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ABSTRACT 

The El Kasr structure was studied in order to investigate the origins and evolution 

of the enigmatic Desert Eyes structures of the Western Desert due to its accessibility and 

uniqueness among the structures. The El Kasr structure, an elongate structural basin with 

low limb dips, is unique among the “Desert Eyes” structures in that it: 1) occurs in 

isolation in otherwise horizontal sedimentary rock, 2) the long dimension of the basin is 

oriented NNW, 3) it is closely spatially associated with the less common NNW fault 

zones, and 4) is composite in nature. The structure was investigated using remote sensing 

and field mapping techniques. The structure is defined by basins of prominent carbonates 

and associated siliclastics. Both basins defining the structure have broad interlimb angles. 

The structure is truncated along the southwest by a prominent normal fault zone. 

Evidence for an eastern fault system includes truncation of layers of Dakhla Formation 

that strike at a high angle to the structure and terminate along possible drag folds and 

layers of Dakhla Formation that are locally steeply dipping, offset by numerous small 

faults, and rotated from the strike of the basin. The El Kasr structure occurs in the 

hanging wall(s) between two fault systems, which appear to merge south of the structure, 

as an elongated basin sub-parallel to the trace of these faults. Balanced cross-sections of 

the structure suggest that the El Kasr structure formed within a transtensional zone 

between overlapping left-lateral strike-slip zones. The sedimentary cover within this zone 

deformed by drape folding along the margins of the transtensional zone as well as plastic 

deformation over a graben that developed in the Precambrian basement. The investigation 

of the El Kasr structure suggests that other Desert Eye structures may have formed 

through interactions between fault segments and deformation related to rheology. 
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1. INTRODUCTION 

Understanding the relationship between folding and faulting is a fundamental 

question to structural geology. This relationship may be manifested in a variety of forms 

and mechanisms related to the tectonic setting (Suppe, 1983; Sharp et al., 2000) and the 

mechanical strength properties of the material (Erickson, 1995). Folds have been well 

documented in compressional environments and their mechanisms and geometries well 

constrained by field investigations (Rich, 1934; Bucher et al., 2003; Robert-Charrue and 

Burkhard, 2008;) as well as various modeling experiments (Storti et al., 1997).  

Recently, many field investigations have focused on the development and 

classification of folds associated with normal faults found in extensional settings (Khalil 

and McClay, 2001; Janecke et al., 1998). These folds have been shown to display a wide 

variety of mechanisms and characteristics related to fault-plane geometry, fault segment 

length, and along-strike variations in displacement (Schlishe, 1995).  

A variety of folds have been documented along strike-slip zones as well, such as 

en echelon folds with complex geometries (Sylvester, 1988) and Accordion-style folding 

(Sylvester and Smith 1976). These folds associated with strike-slip faulting have been 

investigated as potential hydrocarbon reservoirs (Harding, 1974; Dibblee, 1977).  

Spectacular folds associated with faults occur within both the Stable and Unstable 

Shelf regions of the Western Desert of Egypt (Issawi, 1968) and are clearly visible in 

remote sensing imagery (Thurmond et al., 2004; Tewksbury et al., 2009). First mentioned 

by Issawi (1968) the presence of the largest of these folds was noted throughout the 

southern portions of the Western Desert but the origins of these structures remained a 

mystery. Tewksbury et al. (2009) investigated these structures using remote sensing 
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methods as well as field work, cataloguing 479 individual structures and coining the term 

“Desert Eyes” for these folds. They demonstrated that these structures are both structural 

basins and structural domes that deform the sedimentary cover. Many of the “Desert 

Eyes” define linear arrays along east-west trends with a close spatial association to or 

located along and cross-cut by visible east-west fault traces (Figure 1.1).  However, other 

well developed Desert Eyes without a close spatial association to a clear surface trace of 

a fault are visible as well (Figure 1.2). Tewksbury et al. (2009) speculate that these 

structures may be related to the propagation of faults in the subsurface, but note that other 

factors such as shale mobilization and rock rheology may play a significant role in their 

formation. 

 

 

 

 

 

 

 

 

 

Figure 1.1 “Desert Eye” structures associated with the visible trace of a fault. The Seiyal 

cuts a structural dome on the left and a structural basin on the right. 
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Figure 1.2 “Desert Eye” structure not associated with a visible fault trace. 

 

 

The Desert Eyes structures crop out throughout the Shelf regions of Egypt: 

however, the character of these structures changes dramatically from north to south. In 

the north the Desert Eyes are defined by pseudo-circular structures of very low relief 

within Kohman chalk and are more closely associated with the development of a 

polygonal fault network (Tewksbury et al., 2009). Tewksbury et al. (2009) suggest that 

the structures to the north represent onshore analogues of structures previously reported 

from the North Sea.  The structures to the south are remarkably different in character and 

expression. Currently little research has been done on these structures, further 

complicated by the lack of any known analogs corresponding to structures of this scale 

and spatial distribution.  

The El Kasr structure, the subject of this paper, belongs to the group of Desert 

Eyes located in the Stable Shelf near the Arabian-Nubian Massif southwest of Aswan.   

