

Scholars' Mine

Masters Theses

Student Theses and Dissertations

1966

The effect of moisture on the compressive and tensile strength on a variety of rock materials

Richard A. Martin

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Mining Engineering Commons

Department:

Recommended Citation

Martin, Richard A., "The effect of moisture on the compressive and tensile strength on a variety of rock materials" (1966). Masters Theses. 5744.

https://scholarsmine.mst.edu/masters_theses/5744

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

THE EFFECT OF MOISTURE ON THE
COMPRESSIVE AND TENSILE STRENGTH
ON A VARIETY OF ROCK MATERIALS

BY

RICHARD A. MARTIN

A

THESIS

submitted to the faculty of the
UNIVERSITY OF MISSOURI AT ROLLA
in partial fulfillment of the requirements for the
Degree of

MASTER OF SCIENCE IN MINING ENGINEERING
Rolla, Missouri

1966

Approved by

(advisor)

Thomas S. Fry

ABSTRACT

The effect of moisture on the strength characteristics of rock materials has been neglected in the study of rock mechanics. This study was undertaken to determine if there was any effect on the compressive and the tensile strength of rock by varying the moisture content from an oven-dried to a saturated condition.

It was found, by testing eight different rock materials, that the compressive strength per unit area decreased with an increasing moisture content. The tensile strengths per unit area, with the exception of the quartzite and the porphyry samples, also decreased with an increase in moisture content. The tensile strength per unit area of the porphyry and quartzite increased with an increase in moisture content. It was also found that the graphs of strength versus moisture content generally followed a log-log relationship.

ACKNOWLEDGEMENTS

The writer wishes to express his appreciation to Dr. James J. Scott and Professor Richard L. Ash of the Mining Engineering Department, University of Missouri at Rolla, who offered continued assistance and guidance throughout the investigation. Appreciation is also due to Professor John B. Heagler, of the Civil Engineering Department, for his valuable advice, and to Professor Robert F. Bruzewski, of the Mining Engineering Department, for his assistance in assembling the photographs included in this thesis. Appreciation is also extended to the White Pine Copper Company and the Meramec Mining Company, who graciously supplied the samples used in the testing program. The writer is indebted to his wife, Joyce, who willingly typed the manuscript.

TABLE OF CONTENTS

		Pa	ge						
ABSTRACT									
ACKNOWLEDGEMENTS									
LIST	OF	OF ILLUSTRATIONS							
LIST	OF	TABLES	хi						
CHAPT	סיבים								
			724						
I.	IN	TRODUCTION	1						
II.	REV	JIEW OF LITERATURE	2						
	A.	Rock Mechanics Theory	2						
		1. Unconfined Compression Tests	2						
		2. Triaxial Test	9						
		3. Surface Free Energy	9						
		4. Young's Modulus	14						
	В.	Soil Mechanics Theory	18						
		1. Pore Water Pressure	18						
		2. Capillary Moisture	20						
		a. Moisture Content	23						
		b. Grain Size	23						
		c. State of Packing or Degree of Consolidation	25						
		d. Angle of Contact	25						
		3. Shear Strength	25						
III.	TES	STING PROCEDURE	30						
	A.	Sample Preparation	30						
	B. Materials Tested 30								
	C	Compression Tests	42						

		Page
	D. Brazilian Tensile Test	43
IV.	ANALYSIS OF RESULTS	50
	A. Data Reduction	50
	B. General Test Procedure	51
	C. Results	52
	D. Log-Log Graphs	72
v.	CONCLUSIONS	86
	A. Failure Pattern	86
	B. Effect of Moisture	87
	C. Significance of Research	88
	D. Recommendations	88
BIBL	IOGRAPHY	90
VITA		92
APPE	NDICES	
I.	COMPRESSION TEST DATA	93
II.	TENSILE TEST DATA	112

LIST OF ILLUSTRATIONS

Figur	e	Page
1.	Absorption vs Compressive Strength for Colorado	
	Limestone	3
2.	Absorption vs Compressive Strength for Indiana	
	Limestone	4
3.	Absorption vs Compressive Strength for Texas	
	Limestone	5
4.	Absorption vs Compressive Strength for Quartzitic	
	Shale	6
5.	Absorption vs Compressive Strength for Two	
	Quarzitic Sandstones	7
6.	Mohr Fracture Envelopes for Quartzitic Sandstone	
	at Three Moisture Contents	10
7.	Mohr Fracture Envelopes for Quartzitic Shale at	
	Two Moisture Contents	11
8.	The Influence of the Surface Tension of Immersion	
	Liquids on the Strength of Quartzitic Sandstone	
	Specimens	13
9.	Absorption vs Modulus of Elasticity for Colorado	
	Limestone	15
10.	Absorption vs Modulus of Elasticity for Indiana	
	Limestone	16
11.	Absorption vs Modulus of Elasticity for Texas	
	Limestone	17

Figur	re	Page
12.	Piston and Spring Analogy	19
13.	Surface Tension	22
14.	Effect of Moisture Content Upon Curvature of	
	Air-Water Interface	24
15.	Effect of Particle Size Upon Curvature of	
	Air-Water Interface	24
16.	Influence of State of Packing of Soil on Curva-	
	ture of Air-Water Interface	24
17.	Influence of Wettability of Soil Grains on	
	Curvature of Air-Water Interface	24
18.	Mohr's Envelope and Stresses for Saturated Clay	27
19.	Mohr's Envelope of Total Stresses for Partially	
	Saturated Clay	29
20.	Cores in a Special Holder Being Cut to the Same	
	Height with a Diamond Saw	31
21.	Sample Ends Being Ground Smooth in Norton Grinder	31
22.	Finished Samples in Special Holder	32
23.	Effect of L/D Ratio on Compressive Strength	33
24.	Set-Up for Saturated Specimens Under a Vacuum of	
	28.4-Inches of Mercury	37
25.	Water was Added Slowly to Allow for Complete	
	Saturation of the Pore Area	38
26.	Desiccator, Without the Top, Containing Specimens	
	Prepared for Testing	39

Figure	e Pa	age
27.	Typical Graph Showing Mean Percentage Loss in Weight	=
	of Quartzitic Sandstone with Time for Specimens	
	Stored in Dry Environment	40
28.	Typical Graph Showing Mean Percentage Loss in Weight	E
	of Quartzitic Shale with Time for Specimens	
	Stored in Dry Environment	41
29.	Special Levels Made to Prevent Rotation of Platen	
	in Compression Tests	44
30.	Loading a Speciman for a Brazilian Tensile Test	45
31.	Stress in a Plate Due to a Concentrated Load P_1	
	Applied to an Edge	45
32.	Stress in a Disc Due to a Uniform Radial Pressure p	45
33.	Stress at the Circumference of a Circular Area	
	of the Plate Shown in Figure 31	47
34.	A Disc Subjected to the Same Loading as a Circular	
	Area of the Plate Shown in Figure 33	47
35.	Two Sets of Forces Superimposed	47
36.	Disc Subjected to Two Concentrated Forces	47
37.	Compressive Failure of a White Pine Sandstone	
	Sample Under a Condition of 4cE-65°	53
38.	Compressive Failure of a White Pine Sandstone	
	Sample Under a Condition of 4cE-70°	54
39.	Compressive Failure of a White Pine Sandstone	
	Sample Under a Condition of 3eE-65°	55

Figure		Page
40.	Compressive Failure of a White Pine Shale	
	Sample Under a Condition of 4eE-70°	56
41.	Compressive Failure of a White Pine Shale	
	Sample Under a Condition of 3eE-70°	57
42.	Compressive Failure of a White Pine Shale	
	Sample Under a Condition of 2e,dE-70°	58
43.	Compressive Failure of a White Pine Sandstone	
	Sample Under a Condition of 4eE-70°	59
44.	Compressive Failure of a Pea Ridge Dolomite	
	Sample Under a Condition of 3dE	60
45.	Compressive Failure of a Pea Ridge AX Magnetite	
	Sample Under a Condition of 2eE-65°	61
46.	Moisture Content vs Compressive Strength	
	for Magnetite	62
47.	Moisture Content vs Compressive Strength	
	for Hematite	63
48.	Moisture Content vs Compressive Strength	
	for Porphyry	64
49.	Moisture Content vs Compressive Strength	
	for Quartzite	65
50.	Moisture Content vs Compressive Strength	
	for Dolomite	66
51.	Moisture Content vs Compressive Strength for Shale	67
52.	Moisture Content vs Compressive Strength	
	for White Pine Sandstone	68

Figure						
53. Resulting Failure Plane in the Brazilian						
Tensile Tests						
a. White Pine Shale	73					
b. White Pine Sandstone	73					
54. Moisture Content vs Tensile Strength for Magnetite	74					
55. Moisture Content vs Tensile Strength for Hematite	75					
56. Moisture Content vs Tensile Strength for Porphyry	76					
57. Moisture Content vs Tensile Strength for Quartzite	77					
58. Moisture Content vs Tensile Strength for Dolomite	78					
59. Moisture Content vs Tensile Strength for Shale	79					
60. Moisture Content vs Tensile Strength for						
White Pine Sandstone	80					
61. Moisture Content vs Compressive Strength for Shale	82					
62. Moisture Content vs Compressive Strength for						
White Pine Sandstone	83					
63. Moisture Content vs Tensile Strength for Shale	84					
64. Moisture Content vs Tensile Strength for						
White Pine Sandstone	85					

LIST OF TABLES

Table	Page					
Effect of Moisture on Compressive Strength						
2. Approximate Ratio of Strengths at Maximum to						
Minimum Moisture Contents	70					
3. Results of the Compressive Tests of the Pea Ridge						
AX Magnetite	94					
4. Results of the Compressive Tests of the Pea Ridge						
EX Magnetite	96					
5. Results of the Compressive Tests of the Pea Ridge						
Hematite	98					
6. Results of the Compressive Tests of the Pea Ridge						
Porphyry	100					
7. Results of the Compressive Tests of the Pea Ridge						
Quartzite	102					
8. Results of the Compressive Tests of the Pea Ridge						
Sandstone	104					
9. Results of the Compressive Tests of the Pea Ridge						
Dolomite	106					
10. Results of the Compressive Tests of the White Pine						
Shale	108					
11. Results of the Compressive Tests of the White Pine						
Sandstone	110					
12. Results of the Tensile Tests of the Pea Ridge						
AX Magnetite	113					
13. Results of the Tensile Tests of the Pea Ridge						
EX Magnetite	114					

Tab]	.e							Page	9
14.	Results of th	e Tensile	Tests	of	the	Pea	Ridge		
	Hematite							11	5
15.	Results of th	e Tensile	Tests	of	the	Pea	Ridge		
	Porphyry							11	6
16.	Results of th	e Tensile	Tests	of	the	Pea	Ridge		
	Quartzite							11	7
17.	Results of th	e Tensile	Tests	of	the	Pea	Ridge		
	Sandstone							11:	8
18.	Results of th	e Tensile	Tests	of	the	Pea	Ridge		
	Dolomite							11	9
19.	Results of th	e Tensile	Tests	of	the	Whi	te Pin	е	
	Shale							12	0
20.	Results of th	e Tensile	Tests	of	the	Whi	te Pin	е	
	Sandstone							12	1

I. INTRODUCTION

The design of mine openings and mine excavations is based partly or solely on the strength characteristics of the rock materials encountered. Competition in the world market necessitates that the most profitable and safest design be developed in the rock formations. Moisture in the rock should have an effect on the strength and, therefore, on the design of both open pit and underground mining operations.

Moisture has been shown to reduce the strength of soil material and has long been encompassed in the studies of soil mechanics and foundation design. The difference in soils and rocks is in the hardness or more specifically, in the degree of compaction, the bonding between grains and the mode of formation. The principal reason for neglecting the effect of moisture in past studies is the fact that rock has so little void volume that the moisture content is small as compared to the solid or granular portion of the rock. Since moisture is normally present in rock it is logical to investigate its effect on rock strength even though these volumes may be small.

By testing rock materials for the effects of moisture on their strengths, the doors may be opened to further studies on the feasibility of stabilizing slopes and mine openings by eliminating the moisture present in the rock. It may be possible that dewatering a rock zone to increase its strength could become a useful technique in the future.

II. REVIEW OF LITERATURE

A. Rock Mechanics Theory

In reviewing the past publications of work done on the effects of moisture on rock strength, little work was found in this area. Three major pieces of work (1, 2, 3) have been done in the line of rock mechanics studies. Related works in the field of soil mechanics were also reviewed in order to determine if the general theories in this field would apply for rock materials.

1. Unconfined Compression Tests

Results on the effect of moisture on the unconfined compressive strength (Figs. 1, 2, 3) of three types of limestone were obtained by Razvi (1) in his investigation. The specimens were prepared by submerging them for 7 to 10 days in water and then allowing them to dry in air. Tests were made, after calculating the moisture content, each day until no change in strength was observed. This occurred on about the seventh day of air drying. By completely drying the specimen in the oven, there was an additional increase in strength observed.

Tests run by Colback and Wiid (2) showed a decrease in strength of approximately 50% for specimens tested after being submerged in water for long periods of time to specimens tested after being dried over calcium chloride (Figs. 4, 5). In compressive tests made by the Bureau of Mines, Table 1, on specimens that had been submerged for 7 days,

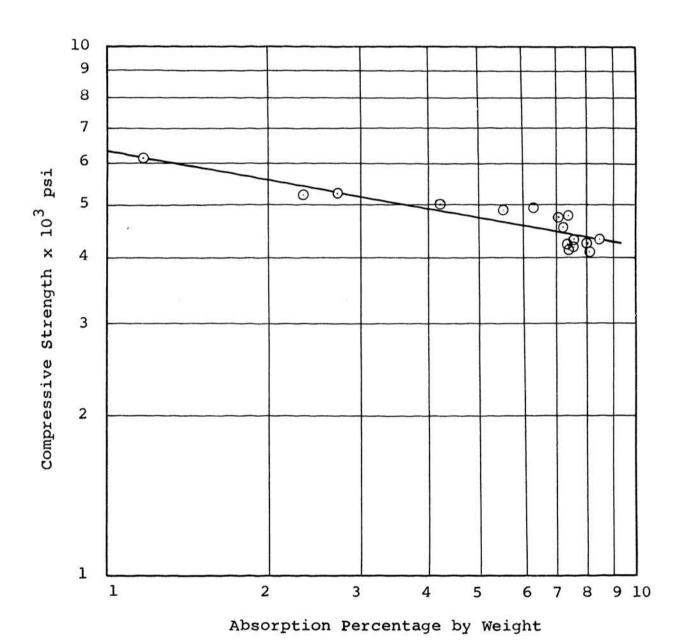


Figure 1 Absorption vs Compressive Strength for Colorado Limestone (1).

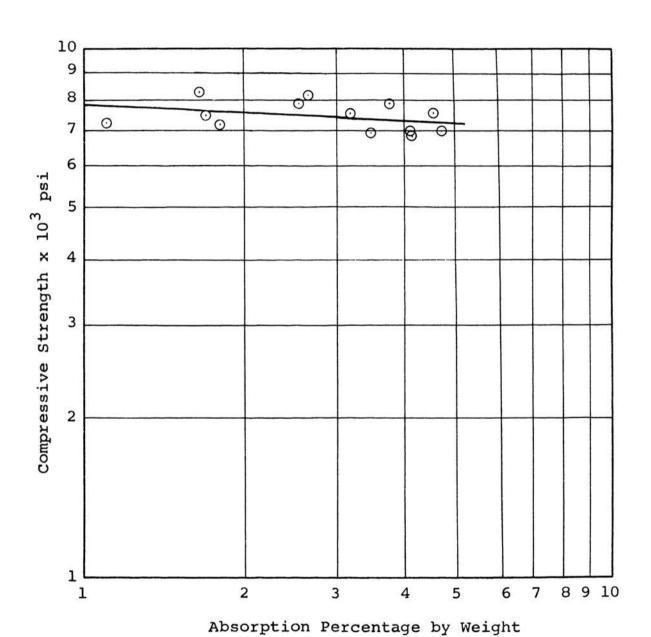


Figure 2 Absorption vs Compressive Strength for Indiana Limestone (1).

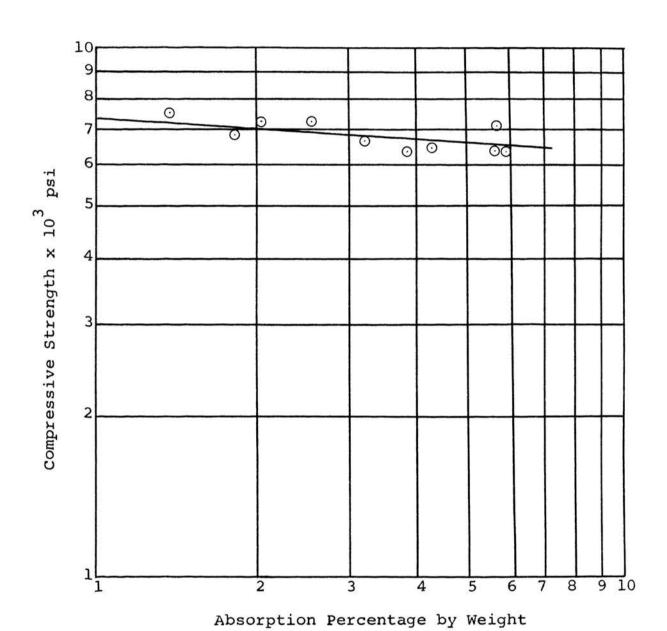


Figure 3 Absorption vs Compressive Strength for Texas Limestone (1).

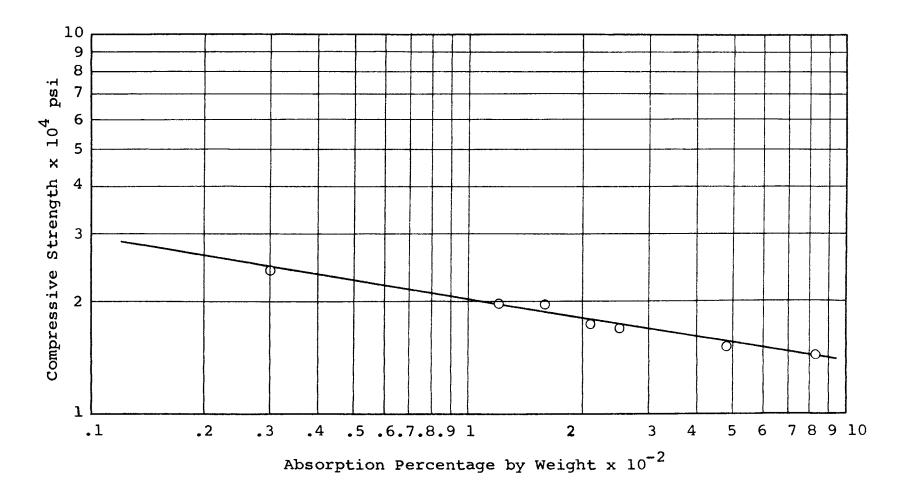


Figure 4 Absorption vs Compressive Strength for Quartzitic Shale (2).

