 (t)e(t)

−ŴT
1 (t)e(t) +K2c(t)

 . (3.20)

Note that ω(·) in (3.19) is a bounded perturbation as a result of Lyapunov stability of

the double (e(t), W̃1(t)). Now, it follows that since ω(·) is bounded and A(Ŵ1(t),M)

is quadratically stable for (λ, ω) ∈ κ1 by Lemma 1, then xr(t) and xc(t) are also
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bounded (see, for example, [27]). This further implies that the actuator output v(t)

is bounded.

To show limt→∞ e(t) = 0, note that x(t) is bounded as a consequence of

the boundedness of e(t) and xr(t). It now follows from (3.9) that ė(t) is bounded,

and hence, V̈(e(t), W̃1(t)) is bounded. As a consequence of the boundedness of

V̈(e(t), W̃1(t)) and Barbalat’s lemma [27], limt→∞ V̇
(
e(t), W̃1(t)

)
= 0, and hence,

limt→∞ e(t) = 0. �

Remark 6. For the results given in Theorem 1 to hold, it is assumed that

(3.10) is quadratically stable [28]. Lemma 1 shows the feasibility of this assumption

when (λ, ω) ∈ κ1. Specifically, this implies the actuator dynamics are sufficiently fast

(i.e., λ is sufficiently large such that λi,i are, and hence, M is sufficiently large for

all i = 1, . . . ,m) or the projection bounds on Ŵ1(t) are sufficiently small (i.e., ω is

sufficiently small such that Ŵ1,max,i+(j−1)n is sufficiently small for all i = 1, . . . , n and

j = 1, . . . ,m). It is of practical importance to note that this reveals the fundamental

stability interplay between the allowable system uncertainties (through the selection

of the projection operator bounds) and the bandwidths of the actuator dynamics.

Remark 7. We now utilize linear matrix inequalities to satisfy the quadratic

stability of (3.10) for given projection bounds Ŵ1,max for the elements of Ŵ1(t) and

the bandwidths of the actuator dynamics M . For this purpose, let W̄1i1,...,il
∈ Rn×m

be defined as

W̄1i1,...,il
=



(−1)i1Ŵ1,max,1 (−1)i1+nŴ1,max,1+n . . . (−1)i1+(m−1)nŴ1,max,1+(m−1)n

(−1)i2Ŵ1,max,2 (−1)i2+nŴ1,max,2+n . . . (−1)i2+(m−1)nŴ1,max,2+(m−1)n

...
...

. . .
...

(−1)inŴ1,max,n (−1)i2nŴ1,max,2n . . . (−1)imnŴ1,max,mn


,

(3.21)



18

where il ∈ {1, 2}, l ∈ {1, ...,mn}, such that W̄1i1,...,il
represents the corners of the

hypercube defining the maximum variation of Ŵ1(t). Following the results in [13]

and [28], if

Ai1,...,il =

Ar +BW̄T
1i1,...,il

BM

−W̄T
1i1,...,il

−M

 , (3.22)

satisfies the matrix inequality

AT
i1,...,il

P + PAi1,...,il < 0, P = PT > 0, (3.23)

for all permutations of W̄1i1,...,il
, then (3.10) is quadratically stable. Since (3.10) is

quadratically stable for large values of M (see Remark 6), we cast (3.23) as a convex

optimization problem given by

minimize M,

subject to (3.23).

(3.24)

Therefore, we can satisfy (3.23) by minimizing M for a given projection bound.

3.2.2. Unknown Actuator Output Case. The results in Section 3.2.1

assume that the actuator output is measurable and therefore known, which may

not always be the case (e.g, for some low-cost and small-in-size unmanned vehicle

applications). If the actuator output is unknown, then this requires a generalization of

the results presented in the previous section. For this purpose, consider the modified

reference system given by

ẋr(t) = Arxr(t) +Brc(t) +B
[
v̂(t)− u(t)

]
, xr(0) = xr0, (3.25)
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where v̂ ∈ R+ is an estimate of the unknown actuator output v(t) satisfying the

update law

˙̂v(t) = µBTPe(t) +M
(
u(t)− v̂(t)

)
, v̂(0) = v̂0, (3.26)

with µ = βM, β ∈ R+, being a design parameter. In this case, the system dy-

namics and the adaptive feedback control law given by (3.7) and (3.5), respectively,

along with the modified reference system (3.25) results in the following system error

dynamics

ė(t) = Are(t)−BW̃T
1 (t)x(t)−Bṽ(t), e(0) = e0, (3.27)

where ṽ(t) , v̂(t)− v(t) ∈ Rm.

Theorem 2. Consider the uncertain dynamical system given by (3.1) subject

to Assumption 2, the reference system given by (3.25), the actuator dynamics given

by (3.2), the feedback control law given by (3.5) along with the update laws (3.6) and

(3.26). If (λ, ω) ∈ κ1, then the solution
(
e(t), W̃1(t), xr(t), v(t), ṽ(t)

)
of the closed-loop

dynamical system is bounded for all initial conditions and t ∈ R+, and limt→∞ e(t) = 0

and limt→∞ ṽ(t) = 0.

Proof. To show Lyapunov stability and guarantee boundedness of the system

error state e(t), the weight error W̃1(t), and the actuator output error ṽ(t), consider

the Lyapunov function candidate

V(e, W̃1, ṽ) = eTPe+ γ−1
1 tr W̃T

1 W̃1 + β−1ṽTM−1ṽ. (3.28)

Note that V(0, 0, 0) = 0 and V
(
e, W̃1, ṽ

)
> 0 for all

(
e, W̃1, ṽ

)
6= (0, 0, 0). Differen-

tiating (3.28) yields V̇
(
e(t), W̃1(t), ṽ(t)

)
≤ −eT(t)Re(t) − 2β−1ṽT(t)ṽ(t) ≤ 0, which
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guarantees the Lyapunov stability, and hence, the boundedness of the solution(
e(t), W̃1(t), ṽ(t)

)
.