The Desert Eyes structures in this region are both structural domes and basins that display 
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a wide variety of geometries as well as various degrees of asymmetry and elongation.  

They also commonly exhibit a close spatial association with faults, faults that have 

demonstrable multiple and variable displacement histories, but examples of Desert Eye 

structures isolated from any visible trace of a fault also occur (Tewksbury et al., 2009).  

The close spatial relationship observed between many of the Desert Eyes 

southwest of Aswan, including the El Kasr structure, and the regional fault systems 

suggest a genetic relationship. Woodward-Clyde (1985) and Thurmond et al., (2004) both 

noted the presence of these structures and speculated that the folds are related to local 

transpression produced by strike-slip motion along these faults. Tewksbury et al. (2009) 

noted that displacement of Desert Eye structures necessitates a component of dip-slip 

motion in their past, even though modern focal mechanisms indicate strike-slip as 

demonstrated by Mohamed et al. (2001). Dip-slip motion along these faults could allow 

for the formation of both longitudinal and transverse folds related to extension (Schlishe, 

1995). 

This study investigates the El Kasr structure in an effort to constrain the potential 

relationship between episodes of faulting in this region and the folding responsible for the 

formation of this Desert Eye. Like many of the Desert Eyes, the El Kasr is a structural 

basin closely associated with and partially truncated by faults. The El Kasr structure 

differs from other Desert Eyes in that it occurs in relative isolation, is associated with the 

less common N-S trending faults, and is larger, ~5 Km in length, than many of the Desert 

Eyes in this region. The El Kasr is easily identifiable in remote sensing data and readily 

accessible in the field, allowing for detailed field mapping and study. The structure is 

similarly visible in ASTER data and is clearly visible in images processed using 
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Optimum Index Factor, Principal Components Analysis, and Band Math techniques. The 

combination of field and remote sensing investigation, stereographic analysis, and 

construction of balanced cross-sections suggests that the formation of the El Kasr 

structure has formed in association with normal faults that have developed in a local area 

of extension related to overlapping left-lateral strike-slip faults, resulting in transtension. 
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2. REGIONAL GEOLOGIC SETTING 

Egypt and northeast Africa may be subdivided into three major geologic 

provinces: 1) the Unstable Shelf, 2) the Stable Shelf, and 3) the Arabian-Nubian Massif 

(Henson, 1951; Guiraud and Bosworth, 1999; Guiraud et al., 2001; Youssef 2003; Figure 

2.1). These divisions take into account both the tectonic history and the stratigraphy of 

northeast Africa (Youssef 2003). The Shelf regions have seen repeated transgressions and 

regressions, resulting in a broad carbonate and mixed facies deposition in the north and 

clastics in the south of Cretaceous to Eocene age (Guiraud et al., 2001). Youssef (2003) 

states that the Shelf regions are portions of a trough the follow the edges of the Nubian-

Arabian Massif, which is visible to the south.  

Guiraud et al., (2001) described the Unstable Shelf in the north as extending from 

Cyrenaica in the west to the Palmyrides in the east. The Unstable Shelf represents the 

area in which the Cretaceous to Eocene sedimentary cover has undergone severe tectonic 

deformation. This deformation was manifested in rifting through the Permian and 

Triassic, resulting in the separation of discrete blocks from the north coast of Africa, 

intense compression during the Santonian, resulting in basin inversion and folding, and 

finally a return to extension punctuated by brief extensional periods (Bosworth et al., 

2008). Similarly the Stable Shelf represents the Cretaceous to Eocene sedimentary cover 

that has undergone relatively little deformation, although Precambrian structural trends 

have been repeatedly reactivated and propagate up through the cover rocks in this region 

(Said and El Kelany, 1990). 

The El Kasr structure (Figure 2.1) is located approximately 45 km southwest of 

Aswan in the Stable Shelf region of Egypt near the Arabian-Nubian Massif and deforms 
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Cretaceous to Eocene sediments. In Google Earth imagery the El Kasr structure appears 

as a bold white and blue elongate basin, bound to the west and south by tan ridges (Figure 

2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Southeastern portion of the Western Desert. Prominent faults are 

clearly visible and the location of observed structural domes and basins has been 

identified. The general boundary between the Stable Shelf and Nubian-Arabian 

Massif regions are indicated by the heavy dashed line, with the Stable Shelf to the 

north and the massif to the south.   
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Figure 2.2 Google Earth image of the El Kasr structure. The Garra Formation crops out 

as a bold blue/white and the Kurkur as a dull tan. The Dahkla and alluvium may be seen 

in the adjacent plain in shades of brown. 
 

 

The Precambrian basement exposed in the Nubian-Arabian Massif and the Red 

Sea hills of the Eastern Desert are composed of metamorphosed shelf sediments, 

gneisses, undifferentiated granites and weakly tectonized calc-alkaline granites (Conoco, 

1981). These rocks are primarily exposed in southern Egypt and Northern Sudan as well 

as the Eastern Desert but are generally poorly exposed throughout the Western Desert. 