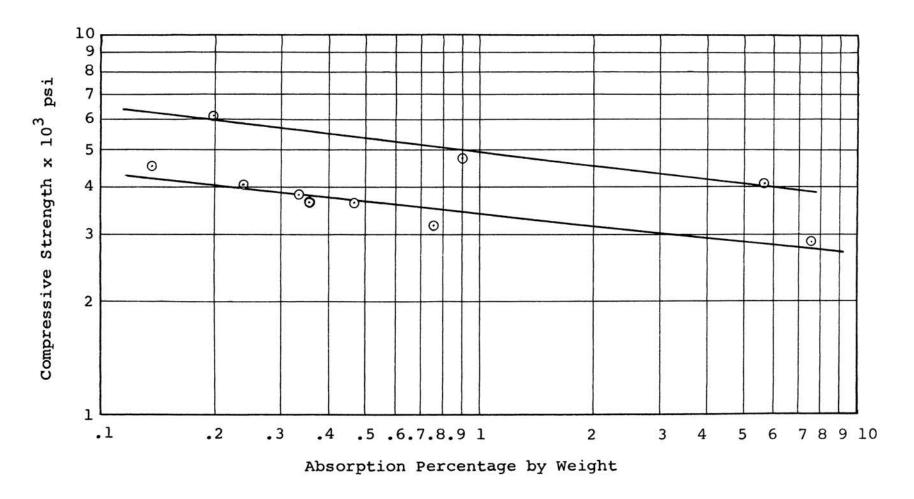


Figure 5 Absorption vs Compressive Strength for two Quartzitic Sandstones. (2)

Table 1 Effect of Moisture Content on Compressive Strength (3)

Ratio of oven-dried and saturated compressive strength to air-dried compressive strength

Moisture Condition	Marble	Limestone	Granite	Sandstone 1	Sandstone 2	Slate	Average
Oven-dried	1.01	1.03	1.07	1.01	1.18	1.06	1.06
Air-dried	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Saturated	0.96	0.85	0.92	0.90	0.80	0.85	0.88

the change in relative strengths was less pronounced (3).

It appears that the specimens tested by the U. S. Bureau of Mines (3) with the lower porosity were not saturated at the time of testing and would show a greater decrease in strength had they remained in a submerged condition for a longer period of time.

Triaxial Compression Test

The results of triaxial compression tests on quartzitic shale (Fig. 6) and quartzitic sandstone (Fig. 7) shows
a definite change in the cohesiveness of the specimens under
a varied moisture content, with only a slight change in the
angle of friction. It has been concluded that the increase
in moisture content primarily reduces the strength of the
material due to a reduction in the uniaxial tensile strength
which is, in turn, a function of the molecular cohesive
strength of the material (2).

Surface Free Energy

The molecular cohesive strength, om, of an elastic material, according to Orowan (13), is given by:

$$\sigma m = \sqrt{\frac{2 \ Y \ E}{a}}$$

where: γ = the surface free energy of the material.

E = Young's Modulus.

a = spacing between neighboring
atomic planes.

This may also be associated to Helmholtz's double

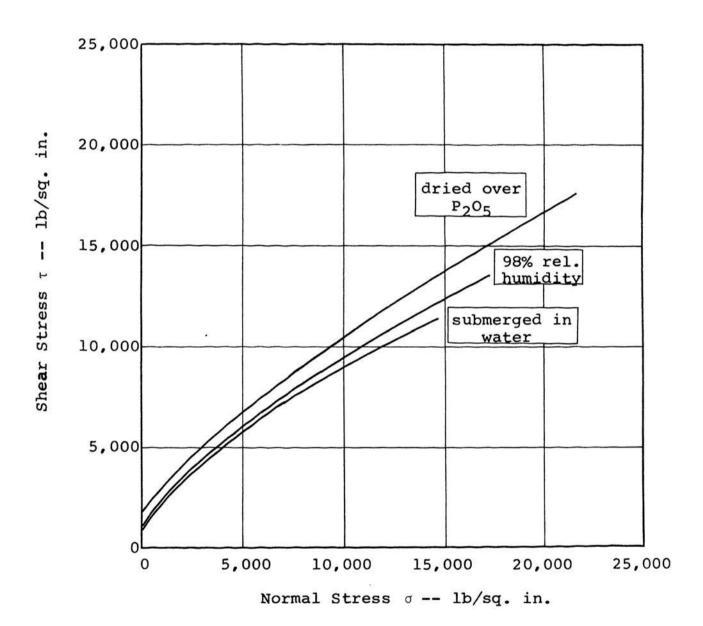


Figure 6 Mohr Fracture Envelopes for Quartzitic Sandstone at Three Moisture Contents (2).

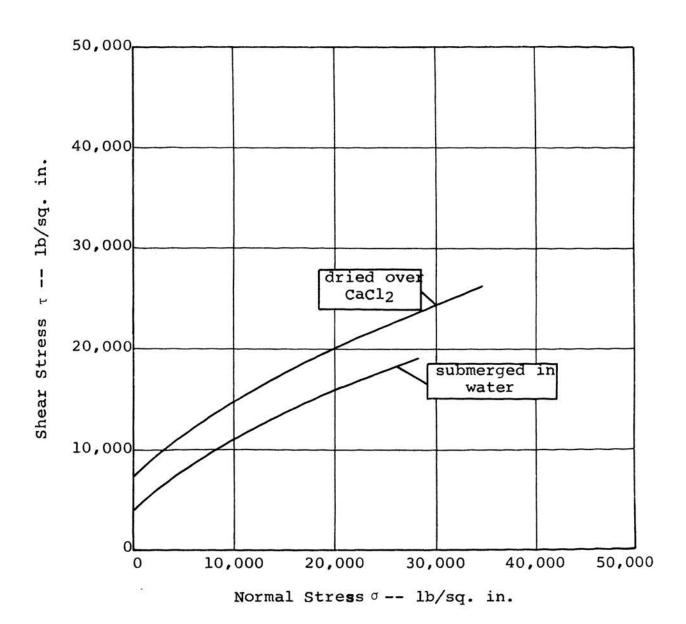
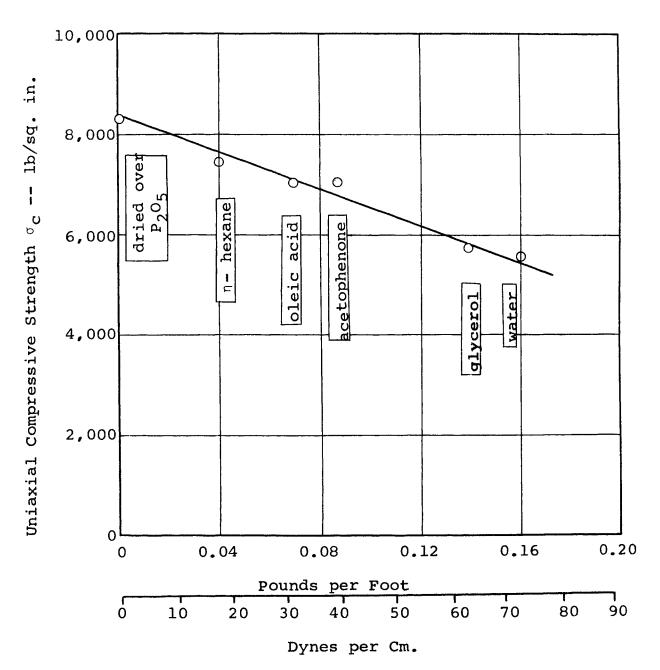


Figure 7 Mohr's Fracture Envelopes for Quartzitic Shale at Two Moisture Contents (2).

layer theory (14) that in a clay material, where the platy structure is broken at the ends, a predominately positive charge exists within the structure, tending to attract negative hydroxyl ions to the boundary. This layer of hydroxyl ions is known as the rigid layer. In turn, these negative ions are unsatisfied and attract cations such as hydrogen, sodium, calcium, etc. These cations are held to the rigid layer and are hydrophyllic and tend to attract and hold free moisture. The layer of cations and water is known as the diffuse layer. Here the surface free energy, or the potential for the rigid layer to hold the diffuse layer, is known as the Zeta Potential, Z, which may be written as:

$$z = \frac{4 \pi u L Ve}{E \varepsilon}$$

where: Ve = fluid velocity.


E = electrical potential.

 ε = dielectric constant of the fluid.

u = fluid viscosity.

L = distance between electrodes
 (soil particles).

The surface free energy is of definite importance to the strength of a material (2). One means of demonstrating the effect of surface free energy is by submerging the specimens in liquids possessing different surface tensions (Fig. 8). The surface free energy of a solid submerged in a liquid is partially satisfied because of the surface

Surface Tension γ of Immersion Liquids at 20° C (68° F)

Figure 8 The Influence of the Surface Tension of Immersion Liquids on The Strength of Quartzitic Sandstone Specimens (2).

tension of the liquid. The higher the surface tension of the liquid, the closer the liquid molecules will be drawn together, and the more the free energy on the surface of the particles will be satisfied. Therefore, as the surface tension of the liquid increases, the more the surface free energy will be satisfied, and the molecular cohesive strength will decrease.

4. Young's Modulus

As seen from Orowan's equation, the molecular cohesive strength is proportional to the square root of Young's Modulus. In tests run at Colorado School of Mines (1), an increase in the moisture content of a specimen decreased the modulus of elasticity for limestone specimens (Figs. 9, 10, 11). It has also been found by others that Young's Modulus increases with an increasing moisture content in marble and granite (3).

Marble and granite have a much lower porosity than limestone and other sedimentary rock. The marble and granite act more elastically and show a tighter bonding. This seems to indicate that the water, being incompressible and prevented from draining by the small pore space, resists a reduction in the voids. There is a reduction in strength with an increased moisture content of the marble and granite which would indicate that interior stresses produced by the pore water pressure caused failure.

The higher strain in the sedimentary specimen at higher moisture content under the same load indicates a detrimental

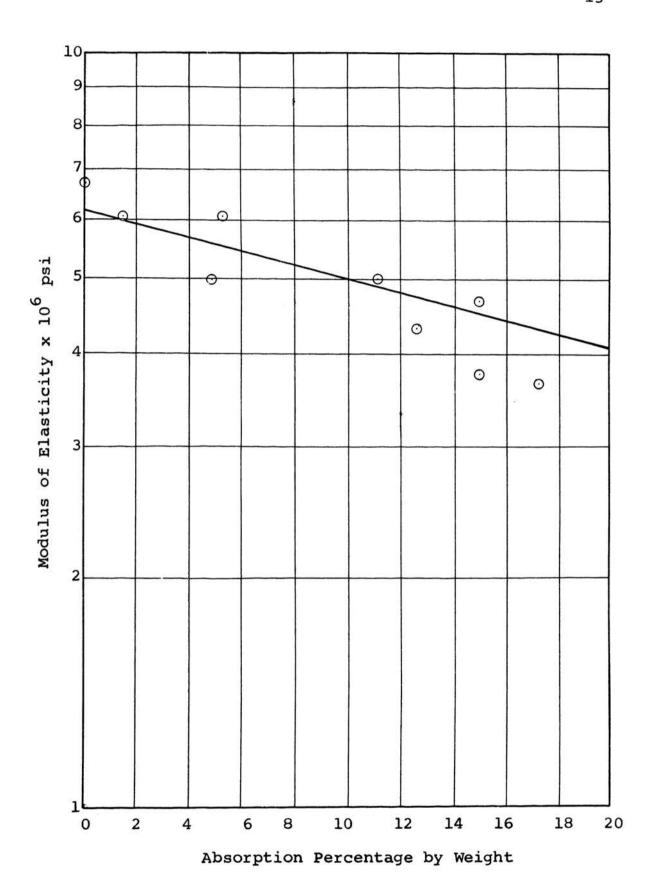


Figure 9 Absorption vs Modulus of Elasticity for Colorado Limestone (1).

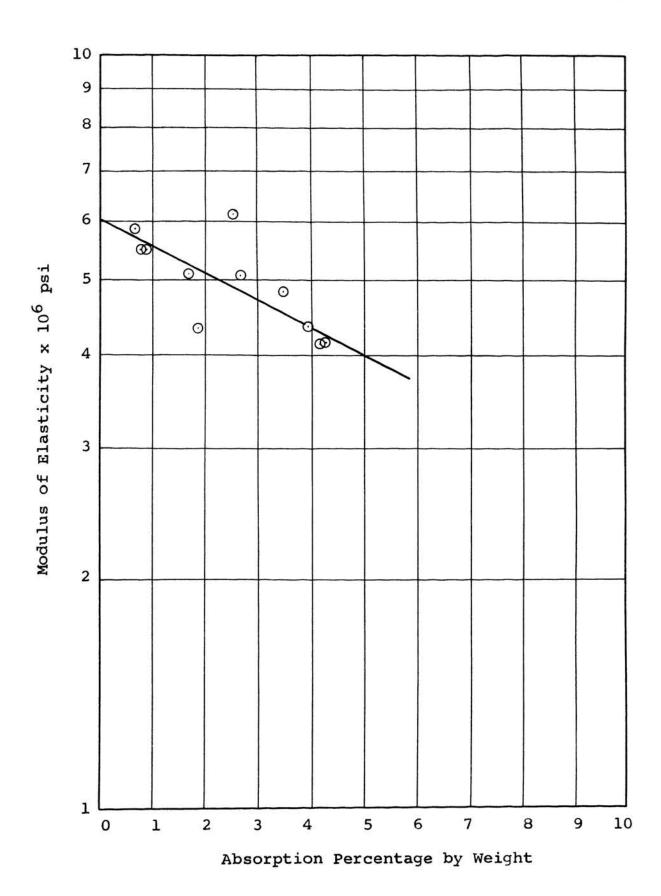


Figure 10 Absorption vs Modulus of Elasticity for Colorado Limestone (1).

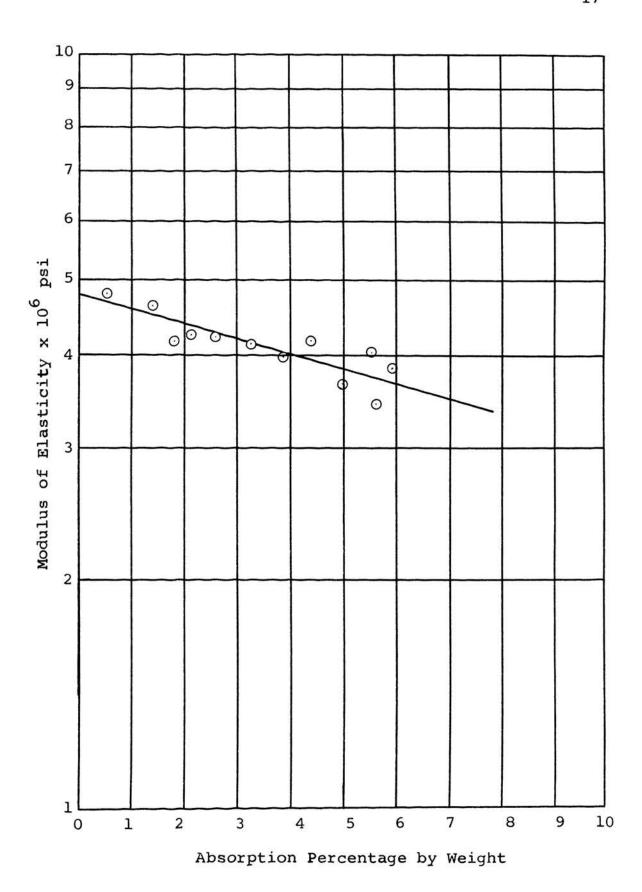
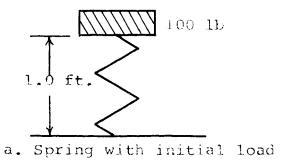
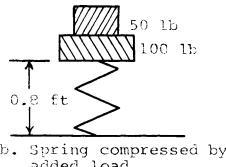
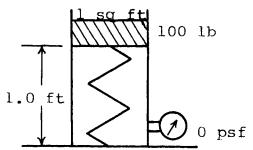


Figure 11 Absorption vs Modulus of Elasticity for Texas Limestone (1).

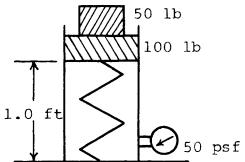

effect of moisture on the stability of the matrix. The structure of the material breaks down at a lower load with a higher moisture content.


B. Soil Mechanics Theory

1. Pore Water Pressure


The strain occurring after a load is applied to a speciman is due to closure of the void space previously occupied by air. This must be the major area of movement under a load, for the compression of the grains and the interstitial moisture is small. If the void area in the rock or soil mass was completely filled by water, the initial strain would be small since the moisture cannot freely escape to relieve the pressure imposed.

The stress carried by a saturated speciman can be demonstrated by the analogy of a spring, piston, and cylinder (6). To the top of the spring (Fig. 12a), a piston, whose cross-sectional area is 1 square foot and whose weight is 100 pounds, is attached. The length of the spring under this condition is 1.0 feet. A weight of 50 pounds is then applied to the spring (Fig. 12b) and the spring is compressed immediately to a length of 0.8 feet. This same condition may be applied in a closed cylinder (Fig. 12c) which is filled with water that is initially under no pressure. The load of 50 pounds is then applied (Fig. 12d), but there will be no appreciable compression of the spring since the added load is supported by the water. The spring still supports the 100 pound load but does not contribute to the support



b. Spring compressed by added load


c. Spring with 100 lb initial load in closed cylinder of water. Water pressure is zero

d. Spring supports 100 lb load. Water pressure of 50 psf supports 50 lb load

e. Spring supports 125 lb load. Water pressure of 50 psf supports 50 lb load

f. Spring supports 150 15. Water pressure is zero

Figure 12 Piston and Spring Analogy (6).

of added load. This water pressure is <u>neutral stress</u> and is given the symbol u. The total load of 150 pounds is denoted by σ , and the load supported by the spring represents the <u>intergranular stress</u> and is given the symbol $\bar{\sigma}$. The equation for the total load supported is:

$$\sigma = \bar{\sigma} + \mathbf{u}$$

$$150 = 100 + 50$$

If the cylinder is allowed to drain (Fig. 12e) so that spring shortens to 0.9 feet and the water pressure is reduced to 25 psf the condition which now exists is:

$$150 = 125 + 25$$

When an additional 0.1 cubic feet of water is allowed to leak out, the spring will shorten to 0.8 feet (Fig. 12f) under this condition, the spring will carry the 150 pounds.

This analogy similates the reaction of a saturated soil or rock to a load. The spring represents the grain structure and the cylinder with water represents the saturated pores. As a load is applied to the speciman, the load is initially carried by the pore water. When the water seeps out and the soil compresses, the grain structure supports the load and the neutral stress or water pressure becomes zero.

Capillary Moisture

The resultant force associated with an air-liquid surface is the property known as surface tension of a liquid (5). The molecular attraction of molecules on the surface of a liquid differs from that of molecules in the interior of

the mass of a liquid. This occurs because there is a difference in molecular attraction between one water molecule
and another water molecule, and between a molecule of water
and a molecule of air. Thus, the set of forces acting on a
particle in the interior of a mass of water (Fig. 13), as
at point A, differs from the set of forces acting on a
particle in the air-water surface, as at point B. The resultant force is directed inward due to this difference in
attraction forces. As a result, the mass of liquid attempts
to occupy the least possible area of the container. The
force required to oppose this tendency to contract is called
surface tension.