Similar to the proof of Theorem 1, to show the boundedness of xr(t) and xc(t)

(and therefore v(t)), consider the reference system (3.25) and the actuator dynamics

(3.2) subject to (3.5) as

ẋr(t) = Arxr(t) +B
[
Mxc(t) + ŴT

1 (t)e(t) + ŴT
1 (t)xr(t)

]
+Bṽ(t), (3.29)

ẋc(t) = −Mxc(t)− ŴT
1 (t)e(t)− ŴT

1 (t)xr(t) +K2c(t), (3.30)

where (3.29) and (3.30) can be rewritten in compact form as (3.19) with

ω(·) =

BŴT
1 (t)e(t) +Bṽ(t)

−ŴT
1 (t)e(t) +K2c(t)

 . (3.31)

Note that ω(·) in (3.31) is a bounded perturbation as a result of Lyapunov stabil-

ity of the triple
(
e(t), W̃1(t), ṽ(t)

)
. Now, it follows that since ω(·) is bounded and

A(Ŵ1(t),M) is quadratically stable for (λ, ω) ∈ κ1 by Lemma 1, then xr(t) and xc(t)

are also bounded (see, for example, [27]). This further implies that the actuator out-

put v(t) is bounded. The remainder of the proof is similar to the proof of Theorem

1, and hence, omitted. �

For the results given in Theorem 2 to hold, it is assumed that (3.10) is quadrat-

ically stable. As this is the same condition given in Section 3.2.1, it should be noted

that the same discussion and results provided in Remarks 6 and 7 hold for this case

of unknown actuator output.
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3.3. ACTUATORDYNAMICSWITHUNCERTAIN CONTROL EFFEC-
TIVENESS

In this section, we generalize the results of the previous section to uncertain

dynamical systems with unknown control effectiveness matrices that satisfy Assump-

tion 1. For this purpose, consider the uncertain system given by (3.1) subject to

actuator dynamics in (3.2). Using Assumptions 1 and 2, (3.1) can be equivalently

written as

ẋ(t) = Arx(t) +Brc(t) +D
[
(I + δΛ)u(t) +WT

1 x(t)−K2c(t)
]

+D(I + δΛ)
[
v(t)− u(t)

]
= Arx(t) +Brc(t) +D

[
u(t) +WT

1 x(t) + δΛv(t)−K2c(t)
]

+D
[
v(t)− u(t)

]
, (3.32)

where W1 , −KT
1 ∈ Rn×m and δΛ ∈ Rm×m are unknown. Now, let the adaptive

feedback control law be given by

u(t) = −ŴT
1 (t)x(t)− δΛ̂(t)v(t) +K2c(t), (3.33)

where Ŵ1(t) ∈ Rn×m and δΛ̂(t) ∈ Rm×m satisfy the respective weight update laws

˙̂
W 1(t) = γ1Projm

[
Ŵ1(t), x(t)eT(t)PD

]
, Ŵ1(0) = Ŵ10, (3.34)

δ
˙̂
Λ(t) = γΛProjm

[
δΛ̂(t), DTPe(t)vT(t)

]
, δΛ̂(0) = δΛ̂0, (3.35)

with the projection bounds defined respectively by (2.14) and (2.15), where the pro-

jection bounds of δΛ̂(t) are chosen such that

MδΛ̂T(t) + δΛ̂(t)M > −2M (3.36)
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holds. It follows that using (3.33) in (3.32), the system dynamics are now given by

ẋ(t) = Arx(t) +Brc(t)−D
[
W̃T

1 (t)x(t) + δΛ̃(t)v(t)
]
+D

[
v(t)− u(t)

]
. (3.37)

Remark 8. Note that to show the condition given by (3.36) holds, we consider

δΛ̄i1,...,ir ∈ Rm×m defined as

δΛ̄i1,...,ir =



(−1)i1δΛ̂max,1 (−1)i1+mδΛ̂max,1+m . . . (−1)i1+(m−1)mδΛ̂max,1+(m−1)m

(−1)i2δΛ̂max,2 (−1)i2+mδΛ̂max,2+m . . . (−1)i2+(m−1)mδΛ̂max,2+(m−1)m

...
...

. . .
...

(−1)imδΛ̂max,m (−1)i2mδΛ̂max,2m . . . (−1)immδΛ̂max,mm


,

(3.38)

where ir ∈ {1, 2}, r ∈ {1, ...,mm}, such that δΛ̄i1,...,ir represents the corners of the

hypercube defining the maximum variation of δΛ̂(t). It then follows that if (3.38)

satisfies the inequality

MδΛ̄T
i1,...,ir

+ δΛ̄i1,...,irM > −2M, (3.39)

for all permutations of δΛ̄i1,...,ir , then (3.36) holds.

In what follows, we first consider the case in which the actuator output is

known (Section 3.3.1) and then generalize our results to the case where it is unknown

(Section 3.3.2).

3.3.1. Known Actuator Output Case. Consider the following modified

reference system,

ẋr(t) = Arxr(t) +Brc(t) +D
[
v(t)− u(t)

]
, xr(0) = xr0, (3.40)
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and using (3.37) and (3.40) the system error dynamics are given by

ė(t) = Are(t)−D
[
W̃T

1 (t)x(t) + δΛ̃(t)v(t)
]
, e(0) = e0. (3.41)

The following lemma is needed for the results in this section. For this purpose,

let λ ∈ R+ be such that λ ≤ λi,i for all i = 1, . . . ,m, let ω ∈ R+ be such that

Ŵ1,max,i+(j−1)n ≤ ω for all i = 1, . . . , n and j = 1, . . . ,m, and let ν ∈ R+ be such that

δΛ̂max,i+(j−1)m ≤ ν for all i = 1, . . . ,m and j = 1, . . . ,m.

Lemma 2. There exists a set κ2 ,
{
λ : λ ≤ λi,i, i = 1, . . . ,m

} ⋃ {
ω, ν :

Ŵ1,max,i+(j−1)n ≤ ω, i = 1, . . . , n, j = 1, . . . ,m, and δΛ̂max,i+(j−1)m ≤ ν, i =

1, . . . ,m, j = 1, . . . ,m
}

such that if (λ, ω, ν) ∈ κ2, then

A(Ŵ1(t), δΛ̂(t),M) =

Ar +DŴT
1 (t) D(I + δΛ̂(t))M

−ŴT
1 (t) −(I + δΛ̂(t))M

 (3.42)

is quadratically stable.

Proof. We first show that there exists λ such that (3.42) is quadratically

stable. For this purpose, consider the Lyapunov inequality given by

AT(Ŵ1(t), δΛ̂(t),M)P + PA(Ŵ1(t), δΛ̂(t),M) < 0,

P = PT > 0,

(3.43)

with

P =

 P PD

DTP DTPD + ρI

 , (3.44)

where P ∈ Rn×n
+ ∩ Sn×n is a solution of the Lyapunov equation given by (2.13)

with R ∈ Rn×n
+ ∩ Sn×n and ρ ∈ R+. Note that the positive-definiteness of (3.44)
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follows from the positive-definiteness of P and the positive-definiteness of the Schur

complement of (3.44) given by

S1 = DTPD + ρI −DTP (P )−1PD = ρI > 0. (3.45)

Next, consider

Q = AT(Ŵ1(t), δΛ̂(t),M)P + PA(Ŵ1(t), δΛ̂(t),M)

=

 −R AT
r PD − ρŴ1(t)

DTPAr − ρŴT
1 (t) −2ρM − ρ(MδΛ̂T(t) + δΛ̂(t)M)

 . (3.46)

Noting that −R is negative definite, we then consider the Schur complement of (3.46)

given as

S2 =
[
−ρ
(
2M +MδΛ̂T(t)+δΛ̂(t)M

)]
+
[
DTPAr−ρŴT

1 (t)
]
R−1

[
AT

r PD−ρŴ1(t)
]
,

(3.47)

where using the condition on the projection bounds of δΛ̂(t) given by (3.36) it is

guaranteed that (3.47) is a negative-definite matrix when λ is sufficiently large, which

yields to the quadratic stability of (3.42).