Major Precambrian fault trends exist in the region and have been studied 

extensively relating to the geologic history of the region as well as the potential for 

seismicity related to the Aswan High Dam and Lake Nasser (Issawi, 1968, Woodward-

Clyde Consultants, 1985, Mohamed et al., 2001,). These trends have been reported in 
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studies done by Thurmond et al., (2004), Guiraud et al., (2005) and Roden et al. (2011) 

though their origin and history have not been investigated thoroughly. The most 

prominent of these trends are the Guinean-Nubian Lineaments, a series of 

transcontinental faults that trend approximately E-W. These features have repeatedly 

been reactivated as both strike-slip, dextral along E-W faults and sinistral along N-S 

faults, (Woodward-Clyde Consultants, 1985; Abdeen et al., 2000) and dip-slip (Issawi, 

1978) and propagated up through the sedimentary cover. Similar, though more localized, 

north-south faults exist near Aswan. Issawi (1968) described these north-south faults as 

trending approximately due north with variations up to 10° to either east or west. These 

faults have also been reactivated as both strike-slip (Youssef, 2003) and dip-slip (Issawi, 

1978). 

The tectonic history of North Africa and Arabia is defined by a series of 

compressional and extensional episodes that were manifested in deformation within the 

Unstable Shelf and reactivation and propagation of preexisting faults in the Stable Shelf 

(Guiraud and Bosworth 1999; Guiraud et al., 2001). Prior to the Santonian the sinistral 

motion of Eurasia relative to Africa induced a transtensional to extensional stress fields 

across North Africa, leading to rifting in the Sirte, Abu Gharadiq, and Shushan-Matruh 

Basins during this time (Guiraud and Bosworth, 1999; Guiraud et al., 2001; Bosworth et 

al., 2008).  

During the Santonian, the motion between Africa and Eurasia was rearranged, 

resulting in the brief but severe Santonian Compressional Event (Bosworth et al., 2008). 

This compressional event resulted in basin inversion as well as localized folding and 

faulting within the Unstable Shelf (Bosworth et al., 2008). This change in stress fields 
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reactivated pre-existing basement faults (Bosworth et al., 1999) and the Guinean-Nubian 

Lineaments within the Stable Shelf registered dextral motion during this event (Guiraud 

et al., 2001). Youssef (2003) attributes much of the present day geomorphology of the 

region to the Santonian compressional event. 

There is some evidence to suggest that these events induced local folding within 

the northern portions of what has traditionally been referred to as the Stable Shelf 

(Bosworth et al., 1999). These findings serve to demonstrate that the so-called Stable 

Shelf of Egypt may have undergone more severe deformation than previous studies 

suggest.  

Rifting continued once again in the Late Cretaceous and into the Paleocene and 

Eocene, interrupted briefly by compression within the Unstable Shelf (Guiraud and 

Bosworth 1999). Compression occurred again in the late Eocene reactivating the east-

west trending faults near Aswan (Guiraud and Bosworth 1999).   

 

2.1 REGIONAL GEOLOGY OF THE SOUTHERN WESTERN DESERT 

2.1.1 Geomorphology and Structures. The region around Aswan is 

dominated by a few broad geomorphologic features; the Sinn El-Kaddab Plateau, the 

Nubian Plain, the Red Sea Hills, and the Nubian Swell. The Sinn El-Kaddab Plateau is on 

the order of 100 Km wide in an east-west direction and stretches for about 300 Km from 

north to south with relief on the order of 200 m. The plateau is capped by the Eocene 

Dungul Formation while Garra, Kurkur, and Dahkla formations are exposed along the 

scarp (Conoco, 1981). The Sinn El-Kaddab Plateau is cross-cut by faults belonging to 

both the N-S and E-W trending fault trends. Woodward-Clyde Consultants (1985) 
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suggest that the erosion of the scarp of the plateau may be structurally controlled by the 

many faults in the region. The Nubian Plain lies adjacent to the plateau and is 

approximately 30 to 50 Km wide with little to no relief. The plain slopes gently to the 

east, exposing roughly parallel bands of Dahkla and Nubian formations, reflecting their 

sub-horizontal nature. The Red Sea Hills to the east of the Nile are underlain by the 

Precambrian Basement which is composed of metamorphosed sediments, calc-alkaline 

granites, amphibolites, and gneisses, and are cross-cut by multiple faults, joints, and dikes 

(Issawi 1968; Woodward-Clyde Consultants, 1985; Conoco, 1981). To the south the 

Nubian Swell dominates southern Egypt and Northern Sudan. The Nubian Swell is 

defined a “complex, east-west trending structural high in southern Egypt and northern 

Sudan” and is composed of Neoproterozoic crystalline basement and Paleozoic sediments 

(Thurmond et al., 2004). 