A compressive stress is developed in the grains due to the capillary action. The capillary water is held up by the surface of the grains, and the grains are subjected to a compressive stress due to the weight of the column of water. According to Spangler (5), "It is as though a man were to hang by his hands inside a chimney. The chimney supports the man, and the reaction to his weight causes a compressive stress in the walls of the chimney." This is similar to the capillary moisture in the soil pores. The strength of the mass is increased due to the compressive stresses in the soil structure which are directed inward.

Capillary potential is a quantitative stress property of a soil or rock which expresses its potential for attracting capillary moisture. This value, denoted by Ψ , which is always less than zero, is expressed by:

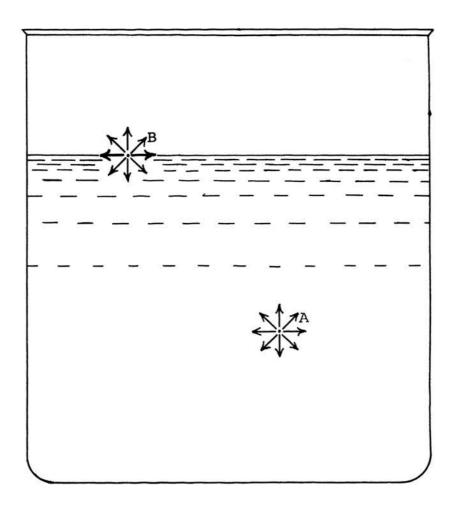


Figure 13 Surface Tension (5).

$$\Psi = -\mathbf{T} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

where: T = the surface tension of the liquid.

R₁ and R₂ = the radii of curvature of the warped or saddle-shaped surface.

Because of their influence on the radii of curvature, the moisture content, the size of the grains, the angle of contact, and the state of packing affect the value of capillary potential.

a. Moisture Content

If the amount of moisture between two grains is decreased (Fig. 14), the water will recede further into the interstices between the grains and the curvature of the air-water interface will increase, causing a decrease in the radii. The neutral stress or pore water stress decreases and becomes more negative (tension is given a minus sign). The total stress has not changed, therefore the intergranular stress must increase by an equivalent amount.

b. Grain Size

If equal weights of a fine grained material and a coarse grained material have the same moisture content, the fine grained soil will have a larger surface area and a small radius and larger radius of curvature (Fig. 15). This indicates that, under the above conditions, the fine grained material will have a lower pore water pressure and a higher

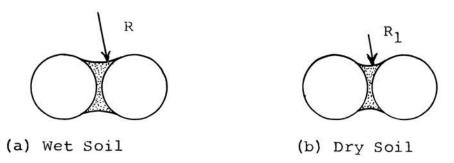


Figure 14 Effect of Moisture Content Upon Curvature of Air-Water Interface.

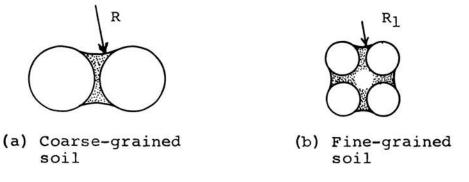


Figure 15 Effect of Particle Size Upon Curvature of Air-Water Interface.

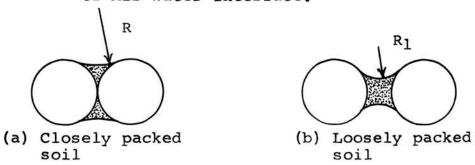


Figure 16 Influence of State of Packing of Soil on Curvature of Air-Water Interface.

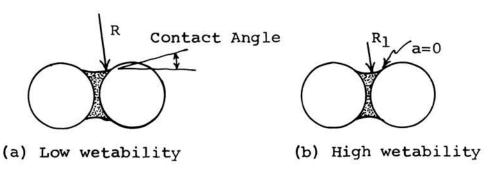


Figure 17 Influence of Wetability of Soil Grains on Curvature of Air-Water Interface.

intergranular pressure.

c. State of Packing or Degree of Consolidation

As two grains are pushed together (Fig. 16), the curvature of the meniscus will be decreased. With the same moisture content, the more compact sample will approach saturation as the air-voids are replaced by water. This indicates that the higher the porosity, in material having the same grain size and moisture content, the lower will be the neutral pressure and the higher will be the intergranular pressure.

d. Angle of Contact

The mineralogical composition of the rock or soil will determine what degree of wettability or angle of contact between the menisci and the grains can be accomplished. Keeping the other parameters constant, the greater will be the angle of contact, the lower the radius of curvature, and the lower the intergranular pressure (Fig. 17).

3. Shear Strength

From Mohr's envelope of failure (5, 6) the equation for shear strength, τ , may be written:

$$\tau = C + \overline{\sigma} + \tan \phi$$

where: C = cohesion or the shear strength where the normal stress is zero, in psi.

 $\overline{\sigma}$ = intergranular or effective stress in psi.

ø = internal angle of friction or the
slope of the failure envelope.

The angle of friction is dependent on the following:

- the coefficient of friction between the minerals.
- 2) the surface roughness.
- 3) the angle of contact between the grains.

The increase in intergranular stress associated with capillary tension produces a hydrostatic compressive stress in the mass. The increased shearing resistance along any section will be:

$$\Delta \tau = -\mathbf{u}_{\mathbf{w}} \tan \phi = \Delta \overline{\sigma} \tan \phi$$

where: $u_w =$ the tension in the pore water.

In the unconfined compression test (Fig. 18), the cohesion, which appears for specimens affected by capillary tension and disappears completely after immersion, is referred to as apparent cohesion. The effective stresses at failure are, therefore:

$$\overline{\sigma}_1 = \Delta \sigma_1 - \mathbf{u}_{\mathbf{w}}$$
 $\overline{\sigma}_3 = -\mathbf{u}_{\mathbf{w}}$

A sample in the saturated state is loaded axially at a rate which does not allow the speciman to drain. This means that there will be no further changes in the void ratio or water content until failure occurs. In this case, the added load, $\Delta\sigma_1$, is supported entirely by the pore water, or $u = \Delta\sigma_1$. The pore water pressure is exerted equally in all directions, a hydrostatic condition, and is therefore loaded equally in the σ_1 and σ_3 directions.

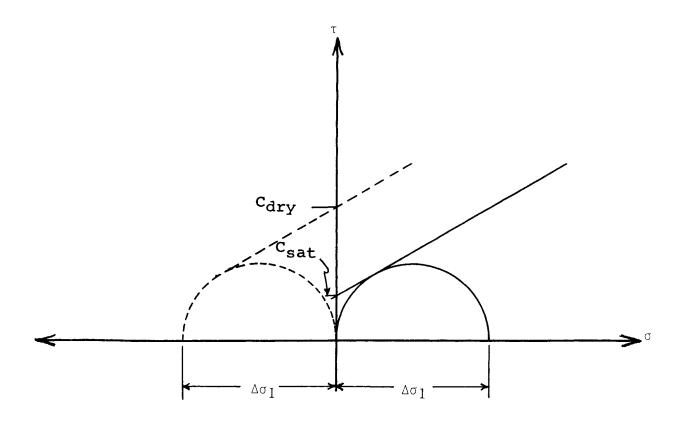


Figure 18 Mohr's Envelope and Stresses for Saturated Clay (5).

The effective stresses at failure are as follows:

$$\overline{\sigma}_1 = \overline{\sigma}_1 - u = \sigma_3 + \Delta \sigma_1 - \Delta \sigma_1 = \sigma_3$$
 $\overline{\sigma}_3 = \sigma_3 - u = \sigma_3 - \Delta \sigma_1$

Under a uniaxial load:

$$\overline{\sigma}_1 = 0$$
 $\overline{\sigma}_3 = -\Delta \sigma_1$

The specimen fails in tension equal to the axial stress (Fig. 18).

The Mohr's envelope for a partially saturated clay (Fig. 19) is ordinarily curved with a decreasing slope at increasing normal stresses. This indicates that capillary tension and pore water pressures have a definite effect on the strength of saturate clays. An apparent cohesion is caused by the capillary tension, but as this decreases (packing of the clay platelets) a positive pore water pressure develops. If the loads were increased, the Mohr's envelope would approach a horizontal asymptote.

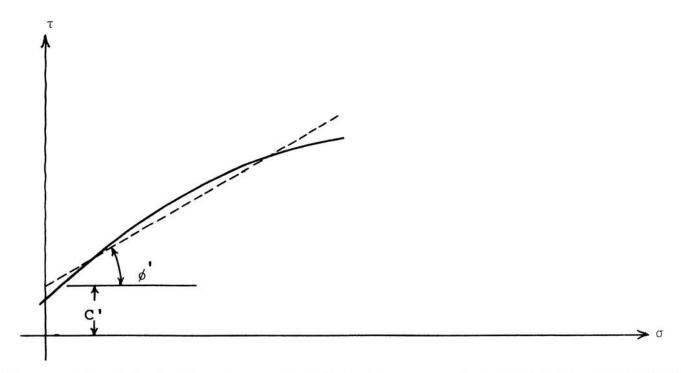


Figure 19 Mohr's Envelope of Total Stresses for Partially Saturated Clay (6).

III. TESTING PROCEDURE

A. Sample Preparation

The procedure for the preparation of test specimens was adopted from the results of tests conducted by the U.S. Bureau of Mines (3). Both "EX" (7/8-inch) and "AX" (1-1/8-inch) diameter of drill cores were used in the testing, but the results obtained from one size of core were not mixed with data from the other. This was done in order to define any deviation in strength which may have been associated with the size of core.

Because of the number of specimens expected to be handled, it was necessary to prepare the samples in bulk. A special holder (Figs. 20, 21, 22) was assembled, which was capable of retaining 40 specimens of the "AX" core and 84 specimens of the "EX" core. This holder was made to insure that the specimens were of approximately equal height and that the ends would be perpendicular to the sides when cutting and grinding.

In considering the proper height of the specimens to use in testing, results from the U.S. Bureau of Mines testing of 720 specimens with a varied length to diameter ratio was considered (3). The results from their tests (Fig. 23) indicated that a length to diameter ratio of approximately 2:1 would be preferred as a standard.

The ends of the specimens were then ground flat on a Norton Grinder (Fig. 21). The grinding wheel was

Figure 20 Cores in a Special Sample Holder Being Cut to the Same Height with a Diamond Saw.

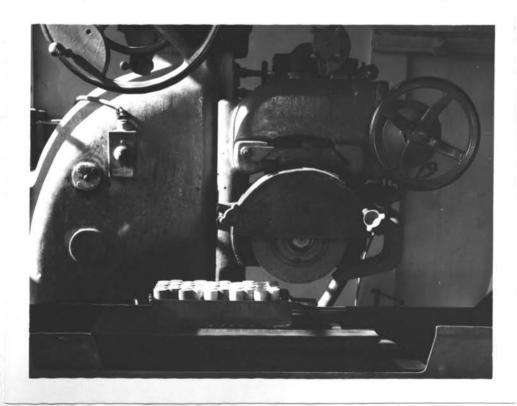


Figure 21 Sample Ends Being Ground Smooth in Norton Grinder.

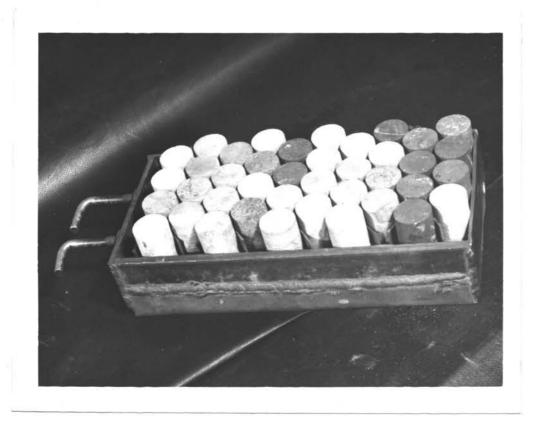


Figure 22 Finished Samples in Special Holder.

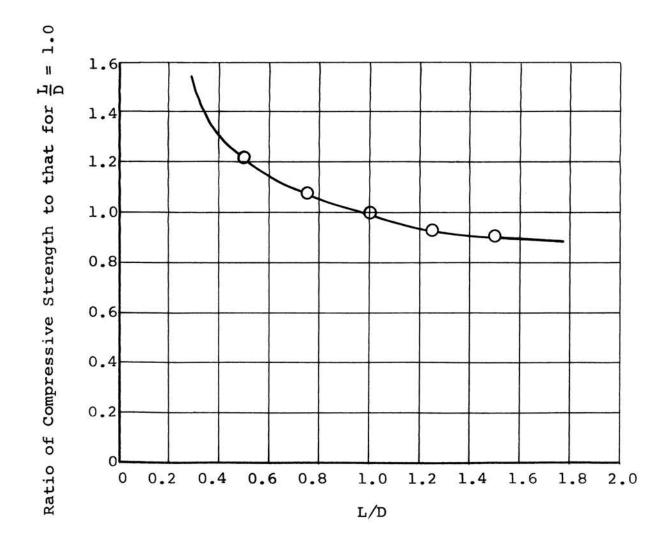


Figure 23 Effect of Ratio L/D on Compressive Strength (3).

made of alundum (aluminum oxide) with a grain size of 46 mesh. The cylindrical surfaces of the specimens were left in the as-drilled condition.

Specimens were marked with a permanent ink and stored in a room where the temperature and relative humidity was controlled. The specimens remained at a temperature of 68°F ± 2°F and a relative humidity of 45% ± 5% for 30 days, which approached a stable state. This moisture content was accepted as a zero datum to which all subsequent moisture contents were related.

Studies were conducted by the South African Council for Scientific and Industrial Research, Pretoria, of the effects of moisture on the unconfined and triaxial compressive strength of two quartzitic rocks. The procedure used in this investigation for producing a varied amount of moisture was adopted from the SACSIR paper.

It has been found (10) that a constant relative humidity can be maintained when a saturated aqueous solution is enclosed in a container and held at a constant temperature. If the relative humidity in a desiccator containing samples can be held constant at various degrees of partial saturation, then the samples would possess corresponding moisture conditions. In this manner, moisture can be induced into the pores at values ranging from dry to saturated in a relatively uniform manner when the separate containers are kept at the same temperature (20°C).

The moisture conditions which were used by SACSIR were

as follows:

Saturated Solutions of	Relative Humidity at 20° C	
-	CaCl dried	
LiC1 • 6H ₂ 0	15.0%	
CaCl ₂ • 6H ₂ 0	32.3%	
KNO ₂	45.0%	
NaNO ₂	66.0%	
NH ₄ Cl ₂	79.5%	
Pb (NO ₃) ₂	98.0%	
-	Water	

It was known, prior to testing, that the strength of the rock material from the Pea Ridge Mine was variable, and it was observed that the material was nonhomogeneous. In an attempt to group the specimens to reduce effects of the variable constituents, the density of each of the specimens was taken at the datum conditions. Four moisture conditions were selected to give a range of moisture contents and to have a sufficient amount of samples per group.

The first group to be tested was dried in the oven for 24 hours then placed into a desiccator containing calcium chloride, and then placed into the temperature controlled room until testing. A second group of specimens were placed in a saturated condition by arranging the samples in a container under a vacuum of 28.4 inches of mercury, then moisture was added slowly over the samples until they were

submerged (Figs. 24, 25). When the emission of the air from the specimens ceased, they were considered saturated. The other two groups were placed in desiccators under conditions of 66% and 98% relative humidity (Fig. 26). This condition was maintained, at 68° $F \pm 2^{\circ}$ F, for 30 days. The final moisture content of the specimens, at the time of testing, is expressed as follows:

Moisture Content (%) =
$$\frac{W_t - W_o}{W_o}$$
 x 100%

where: W_t = the weight of the specimen at the datum condition.

W_o = the weight of the specimen at the time of testing.

The amount of time the specimens were to remain under this condition was determined from tests conducted on samples of shale and quartz (2). From these graphs (Figs. 27, 28), a thirty day period was selected even though the period would be too long for material having the porosity of sandstone (15% by volume) and not long enough for the material having the porosity of shale (0.28% by volume). This period would be long enough to allow for the major moisture change to occur with an expected high degree of uniformity.

B. Materials Tested

The eight rock types tested were as follows:
Pea Ridge Mine, Missouri

Bonneterre dolomite - a fine to medium grained,
 light gray dolomite from the upper Cambrian sediments. Its

Figure 24 Set-Up for Saturated Specimens Under a Vacuum of 28.4-Inches of Mercury.

Figure 25 Water was Added Slowly to Allow for Complete Saturation of the Pore Area.

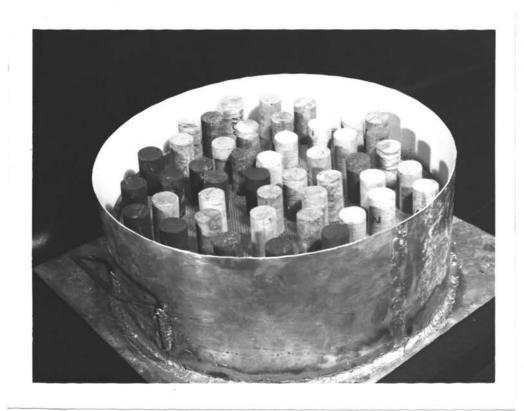


Figure 26 Desiccator, Without the Top, Containing Specimens Prepared for Testing.

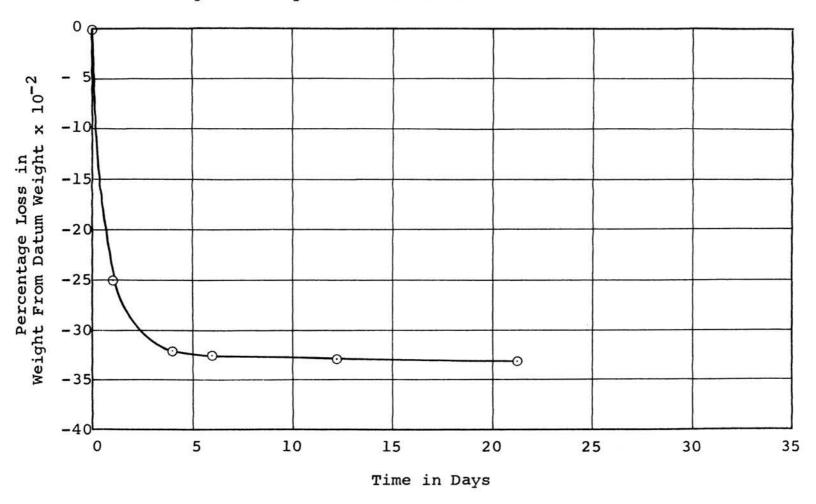


Figure 27 Typical Graph Showing Mean Percentage Loss in Weight of Quartzitic Sandstone with Time for Specimens Stored in Dry Environment (2).

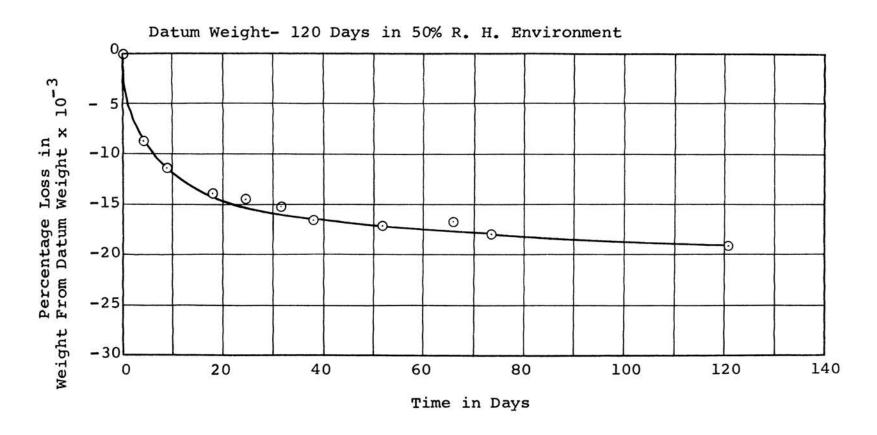


Figure 28 Typical Graph Showing Mean Percentage Loss in Weight of Quartzitic Shale with Time for Specimens Stored in Dry Environment (2).

porosity ranges between 1.6% and 3.7%.