Note that the existence proof for sufficiently small ω and ν to yield quadratic

stability of (3.42) is similar to the proof of Lemma 1, and hence, omitted. Finally,

since there exists a (sufficiently large) λ or (sufficiently small) ω and ν such that

(3.42) is quadratically stable, the existence of set κ2 is immediate. �

Theorem 3. Consider the uncertain dynamical system given by (3.1) subject

to Assumptions 1 and 2, the reference system given by (3.40), the actuator dynamics

given by (3.2), the adaptive feedback control law given by (3.33) along with the update

laws (3.34) and (3.35). If (λ, ω, ν) ∈ κ2, then the solution
(
e(t), W̃1(t), δΛ̃(t), xr(t),

v(t)
)

of the closed-loop dynamical system is bounded and limt→∞ e(t) = 0.
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Proof. To show Lyapunov stability and guarantee boundedness of the system

error state e(t), the weight error W̃1(t), and the control effectiveness error δΛ̃(t),

consider the Lyapunov function candidate

V(e, W̃1, δΛ̃) = eTPe+ γ−1
1 tr W̃T

1 W̃1 + γ−1
Λ tr δΛ̃TδΛ̃. (3.48)

Note that V(0, 0, 0) = 0 and V
(
e, W̃1, δΛ̃

)
> 0 for all

(
e, W̃1, δΛ̃

)
6= (0, 0, 0). Differen-

tiating (3.48) yields V̇
(
e(t), W̃1(t), δΛ̃(t)

)
≤ −eT(t)Re(t) ≤ 0, which guarantees the

Lyapunov stability and the boundedness of the solution
(
e(t), W̃1(t), δΛ̃(t)

)
.

To show the boundedness of xr(t) and xc(t) (and therefore v(t)), consider the

reference system (3.40) and the actuator dynamics (3.2) subject to (3.33) as

ẋr(t) = Arxr(t) +D
[
Mxc(t) + ŴT

1 (t)e(t) + ŴT
1 (t)xr(t) + δΛ̂(t)Mxc(t)

]
, (3.49)

ẋc(t) = −Mxc(t)− ŴT
1 (t)e(t)− ŴT

1 (t)xr(t)− δΛ̂(t)Mxc(t) +K2c(t). (3.50)

Then (3.49) and (3.50) can be rewritten in compact form as

ξ̇(t) = A(Ŵ1(t), δΛ̂(t),M)ξ(t) + ω(·), (3.51)

with ξ(t) = [xT
r (t), xT

c (t)]T and

ω(·) =

 DŴT
1 (t)e(t)

−ŴT
1 (t)e(t) +K2c(t)

 . (3.52)

Note that ω(·) in (3.51) is a bounded perturbation as a result of Lyapunov stability

of the triple
(
e(t), W̃1(t), δΛ̃(t)

)
. Now, it follows that since ω(·) is bounded and

A(Ŵ1(t), δΛ̂(t),M) is quadratically stable for (λ, ω, ν) ∈ κ2 by Lemma 2, then xr(t)

and xc(t) are also bounded (see, for example, [27]). This further implies that the
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actuator output v(t) is bounded. The remainder of the proof is similar to the proof

of Theorem 1, and hence, omitted. �

Remark 9. For the results given in Theorem 3 to hold, it is assumed that

(3.42) is quadratically stable. Lemma 2 shows the feasibility of this assumption when

(λ, ω, ν) ∈ κ2. Similar to the discussion given in Remark 6, this implies that the

actuator dynamics are sufficiently fast (i.e., λ is sufficiently large such that λi,i are,

and hence, M is sufficiently large for all i = 1, . . . ,m) or the projection bounds

on Ŵ1(t) and δΛ̂(t) are sufficiently small (i.e., ω and ν are sufficiently small such

that Ŵ1,max,i+(j−1)n and δΛ̂max,i+(j−1)m are sufficiently small for all i = 1, . . . , n and

j = 1, . . . ,m and i = 1, . . . ,m and j = 1, . . . ,m, respectively). Once again, this

reveals the fundamental stability interplay between the allowable system uncertainties

(through the selection of the projection operator bounds) and the bandwidths of the

actuator dynamics.

Remark 10. We now utilize linear matrix inequalities to satisfy the quadratic

stability of (3.42) for given projection bounds Ŵ1,max and δΛ̂max for the elements of

Ŵ1(t) and δΛ̂(t), respectively, and the bandwidths of the actuator dynamics M . For

this purpose, let W̄1i1,...,il
∈ Rn×m and δΛ̄1i1,...,ir

∈ Rm×m be given by (3.21) and (3.38)

respectively. Following the results in [13, 28], if

Ai1,...,i2r+l
=

Ar +DW̄T
1i1,...,il

D(I + δΛ̄i1,...,ir)M

−W̄T
1i1,...,il

−(I + δΛ̄i1,...,ir)M

 , (3.53)

satisfies the matrix inequality

AT
i1,...,i2r+l

P + PAi1,...,i2r+l
< 0, P = PT > 0, (3.54)

for all permutations of W̄1i1,...,il
and δΛ̄i1,...,ir , then (3.42) is quadratically stable. Since

(3.42) is quadratically stable for large values of M (see Remark 9), we cast (3.54) as
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a convex optimization problem given by

minimize M,

subject to (3.54).

(3.55)

Therefore, we can satisfy (3.54) by minimizing M for given projection bounds.