2.1.2 Stratigraphy  As seen in Figure 2.3, the sedimentary cover of southern Egypt is 

approximately 1 km thick with large variation in the thickness of the individual units 

(Issawi 1978; Woodward-Clyde Consultants, 1985;).The Cretaceous Nubian Formation is 

the most extensive of these units and uncomformably overlies the Precambrian Basement, 

varying in thickness on the order of 400-600 m, reaching a maximum measured thickness 

of 592 m in the Kurkur oasis (Issawi, 1968; Woodward-Clyde Consultants ,1985). The 

varying thickness of the Nubian along with low dip angles suggests that the Precambrian 

Basement has an irregular surface (Issawi 1968). The Nubian is comprised of well sorted, 

poorly cemented 2 mm quartz sandstone with tabular cross-bedding and asymmetric 

ripple marks (Issawi, 1968; Woodward-Clyde Consultants ,1985). 
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Figure 2.3 Stratigraphic Column of the study area. Thickness ranges are given as well as 

the unit thicknesses used in the cross-sections given in parentheses (Issawi, 1968; 

Woodward-Clyde Consultants, 1985). 

 

 

The marine Maastrichtian Dakhla Formation conformably overlies the Nubian 

and is composed of interbedded shales, sandstones, and conglomerates near the base with 

carbonate beds near the top. The Dakhla ranges in thickness between 39 m and 155 m, 
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thinning to the west (Woodward-Clyde 1985). In the field the Dakhla was observed as a 

brown medium grained sandstone with a calcite cement. Oyster beds and rip up clasts 

within the Dakhla were observed during this study.   

The Paleocene Kurkur Formation is a thin fossil rich limestone, ranging between 

11 m and 57 m, that conformably overlies the Dakhla. In the field the Kurkur Formation 

cropped out as resistant ridges of a buff, dull gray massive limestone with severe 

spheroidal weathering. The late Paleocene to early Eocene Garra Limestone 

uncomfortably overlies the Kurkur and ranges from 60 m to 110 m. The Garra is 

composed of thick limestone beds with chalk and shale intercalations (Woodward-Clyde 

Consultants, 1985). In the field area the Garra crops out as alternating massive and thinly 

bedded limestone with some stromatolites. The Early to Middle Eocene Dungul 

Formation caps the Sinn El-Kaddab Plateau but was not observed cropping out near the 

El Kasr. The Dungul is reported to consist of alternating shale and limestone beds and 

range from 60 m to 127 m (Issawi, 1968; Woodward-Clyde Consultants, 1985).  

 

2.2 MAJOR STRUCTURAL TRENDS 

Figure 2.1 displays the location of major structural trends in the Aswan area. The 

Guinean-Nubian Lineaments are the dominant features in the region and manifest as an 

east-west transcontinental trend as the Seiyal and Kalabsha faults. Issawi (1978) 

described these faults as “the most important…fault system in south west Egypt.”  El Etr 

et al. (1982) indicates that these faults have undergone dextral motion and suggest that 

the east-west fault segments that comprise the Guinean-Nubian Lineaments are the 

modern manifestations of the basement faults that have not yet coalesced into continuous 

features.  
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Major N-S trending Precambrian faults that have been reactivated with dip-slip 

(Issawi, 1978) as well as sinistral strike slip motion (Abdeen et al., 2000) are also found 

in the region. These north-south trending faults are much more localized than the 

Guinean-Nubian Lineaments but have also been repeatedly reactivated with varying 

motions (Issawi, 1978). According to Woodward-Clyde Consultants (1985) some of these 

faults may be on the order of ~100 km in length, and Issawi (1978) indicated that none 

are found west of Darb El Arbain,  approximately 32° W. According to Issawi (1968) 

these north-south faults have steep dips and indicate normal motion on the order of 20 m. 

A consistent but subdued down to the east escarpment may be observed along the length 

of these faults. Woodward-Clyde Consultants (1985) note numerous slip-indicators 

indicate that sinistral motion has occurred along these faults  

 The two orthogonal fault zones (N-S and E-W) located in the Aswan area have 

been repeatedly reactivated by far field stresses to accommodate the compression or 

extension of northeast Africa (Guiraud and Bosworth 1999; Guiraud et al., 2001). These 

events include long periods of extension punctuated by brief periods of compression 

(Guiraud and Bosworth 1999; Guiraud et al., 2001; Youssef 2003).  The E-W trending 

Guinean-Nubian Lineaments as well as the N-S trending faults have been shown to have 

been reactivated during at least two compressional events, specifically the Santonian 

compressional event, and a late Eocene event (Guiraud and Bosworth 1999; Guiraud et 

al., 2001). 

 The “Desert Eye” structures of the region are a collection of 479 spectacularly 

exposed bedrock structures visible across both the stable and unstable shelf regions of the 

Western Desert (Tewksbury et al., 2009). The Eyes exposed to the south across the stable 
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shelf represent both structural domes and basins on the order of kilometers in scale. 

These structures tend to display linear trends that may or may not be associated with the 

visible trace of a fault.  

 

2.3 STATE OF STRESS 

 2.3.1 Modern State of Stress. Reflecting the tectonic divisions of Egypt, similar 

divisions may be drawn concerning the modern state of stress in the region. Two distinct 

stress provinces are present in the country, divided along 27°N. This division closely 

corresponds to the division between the Stable and Unstable shelf regions as defined by 

Youseff (2003). The north is predominantly transtensional in which the stress field is 

defined by an even mixture of NW-SE and E-W SHmax alignments, while the south is 

mainly strike-slip and defined by a uniform E-W SHmax alignment (Badawy, 2001).  The 

intra-plate stress patterns are attributed to plate boundary forces (Zoback, 1992). This 

modern E-W alignment of SHmax as presented by Badawy (2001) is in good agreement 

with the evidence presented by Bosworth and Strecker (1997) including bore-hole 

breakouts.  