- 2. Lamotte sandstone a medium grained white quartzose sandstone from the upper Cambrian sediments. Its porosity ranges between 15.0% and 21.6%.
- 3. Rhyolite porphyry a pink porphyry of Precambrian age. Its porosity ranges between 2.1% and 3.5%.
- 4. Magnetite ore a high-silica (30% to 35%) iron ore with 35% to 45% iron formed by a high temperature replacement. Its porosity ranges from 2.0% to 7.1%.
- 5. Hematite fine grained replacement body of iron associated with the magnetite deposit. Its porosity ranges between 2.2% and 7.1%.
- 6. Quartzite a white fine grained well compacted quartzite of Precambrian age. Its porosity ranges between 1.7% and 4.1%.

White Pine Mine, Michigan

- 7. Shale gray fine grained with well marked bedding planes. Its porosity ranges between 1.7% and 5.8%.
- 8. Sandstone hard dense, fine to medium grained wellcemented sandstone. Its porosity ranges between 6.1% and 13.1%.
 C. Compression Tests

The compression tests were performed on a 120,000 pound Tinius-Olsen hydraulic type machine with four loading ranges of 3,000 pounds, 12,000 pounds, 30,000 pounds, and 120,000 pounds.

A loading rate of 100 pounds per square inch per second was used following U.S. Bureau of Mines specifications. This was accomplished with a "Pacer" accompanying the machine which was accurate to less than 4.7 pounds per square inch per second.

To prevent the upper platen from rotating and causing a moment to be produced in the specimens due to initial chipping of the corners, special jacks were made (Fig. 29) for leveling. After an initial load was placed on the specimens, the leveling jacks were placed in position.

The failure of each speciman was observed and classified according to the Canadian Department of Mines and Technical Surveys (4), as follows:

Degree		Shape	Fragment Size
1.	very violent	a - top cone	A - dust
2.	violent	b - bottom cone	B - 1/16" - 1/4"
3.	semi-violent	c - double cone	C - 1/4" - 1/2"
4.	quiet	d - longitudinal	D - larger than 1/2"
5.	no data	e - diagonal	E - mixture
		f - irregular	F - no data
		g - no data	

For example, a speciman which failed very violently, leaving a double cone and a mixture of small and large fragments, would be coded as 1-c-E.

D. Brazilian Tensile Test

A compressive load applied perpendicularly to the axis of a cylinder and in a diametral plane (Fig. 30) gives rise to a uniform tensile stress over that plane. This indirect

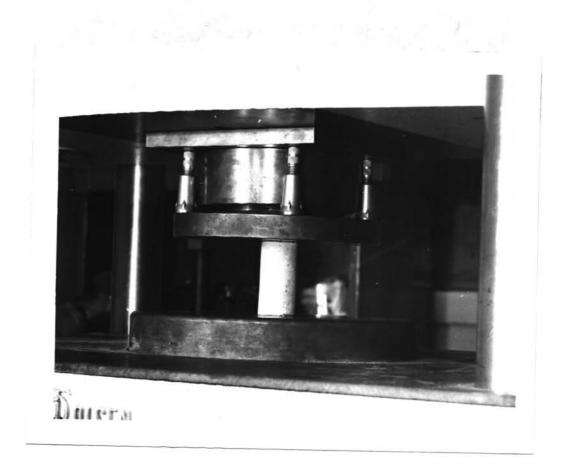


Figure 29 Special Levels Made to Prevent Rotation of Platen in Compression Tests.

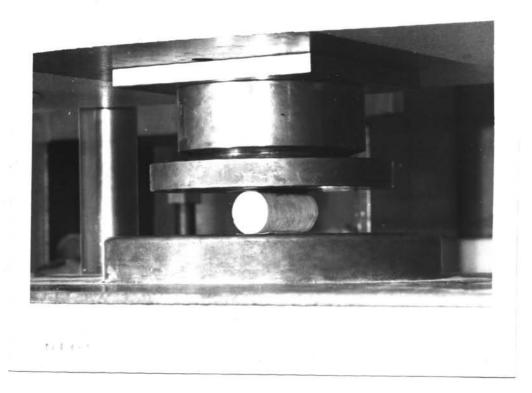
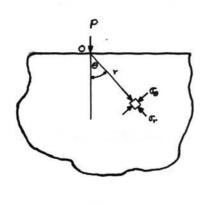



Figure 30 Loading a Speciman for a Brazilian Tensile Test.

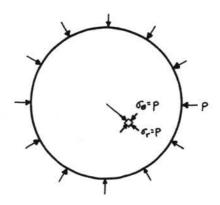


Figure 31 Stress in a plate due to a Concentrated Load P, Applied to an Edge.

Figure 32 Stress in a
Disc due to a
Uniform Radial
Pressure p.

tensile test for concrete, now being applied to rock, was introduced in Brazil by Fern and Carneiro in 1947. The mathematical analysis of this stress distribution (7, 8, 9) has been derived from two fundamental conditions.

The first condition to be investigated is that of a concentrated vertical load P acting on a horizontal straight plate of infinite length and of a thickness t (Fig. 31).

Assuming a condition of plane stress and that the material obeys Hooke's Law, the stress components on any element at an angle 0 from the vertical and at a distance r from the point of application of the load are:

radial stress, towards the point of application of the load

$$^{\circ}r = \frac{2P}{\Pt} \quad \frac{\cos \theta}{r}$$

circumferential stress, perpendicular to the radial stress

$$\sigma_{\Theta} = 0$$

shear stress

$$\tau r\theta = 0$$

The second stress distribution to be investigated is that of a disc loaded by a uniform radial pressure p (Fig. 32). The stress in any direction and at any point is equal to the applied pressure and there is no shear stress.

$$\sigma_r = p$$

$$\sigma_{\theta} = \mathbf{p}$$

$$\tau_{r\theta} = 0$$

At any point on the circumference of the disk (Fig. 33)

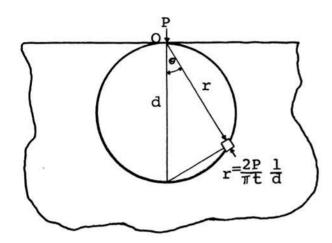


Figure 33 Stress at the Circumference of a Circular Area of the Plate Shown in Fig. 31.

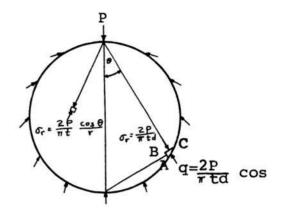


Figure 34 A Disc Subjected to the Same Loading as a Circular Area of the Plate Shown in Fig. 33.

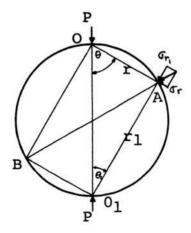


Figure 35 Two Sets of Forces Superimposed.

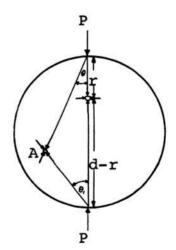


Figure 36 Disc Subjected to Two Concentrated Forces.

being considered part of the plate (Fig. 31), there is a stress $\frac{2P}{\text{ft}} = \frac{\cos \theta}{r}$ acting toward 0, and, from geometry, it can be seen that: $\frac{r}{d} = \cos \theta$

where: d = diameter of the disc.

Let the circular area be removed from the plate (Fig. 34) and such stress, q, be applied to the circumference as will maintain the same effect as that of the plate being whole.

Under the conditions of equilibrium of element ABC,

$$\frac{2P}{\text{¶ td}} \quad BC = q \quad AC$$

$$q = \frac{2P}{\text{¶td}} \quad \frac{BC}{AC} = \frac{2P}{\text{¶td}} \quad \cos \theta$$

A similar system may be superimposed if the force P acted upon the bottom of the disc, and therefore, upon the system of stress already described. Now the disc is subjected to two opposite forces P acting along a diameter, and two sets of stresses, acting on the circumference (Fig. 35), of magnitude $\frac{2P}{\P td}$ $\frac{r}{d}$ along AO and $\frac{2P}{\P td}$ $\frac{r}{d}$ along AO1.

The resultant of these two external stresses may be represented by $AB = \frac{2P}{\text{¶td}}$, which is a constant and passes through

the center of the disc. A uniform radial compression stress of magnitude 2P is produced by the two systems together.

In order that the boundary of the disc is free from any external forces, a uniform radial tensile stress of equal magnitude will be superimposed. The disc is subjected to two opposite forces acting along a diameter (Fig. 36).

Any element A is therefore subjected to the two compressive stress components $\frac{2P}{\text{¶ t}} \frac{\cos \theta}{\text{r}}$ and $\frac{2P}{\text{¶ t}} \frac{\cos \theta}{\text{r}_1}$, as indicated, and a tensile stress of $\frac{2P}{\text{¶ td}}$ in all directions.

The exact stress, on the vertical diameter where $\theta = \theta_1 = 0$, can be readily calculated. The vertical stress component (compressive)

$$\sigma_{V} = \frac{2P}{\text{¶t}} \frac{1}{r} + \frac{2P}{\text{¶t}} \left(\frac{1}{d-r}\right) - \frac{2P}{\text{¶td}}$$

$$\sigma_{V} = \frac{2P}{\text{¶td}} \left(\frac{d}{r} + \frac{d}{d-r} - 1\right)$$

and the horizontal stress component (tensile)

$$\sigma_{H} = - \frac{2P}{\text{¶td}}$$

IV. ANALYSIS OF RESULTS

The results of the compression and tensile tests have been compiled in Tables 3 through 20 in Appendix I and II. These results have been plotted in Figs. 46 through 52 and 54 through 64.

A. Data Reduction

All the available samples were tested in this program, with no samples being eliminated, initially, due to structural irregularities as could visibly be seen. Any abnormal characteristic was recorded and considered when the data were analyzed.

Conventional methods of data reduction by employing calculation of standard deviation (3) were attempted without success. All the materials demonstrated a high degree of deviation and data which obviously should have been eliminated, remained intact because of this wide range of values. This required that a more direct process of elimination be used, without any mathematical basis. This method was as follows; omitting samples which showed structural irregularities first and then, by observation, omitting data which did not appear to "fit" with the general trend.

The data collected on the Lamotte sandstone was not shown graphically because of the wide spread of values.

The samples were of different origin and environment and were not of one composition, structure, or grain size. It was known prior to testing that probably no conclusions

could be drawn for this material. The results are entered for general interest and to show this material's general characteristics.

B. General Testing Procedure

When the testing program was initiated, a central moisture content (45% relative humidity) was picked for two reasons. Under natural conditions in most areas, a rock would most generally be under this condition of humidity. A 45% relative humidity may be considered a "norm" and demonstrates the strength of a rock in its most natural condition. By showing the effects of strength due to moisture condition on either side of this "norm", the change in strength with a change in the climatic condition is shown. Also, by using this condition as a "zero" moisture content, to which moisture was either added or removed before testing, the time required to alter the moisture content would be reduced.

It became apparent that the curve that might best fit
the plotted results would be a log-log relationship. In
order for this relationship to be shown - the log of a negative number being undefined - the zero moisture content for
the samples from the White Pine Copper Company was picked
at the oven-dried state.

During the testing of the samples which were intended to be in a state of saturation, it became apparent that the samples were not being completely saturated. This was discovered in comparing the moisture content at saturation to what the moisture content should have been as determined from the porosity test. An example of this would be sample SS-11 whose porosity was 10.33% and moisture content at saturation was 2.36% and specific gravity was 2.51. The degree of saturation was calculated to be only 57.1% and not 100% as expected.

C. Results

The test results from both the Pea Ridge Mine and the White Pine Mine were plotted showing the relationship of compressive and tensile strength per unit area versus the moisture content. As mentioned earlier, a log-log plot of the White Pine samples was drawn to compare the compressive and tensile strength of the rock material to the moisture content.

The conditions under which the specimens failed were not uniform. Figs. 37 through 45 show a few of the samples after failure. The system (tension, compression, or shear) under which each sample failed is not always clear. The planes of failure, as seen from these figures, are complex. Many of the sedimentary samples appeared to fail in a diagonal plane which would alter to a longitudinal plane near the center of the specimen. Many specimens failed in two or more planes. In many of the violent and very violent failures, little was left of the specimens for reconstruction.

There was a general trend for a decrease in compressive strength with an increase in moisture content. Table 2 shows the degree to which the moisture affected the strengths of

Figure 37 Compressive Failure of a White Pine Sample of Sandstone Under a Condition of 4cE-65°.

Figure 38 Compressive Failure of a White Pine Sandstone Sample Under a Condition of 4cE- 70°.

Figure 39 Compressive Failure of a White Pine Sandstone Sample Under a Condition of 3eE- 65°

Figure 40 Compressive Failure of a White Pine Shale Under a Condition of 4eE-70°.

Figure 41 Compressive Failure of a White Pine Shale Under a Condition of 3eE- 70°.

Figure 42 Compressive Failure of a White Pine Shale Sample Under a Condition of 2e, dE-70°.

Figure 43 Compressive Failure of a White Pine Sandstone Sample Under a Condition of 4eE-70°.

Figure 44 Compressive Failure of a Pea Ridge Dolomite Sample Under a Condition of 3dE.

Figure 45 Compressive Failure of a Pea Ridge AX Magnetite Sample Under a Condition of 2eE- 65°.

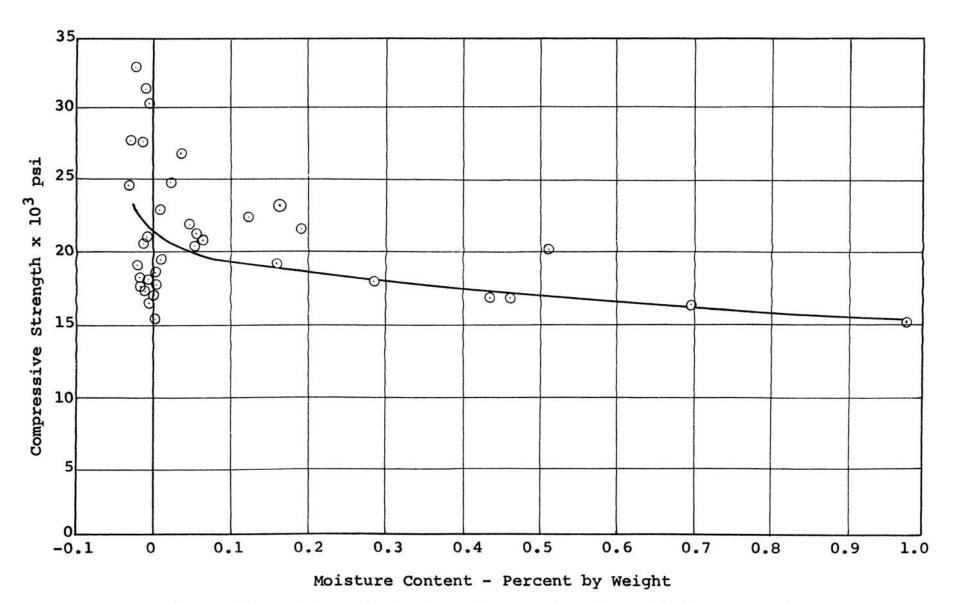


Figure 46 Moisture Content vs Compressive Strength for Magnetite.

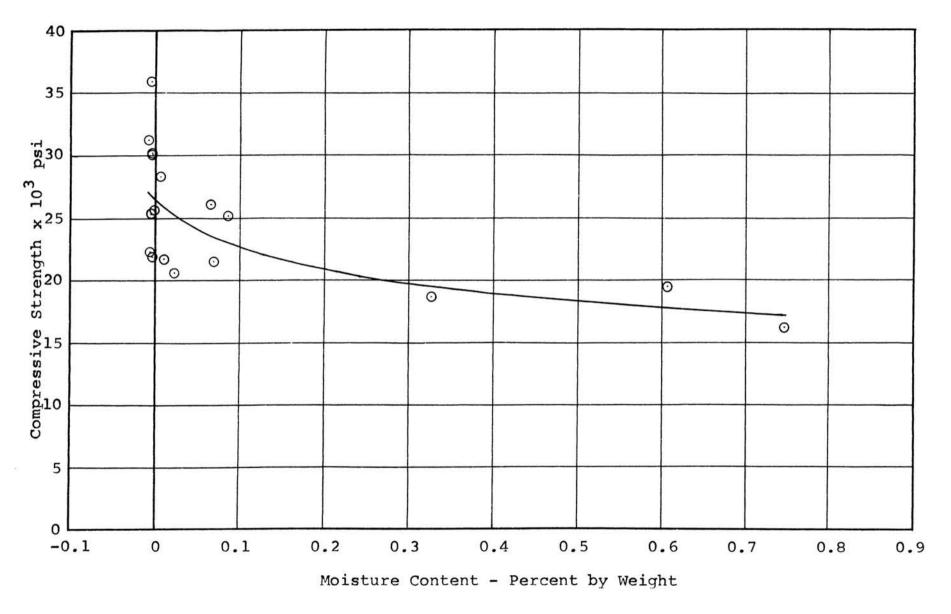


Figure 47 Moisture Content vs Compressive Strength for Hematite.

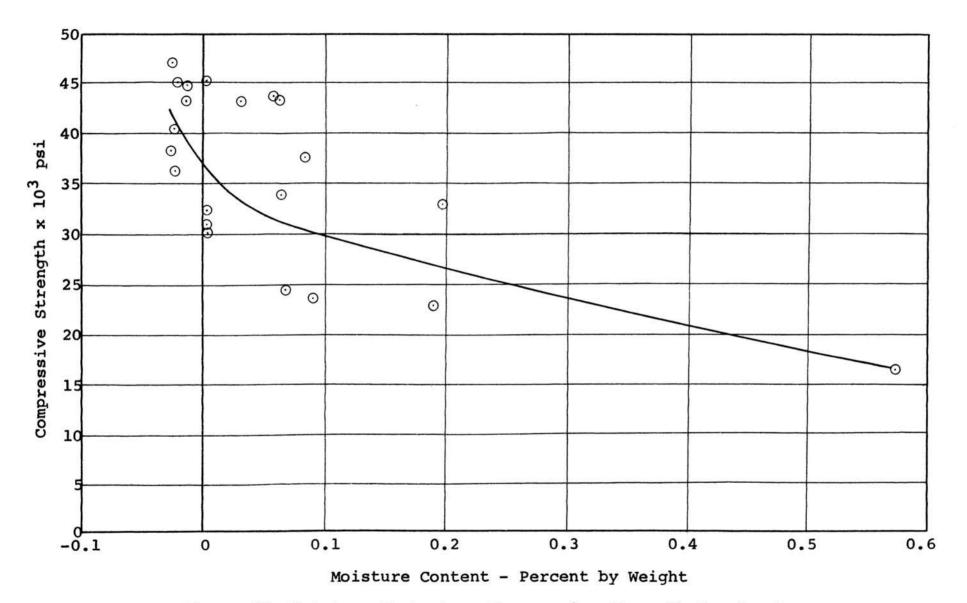


Figure 48 Moisture Content vs Compressive Strength for Porphyry.