3.3.2. Unknown Actuator Output Case. We now extend the results of

the previous section to the case of unknown actuator output. For this purpose, first

consider the modified adaptive feedback control law given by

u(t) = −ŴT
1 (t)x(t)− δΛ̂(t)v̂(t) +K2c(t), (3.56)

where Ŵ1(t) satisfies the weight update law given by (3.34) and for the case of un-

known actuator output, the update law given by (3.35) is modified as

δ
˙̂
Λ(t) = γΛProjm

[
δΛ̂(t), DTPe(t)v̂T(t)

]
, δΛ̂(0) = δΛ̂0. (3.57)

with the projection bounds defined by (2.15). Additionally, v̂ ∈ Rm is an estimate of

the unknown actuator output v(t), satisfying the update law,

˙̂v(t) = µ
(
I + δΛ̂(t)

)
DTPe(t) +M

(
u(t)− v̂(t)

)
, v̂(0) = v̂0, (3.58)

with µ = βM , β ∈ R+ being a design parameter chosen such that

β

λmin(R)

∣∣∣∣PD∣∣∣∣2
F
w∗2Λ < 1 (3.59)

holds, where
∣∣∣∣δΛ̃(t)

∣∣∣∣
F
≤ w∗Λ denotes an upper bound.
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Next, consider the modified reference system given by

ẋr(t) = Arxr(t) +Brc(t) +D
[
v̂(t)− u(t)

]
, xr(0) = xr0. (3.60)

Now, using the system dynamics (3.32) with the adaptive feedback control law (3.56)

and the reference system (3.60), the system error dynamics are given by

ė(t) = Are(t)−DW̃T
1 (t)x(t) +DδΛv(t)

−DδΛ̂(t)v̂(t)−Dṽ(t), e(0) = e0. (3.61)

Theorem 4. Consider the uncertain dynamical system given by (3.1) sub-

ject to Assumptions 1 and 2, the reference system given by (3.60), the actuator

dynamics given by (3.2), the adaptive feedback control law given by (3.56) along

with the update laws (3.34), (3.57), and (3.58). If (λ, ω, ν) ∈ κ2, then the solution(
e(t), W̃1(t), δΛ̃(t), xr(t), v(t), ṽ(t)

)
of the closed-loop dynamical system is bounded

for all initial conditions and t ∈ R+, and limt→∞ e(t) = 0 and limt→∞ ṽ(t) = 0.

Proof. To show Lyapunov stability and guarantee boundedness of the system

error state e(t), the weight error W̃1(t), the control effectiveness error δΛ̃(t), and the

actuator output error ṽ(t), consider the Lyapunov function candidate

V
(
e, W̃1, δΛ̃, ṽ

)
= eTPe+ γ−1

1 tr W̃T
1 W̃1 + γ−1

Λ tr δΛ̃TδΛ̃ + β−1ṽTM−1ṽ. (3.62)

Note that V(0, 0, 0, 0) = 0 and V
(
e, W̃1, δΛ̃, ṽ

)
> 0 for all

(
e, W̃1, δΛ̃, ṽ

)
6= (0, 0, 0, 0).

Differentiating (3.62) yields
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V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
= −eT(t)Re(t)− 2eT(t)PDW̃T

1 (t)x(t) + 2eT(t)PDδΛv(t)

−2eT(t)PDδΛ̂(t)v̂(t)− 2eT(t)PDṽ(t) + 2γ−1
1 tr W̃T

1 (t)
˙̂
W 1(t)

+2γ−1
Λ tr δΛ̃T(t)δ

˙̂
Λ(t) + 2β−1ṽT(t)M−1 ˙̃v(t), (3.63)

where using (3.34), it follows that (3.63) reduces to

V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
≤ −eT(t)Re(t) + 2eT(t)PDδΛv(t)− 2eT(t)PDδΛ̂(t)v̂(t)

− 2eT(t)PDṽ(t) + 2γ−1
Λ tr δΛ̃T(t)δ

˙̂
Λ(t) + 2β−1 ˙̃v

T
(t)M−1ṽ(t). (3.64)

This can equivalently be expressed as

V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
≤ −eT(t)Re(t) + 2eT(t)PDδΛv(t)− 2eT(t)PDδΛ̂(t)v̂(t) + 2eT(t)PDδΛv̂(t)

−2eT(t)PDδΛv̂(t)− 2eT(t)PDṽ(t) + 2eT(t)PDδΛ̂(t)ṽ(t)

−2eT(t)PDδΛ̂(t)ṽ(t) + 2γ−1
Λ tr δΛ̃T(t)δ

˙̂
Λ(t) + 2β−1 ˙̃v

T
(t)M−1ṽ(t),

= −eT(t)Re(t)− 2eT(t)PDδΛ̃(t)v̂(t) + 2γ−1
Λ tr δΛ̃T(t)δ

˙̂
Λ(t)

+2eT(t)PDδΛ̃(t)ṽ(t) + 2eT(t)PD
(
I + δΛ̂(t)

)
ṽ(t) + 2β−1 ˙̃v

T
(t)M−1ṽ(t).

(3.65)

Finally, noting that ˙̃v(t) = ˙̂v(t) − v̇(t), and using the actuator dynamics given by

(3.2) along with the update laws (3.57) and (3.58) yields
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V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
≤ −eT(t)Re(t) + 2eT(t)PDδΛ̃(t)ṽ(t)− 2β−1ṽT(t)ṽ(t),

≤ −λmin(R)
∣∣∣∣e(t)∣∣∣∣2

2
+2
∣∣∣∣e(t)∣∣∣∣

2

∣∣∣∣PD∣∣∣∣
F
w∗Λ
∣∣∣∣ṽ(t)

∣∣∣∣
2
−2β−1

∣∣∣∣ṽ(t)
∣∣∣∣2

2
, (3.66)

where
∣∣∣∣δΛ̃(t)

∣∣∣∣
F
≤ w∗Λ holds due to projection operator. Now, using Young’s inequal-

ity [30] on the second term yields

V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
≤ −λmin(R)

∣∣∣∣e(t)∣∣∣∣2
2
+α
∣∣∣∣e(t)∣∣∣∣2

2
+

1

α

∣∣∣∣PD∣∣∣∣2
F
w∗2Λ

∣∣∣∣ṽ(t)
∣∣∣∣2

2
−2β−1

∣∣∣∣ṽ(t)
∣∣∣∣2

2
. (3.67)

Letting α = 1
2
λmin(R), it follows that

V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
≤ −λmin(R)

2

∣∣∣∣e(t)∣∣∣∣2
2
−2β−1

[
1− β

λmin(R)

∣∣∣∣PD∣∣∣∣2
F
w∗2Λ

]∣∣∣∣ṽ(t)
∣∣∣∣2

2
. (3.68)

Using (3.59) in (3.68), it follows that V̇
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
≤ 0, which guarantees

the Lyapunov stability, and hence, the boundedness of the solution
(
e(t), W̃1(t), δΛ̃(t),

ṽ(t)
)
.