The state of stress in North Africa is locally complicated by the interactions 

between the Sinai micro plate and the Levant Transform fault. Overprinted structures 

attributed to both the Dead Sea stress field and the Syrian Arc stress field suggests that 

both stress fields are present in the region. The Dead Sea stress field is dominated by left-

lateral motion along the Levant Transform associated with opening of the Red Sea 

whereas the Syrian Arc stress field is defined ENE-WSW compression. The dominance 

of one stress field over the other may be controlled by large earthquakes along the Levant 
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Transform. The Dead Sea stress field has been found to dominate in pre-seismic periods 

with the Syrian Arc stress field dominating in interseismic periods.   

2.3.2 Paleo State of Stress. Bosworth and Strecker (1997) present findings that 

indicate that the modern stress field throughout eastern Africa, particularly the Afro-

Arabian rift system, has resulted from counterclockwise rotation since the Late 

Pleistocene but before 125,000 years ago. This rotation resulted in SHmin oriented 

approximately N-S. Prior to this rotation, SHmin was oriented NE-SW.  This state of stress 

may have been favorable for reactivation of the N-S trending faults in the region (Figure 

2.4).  Bosworth and Strecker (1997) speculate that this change in orientation of SHmin may 

be due to either rift related processes or reflect far field stresses affecting the entire 

continent, citing similar events throughout eastern Africa.  

The paleo state of stress in north east Africa as presented by Bosworth and 

Strecker (1997) may have been favorably oriented to reactivate preexisting faults in the 

region, particularly the N-S trending faults. This motion would have induced left-lateral 

motion along the N-S trending faults and right-lateral motion along E-W trending faults 

(Figure 2.4). 

2.3.3 Seismicity. Investigations into seismicity as well as active and potentially 

active faults in Egypt and the surrounding regions became a priority following the 

construction of the Aswan High Dam and subsequent formation of Lake Nassar. 

This need to understand the hazards associated with local and regional faults has been 

punctuated by a series of earthquakes in the region including a 5.6M event in 1981 

associated with the Kalabsha Fault (Kebeasy et al., 1986; Mohamed et al., 2001; 

Abdelsalam et al., 2005; Abdel-Monem et al., 2012; Hosny et al., 2013;).  Focal 
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mechanisms indicate that the majority of these events are characterized by strike-slip 

motion or normal motion, with little reverse (Badawy, 2001, Figure 2.5).  

 

 

 
 

Figure 2.4 Schematic of Early Pleistocene stress-field (Bosworth and Strecker, 1997). 

The stress-field (solid black) is overlain over the major faults of the region. This stress-

field would have been favorable to reactivation of faults oriented parallel to the solid 

black lines. The red star represents the location of the El Kasr structure. Modified from 

Deif et al., 2011. 

 

 

Simpson et al. (1988) defined the seismicity in the Aswan region as being 

reservoir induced. Unsurprisingly, detailed studies of seismicity in the region have 

reported that approximately 95 percent of the seismicity in the Aswan region is located 

within a rectangle (Figure 2.6 and Figure 2.7) bounded by 23.4 N, 23.8 N, 32.4 N, 33.0 N 
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(Abdel-Monem et al., 2012). This zone includes the much of the northern portion of the 

lake as well as the intersection of the N-S and E-W trends (Figure 2.6). 

 

 

 

Figure 2.5 Map of the Aswan area with major faults and earthquake epicenters from 

1981-2010. The location of the El Kasr marked by the red box. Modified from Deif et al., 

2011. Focal mechanisms from El-Khashab et al., 1991 and Hosny et al., 2013. 

 

 

  



 

 

19 

 

 

 

 

Figure 2.6 Location of 95% of Aswan seismicity. 95% of the seismicity in the Aswan 

region is within the red box. 
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Figure 2.7 Intersection of N-S and E-W fault trends in the Aswan area. The large red box 

indicates the location of approximately 95% of the seismicity in the Aswan region 

(Abdel-Monem et al., 2012).  

 

 

 Woodward-Clyde Consultants (1985) and Simpson et al. (1986) found the 

Kalabsha, Seiyal, Abu-Dirwa, Gazal, Kurkur, and Gebel El-Barqa faults to be “potential 

seismic sources” and “significant to the High Dam”.  Among these faults, the Kalabsha 

fault is deemed the most seismically active in the region (Mekkawi et al., 2005;Adbel-

Monem et al., 2012) The intersection of the N-S and E-W trending faults is characterized 
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by seismicity along the Kalabsha (Mekkawi et al., 2005; Abdel-Monem et al., 2012). It is 

important to note that the trace of the Kalabsha fault is present along the bottom of lake 

Nasser (Mekkawi et al., 2005) and shallow seismic events have been shown to be induced 

by water levels within the lake (Abdel-Monem et al., 2012). 