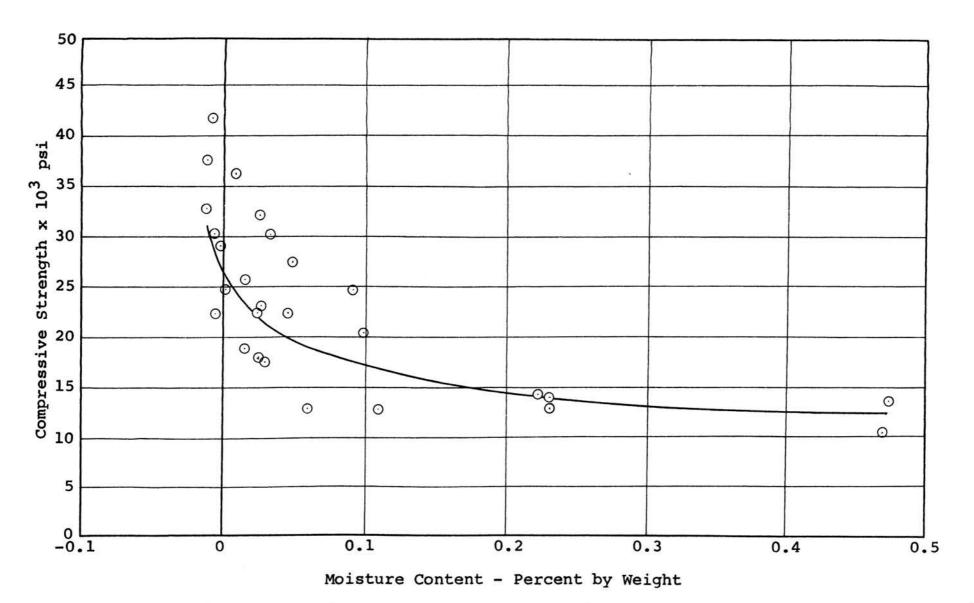


Figure 49 Moisture Content vs Compressive Strength for Quartzite.

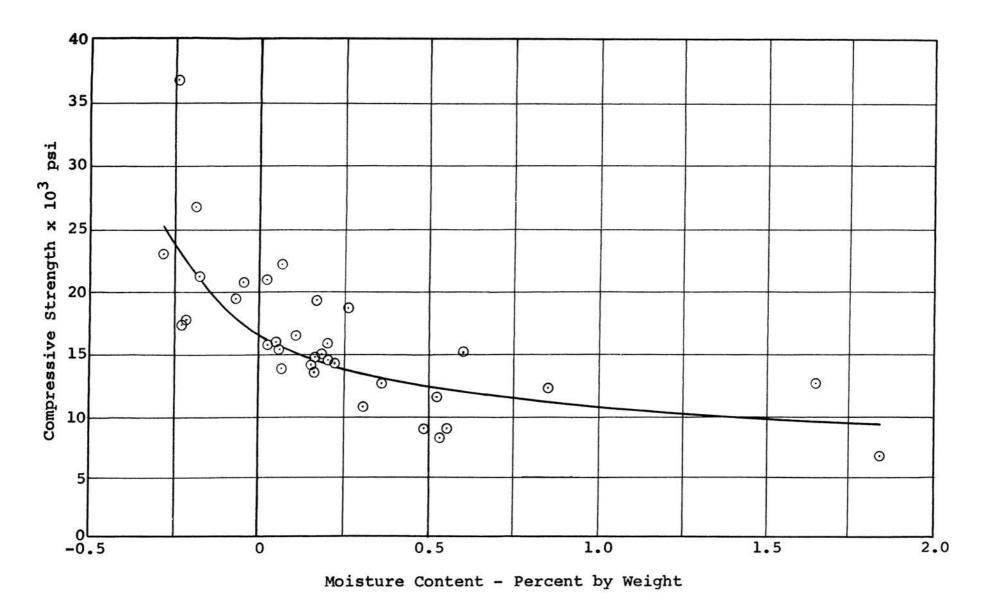
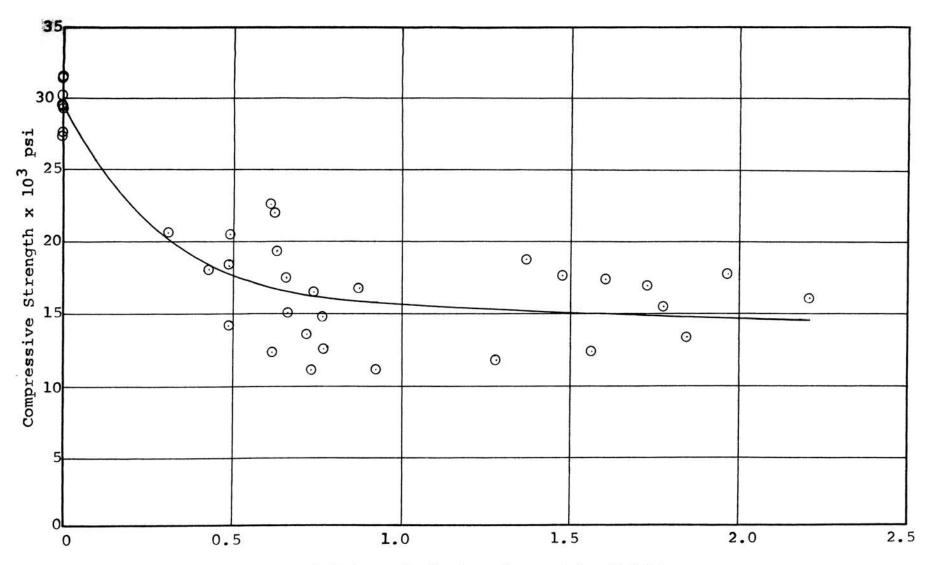



Figure 50 Moisture Content vs Compressive Strength for Dolomite

Moisture Content - Percent by Weight

Figure 51 Moisture Content vs Compressive Strength for Shale.

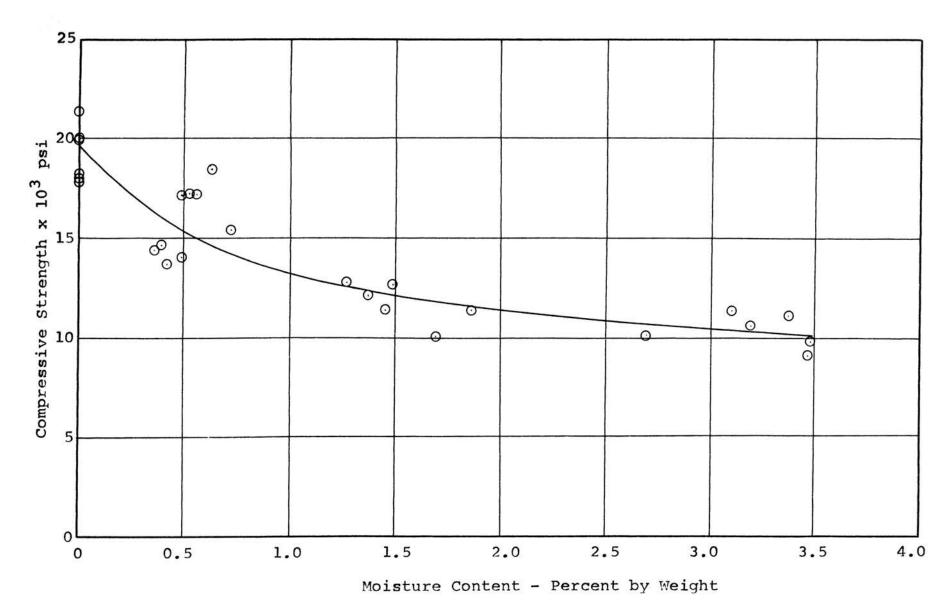


Figure 52 Moisture Content vs Compressive Strength for White Pine Sandstone.

the various samples. The maximum and minimum strength values were taken from the curves drawn to represent the general trend of the data. The tabulated values represent the ratio of the compressive and tensile strengths of a speciman in the saturated state to compressive and tensile strengths of a speciman in the dry state.

In compression, the highest percentage of change in the dry and saturated strengths is that of the quartzite and the dolomite. The dry specimens of quartzite failed generally along a longitudinal plane while the saturated specimens failed irregularly, indicating failure along planes of weakness. Dolomite, on the other hand, failed generally by splitting along a longitudinal axis in both the dry and saturated state.

The smallest percentage of change in the compressive strength of the rock material tested was in the shale and magnetite. The shale specimens failed mainly along a diagonal plane at an angle of 70°. The general plane was the same for both the dry and saturated samples, but the dry sample failed very violently while the saturated samples failed semi-violently. This would seem to indicate that the added moisture acted as a lubricant on the plane of failure. The double cone was the predominant failure pattern in the magnetite specimens. The angle of these planes of failure generally varied + 5° from a 70° plane.

There was also a general trend for a decrease in tensile strength with an increase in moisture content, with

Table 2. Approximate Ratio of Strengths at Maximum to Strength at Minimum Moisture Content

	Compression	Tension	
		222	
Magnetite	64%	67%	
Hematite	64%	68%	
Porphyry	38%	130%	
Quartzite	35%	141%	
Dolomite	36%	42%	
Shale	50%	59%	
Sandstone	51%	51%	

the exception of the quartzite and the porphyry specimens.

The tensile strength of quartzite and porphyry showed a

trend of increasing with an increasing moisture content.

The centers of the specimens tested in the indirect tensile test are under a biaxial loading condition. Along the vertical axis, there is a compressive stress of magnitude $\frac{6P}{\pi td}$ applied parallel to the axis of loading, and a

tensile stress of magnitude $\frac{-2P}{\pi td}$ applied perpendicular to

the axis of loading. Pore water pressures would exist under this compressive stress and would tend to increase the stress applied on the plane of failure.

This condition could exist only in a heterogeneous material, while the equations were derived for a homogeneous mass. The exact distribution of local stresses cannot be determined, but a redistribution of the pore pressures could also conceivably oppose the tensile stresses produced, giving the appearance of a higher tensile strength with an increased moisture content. Highly stressed areas of the specimen will tend to throw the stress onto those areas where the stress is lower.

There was little moisture change from the zero moisture content in both the porphyry and the quartzite specimens as compared to the rest of the materials tested. The specific gravity was lower and the degree of violence at failure of both types of material was higher than with the other materials tested. The material is of a higher degree of compaction

and consolidation.

A plane of failure is forced along the longitudinal axis of loading in the Brazilian tensile test (Figs. 53a and 53b). The failure is caused by a tensile force, but the sample cannot fail along a plane of weakness or a more preferred orientation. The quartzite samples showed planes of weakness in the saturated compression test, but these planes were not utilized in the tension test.

It might also be noted, in the tests run by the Bureau of Mines on Young's modulus (3), that the highly consolidated materials (igneous and metamorphic) showed an increase in modulus with an increase in moisture content. This would seem to indicate that the moisture was preventing the strain of the material. The water, being relatively incompressible, is redistributing the load to areas which are able to withstand the increase. The water acts to transmit the increasing load.


The highest percentage of decrease in the tensile strength from the dry to the saturated state was in the dolomite specimens. It might be noted that the degree of change in the dolomite and the other samples tested, excluding the porphyry and quartzite, showed approximately the same change in strength in tension and compression (Table 2).

D. Log-Log Graphs

The second group of tests on the shale and sandstone specimens from the White Pine Copper Mine was set up with the zero moisture content base being the oven-dried samples.

a. White Pine Shale.

b. White Pine Sandstone.

Figure 53 Resulting Failure Plane in the Brazilian Tensile Tests.

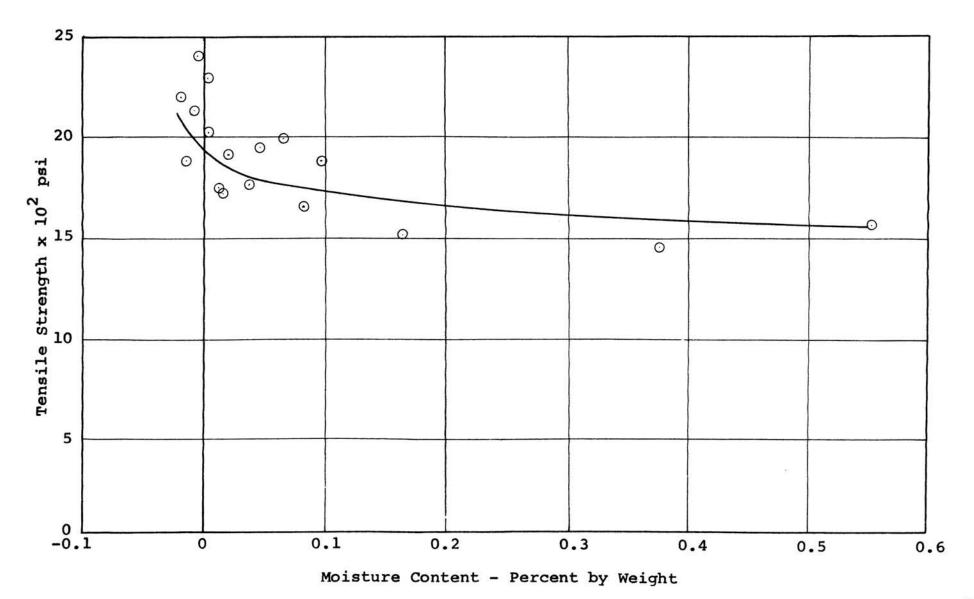


Figure 54 Moisture Content vs Tensile Strength for Magnetite.

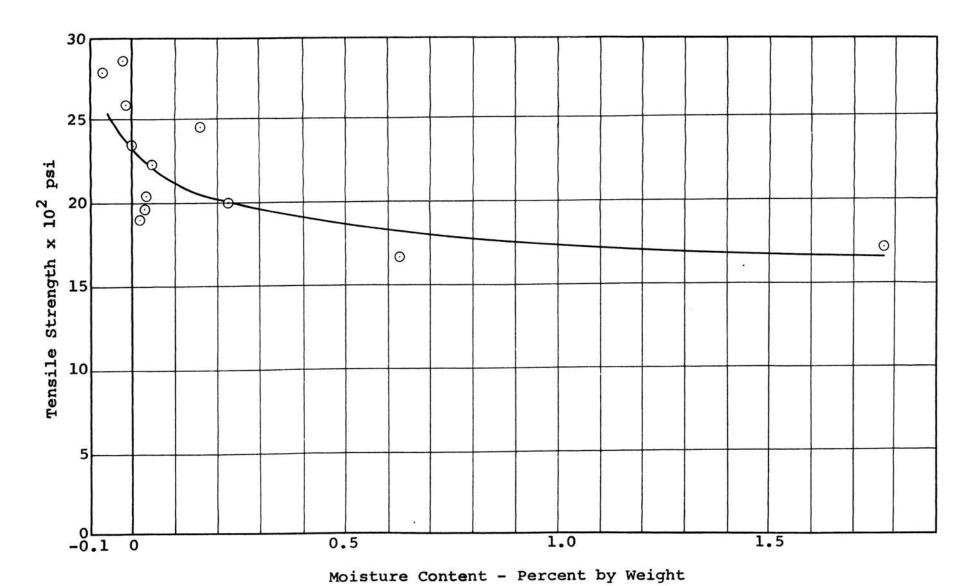


Figure 55 Moisture Content vs Tensile Strength for Hematite.

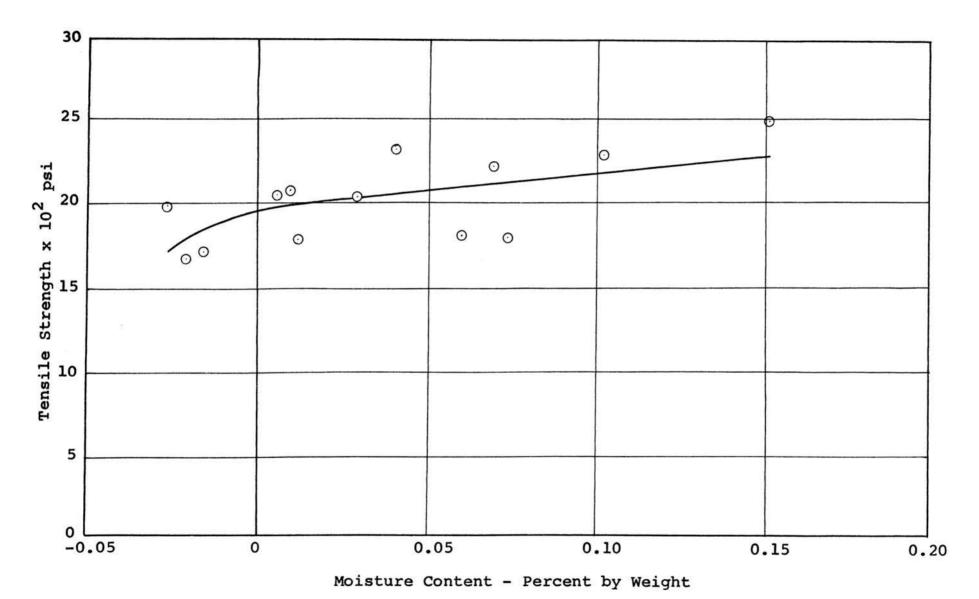


Figure 56 Moisture Content vs Tensile Strength for Porphyry.

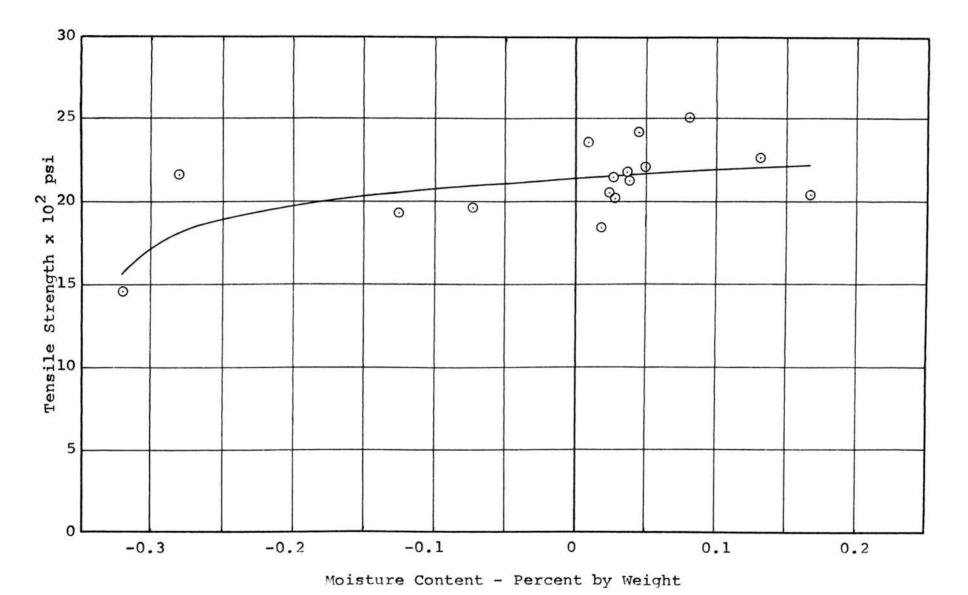


Figure 57 Moisture Content vs Tensile Strength for Quartzite.