To show the boundedness of xr(t) and xc(t) (and therefore v(t)), consider the

reference system (3.60) and actuator dynamics (3.2) subject to (3.56) as

ẋr(t) = Arxr(t) +D
[
Mxc(t) + δΛ̂(t)Mxc(t) + ŴT

1 (t)e(t) + ŴT
1 (t)xr(t)

]
+DδΛ̂(t)ṽ(t) +Dṽ(t), (3.69)

ẋc(t) = −Mxc(t)− δΛ̂(t)Mxc(t)− ŴT
1 (t)e(t)− ŴT

1 (t)xr(t)

−δΛ̂(t)ṽ(t) +K2c(t), (3.70)
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where (3.69) and (3.70) can be rewritten in compact form as (3.51) with

ω(·) =

DŴT
1 (t)e(t) +DδΛ̂(t)ṽ(t) +Dṽ(t)

−ŴT
1 (t)e(t)− δΛ̂(t)ṽ(t) +K2c(t)

 . (3.71)

Note that ω(·) in (3.71) is a bounded perturbation as a result of Lyapunov stability

of the quadruple
(
e(t), W̃1(t), δΛ̃(t), ṽ(t)

)
. Now, it follows that since ω(·) is bounded

and A(Ŵ1(t), δΛ̂(t),M) is quadratically stable for (λ, ω, ν) ∈ κ2 by Lemma 2, then

xr(t) and xc(t) are also bounded (see, for example, [27]). This further implies that

the actuator output v(t) is bounded. The remainder of the proof is similar to the

proof of Theorem 1, and hence, omitted. �

For the results given in Theorem 4 to hold, it is assumed that (3.42) is quadrat-

ically stable. As this is the same condition given in Section 3.3.1, it should be noted

that the same discussion and results provided in Remarks 10 and 11 hold for this

case of unknown actuator output.

3.4. CONCLUDING REMARKS

It is well known that the presence of actuator dynamics can seriously limit the

stability and achievable performance of model reference adaptive controllers. In this

chapter, we presented a linear matrix inequality-based hedging approach to maintain

stability of adaptive controllers in the presence of actuator dynamics. This approach

was further generalized for several different cases in which the actuator output and the

control effectiveness matrix are known and unknown. For each case, utilizing linear

matrix inequalities, it was analytically proven that the closed-loop dynamical system,

including the modified reference model trajectory, is stable. Although a particular

model reference adaptive control formulation was considered in this chapter to present

the proposed analysis, the approach can be readily extended to other approaches in
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adaptive control for the computation of the minimum allowable actuator bandwidth

for each control channel such that the closed-loop dynamical system remains stable.
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4. AN AFFINE QUADRATIC STABILITY CONDITION FOR A
LINEAR MATRIX INEQUALITY-BASED HEDGING APPROACH

TO NONCONVEX MULTIACTUATOR DYNAMICS

4.1. INTRODUCTION

Although a general solution for the theoretical stability of hedging in model

reference adaptive control in the presence of actuator dynamics has been established

using linear matrix inequalities, these solutions are limited to specific cases where

convexity is guaranteed. In this chapter, we establish a new affine quadratic stability

condition such that it generalizes our results to generally nonconvex cases. Specifi-

cally, we introduce a new change of coordinates and provide a means of convexifying

the problem. Finally, we present an algorithm for solving a multiple actuator case

using linear matrix inequalities.

The organization of this chapter is as follows. Section 4.2 introduces an affine

quadratic stability condition for a the proposed linear matrix inequality-based hedg-

ing approach, and the conclusions are summarized in Section 4.3.

4.2. AN AFFINE QUADRATIC STABILITY CONDITION FOR A
LINEARMATRIX INEQUALITY-BASEDHEDGINGAPPROACH
TO NONCONVEX MULTIACTUATOR DYNAMICS

We start by introducing an affine transformation for (3.22). Consider the

actuator bandwidth matrix M from (3.2), which can be rewritten as

M(∆λ) = M0 +
m∑
j=1

∆λjMj, (4.1)

where M0 = −λfeasIm×m ∈ Rm×m ∩ Dm×m is chosen such that M0 satisfies (3.23),

Mj ∈ Rm×m is a matrix such that Mj(j, j) = 1 and zero everywhere else, and ∆λj ∈
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R+ belongs to the set ∆λ = (∆λ1, . . . ,∆λm), which is defined by the parameter box

Λ =
{

∆λ ∈ Rm|∆λj ∈
[
∆λj,∆λj

]}
, (4.2)

and is the convex hull Λ = conv(Λ0) of the corners

Λ0 =
{

∆λ ∈ Rm|∆λj ∈ {∆λj,∆λj}
}
. (4.3)

Note that ∆λj, ∆λj are the upper and lower bounds of each actuator bandwidth,

respectively. Now, using (4.1) and letting B = col ([B1, B2, . . . , Bm]), we can rewrite

(3.53) as

A(W̄1i1,...,il
,∆λ) = A0,i1,...,il +

m∑
j=1

∆λjAj, (4.4)

where A0,i1,...,il =

Ar +BW̄T
1i1,...,il

BM0

−W̄T
1i1,...,il

M0

 ∈ Rn+m×n+m, Aj ∈ Rn+m×n+m, Aj(1 :

n, n+ j) = BjMj, Aj(n+ j, n+ j) = Mj, and Aj is zero everywhere else.

Remark 11. To geometrically interpret (4.1) and (4.4), we can consider a three

dimensional example as seen in Figure 4.1. Specifically, it shows the relationship

between M , matrix M0, and the origin such that it is always possible to recover M

by evaluating (4.1) algebraically.



35

(0, 0, 0)

M0

M

∆λ2

∆λ1

∆λ3

λ1

λ3

λ2

Figure 4.1: Relationship between coordinates of λ and ∆λ

Theorem 5. Consider an affine function described by (4.4) and the parameter

box Λ = conv (Λ0) as defined by (4.2) and (4.3). Let M0 to be chosen sufficiently

large enough such that A0,i1,...,il always satisfies

AT
0,i1,...,il

P0 + P0A0,i1,...,il < 0,

P0 = PT
0 > 0,

(4.5)

for all W̄1i1,...,il
. If there exists real matrices P0,P1, ...,Pm where

P(∆λ) = P0 +
m∑
j=1

∆λjPj, (4.6)

such that (4.5) and the linear matrix inequality conditions

AT(W̄1i1,...,il
,∆λ)P(∆λ) + P(∆λ)A(W̄1i1,...,il

,∆λ) < 0, ∀∆λ ∈ Λ0

P(∆λ) > 0, ∀∆λ ∈ Λ0

AT
j Pj + PjAj ≥ 0, for i = j = 1, ...,m,

(4.7)
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are also satisfied, then (4.4) is affinely quadratically stable ∀∆λ ∈ Λ.

Proof. Consider quadratic function given by

Q(W̄1i1,...,il
,∆λ) = AT(W̄1i1,...,il

,∆λ)P(∆λ) + P(∆λ)A(W̄1i1,...,il
,∆λ), (4.8)

which is negative definite at the corners according as a natural consequence of the

linear matrix inequality conditions (4.7). Now, expanding Q(W̄1i1,...,il
,∆λ) yields

Q(W̄1i1,...,il
,∆λ) =

[
A0,i1,...,il +

m∑
j=1

∆λjAj
]T[
P0 +

m∑
j=1

∆λjPj
]

+
[
P0 +

m∑
j=1

∆λjPj
][
A0,i1,...,il +

m∑
j=1

∆λjAj
]

= AT
0,i1,...,il

P0 + P0A0,i1,...,il

+
m∑
j=1

∆λj

[
AT

0,i1,...,il
Pj + PjA0,i1,...,il +AT

j P0 + P0Aj
]

+
m∑
j=1

j−1∑
k=1

∆λj∆λk

[
AT
j Pk + PkAj +AT

kPj + PjAk
]

+
m∑
j=1

∆λ2
j

[
AT
j Pj + PjAj

]
.