 Locally Aswan is considered seismically active with the activity related to local 

(Lake Nasser), regional (Red Sea rifting), and global (African-Eurasian collision) 

stresses. Though the Gebel El-Barqa fault is considered active (Woodward-Clyde 

Consultants, 1985; Simpson et al., 1906) the activity along the fault has been M1-M3 and 

occurred south of 24.00° N. These observations along with the unfavorable state of stress 

for reactivation of the Gebel El-Barqa suggest that most of the activity along the fault is 

reservoir induced (Figure 2.8) 

Seismicity in Egypt is not limited to the Aswan area. The Aswan region actually 

ranks quite low in integrated seismic risk map of Egypt (El-Araby and Sultan, 2000). 

Greater seismic risks are found in the northeastern portion of the country near Cairo and 

the Gulf of Suez. The seismicity in this region is attributed to the rifting within the Red 

Sea as well as sinistral motion along the Levant-Aqaba trend.  
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Figure 2.8 Schematic of modern stress-field (Bosworth and Strecker, 1997). This stress-

field would be favorable to reactivation of faults oriented parallel to the solid black lines. 

The red star represents the location of the El Kasr structure. Modified from Deif et al., 

2011. 

  

 



 

 

23 

3. METHODS 

 Analyses of remote sensing images and geologic field investigations has allowed 

for a three dimensional investigation of the El Kasr structure. Geologic maps were 

created using imagery from Google Earth, field work, and the results of previous 

mapping in this area (Issawi, 1968; Conoco, 1981; pers. comm., Tewksbury and Hogan 

2012). The field mapping investigation, conducted by the author over three days, targeted 

high priority areas based upon the Google Earth imagery analysis for collection of 

structural data and conformation of lithological and structural contacts in the field. 

Analysis of ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) data was then integrated into completion of the geologic and structural maps 

for the El Kasr structure.  

 

3.1 GOOGLE EARTH  

Google Earth’s highest resolution of 1m/pixel allowed for detailed mapping of the 

study area following the procedures discussed in Tewksbury et al. (2012). Lithological 

differences were inferred from differences in color and texture. Dip direction of units was 

determined using rule of v’s and sun-shadow relationships (Appendix A). This data 

revealed that the El Kasr is a composite structural basin deforming multiple stratigraphic 

units. Faults were mapped by identifying offsets and truncations of stratigraphic units and 

their contacts. The most striking truncation visible in Google Earth imagery is that of the 

Garra Formation along the western edge of the structure (see Figure 2.2 where the Garra 

Formation. is distinctly blue-white in Google Earth imagery).  Upon completion of 

“Remote Mapping” of the structure, several distinct units were identified including: 



 

 

24 

Quaternary Alluvium, Garra Formation, Kurkur Formation, and the Dakhla Formation. 

Interbedded members were visible within many of these units. Multiple faults were 

identified as well, including a bounding fault to the west, and multiple offsets to the 

southeast. These results were compared with previous geologic studies in the region.  

Using dip data and contacts mapped in the field, as well as in remote sensing data, 

the thickness of units was calculated using simple trigonometric relationships ( Davis et 

al., 2012 ). These thicknesses were compared to previously recorded thicknesses 

including drill cores and measured sections. Figure 2.3 shows the stratigraphic column of 

the study area. Previously recorded thickness ranges are included as well as the thickness 

of each unit as used in the construction of the various cross-sections. 

 

3.2 FIELD INVESTIGATION 

 A brief but intense three day field investigation of the structure and immediate 

surroundings was conducted in the winter of 2011-2012. Based upon previous studies of 

the structure by other authors and members of this team, Drs. Hogan and Tewksbury 

(Issaiw, 1968; Woodward-Clyde Consultants, 1985; pers. comm., Tewksbury and Hogan 

2012) and analysis of Google Earth imagery, work initially focused on constraining the 

relationship of the flat-lying units to the east of the structure and the nature of the subtle 

ridges along the eastern side of the structure. While in the field other features were 

identified and studied including drag folds, and a ridge of the Dahkla Formation. in the 

northeast that was discordant to the main trend of the structure. 
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3.3 ASTER 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

data of the study area were obtained from the USGS database. ASTER data is 15 m 

resolution in the VNIR bands and 3 0m resolution in the SWIR bands. Each tile 

downloaded from USGS is 60 km x 60 km, and was cropped to isolate the structure. Each 

tile was layer stacked and in order to avoid redundancies in the data the Optimum Index 

Factor (OIF) was determined. The OIF is a statistical value for an image that is calculated 

using the standard deviation and variance of each band in order to determine the band 

combination that reduces redundancies in the image. The optimum band combination was 

found to be 4-2-1, resulting in the image seen in Figure 3.1. 

Outcrop scale study of the structure was performed using both Principal 

Components Analysis (PCA) on the ASTER data (Figure 3.2) and OIF images. Various 

band math techniques were attempted in mapping the units as well. Figure 3.3 was 

created using band math equations sensitive to limestone, dolomite, and ferric iron. In 

Figure 3.3 (band 7 + band 9) / band 8 corresponds to limestone which appears as red. In 

the same figure (band 6 + band8) / band7 corresponds to dolomite which appears as blue, 

while band2 / band1 corresponds to units rich in ferric iron which appears as green 

(Rowan and Mars, 2003).  