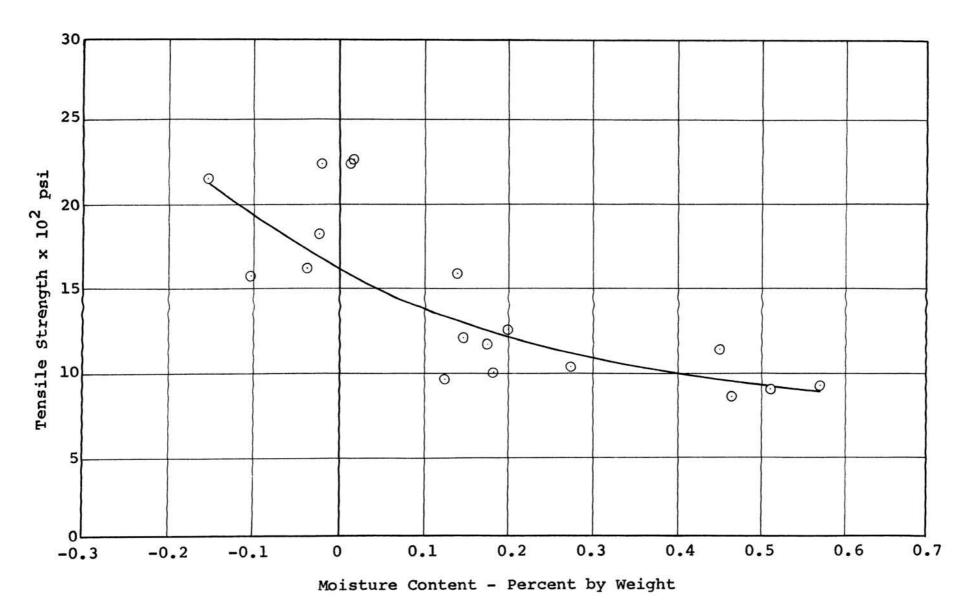


Figure 58 Moisture Content vs Tensile Strength for Dolomite.

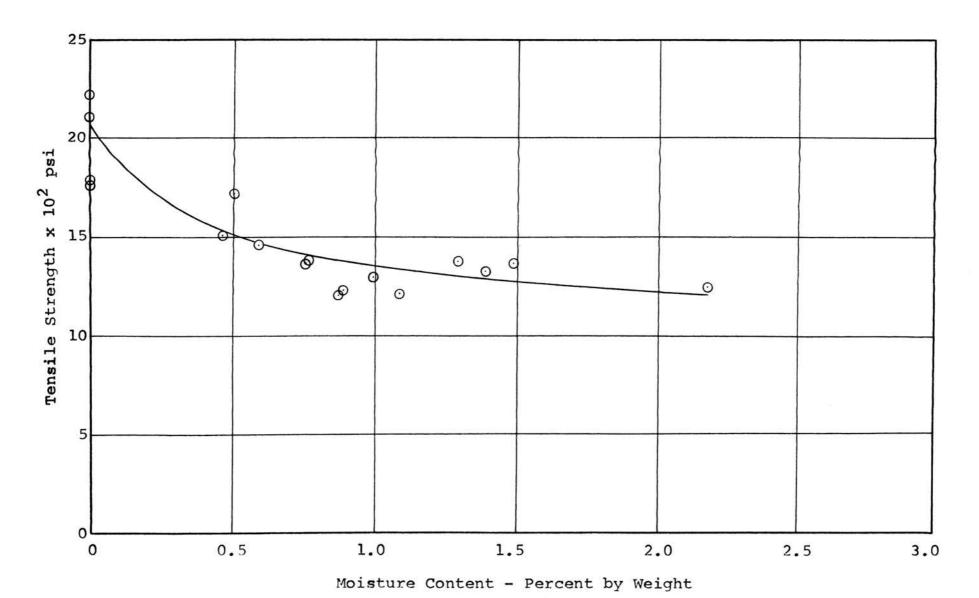


Figure 59 Moisture Content vs Tensile Strength for Shale.

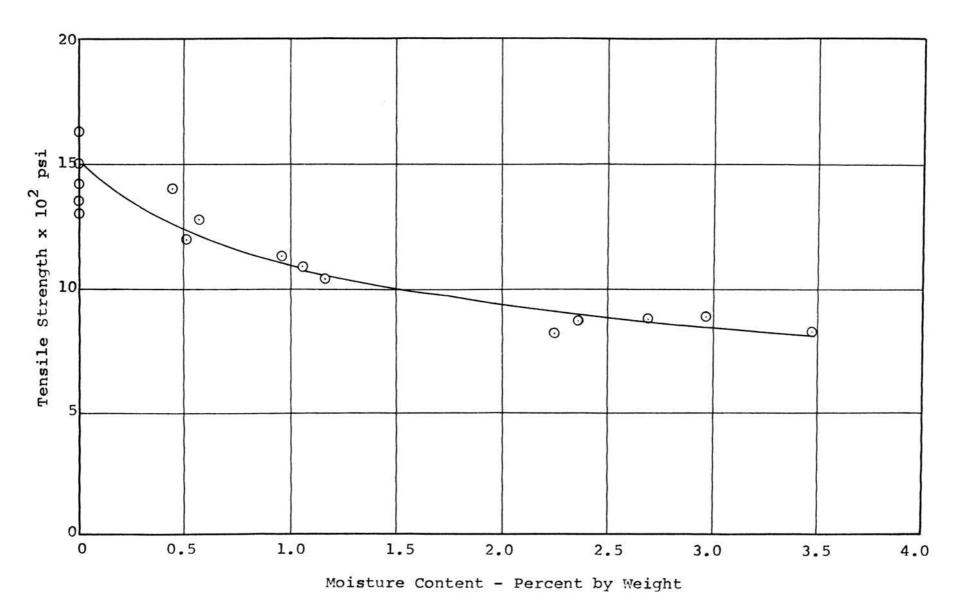


Figure 60 Moisture Content vs Tensile Strength for White Pine Sandstone.

The results were plotted on a log-log graph (Figs. 61 through 64) comparing the compressive and tensile strength per unit area to the moisture content. The best straight line was drawn between the results by using the method of least squares.

The log-log comparison of the results appears to generally form a straight line relationship. There was quite a bit of scatter in the results of the shale tests (Figs. 61, 63), with a general plane of weakness of 70° to the horizontal. The compression and tension tests of the sandstone specimens plotted on a log-log graph (Figs. 62, 64) shows a good straight-line fit.

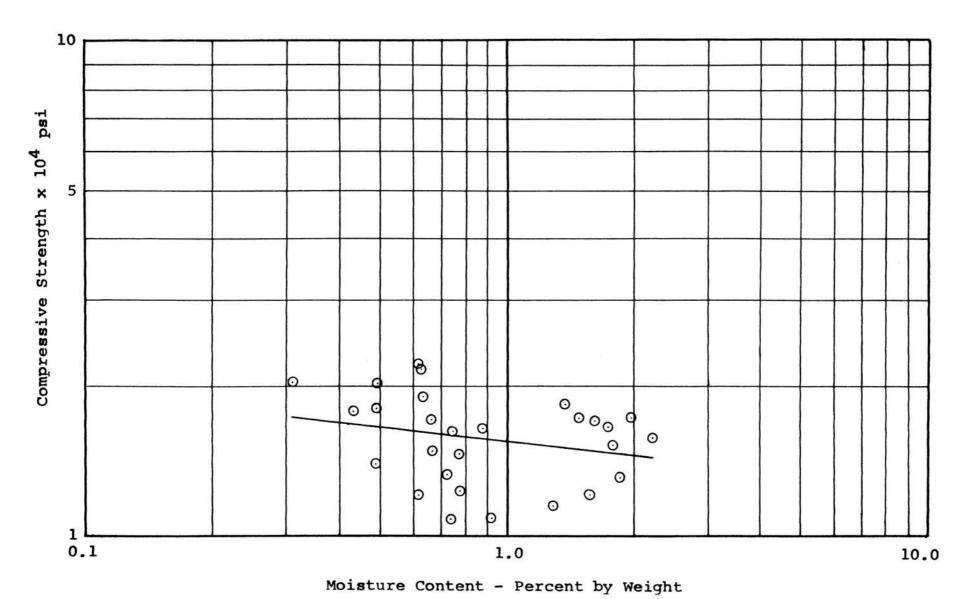


Figure 61 Moisture Content vs Compressive Strength for Shale.

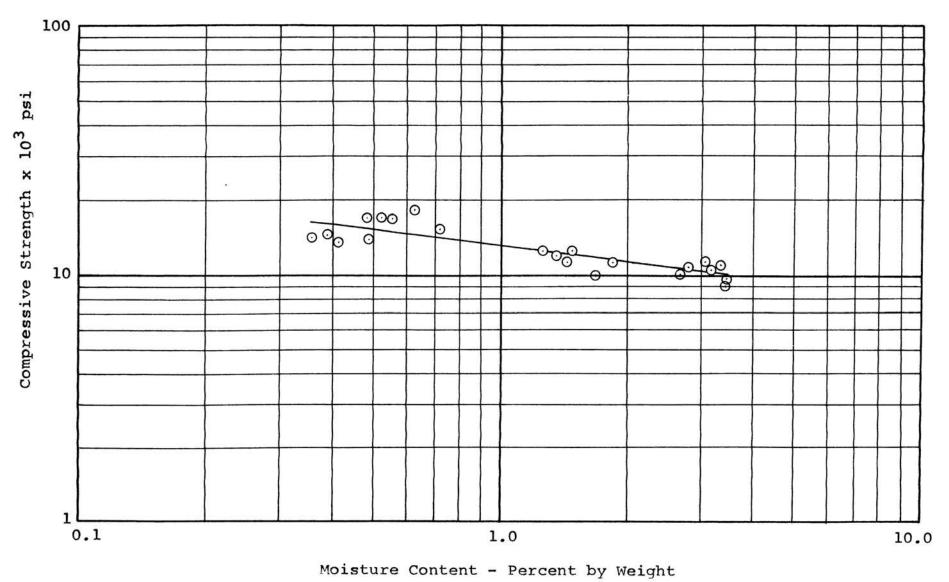
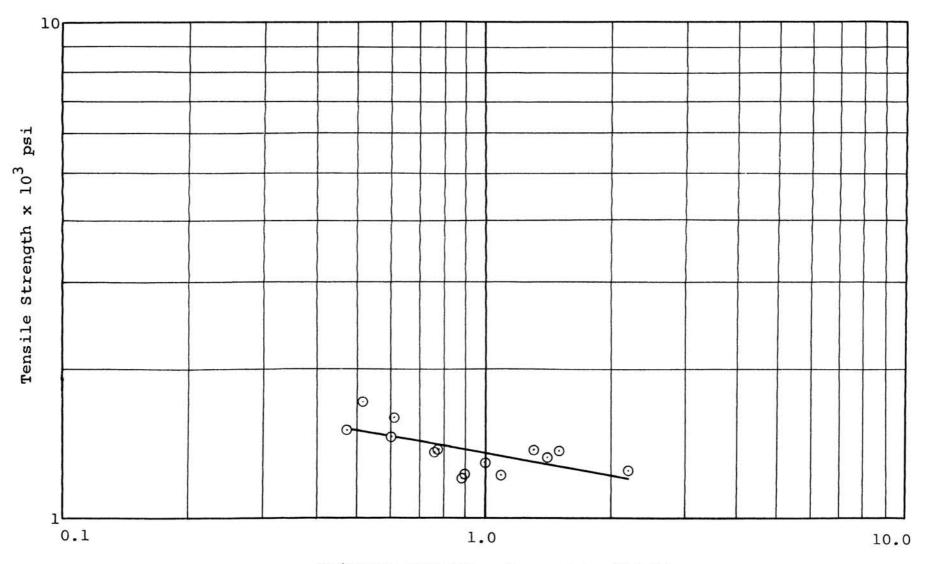



Figure 62 Moisture Content vs Compressive Strength for White Pine Sandstone.

Moisture Content - Percent by Weight

Figure 63 Moisture Content vs Tensile Strength for Shale.

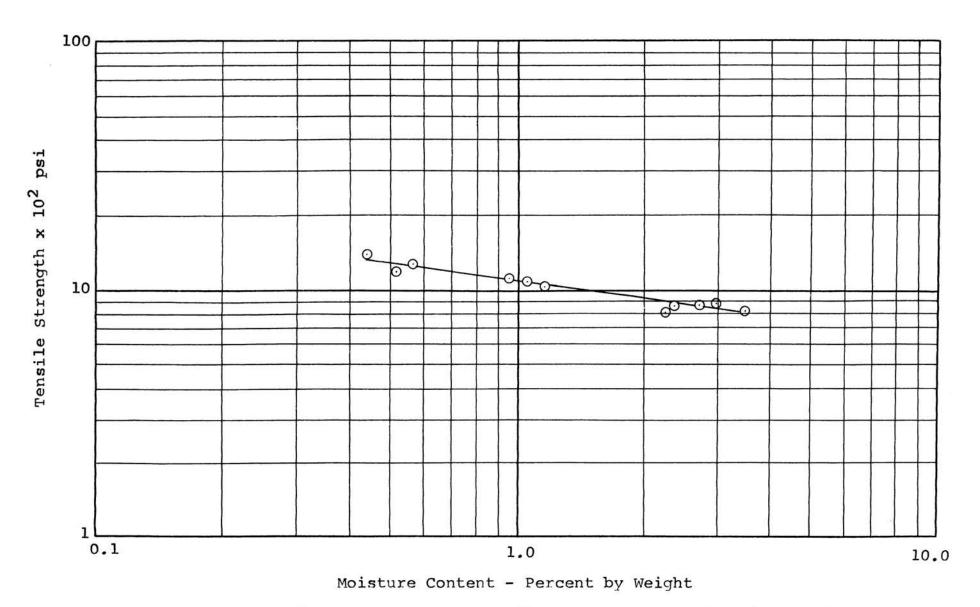


Figure 64 Moisture Content vs Tensile Strength for White Pine Sandstone.

V. CONCLUSIONS

A. Failure Pattern

Rock material can fail under a load either by fracturing the bonds between grains, by fracturing the bonds on a plane of weakness, by fracturing through the grains, or by a combination of these phases. The material will fail along a critical path where the localized stress overcomes the strength. The plane of least resistance will not be the region of failure unless a load of sufficient magnitude is applied to sever the bonds.

Sedimentary and metamorphic rock will tend to fracture through bonds which hold the grains together and along zones where there is little or no bonding. Igneous rock will fail along planes of weakness or through the solidified mass.

The degree of variation in rock strength in material of the same origin and general location must have been caused by the chemical and mechanical action imposed upon them over their geologic history. The strength characteristics of the Pea Ridge samples show a high degree of variability which may have been caused by one or more of the following:

- A local difference in geologic history.
- 2) A locally different chemical composition.
- 3) Being non-isotropic, a different internal loading pattern.

B. Effect of Moisture

In the compressive tests, the samples were more apt to fail along planes of weakness. As more moisture was present in the void areas, specifically in zones of weakness, the resistance to failure was decreased.

The strength characteristics of the samples seem to be independent of porosity. The material with the highest porosity does not seem to show a higher or lower degree of change in strength from the dried to the saturated state. Rock which has a relatively small void area can be affected by an increase in moisture just as pronounced as materials with a higher void area. Therefore, soil mechanics theories of pore water pressures may also be applicable to the field of rock mechanics. The major discontinuity in the theory as applied to rock material stems from the fact that rock does not have one-tenth the strength in tension that it does in compression, as can be seen from the test results. If the load applied to a specimen in compression was directly applied to the moisture in the pore areas, which in turn applied a tensile stress perpendicular to the load, the sample should fail at a very low compressive force. This does not happen. Therefore, not all the load can be transmitted to the interstitial moisture. The amount of pore water pressure will always be questionable.

The capillary tensions produced, the lubricative effects, and the chamical effects of moisture on the bonding which resist and assist in failing a rock material must also be taken into consideration. The chemical composition and physical structure of the material are the factors which most influence their relative effects on strength.

C. Significance of Research

There is no one specific reason for a decrease or increase in strength of the rock materials tested. The effects of moisture on rock strength have been presented to bring out the fact that moisture, which is always present in mine rock, must be considered in future rock mechanics design. It may also become economical to dewater a zone which shows pronounced weakening with the presence of moisture or, on the other hand, saturate an area where caving is desired. The effect of moisture and strength on open pit mining operations and slope stability designs must also be considered. Determining the allowable design strength of rock at the present time is a difficult task, but the effect of moisture should not be neglected.

D. Recommendations

This investigation suggests that the following problems should be studied in greater detail:

- Measurements on the pore water pressures developed to determine their influence on the saturated strength of rock.
- 2) Tri-axial tests to determine if the effects of moisture can be offset by a confining load.
- 3) Determination of the effect of ground water, not atmospheric moisture, on rock strength.

- 4) An economic study of the feasibility of dewatering an area as opposed to using a low wet strength for design of a mining operation.
- 5) A more precise study of the mechanism of failure of a dry material as opposed to a saturated speciman.

BIBLIOGRAPHY

- 1. RAZVI, M.A. (1962). The Effect of Moisture on the Compressive Strength and Modulus of Elasticity of Limestone. Thesis, Colorado School of Mines, 86 p.
- COLBACK, P.S.B. and WIID, B.L. (1964). The Influence of Moisture on the Compressive Strength of Rock. South African Council for Scientific and Industrial Research, Pretoria, 8 p.
- 3. OBERT, L., WINDES, S.L., and DUVALL, W.I. (1946). Standardized Tests for Determining the Physical Properties of Mine Rock. U.S. Bureau of Mines Report of Investigation, No. 3891, p. 12-23.
- 4. HARDY, H.R. (1959). Standardized Procedures for Determination of the Physical Properties of Mine Rock Under Short-Period Uniaxial Compression. Canadian Department of Mines and Technical Surveys, Tech. Bull. 8, p. 80.
- SPANGLER, M.G. (1960). Soil Engineering. Second Edition, International Textbook, Pennsylvania, p. 104-114.
- SOWERS, G.B. and SOWERS, G.F. (1961). Introductory Soil Mechanics and Foundations. Second Edition, Macmillan, New York, P. 46-47 and P. 69-77.
- 7. WRIGHT, P.J.E. (1955). Comments on an Indirect Test on Concrete Cylinders. Magazine on Concrete Research, Vol. 7, No. 20, p. 87-96.
- 8. FROCT, M.M. (1948). Photoelasticity. John Wiley and Sons, New York, Vol. 2, p 121-129.
- TIMOSHENKO, S. (1934). Theory of Elasticity. First Edition, McGraw-Hill Book Co., Inc., New York, p. 104-108.
- SPENCER, H.M. (1926). Laboratory Methods for Maintaining Constant Humidity. International Critical Tables of Numerical Data- Physics, Chemistry, and Technology, Vol. I. McGraw-Hill Book Co., Inc., p. 67.
- 11. -----, (1964). Meramec Iron Ore Project Starts Production at Pea Ridge. Engineering and Mining Journal, Vol. 165, No. 4, p. 94.
- 12. BATEMAN, A.M. (1958). Economic Mineral Deposits. Second Edition, John Wiley and Sons, Inc., p. 571.