(4.9)

Next, consider the quadratic function xTQ(W̄1i1,...,il
,∆λ)x for any vector x 6= 0 which

can be written as

xTQ(W̄1i1,...,il
,∆λ)x = α0,1i1,...,il

+
m∑
j=1

∆λjαj,1i1,...,il

+
m∑
j=1

j−1∑
k=1

∆λk∆λjβk,j +
m∑
j=1

∆λ2
jγj, (4.10)
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where

α0,1i1,...,il
= xT

[
AT

0,i1,...,il
P0 + P0A0,i1,...,il

]
x,

αj,1i1,...,il = xT
[
AT

0,i1,...,il
Pj + PjA0,i1,...,il +AT

j P0 + P0Aj
]
x,

βk,j = xT
[
AT
j Pk + PkAj +AT

kPj + PjAk
]
x,

γj = xT
[
AT
j Pj + PjAj

]
x,

are fixed constants. It naturally follows that the corners of (4.10) are negative when-

ever (4.7) is satisfied. We now only need to guarantee that the maximums of (4.10)

occur at its corners. Therefore, a sufficient condition is the partial convexity con-

straint

∂2(xTQ(W̄1i1,...,il
,∆λ)x)

∂∆λ2j
= γj ≥ 0

=⇒ xT[AT
j Pj + PjAj]x ≥ 0,

(4.11)

for j = 1, . . . ,m. Since we defined x as arbitrary, we obtain that

AT
j Pj + PjAj ≥ 0. (4.12)

The results of Theorem 3.1 of [9] and Theorem 5.7 of [29] guarantee that the linear

matrix inequalities (4.7) hold for Λ = conv (Λ0) since xTQ(W̄1i1,...,il
,∆λ)x always

obtains its maximums at some corner of the parameter box Λ0. �

Remark 12. We now utilize linear matrix inequalities to satisfy the affine

quadratic stability condition of (4.7) for given projection bounds of Ŵ1,max for the

elements Ŵ1,(t), respectively, and the change in actuator bandwidth limits contained

within the paramter box Λ0. For this purpose, let W̄1i1,...,il
∈ Rn×m be given by (3.21).
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Following the results of Theorem 5, if

A(W̄1i1,...,il
,∆λ) = A0,i1,...,il +

m∑
j=1

∆λjAj, (4.13)

satisfies the linear matrix inequalities

AT(W̄1i1,...,il
,∆λ)P(∆λ) + P(∆λ)A(W̄1i1,...,il

,∆λ) < 0, ∀∆λ ∈ Λ0

P(∆λ) > 0, ∀∆λ ∈ Λ0

AT
j Pj + PjAj ≥ 0, for i = j = 1, ...,m,

(4.14)

for all permutations of W̄1i1,...,il
, then (3.22) is affinely quadratically stable. Since

(3.22) is feasible for large values of M (see Lemma 1), we can then recast (4.14) as

the general eigenvalue problem given by

maxmimize Λ0,

subject to (4.14).

(4.15)

We can therefore satisfy (4.14) by maximizing Λ0.

Remark 14. Since (4.14) is affinely quadratically stable, one can evaluate

(4.15) in a finite number of iterations. The following algorithm describes a way to

evaluate (4.15) by expanding the corners Λ0 of the parameter box Λ. Algorithm 1

introduces the new term εLMI, which is a specified step tolerance. The generalized

eigenvalue problem (4.15) were solved using YALMIP [31], but other solvers can also

be used [9]. It is apparent that it becomes exhaustively difficult to evaluate every

possible combination of (4.4), especially in evaluating cases where there are more

than three actuators. For purposes of brevity, Algorithm 1 is restricted to the three

actuator case illustrated in Chapter 5.
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Data: Ar, B,M0, Ŵ1,max, εLMI,
Result: ∆λmax

for ∆λ1 = 0 : εLMI : ∆λfeas do
for ∆λ2 = 0 : εLMI : ∆λfeas do

...

for ∆λm = 0 : εLMI : ∆λfeas do
if (4.14) is feasible then

Continue
else if (4.14) is infeasible then

Bisect using (4.14)
end

end

...

end

end
Algorithm 1: General search algorithm

Table 4.1 and Figure 4.2 describe the process in which a shaded feasible region

for three actuators is approximated by Algorithm 1 when εLMI = λfeas. For this case,

the search is done in a total of eight steps. Algorithm 1 can only approximate a

feasible space since there are an infinite amount of combinations of the upper bounds

defined in Λ0, but by decreasing εLMI one can easily find a better estimate for the

feasible region at the expense of computation time.

Table 4.1: Algorithm description for three actuators (εLMI = λfeas)

Step Description

1 If ∆λ3 = ∆λ2 = ∆λ1 = 0 is feasible, continue to next step
2 If ∆λ3 = λfeas and ∆λ2 = ∆λ1 = 0 is infeasible, then bisect until feasible
3 If ∆λ2 = λfeas and ∆λ3 = ∆λ1 = 0 is infeasible, then bisect until feasible
4 If ∆λ3 = ∆λ2 = λfeas and ∆λ1 = 0 is infeasible, then bisect until feasible
5 If ∆λ1 = λfeas and ∆λ3 = ∆λ1 = 0 is infeasible, then bisect until feasible
6 If ∆λ3 = ∆λ1 = λfeas and ∆λ2 = 0 is infeasible, then bisect until feasible
7 If ∆λ2 = ∆λ1 = λfeas and ∆λ1 = 0 is infeasible, then bisect until feasible
8 If ∆λ3 = ∆λ2 = ∆λ1 = λfeas is infeasible, then bisect until feasible
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M0

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

∆λ3

∆λ2

∆λ1

Figure 4.2: Algorithm 1 solving three actuators (εLMI = λfeas)

Remark 15. Algorithm 1 will always produce a less conservative solution than

the case where (3.24) is solved using bisection and a positive definite constraint on

the P matrix from (3.12). To illustrate this point, consider a example where M ∈ R+,

Ar = −1 and B = 1. Figure 4.3 shows the differences when searching for a minimum

M when given a range of Ŵ1,max.
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Figure 4.3: Linear matrix inequality comparison plot (Ar = −1 and B = 1)

4.3. CONCLUDING REMARKS

In this chapter we expressed a new method for evaluating the robustness of

model reference adaptive controls in the presence of multiactuator dynamics. An

algorithm was presented and it was shown that the results were recoverable regardless

of the starting plane. In comparison with other methods, our results extended out to

multiactuator systems and solve them efficiently.
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5. ILLUSTRATIVE NUMERICAL EXAMPLES

To show the efficacy of our results in Chapters 3 and 4, we consider several

illustrative numerical examples. Specifically, Section 5.1 shows us our numerical

results for Chapter 3 and Section 5.2 shows the results from evaluating Algorithm 1

in Chapter 4.