Additional remote sensing analysis focused on the Gebel El-Barqa fault trace. 

Various structures found along the trace of the Gebel El-Barqa fault can be seen in the 

ASTER image in Figure 3.4. These structures have not been studied in depth but appear 

to be smaller than the El Kasr and have different characteristics.    
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Figure 3.1 ASTER OIF image of the El Kasr structure. The resistant Garra is easily 

identified by the bold white color. Kurkur is visible as light blue resistant ridges to the 

east and south. 
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Figure 3.2 Principal Components Analysis image of the El Kasr. The structure is easily 

identified by the bold green and yellow Garra Formation. 
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Figure 3.3 Band math image of the El Kasr. Red corresponds to limestone, green to ferric 

iron, and blue to dolomite. The alluvium appears as a diffuse red and purple reflecting the 

carbonate nature of the plateau. 
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Figure 3.4 ASTER tile north of the El Kasr. The trace of the fault is marked by the 

occurrence of a number of structures along its length. Details concerning these structures 

are found in Appendix D. 
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4. RESULTS 

4.1 REMOTE SENSING  

The El Kasr structure was investigated with ASTER data (processed using 

Optimum Index Factor, Principal Component Analysis, and Band Math), Google Earth 

imagery, and supplemented by previous studies (Issawi 1968; Woodward-Clyde 

Consultants, 1985; pers. comm., Tewksbury and Hogan 2012) and maps (Conoco, 1981) 

of the region. Color differences observed in these images are a good indication of 

differences in lithology (Rowan and Mars, 2002; Gomez et al., 2004) as there is little to 

no vegetation present. Remote sensing characteristics of the geologic formations as well 

as field observations are presented in Table 4.1.  

Using these characteristics geologic interpretations were constructed for each 

remote sensing image (Figures 4.1, 4.2, 4.3, and 4.4). Conformable stratigraphic contacts 

between formations were identified by subtle to abrupt changes in color and/or texture 

between semi-parallel bands of color evident within the ASTER and Google Earth 

images (Figures 4.1 and 2.2).  Subtle to gradual color changes along an irregular to 

diffuse boundary and/or pinching out of stratigraphic units are interpreted as 

unconformable stratigraphic contacts, for example between different ages of alluvium 

(e.g., the alluvium in the  northeast of the ASTER image in Figure 4.1). 
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Table 4.1 Remote Sensing and field characteristics of lithologic units 

Unit Age 
Google Earth 

Characteristics 

ASTER 4-2-1 

Characteristics 

Characteristics in 

the Field 

Thickness 

Range 

Calculated 

Thickness* 

Alluvium Recent 

Smooth to 

braided 

appearance. 
Diffuse. Variable 

color  

Smooth to braided 

appearance. Diffuse, 
variable color 

Unconsolidated, 

poorly sorted 
N/A N/A 

Dungul 
Early to 

Middle Eocene 

Smooth, medium 

to light tan 
Not seen in study N/A 60-127m N/A 

Garra 

Late Paleocene 

to Early 

Eocene 

Speckled white to 

light blue with 
interbedded 

darker blue bands 

Bright white, some 

darker interbedded 

members 

Massive tan 
limestone 

60-110m 96 m 

Kurkur Paleocene 

Buff uniform tan 

along prominent 
ridges, darker 

brown near nose 

Light blue 

Massive gray 

limestone, severe 

spheroidal 
weathering, 

"spackled" 

appearance 

11-57.2m 67m 

Dakhla 
Late 

Cretaceous 

Dark brown to 
light gray brown. 

Lighter patches 
possibly exposed 

calcareous 

members 

Blue to purple 

Calcareous 

sandstone, poorly 

sorted, oyster 
fragments, rip-up 

clasts, buff tan 

weathered 
surface, rusty 

orange fresh 

surface 

39-155m 

Minimum 

Thickness 

221 m 

Nubian 
Early 

Cretaceous 
Mottled light tan Not seen in study N/A 0-592m N/A 

Basement Pre-Cambrian 

Dark gray to 

brown. Dull. 

Cross-cut by 
drainage that 

appears to sxploit 

faults/joints 

Not seen in study N/A   N/A 

 *Calculated thicknesses determined through mapped contacts and trigonometric relationships 

(Davis, et al., 2012; Issawi, 1968; Woodward-Clyde Consultants, 1985). 
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The attitude of the bedding locally can be interpreted using the rule of v’s. The 

attitude of the formations associated with the El Kasr structure indicates this is a 

structural basin. The color changes in the region surrounding the El Kasr structure follow 

closely the irregular topographic steps consistent with these formations being nearly 

horizontal. This change in orientation is evident in the Google Earth imagery (see Figure 

4.4) where the Dakhla Formation. east of the structure is near horizontal and the Garra 

and Kurkur formations can be seen dipping toward the structure. Structural fault contacts 

are inferred for abrupt truncation of stratigraphic contacts and juxtaposition of linear 

resistant bedrock ridges with distinctly different strike lines. These were later confirmed 

by field studies. The western flank of the structure is clearly truncated in the ASTER and 

Google Earth images (see Figures 4.1-4.4). Juxtaposed and truncated ridges are evident in 

these images (particularly to the east and northeast of the structure) and shown as faults 

in the corresponding geologic interpretations.  