- OROWAN, E. (1949). Fracture and Strength of Solids. Reports on Progress in Physics, Vol. 12, p. 185-232.
- 14. SCOTT, R.F. (1963). Principles of Soil Mechanics. Addison-Wesley Publishing Co., Inc., p. 52-54.

The author was born on December 25, 1941, in Santa Barbara, California. He received his primary and secondary education in Oakland, California. With the aid of the Women's Auxiliary to the American Institute of Mining, Metallurgical, and Petroleum Engineers Scholarship-Loan, he entered the University of Missouri School of Mines and Metallurgy in 1959, and received the degree of Bachelor of Science in Mining Engineering in 1964.

In 1964, he enrolled in the graduate school of the University of Missouri, School of Mines and Metallurgy, Rolla.

His practical experience included summer employment with Peabody Coal Company, Ohio, and Phelps Dodge Copper Corporation, Arizona. He was also on a co-operative training program with Pittsburg and Midway Coal Mining Company for the period February, 1963 to September, 1963.

In August, 1965, he accepted a permanent position with Dames and Moore Consulting Engineers in their Los Angeles office.

APPENDIX I

COMPRESSION TEST DATA

TABLE 3 Results of the Compressive Tests of the Pea Ridge AX Magnetite.

Relative Humidity (%)		Strength (Pounds per Square Inch)	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
0	-0.0074	22,260	4.74		leD-75°	
0	-0.0082	31,320	5.00		2eD-70°	
0	-0.0147	36,260	4.87		lcE	Omitted
0	-0.0184	18,250	4.68		2dE	
0	-0.0167	22,570	4.96		leE-65°	
0	-0.0276	8,550	4.52		2eD-65°	Omitted
0	-0.0203	32,850	4.63		1bE-70°	
0	-0.0070	16,380	4.09		1cE-70°	
66	+0.0491	9,160	4.60		4eE-60°	Omitted
66	+0.0031	18,630	4.96		3dE	
66	+0.0039	15,660	4.58		3b, dE	
66	+0.0000	17,030	4.82		leD-60°	
66	+0.0011	34,120	4.53		lcE-70°	
66 .	+0,0056	17,770	4.74		3dE	
66	-0. 0015	38,280	5.03		1fE	Omitted
98	+0.0543	40,460	5.01	2.6323	1dE	Omitted
98	+0.0365	26,820	4.78	4.5375	leE-75°	
98	0.1265	22,440	4.64	7.1331	2aE-70°	
98	+0.0159	35,990	4.98	2.9084	2fE	Omitted
98	1-0.0620	20,980	4.53	2.0456	3cE-70°	ana wa 25 n a 1 78 na 174 na 1 76 176 1
98	+0.2758	9,580	4.86		3eE-65°	Omitted
98	÷0.0545	21,250	4,65		3dE	

TABLE 3 Continued

		e Strength (Pounds per Square Inch)	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
100	+0.1591	19,210	4.53		2bE-60°	
100	+0.4598	16,770	4.65		3cE-70°	
100	+0.6940	16,340	4.72		4cE-70°	
100	+0.1616	23,230	4.80		1cE-70°	
100	+0.1899	21,540	4.85		2eE-65°	
100	+0.1550	27,000	4.78		1cE-70°	Omitted
100	+0.0310	42,040	4.92		1cE-70°	Omitted
100	+0.1886	40,370	4.63		lcE-70°	Omitted
100	+0.4328	10,490	4.29		4dE	Omitted

TABLE 4 Results of the Compressive Tests of the Pea Ridge EX Magnetite.

		Density	Porosity		Remarks
Content	(Pounds per	(Grams per		Classification	
(%)	Square Inch)	Cubic Cent.)	(%)		
					
-0.0311	29,700	4.14		lcE-70°	Omitted
-0.0199	19,130	4.35		3cE-70°	
-0.0446	20,670	4.17		3dE	Omitted
-0.0050	30,390	4.86			
-0.0085	21,040	4.74		2dD	
-0.0098	40,970	4.66		lcE-75°	Omitted
-0.0131	27,710			3cE-60°	
-0.0124					
-0.0071	18,110	4.46		4eE-60°	
-0.0041	7.690	4.77		4bE-70°	Omitted
				3fE	
		3.77		3cE-60°	
		4.50		4dE	Omitted
+0.0030	15,400	4.71		4cE-70°	
+0.0052	39,310	4.80		2bE-70°	Omitted
-0.0009	15,530	4.85		4ce-70°	
+0.0005	11,810	4.56		4dE	Omitted
-0.0016	12,820	4.61		4fE	Omitted
+0.0206	5,050	4.75		4eE-70°	Omitted
+0.0367	12,050	4.20		4dE	Cmitted
	Content (%) -0.0311 -0.0199 -0.0446 -0.0050 -0.0085 -0.0098 -0.0131 -0.0282 -0.0124 -0.0071 -0.0041 +0.0076 +0.0095 -0.0124 +0.0136 +0.0030 +0.0052 -0.0009 +0.0005 -0.0016	Content (%) Square Inch) -0.0311 29,700 -0.0199 19,130 -0.0446 20,670 -0.0050 30,390 -0.0085 21,040 -0.0098 40,970 -0.0131 27,710 -0.0282 27,700 -0.0124 17,250 -0.0124 17,250 -0.0071 18,110 -0.0041 7,690 +0.0076 23,010 +0.0095 19,510 -0.0124 20,550 +0.0136 11,180 +0.0030 15,400 +0.0052 39,310 -0.0009 15,530 +0.0005 11,810 -0.0016 12,820 +0.0206 5,050	Content (Pounds per (Grams per (%) Square Inch) Cubic Cent.) -0.0311 29,700 4.14 -0.0199 19,130 4.35 -0.0446 20,670 4.17 -0.0050 30,390 4.86 -0.0085 21,040 4.74 -0.0098 40,970 4.66 -0.0131 27,710 4.74 -0.0282 27,700 4.34 -0.0124 17,250 3.94 -0.0071 18,110 4.46 -0.0041 7,690 4.77 +0.0076 23,010 4.31 +0.0095 19,510 4.18 -0.0124 20,550 3.77 +0.0136 11,180 4.50 +0.0030 15,400 4.71 +0.0052 39,310 4.80 -0.0009 15,530 4.85 +0.0005 11,810 4.56 -0.0016 12,820 4.61	Content (Pounds per (Grams per (%) Square Inch) Cubic Cent.) (%) -0.0311	Content (Pounds per (Grams per (%) Square Inch) Cubic Cent.) (%) -0.0311 29,700 4.14 1cE-70° -0.0199 19,130 4.35 3cE-70° -0.0446 20,670 4.17 3dE -0.0050 30,390 4.86 -0.0085 21,040 4.74 2dD -0.0098 40,970 4.66 1cE-75° -0.0131 27,710 4.74 3cE-60° -0.0282 27,700 4.34 3cE-70° -0.0124 17,250 3.94 3cE-55° -0.0071 18,110 4.46 4eE-60° -0.0041 7,690 4.77 4bE-70° +0.0076 23,010 4.31 3fE -0.0124 20,550 3.77 3c,dE-60° +0.0095 19,510 4.18 3fE -0.0124 20,550 3.77 3cE-60° +0.0136 11,180 4.50 4dE +0.0030 15,400 4.71 4cE-70° +0.0052 39,310 4.80 2bE-70° +0.0052 39,310 4.80 2bE-70° +0.0005 11,810 4.56 4dE -0.0016 12,820 4.61 4fE

TABLE 4 Continued.

Relative Humidity (%)		(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
98	+0.0974	19,180	4.50		3cE-70°	
98	+0.0531	20,440	4.34		3fE	
98	+0.0472	21,980	4.06		3eE-70°	
98	+0.1258	14,580	3.17		3cE-75°	Omitted
98	+0.0258	15,830	4.65		4cE-70°	Omitted
98	+0.0243	24,820	4.71		4aE-70°	
98	+0.0470	8,050	4.77		4fE	Omitted
98	+0.0129	23,120	4.83		2cE-70°	
100	+0.0842	13,630	4.06		4fE	Omitted
100	+0.1022	13,040	4.32		4fE	Omitted
100	+0.0657	29,600	4.79		2cE-70°	Omitted
100	+0.4843	14,670	4.79		4cE-70°	
100	+0.2830	17,960	3.82		4bE-75°	
100	+0.5091	20,170	4.61		3eE-75°	
100	+0.9736	15,070	4.48		4eE-75°	
1.00	+0.2542	29,650	4.75		2cE-70°	Omitted
100	+0.4346	16,910	4.76		3fE	
100	+0.3204	12,480	4.10		3cE-65°	Omitted

TABLE 5 Results of the Compressive Test of the Pea Ridge Hematite.

		· · · · · · · · · · · · · · · · · · ·				-1-1
Relative			Density	Porosity	Fracture	Remarks
		(Pounds per		4 0	Classification	
(%)	(%)	Square Inch)	Cubic Cent.)	(%)		
_		0.550			4	
0	-0.1178	8,550	3.52		4eE	Omitted
0	-0.0035	53,100	4.78		lcE-70°	Omitted
0	-0.0116	9,840	4.66		4eE-60°	Omitted
0	-0.0367	7,960	4.74		4eE-70°	Omitted
0	-0.0033	22,270	4.56		3d,eE-80°	
0	-0.0056	31,140	4.86		lcE-70°	
0	-0.0019	25,220	4.85		lcE-65°	
0	-0.0029	35,790	4.98		ldE	
66	-0.0005	14,160	4.62		4cE-70°	Omitted
66	+0.0027	8,210	4.72		4cE-70°	Omitted
66	+0.0000	21,820	4.74		3eE-70°	
66	-0.0005	30,050	4.86		2cE-65°	
66	+0.0363	41,820	4.82		2cE-65°	Omitted
66	+0.0084	28,260	4.59		laE-65°	
66	-0.0004	30,140	4.93		2cE-70°	
98	+0.0891	25,140	4.00	4.7842	3eE-70°	
98	+0.1821	15,820	4.80	5.3899	4cE-70°	Omitted
98	+0.1266	61,000	4.86	2.2129	lgC	Omitted
98	+0.1200	21,660	4.96	4.0441	3aE-70°	Oma C CCC
98	+0.0259	20,540	4.79	7.1314	2eE-75°	
98 98	+0.0233	9,840	4.57	/ • TOT4	4a, dE-70°	Cmitted
98 98	+0.0026	25,320	4.62		3eE-70°	
90	10.0020	20,020	- · · · · ·			

TABLE 5 Continued.

	Moisture Content (%)	(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
100	+3.1557	6,710	3.44		4cE-70°	Omitted
100	+0.0080	55,750	4.78		lcE-70°	Omitted
100	+0.0725	21,480	4.61		3eE-65°	
100	+0.0680	26,110	4.81		2cE-70°	
100	+0.3300	18,830	4.81		4eE-70°	
100	+0.6094	19,720	4.75		3dE	
100	+0.1345	36,720	4.78		ldE	Omitted
100	+0.7479	16,590	4.53		4fE	
100	+0.0673	37,090	4.93		leE-70°	Omitted

TABLE 6 Results of the Compressive Test of the Pea Ridge Porphyry.

			 			
Relative	Moisture	e Strength	Density	Porosity	Fracture	Remarks
		(Pounds per			Classification	
(%)	(%)	Square Inch)	Cubic Cent.)	(%)		
0	-0.0174	45,130	2.60		1dC	
0	-0.0229	38,320	3.07		ldE	
0	-0.0107	43,290	2.57		ldE	
0	-0.0205	40,470	2.83		1b,dE-70°	
0	-0.0869	10,480	2.66		3b, dE-70°	Omitted
0	-0.0196	36,370	2.55		1dE	
0	-0.0098	44,740	2.56		ld,aE -70°	
0	-0.0172	33,790	2.56		ld,cE-75°	
0	-0.0075	27,350	2.57		leE-80°	Omitted
0	-0.0223	47,090	2.57		ld, aE-70°	
66	+0.0228	22,850	2.64		2c, dE-75°	Omitted
66	-0.0061	59 , 3 90	2.59		lgC	Omitted
6 6	+0.0933	23,600	2.71		leD-60°	
66	+0.0000	26 , 650	2.56		l dE	
66	+0.0075	15,120	2.69		3eE-70°	Omitted
66	÷0.0073	30,180	2.84		ldE	
66	+0.0063	32,470	2.57		1cE-75°	
66	+0.0069	45,220	2.55		1cC-75°	
66	+0.0074	58,600	2.57		lgC	Omitted
66	+0.0066	31,050	2.56		1aE-65°	
98	+0.1029	54,870	2.57	3.0505	ldC	Omitted
98	+0.1486	45,130	2.58	2.6100	lgC	Omitted

TABLE 6 Continued.

		e Strength (Pounds per Square Inch)	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
98 98	+0.0638 +0.1217	19,430 19,780	2.77 2.80	3.5404	ldE leE-60°	Omitted Omitted
98	+0.1237	17,110	2.68	2.1640	3eE-55°	Omitted
98	+0.0665	55,560	2.57	2.0733	lcE-70°	Omitted
98	+0.0862	37,620	2.72		2dE	
98	+0.0607	43,720	2.58		ldE	
98	+0.0663	43,350	2.56		1fE	
98	+0.0062		2.52		ldE	Omitted
98	+0.1423	46,210	2.55		lgC	Omitted
100	+0.2728	42,570	2.69		1fE	Omitted
100	+0.1999	33,920	2.64		2cE-70°	
100	+0.0671	33,990	2.88		1cE-80°	
100	+0.5760		2.99		2dE	
100	+0.0259		2.57		1gC	
100	+0.0703		2.53		1fE	
100	+0.0339		2.55		lgE	0000000 1 00000 00000
100	+0.0739		2.57		lgC	Omitted
100	+0.1929	22,920	2.54		1fE	

TABLE 7 Result of the Compressive Tests of the Pea Ridge Quartzite.

Relative Humidity (%)		(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
0 0 0 0 0 0	-0.4249 -0.0093 -0.0208 -0.0626 -0.0064 -0.0041 -0.0097 -0.0041 -0.0298	11,820 32,830 18,500 12,970 41,880 22,470 37,570 30,350 33,120	2.95 2.80 2.84 3.15 2.77 2.65 2.58 3.63 3.04		4dE 3dC 3d,bE 3eD 1dC 3dE 1dE 2e,CD 3d,bD	Omitted Omitted Omitted Omitted
66 66 66 66 66 66	+0.0034 +0.0099 +0.2313 +0.2235 +0.0000 +0.0344 +0.0447 +0.0052 +0.0164	24,870 36,280 12,700 14,210 29,060 30,230 7,790 44,590 18,940	2.95 2.70 3.02 3.10 2.86 2.88 2.77 2.50 2.61		2eE-75° ldE 4aE-70° 4bE-65° 2c,dE-75° 2c,dE-70° 4dE lgC 4bE-60°	Omitted Omitted
98 98 98 90 93	+0.0927 +0.0283 +0.0170 +0.1004 +0.0274	24,640 22,950 25,820 20,360 32,110	3.17 2.86 2.79 3.01 2.64		2dE 2dE 2eE-70° 1gC	

TABLE 7 Continued.

		e Strength (Pounds per Square In c h)		Porosity (%)	Fracture Classification	Remarks
98 98 98 98	+0.0257 +0.0257 +0.2312 +0.0847	17,900 22,540 13,810 37,410	2.88 2.86 2.83 2.57		2fE 2eE-75° 3fE 3gC	Omitted
100 100 100 100 100 100 100	+0.0465 +0.0312 +0.0492 +0.2628 +0.1638 +0.4639 +0.1108 +0.0731 +0.0599 +0.4731	22,350 17,580 27,500 28,140 43,950 10,310 12,700 35,240 12,830 13,450	2.95 3.17 3.03 3.91 2.84 3.26 2.86 2.55 2.63 2.85		2eD-60° 1dE 2a,dE-70° 1gC 4fE 3fE 2dE 3dE 4fD	Omitted Omitted

TABLE 8 Results of the Compressive Tests of the Pea Ridge Sandstone.

Relative Humidity (%)		(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
0	-0.0641 -0.1049	6,510 13,470	2.14		3dE 2eE-75°	Omitted Omitted
0	-0.1816 -0.0374	12, 1 00 11,420	2.24 2.25		2cE-75° 3eE-65°	Omitted Omitted
0	-0.0374	25,020	2.40		1cE-65°	Omitted
0	-0.0519	7,490	2.30		2eE-60°	Omitted
0	-0.1038 -0.0675	11,800 10,560	2.30 2.30		3a,eE-65° 3eE-70°	Omitted Omitted
ő	-0.0809	7,140	2.12		3eE-70°	Omitted
0	-0.1386	14,630	2.28		2b, dE-70°	Omitted
0	-0.1216	14,500	2.29		2fE	Omitted
66	÷0.0311	5,300	2.23		4b, eE-65°	Omitted
66 66	+0.0386 +0.0457	9,430 10,960	2.31 2.57		4eE-65° 3dE	Omitted Omitted
66	+0.0852	7,920	2.19		4cE-65°	Omitted
66	+0.0228	5,900	2.21		4eE	Omitted
66 66	+0.0413	5,980 4,430	2.24 2.23		4fE 4eE-60°	Omitted Omitted
66	+0.0848	6,180	2.09		4eE-65°	Omitted
66	+0.1305	8,250	2.38		4dE	Omitted
66 66	+0.1325 +0.0232	13,250 8,250	2.29 2.44		4cE-70° 4aE-70°	Omitted Omitted

TABLE 8 Continued.

Relative Humidity (%)		(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
(/0)	(70)	oquare men)	cubic cent.)	(/0/		
98	+1.4100	7,020	2.33		4cE-70°	Omitted
98	+0.0882	8,470	2.29		3cE-65°	Omitted
98	+0.4949	5,130	2.17	15.7039	4fE	Omitted
98	+0.7493	7,190	2.12		3cE-70°	Omitted
98	+1,4246	9,320	2.21	21,5831	3b, dE-70°	Omitted
98	+1.4803	6,180	2.34	550	4fE	Omitted
98	+0.4393	11,050	2.14		3cE-65°	Omitted
98	+2.4959	10,320	2.22		2eE-70°	Omitted
98	+2.7197	2,900	2.25		4fE	Omitted
9 8	+0,1723	7,350	2.48		3dE	Omitted
100	+5.1663	6,960	2.28		4eE-60°	Omitted
100	+4.0561	15,840	2.3 6		2eE-70°	Omitted
100	+6.8606	2,160	2.16		4eE-65°	Omitted
100	+5.6510	12,400	2.26		4b, eE-60°	Omitted
100	+1.0796	12,250	2.57		2dE	Omitted
100	+6.4620	4,230	2.22		4dE	Omitted
100	+2.9554	6,040	2.47		4eE-70°	Omitted
100	+1.9478	14,210	2.38		2cE-70°	Omitted
100	+4.1510	12,450	2.36		3eE-65°	Omitted
100	+7.6379	3,340	2.16		4fE	Omitted
100	+3.6983	11,360	2.33			Omitted

TABLE 9 Results of the Compressive Tests of the Pea Ridge Dolomite.

	ve Moisture ty Content (%)	(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
. 0	-0.1840 -0.0878 -0.2365	46,110 26,470 36,400	3.55 2.70 2.67		lcE-65° ldE leE-70°	Omitted
0 0 0 0	-0.0432 -0.0158 -0.2791 -0.2224 -0.2100	20,510 33,930 22,750 17,170 17,540	2.67 2.83 2.60 2.64 2.60		1dE 1dE 1eE-65° 2dE 2dE	Omitted
0 0 0	-0.0668 -0.1712 -0.1333	19,230 20,880 10,880	2.66 2.64 2.55		2a, dE-65° 2a, dE-65° 3b, dE-65°	Omitted
66 66 66	+0.1758 +0.5592 +0.1436 +0.3102	25,850 8,980 22,160 10,670	3.36 2.57 2.63 2.62		2dE 4fE 2dE 3dE	Omitted Omitted
66 66 66	+0.0267 +0.1118 +0.0624	15,520 16,300 15,230	2.72 2.68 2.67		3a,dE-70° 3dE	
66 66 66	+0.0684 +0.0683 +0.0245 +0.1664	21,920 13,640 20,700 13,290	2.66 2.62 2.70 2.64		2cE-65° 3dE	
66	+0.1004	15,750	2.81		2d, eE-60°	

TABLE 9 Continued.