5.1. COMPUTING ACTUATOR BANDWIDTHS IN ADAPTIVE CON-
TROL

In order to illustrate the proposed adaptive control architecture with actuator

dynamics, we consider the second-order system given by

ẋ1(t)

ẋ2(t)

 =

0 1

0 0


x1(t)

x2(t)

+

0

1

Λv(t),

x1(0)

x2(0)

 =

0

0

 , (5.1)

where Λ denotes the control effectiveness matrix. For the following examples, let

x1(t) represent the angle in radians and x2(t) represent the angular rate of change in

radians per second. We use a filtered tracking command c(t) and consider a single

channel actuator for the control input such that M = λ, λ ∈ R+. In addition, we

set R = I2 from (2.13), for the proposed adaptive controller designs and select a

reference system with zero initial conditions, a natural frequency of ωn = 0.7 rad/s,

and a damping ratio ζ = 1.0, which yields

Ar =

 0 1

−0.49 −1.4

 , Br =

 0

0.49

 . (5.2)

For the proposed adaptive controller configurations, we now present four examples.



43

Example 5.1.1 (Known Control Effectiveness Matrix and Known Actuator

Output). In this example, we assume the control effectiveness matrix is known. This

implies Λ = 1, so the results of Section 3.2 apply. Using the rectangular projection

operator, the bounds on the uncertainty are set element-wise such that
∣∣∣[Ŵ1(t)]1,1

∣∣∣ ≤
0.5 and

∣∣∣[Ŵ1(t)]2,1

∣∣∣ ≤ 1.5 (such that we set all initial conditions to zero). Then using

the bounds on Ŵ1(t) in the linear matrix inequality analysis highlighted in Remark 7,

the minimum allowable actuator bandwidth is calculated as λmin = 0.77. Figures 5.1–

5.3 show the proposed adaptive controller design performance in the presence of

actuator dynamics using a range of actuator bandwidth settings. Since it is calculated

that the minimum actuator bandwidth allowed for the actuator dynamics is 0.77, it

is expected that the system performances are guaranteed to be bounded for actuator

bandwidths greater than and equal to the calculated minimum. This can be seen

from Figures 5.1 and 5.2 in which actuator bandwidths of λ = 25 and λ = 0.77 are

used, respectively. In Figure 5.3, we let the actuator bandwidth be smaller than 0.77

to show that the closed-loop system remains bounded until the actuator bandwidth

reaches a value of λ = 0.35. This is consistent with the presented theory, as we

provide a (conservative) upper bound on the allowable actuator bandwidth such that

the closed-loop system remains bounded.

Example 5.1.2 (Known Control Effectiveness Matrix and Unknown Actuator

Output). Once again, since the control effectiveness matrix is known, the linear

matrix inequality analysis of Remark 7 still holds with λmin = 0.77. In addition, we

use the same projection operator bounds and initial conditions in Example 5.1.1. For

the proposed adaptive controller design in this example, we use the results of Theorem

2, since the actuator output is unknown. Figures 5.4–5.6 show the proposed adaptive

controller performance with the same actuator bandwidth values used in Example

5.1.2. Once again, since it is calculated that the minimum actuator bandwidth allowed

for the actuator dynamics is 0.77, it is expected that the system performances are
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Figure 5.1: Proposed controller performance in Example 5.1.1 with actuator dynam-
ics (λ = 25 and γ1 = 25).
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Figure 5.2: Proposed controller performance in Example 5.1.1 with actuator dynam-
ics (λ = 0.77 and γ1 = 25).

guaranteed to be bounded for actuator bandwidth values greater than or equal to

the calculated minimum, where Figures 5.4 and 5.5 illustrate this statement. In
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Figure 5.3: Proposed controller performance in Example 5.1.1 with actuator dynam-
ics (λ = 0.35 and γ1 = 25).

Figure 5.6, it is shown that the system becomes unstable for λ = 0.35. Once again,

this is consistent with the presented theory in that we provide a (conservative) upper

bound on the allowable actuator bandwidth such that the closed-loop system remains

bounded.

Example 5.1.3 (Unknown Control Effectiveness Matrix and Known Actuator

Output). We now consider a case that the control effectiveness matrix is unknown, as-

suming that Λ = 0.5. This assumption corresponds to the results in Section 3.3. Using

this formulation, we set the projection operator bounds such that
∣∣∣[Ŵ1(t)]1,1

∣∣∣ ≤ 0.5

and
∣∣∣[Ŵ1(t)]2,1

∣∣∣ ≤ 1.5, and for the unknown control effectiveness
∣∣∣δΛ̂(t)

∣∣∣ ≤ 0.6 (such

that we set all initial conditions to zero). Then using the linear matrix inequality

analysis highlighted in Remark 10, the minimum allowable actuator bandwidth is

calculated as λmin = 2.3. Figures 5.7–5.9 show the proposed adaptive controller per-

formance in the presence of actuator dynamics using a range of actuator bandwidth

settings. Since it is calculated that the minimum actuator bandwidth in this case
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Figure 5.4: Proposed controller performance in Example 5.1.2 with actuator dynam-
ics (λ = 25, γ1 = 25, and β = 0.015).
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Ŵ
1
(t
)
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Ŵ1,2(t)

Figure 5.5: Proposed controller performance in Example 5.1.2 with actuator dynam-
ics (λ = 0.77, γ1 = 25, and β = 0.015).

is 2.3, it is expected that the system performance is guaranteed bounded until the
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Figure 5.6: Proposed controller performance in Example 5.1.2 with actuator dynam-
ics (λ = 0.35, γ1 = 25, and β = 0.015).

bandwidth drops below this value. This is consistent with the results shown in Fig-

ures 5.7 and 5.8. In Figure 5.9, it is shown that the system becomes unstable for

λ = 0.7. As highlighted before, this is consistent with the presented theory in that

we provide a (conservative) upper bound on the allowable actuator bandwidth such

that the closed-loop system remains bounded.

Example 5.1.4 (Unknown Control Effectiveness Matrix and Unknown Actuator

Output). Since the control effectiveness matrix is unknown, as in the previous ex-

ample, the linear matrix inequality analysis of Remark 10 still holds with λmin = 2.3.