Relative Humidity (%)		(Pounds per	Density (Grams per Cubic Cent.)	Porosity (%)	Fracture Classification	Remarks
98	+0.1572	21,940	2.64	2.5729	2dE	Omitted
98	+0.1575	13,940	2.64	3.7396	3dE	
98	+0.0430	46,020	2.80		lfD	Omitted
98	+1.0591	5,530	2.60		4eE-55°	Omitted
98	+0.2645	18,580	2.60	2.7737	2eE-70°	
98	+0.2559	5,530	2.57		4fE	Omitted
98	+0.1626	20,930	2.70	2.4770	2dE	Omitted
98	+0.5286	11,450	2.62		3eE-70°	
98	+0.3650	12,480	2.61		2fE	
98	+0.2056	14,380	2.61		3dE	
98	+0.2044	15,680	2.45		3dE	
98	+0.0851	19,890	2.78	2.1463	2dE	
100	+0.1872	14,810	2.66		3fE	
100	+1.8412	6,870	2.55		4eE	
100	+1.6500	12,600	2.65		3dE	
100	+0.1683	19,100	2.64		3dE	
100	+0.6051	15,020	2.67		3e, dE-70°	
100	+0.4901	8,920	2.69		4eE-70°	
100	+0.1667	14,540	2.95		2dE	
100	+0.8526	12,270	2.63		3dE	
100	+0.3740	28,700	2.77		2c, dE-75°	Omitted
100	÷0.5383	8,240	2.60			
100	+0.2270	14,110	2.65		3dE	

TABLE 10 Results of the Compressive Tests of the White Pine Shale.

-						
	Relative	Moisture	Strength	Specific	Porosity Fracture	Remarks
	Humidity		(Pounds per	Gravity	Classification	,
	(%)	(%)	Square Inch)	_	(%)	
_		. <u></u>				
	0	0	20 700	2 57	2cD-70°	
	0	0 0	29,790 31,610	2.57	1cD-70°	
	0		_	2.68 2.68	2eD-70°	
	0	0	27,290		leD-75°	
	0	0	30,230	2.68		0
	0	0	20,500	2.67	2dE	Omitted
	0	0	29,600	2.57	leD-80°	
	0	0	30,220	2.62	1cD-70°	
	0	0	31,570	2.66	1eD-70°	
	0	0	29,410	2.67	1cD-70°	
	0	0	27,640	2.59	leD-70°	
	66	0.4303	17,970	2.69	2dE	
	66	0.6125	22,480	2.63	leE-65°	
	66	0.6155	12,190	2.68	3fE	
	66	0.6227	21,920	2.66	2dE	
	66	0.4925	20,420	2.56	leE-65°	
	66	0.7657	14,690	2.71	3dE	•
	66	0.4886	18,200	2.61	2eE-70°	
	66	0.6303	17,260	2.64	2dE	
	66	0.5150	8,160	2.68	4eD-60°	Omitted
	66	0.7399	16,390	2.69	2fE	Omit coed
			20,530	2.61	3cE-70°	
	66	0.3089	20,330	Z • U L	2CE-70°	

TABLE 10 Continued.

Relative Humidity (%)		Strength (Pounds per Square Inch)		Porosity (%)	Fracture Classification	Remarks
98 98 98 98 98 98 98 98	1.4745 1.6069 0.6610 1.2146 0.7705 1.8453 1.3679 0.9263 0.6572 0.4853 1.7294	17,530 17,280 14,930 2,390 12,430 13,290 18,640 10,960 17,370 14,050 16,810	2.64 2.62 2.67 2.69 2.67 2.63 2.59 2.61 2.63 2.69 2.62		2cE-70° 2cE-70° 1eE-75° 4eE-25° 2eE-80° 2dE 3eE-60° 4dE 2bE-70° 2eE-80°	Omitted
100 100 100 100 100 100	1.6525 0.7186 0.7309 0.8464 1.7762 1.9675 0.7698	1,970 13,410 10,960 6,340 15,400 17,570 24,100	2.67 2.70 2.67 2.67 2.63 2.63 2.69	3. 7219	4dE-70° 3eE-70° 3eE-70° 3eE-70° 3aE-60° 3cE-70°	Omitted Omitted Omitted
100 100 100 100	1.5644 2.2089 1.2814 0.8741	12,260 15,970 11,640 16,660	2.65 2.59 2.69 2.68		3dE 2eE-70° 3eE-75° 2eE-75°	

TABLE 11 Results of the Compressive Tests of the White Pine Sandstone.

		Strength (Pounds per Square Inch)	Gravity	Porosity	Fracture Classification	Remarks
0	0	18,260	2.49		4eE-60°	
0	0	20,090	2.48		3cE-60°	
O	0	19,930	2.52		3cE-60°	
0	0	21,350	2.54		3cE-60°	
0	0	17,010	2.49		4cE-70°	Omitted
0	0	17 , 960	2.48		3eE-65°	
0	0	23,260	2.57		3cE-65°	Omitted
0	0	17,780	2.47		3cE-70°	
0	0	24,740	2.61		2cE-65°	Omitted
66	0.4912	13,940	2.55		3eE-70°	
66	0.5275	17,180	2.61		3eE-65°	
66	0.4116	11,720	2.51		4eE-65°	Omitted
66	0.3920	14,580	2.51		4cE-70°	
66	0.3602	14,310	2.55		4aE-70°	
66	0.4885	17,090	2.59		3bE-70°	
66	0.5585	17,130	2.60		3cE-70°	
66	0.4175	13,650	2.47		4cE-70°	
66	0.6322	18,410	2.63		2eE-60°	

TABLE 11 Continued.

Relative Humidity (%)		Strength (Pounds per Square Inch)	Gravity	Porosity	Fracture Classification	Remarks
98 98 98 98 98 98	1.4894 1.2688 1.4499 0.7229 1.6920 1.3684	12,690 12,700 11,420 15,380 10,080 12,110	2.59 2.54 2.49 2.62 2.49 2.53		2bE-70° 3cE-70° 4aE-70° 2e,dE-60° 4cE-70° 4cE-70°	
100 100 100 100 100 100	3.1880 3.4576 3.0941 2.6931 1.1976 1.8595 3.4726 3.3677	10,650 9,130 11,440 10,190 20,300 11,420 9,840 11,180	2.50 2.48 2.48 2.50 2.60 2.58 2.50 2.48 2.49	9.9763 10.3754 5.4661 11.0913 13.5676	4eE-70° 4cE-65° 4eE-70° 4eE-60° 1dE 3dE 4eE-65° 4cD-70°	Omitted

APPENDIX II

TENSILE TEST DATA

TABLE 12 Results of the Tensile Tests of the Pea Ridge AX Core Magnetite

Relative Humidity	Moisture Content	Strength (Pounds per	Density Grams Per	Porosity	Remarks
(%)	(%)	Square Inch	Cubic Cent.	(%)	
0	-0.0024	1660	5.02		Omitted
0	-0.0296	790	4.81		Omitted
0	-0.0154	1130	4.79		Omitted
0	-0.0150	1230	5.07		Omitted
0	-0.0410	880	4.56		Omitted
0	-0.0251	1100	4.61		Omitted
0	-0.0217	880	4.98		Omitted
0	-0.0191	1020	4.91		Omitted
0	-0.0246	1720	4.41		Omitted
66	+0.0093	1540	4.66		Omitted
66	+0.0058	730	4.63		Omitted
66	+0.0023	1030	4.79		Omitted
66	+0.0007	1160	4.87		Omitted
66	-0.0027	1530	4.78		Omitted
66	+0.0070	1430	4.59		Omitted
66	+0.0041	1590	4.50		Omitted Omitted
66	-0.0013	1060	4.43		Omitted
98	+0.0397	1630	4.74		Omitted
98	+0.1152	3630	4.70		Omitted
98	+0.0356	1320	4.58		Omitted
98	+0.0363	1510	4.66		Omitted
98	+0.0515	1170	4.83		Omitted
98	+0.0151	1180	4.98		Omitted Omitted
98	+0.0570	1040	4.41		Omitted
98	+0.0321	1110	4.96		Omitted
98	+0.0276	1230	4.69		Omiteced
100	+0.5954	1220	4.85		Omitted
100	+0.1649	1550	4.56		Omitted
100	+0.1012	1900	4.07		Omitted
100	+0.1222	1130	4.94		Omitted
100	+0.1243	1250	4.85		Omitted Omitted
100	+0.2180	1040	4.53		Omitted
100	+0.1540	810	4.80		Omitted
100	+0.1063	1310	4.77		Omitted
100	+0.1000	1310	4.94		OMITCEGA

TABLE 13 Results of the Tensile Tests of the Pea Ridge EX Core Magnetite.

Relative Humidity (%)	Moisture Content (%)		Density (Grams Per a)Cubic Cent	Porosity	Remarks
0	-0.0148	1870	3.29		
0	-0.0074	2120	4.76		
0	-0.0056	2390	5.00		
0	-0.0076	1480	4.62		Omitted
0	-0.0160	1400	4.55		Omitted
0	-0.0200	2180	4.92		
11200	N JUN VERSONE				
66	+0.0118	1730	3.20		
66	+0.0036	2010	4.82		
66	+0.0050	1410	4.47		
66	+0.0154	1560	4.50		
66	+0.0050	2280	4.73		Omitted
66	+0.0026	1290	4.77		Omitted
			4.10		0 111-3
98	+0.1128	1340	4.19		Omitted
98	+0.0195	1900	4.80		
98	+0.0818	1640	3.77		
98	+0.0364	1750	4.45		
98	+0.0148	1710	4.71		
98	+0.0458	1930	4.73		
	0.01986	12020A2			0
100	+0.0863	1370	4.33		Omitted
100	+0.0646	1990	4.86		
100	+0.0968	1870	4.93		
100	+0.5504	1560	3.35		
100	+0.1625	1510	4.65		
100	+0.3747	1440	4.56		

TABLE 14 Results of the Tensile Tests of the Pea Ridge Hematite.

	Moisture	000000		Porosity	Remarks
Humidity (%)	(%)	(Pounds per Square Inch)		:) (%)	
0	-0.1388	2070	4.23		Omitted
0	-0.0630 -0.1036	2770 970	4.49		Omitted
0 0 0	-0.0144 -0.0106	2840 2580	4.46 5.01		
66	+0.0318	1960	3.52		
66 66 66	+0.0227 +0.0335 +0.0051	1900 1440 2340	4.36 4.43 4.83		Omitted
98 98	+0.4087 +0.2284	1140 2000	4.53 3.63		Omitted
98 98	+0.2264 +0.2065 +0.0511	1390 2230	4.46 4.77		Omitted
100 100	+1.7747 +0.1622	1730 2450	3.27 4.25		
100 100	+0.6285 +0.0382	1670 2040	4.42 4.27		

TABLE 15 Results of the Tensile Tests of the Pea Ridge Porphyry.

Relative Humidity (%)			(Grams Per	Porosity	Remarks
0 0 0	-0.0268 -0.0160 -0.0211 -0.0098	1980 1710 1670 2320	2.72 2.62 3.17 2.54		Omitted
Ö	-0.0425	1640	2.58		Omitted
66 66 66 66	+0.0119 +0.0096 +0.0738 +0.0057 +0.0295	1790 2080 1810 2050 2050	2.64 2.80 2.52 2.55 2.55		
98	+0.3616	1630	2.80		Omitted
98 98 98 98	+0.0405 +0.0087 +0.0599 +0.1508	2330 2540 1820 2510	2.57 2.59 2.68 2.48		Omitted
100 100 100 100	+0.0617 +0.2083 +0.0693 +0.1017	2800 1360 2230 2300	2.57 2.94 2.56 2.51		Omitted Omitted

TABLE 16 Results of the Tensile Tests of the Pea Ridge Quartzite.

-						
	Relative Humidity (%)		Strength (Pounds per Square Inch)		Porosity (%)	Remarks
0	0 0 0	-0.0132 -0.4456 -0.3204	1400 1350 1440	2.88 2.86 2.94		Omitted Omitted
	0	-0.0068 -0.0726	2280 1950	2.57 2.72		Omitted
	0 0	-0.0330 -0.2805 -0.1250	1400 2140 1920	3.42 3.14 2.62	2.2351	Omitted
	66 66 66	+0.2040 +0.0237 +0.0185	1790 2050 1840	2.90 2.90 2.75		Omitted
	66 66	+0.0087 +0.2200	2350 1620	2.73 3.16		Omitted
	66	+0.1247	1620	2.98		Omitted Omitted
	66 66	+0.0404	2660 1470	3.02 2.60		Omitted
	66	+0.1207	1270	2.63		Omitted
	98	+0.0379	2120	2.91	4.0663	
	98 98	+0.1675 +0.0265	2040 2140	3.02 2.79	1.8138	
	98	+0.0282	2010	2.70	1.7459 3.2712	Omitted
	98 98	+0.0432 +0.0334	3140 2170	3.14 2.60	3.2/12	
	98	+0.0091	2520	2.68		Omitted
	100 100 100	+0.0443 +0.0654 +0.0492	2410 2530 2200	3.21 2.78 2.59		Omitted
	100 100 100 100	+0.0809 +0.0720 +0.2088 +0.1308	2500 2760 1720 2260	3.03 2.62 2.92 3.12		Omitted Omitted

TABLE 17 Results of the Tensile Tests of the Pea Ridge Sandstone.

Relative Humidity (%)			(Grams Per	Porosity (%)	Remarks
0 0 0 0 0	-0.0882 -0.0198 -0.0375 -0.1417 -0.0398 -0.1036 -0.0771 -0.1846	620 965 850 1030 460 720 640	2.24 2.34 2.26 2.34 2.14 2.18 2.12 2.47		Omitted Omitted Omitted Omitted Omitted Omitted Omitted Omitted Omitted
66 66 66 66 66	+0.0327 +0.0102 +0.0149 +0.0876 +0.0314 +0.0039	1050 520 1020 620 990 410	2.18 2.24 2.28 2.30 2.54 2.22		Omitted Omitted Omitted Omitted Omitted Omitted
98 98 98 98 98 98	+0.8118 +0.7291 +0.1016 +0.4342 +3.0973 +0.1056 +0.1357	300 780 610 550 180 510 600	2.11 2.58 2.33 2.15 2.22 2.27 2.28		Omitted Omitted Omitted Omitted Omitted Omitted Omitted Omitted
100 100 100 100	+3.3019 +5.3088 +5.7282 +3.8741	560 420 480 980	2.35 2.29 2.25 2.34		Omitted Omitted Omitted Omitted

TABLE 18 Results of the Tensile Tests of the Pea Ridge Dolomite.

Relative Humidity (%)	Moisture Content (%)		Density I r(Grams Per n)Cubic Cent)	Porosity	Remarks
0 0 0 0 0	-0.1566 -0.0252 -0.0392 -0.1878 -0.0224 -0.1053	2160 1840 1630 1560 2260 1590	3.57 2.66 2.66 2.62 2.83 2.57		Omitted
66 66 66 66 66	+0.1387 +0.5074 +0.1797 +0.2717 +0.4154 +0.0495 +0.1966	1600 920 1010 1050 1600 990 1270	3.52 2.58 2.64 2.64 2.63 2.65 2.65		Omitted Omitted
98 98 98 98 98	+0.0149 +0.0111 +0.1453 +0.0753 +0.5443 +0.4476	2280 2250 1220 2670 1200 1150	3.01 2.72 2.65 3.12 2.60 2.62	1.5780	Omitted Omitted
100 100 100 100 100 100	+0.0465 +0.5664 +0.1728 +0.1227 +0.1109 +0.4613 +0.0221	1940 940 1180 980 850 870 2500	2.90 2.62 2.65 2.67 2.65 2.71 2.82		Omitted Omitted

TABLE 19 Results of the Tensile Tests of the White Pine Shale.

Relative Humidity (%)	Moisture Content (%)	Strength (Pounds per Square Inch)	Specific Gravity	Porosity (%)	Remarks
0	0 .	1090	2.60		Omitted
0 0 0	0 0 0	2220 980 2100	2.65 2.66 2.60		Omitted
0 0	0	1760 2770 1780	2.69 2.71 2.62		Omitted
66 66 66	0.5116 0.7797 0.6000	1720 900 1460	2.69 2.69 2.67		Omitted
66 66	0.4692 0.7104	1510 2320	2.67 2.64		Omitted
98	0.9502	610	2.69 2.69		Omitted
98 98 98 98 98 98	0.6043 1.3006 1.8911 0.9266 0.8784 1.0020 0.8920	1600 1380 1220 570 1210 1300 1230	2.69 2.70 2.66 2.66 2.59 2.57 2.65		Omitted
100 100 100 100 100	0.7736 0.7600 2.1890 1.1569 1.4004 1.4978	1380 1370 1250 1480 1330 1370	2.71 2.63 2.65 2.71	1.7002 1.8183 5.7989 3.9182 5.2166	Omitted

TABLE 20 Results of the Tensile Tests of the White Pine Sandstone.

Relative Humidity (%)	Moisture Content (%)	Strength (Pounds per Square Inch)	Specific Gravity	Porosity (%)	Remarks
0 0 0 0 0	0 0 0 0 0	1500 1630 1310 1350 1420 2500 2200	2.49 2.56 2.58 2.48 2.50 2.66 2.63		Omitted Omitted
66 66 66 66 66 66	0.4408 0.4587 0.5353 0.3264 0.5140 0.5173 0.5675 0.3251	1400 940 980 970 2210 1200 1280 1010	2.56 2.49 2.60 2.49 2.58 2.60 2.55 2.61		Omitted Omitted Omitted Omitted Omitted Omitted
98 98 98 98	1.0575 1.0034 1.1637 0.9589	1090 940 1040 1130	2.51 2.46 2.48 2.54		Omitted
100 100 100 100 100 100 100	2.2487 2.6917 2.3588 3.4705 2.9646 3.1940 1.3675 1.3249	820 880 870 830 890 700 1030 690	2.51 2.45 2.50	10.4039 10.3322 10.2132 9.7969 13.1161 6.0695	Omitted Omitted Omitted