In addition, we choose β = 0.015 such that (3.59) holds and we use the same pro-

jection operator bounds and initial conditions in Example 5.1.3. For the proposed

adaptive controller design, we use the results of Theorem 4 (the most general case

considered). Figures 5.10–5.12 show the proposed adaptive controller design with

the same actuator bandwidth values as in Example 5.1.3. Once again, since it is
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Figure 5.7: Proposed controller performance in Example 5.1.3 with actuator dynam-
ics (λ = 25, γ1 = 25, and γΛ = 5).
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Figure 5.8: Proposed controller performance in Example 5.1.3 with actuator dynam-
ics (λ = 2.3, γ1 = 25, and γΛ = 5).

calculated that the minimum actuator bandwidth allowed for the actuator dynamics

is 2.3, it is expected that the system performances are guaranteed to be bounded for
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Figure 5.9: Proposed controller performance in Example 5.1.3 with actuator dynam-
ics (λ = 0.7, γ1 = 25, and γΛ = 5).

actuator bandwidth values greater than or equal to the calculated minimum, where

Figures 5.10 and 5.11 illustrate this statement. In Figure 5.12, it is shown that the

system becomes unstable for λ = 0.7. As in the previous examples, this is consistent

with the presented theory in that we provide a (conservative) upper bound on the

allowable actuator bandwidth such that the closed-loop system remains bounded.
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Figure 5.10: Proposed controller performance in Example 5.1.4 with actuator dynam-
ics (λ = 25, γ1 = 25, γΛ = 5, and β = 0.015).
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Figure 5.11: Proposed controller performance in Example 5.1.4 with actuator dynam-
ics (λ = 2.3, γ1 = 25, γΛ = 5, and β = 0.015).
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Figure 5.12: Proposed controller performance in Example 5.1.4 with actuator dynam-
ics (λ = 0.7, γ1 = 25, γΛ = 5, and β = 0.015).

5.2. AN AFFINE QUADRATIC STABILITY CONDITION FOR A
LINEARMATRIX INEQUALITY-BASEDHEDGINGAPPROACH
TO NONCONVEX MULTIACTUATOR DYNAMICS

For the following multiactuator examples, we consider three separate cases in

which three actuators are used.

Example 5.2.1 (Scalar Reference Dynamics). The first case considers variations

in the reference model matrix Ar. The feasible point M0 was chosen arbitrarily such

that M0 = 30I3×3. We also let εLMI = 0.2. Figure 5.13 shows the results of evaluating

Algorithm 1 when Ar = −1 and B =

[
1 1 1

]
. The shaded volume shows us the

polytope representing the feasible regions of ∆λ. As ∆λ3 gets larger, the region

in which ∆λ1 and ∆λ2 are feasible gets smaller. Figure 5.13 shows us the results

whenever Ar = −1 and |Ŵ1,max| ≤ 1. Figure 5.14 shows us similar results with

Ar = −2 and |Ŵ1,max| ≤ 1.
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Figure 5.13: Proposed search algorithm solving Example 5.2.1 (Ar = −1, |Ŵ1,max| ≤
1, M0 = 30I3×3, and εLMI = 0.2).
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Figure 5.14: Proposed search algorithm solving Example 5.2.1 (Ar = −2, |Ŵ1,max| ≤
1, M0 = 30I3×3, and εLMI = 0.2).

Example 5.2.2 (Second Order Reference Dynamics). Now consider the case

where Ar and B are

Ar =

 0 1

−1 −1.4

 , B =

0 1 1

1 1 1

 . (5.3)

The algorithm tolerances are εLMI = 0.2. The initial conditions of matrix M0 ∈ R3×3

are given such that M0 = 30I3×3. Figure 5.15 considers the case when |Ŵ1,max| ≤ 1.
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Figure 5.16 considers the case when |Ŵ1,max| ≤ 2. Intuitively, we can grasp that by

increasing the bounds on |Ŵ1,max|, we decrease the region in which (4.15) is feasible.
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Figure 5.15: Proposed search algorithm solving Example 5.2.2 (|Ŵ1,max| ≤ 1, M0 =
30I3×3, and εLMI = 0.2).

0

00

5

10

55

15

∆
λ

1

1010

∆λ
2

∆λ
3

20

25

15 15

30

20 20

2525

Figure 5.16: Proposed search algorithm solving Example 5.2.2 (|Ŵ1,max| ≤ 2, M0 =
30I3×3, and εLMI = 0.2).

Example 5.2.3 (Algorithm Verification). A major concern was whether or not

the algorithms holds when evaluating (4.15) when a new search direction is used.

In other words, can we produce the same results if we ran our search algorithm, for
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example, from the ∆λ2 and ∆λ1 plane? To verify this, we modified Algorithm 1

such that it began its search from this new plane and gradually increases ∆λ3 until

the system is infeasible. Figure 5.17 considers when |Ŵ1,max| ≤ 1 and has the same

results as Figure 5.15 from a different orientation. Similarly, Figure 5.18 considers

|Ŵ1,max| ≤ 2 and has the same results Figure 5.16 from a different orientation.
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Figure 5.17: Proposed search algorithm solving Example 5.2.3 (|Ŵ1,max| ≤ 1, M0 =
30I3×3, and εLMI = 0.2).
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Figure 5.18: Proposed search algorithm solving Example 5.2.3 (|Ŵ1,max| ≤ 2, M0 =
30I3×3, and εLMI = 0.2).
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6. CONCLUSIONS

In this thesis, we utilized linear matrix inequalities and convex optimization

techniques to solve the actuator dynamics problem in adaptive control literature.

Specifically, we presented a linear matrix inequality-based hedging approach such

that the stability of the system is maintained in the presence of actuator dynamics.

This approach was generalized to cases in which actuator output and the control

effectiveness matrix are known and unknown. For all cases, the existence of a feasible

solutions was proven and, by consequence, analytically guaranteed the stability of

the closed-loop dynamical system, including the modified reference model trajectory.

Although a particular model reference adaptive control formulation was considered in

this thesis to present the proposed analysis, the approach can be readily extended to

other approaches in adaptive control for the computation of the minimum allowable

actuator bandwidth for each control channel such that the closed-loop dynamical

system remains stable.

The results of the linear matrix inequality-based hedging approach were gen-

eralized to cases where there are two or more first order actuators. A new linear

matrix inequality condition was introduced such that the solution sets of the mini-

mum actuator bandwidth of each actuator are convex, the stability of the system was

theoretically guaranteed by introducing the partially convex linear matrix inequality

constraint, and then demonstrated a case where there are three first order actuator

using a new algorithm specifically developed to solve them while observing the new

linear matrix inequality conditions. We considered a wide variety of cases to prove

our results and have shown them as being less conservative.

For future work, these results can be generalized to cases where the actuators

are not of the first order. Specifically, the observation of frequency response of a
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second or third order actuator dynamics by utilization of linear matrix inequalities

remain practical problems to consider.
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