4.2 STRATIGRAPHY 

The oldest and most pervasive unit studied in the field was the Dakhla formation. 

This formation displayed a variety of characteristics consistent with those reported by 

Issawi (1968) and Woodward-Clyde Consultants (1985). The flat-lying Dakhla to the east 

consisted of fine grained laminated sandstone containing some pebbles and shell 

fragments. Also observed were massive well sorted, well cemented sandstone members 

containing rip-up clasts above, giving way to a shalely member below (Figure 4.5 

Location UTM 36Q 449605.9 m E 2638374.12 m N). 
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To the south and east of the structures, the ridges seen in Google Earth imagery 

were identified as being the Dakhla Formation as well (Figure 4.4). These ridges are 

composed of the clean, well cemented sandstone members within the Dakhla and 

displayed moderate dips (~25°). It is possible the interbedded shale members of the 

Dakhla are present between the more resistant ridges. To the north and south of the 

structure, the Dakhla Formation cropped out as clean, well sorted, fine grained sand that 

was well cemented with calcite.   

The Kurkur Formation is a massive fossiliferous limestone and prominent ridge 

forming unit (see Figure 4.6, UTM 36Q 449215.34 m E 2638503.93 m N). The unit 

appears as a dull gray and has a “spackle” appearance due to the severity of the erosion 

caused by wind. The unit also displays well developed spheroidal weathering, thereby  

making primary structures difficult to identify. In the north the Kurkur Formation dips 

toward the structure at a moderate angle (~25°) while in the south, in the smaller basin, it 

displays a range of dips (<10°-~25°).  

Much of the northern basin is defined by the prominent ridge-forming Garra 

formation.  The Garra formation is a gray to white, dominantly massive limestone 

interbedded with sparse, thinner and less resistant chalk, marl, and shale intercalations. In 

this region the Gara formation typically has dips of ~25°. 

4.3 STRUCTURE  

As seen in Figures 4.1-4.4, the El Kasr is a composite basin cut by a well 

constrained fault zone to the west. East of the structure the Dahkla Formation transitions 

from moderate dips ( ~32 to the west) to horizontal, from west to east. This constrains the 

folding in the eastern portion of the structure. 
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Figure 4.5 Field photo of the Dakhla Formation. The more massive sand rich unit is 

visible above the mud rich shale. To the left a hammer is seen for scale.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Field photo of Kurkur Formation. Evident is severe spheroidal weathering. 

Rock hammer is visible for scale 
 

 

 

Similar relationships are seen to north and south, though alluvium is found in a 

strike valley between the ridges of the Kurkur Formation and the ridges of the Dakhla 
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Formation associated with the structure. To the west the orientation of the Dahkla 

Formation adjacent to the structure is unknown due to poor exposure. The Dakhla 

Formation seen on the scarp of the Sinn El-Kaddab Plateau reveals that the unit is flat-

lying to the west (Figure 4.7). 

4.3.1 Stereographic Analysis. Folding associated with the El Kasr structure was 

investigated by stereographic analysis. The geometric properties of each fold of the 

structure were determined through analysis of pairs of adjacent structural domains. 

Domains were defined by the attitudes of the rotated bedding and the location of 

structural elements (i.e. Fold axes) in such a way that the strike and dip data of each 

domain was consistent. Figure 4.8 displays the various domains into which the structure 

was divided for stereographic analysis (see Table 4.2). These divisions of the structure 

into structural domains allowed for stereographic analysis through the construction of 

Beta Diagrams. 

These Beta Diagrams were constructed by plotting the poles to planes of adjacent 

domains using Stereonet 8 (Allmendinger et al., 2012). Best fits were then found to 

approximate each limb, allowing for the determination of the inter-limb angle as well as 

the strike and dip of the axial planes and trend and plunge of the hinge lines.  

4.3.1.1 Major folds. The El Kasr structure is defined by a series of synclinal folds 

that share similar fold axial surfaces (345/89-158/89) and inter-limb angles (142-162).  

The northern basin is defined by two folds. The northern fold is defined by domains 1 

and 8 while the southern fold is defined by domains 2 and 7. The southern basin is 

similarly defined by a pair of folds. The northern fold is defined by domains 3 and 6 

while the southern. Each of these four folds defining the structure has a steeply dipping 
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fold axial surface that varies in strike by 7° (Table 4.2). These major folds are classified 

as upright (due to steeply dipping fold axial surfaces) and subhorizontal (due to low 

plunge values) with the exception of the fold defined by the domains 2 and 7, which 

exhibits a slightly higher plunge value of 12 and is therefore gently dipping (Fleuty,1964; 

Figure 4.9).  

 

 

 

Figure 4.7 Schematic of relationship between stratigraphy and geomorphology. Slope of 

the Nubian Plain is exaggerated for purposes of visualization; The Dungul is seen 

capping the Sinn El-Kaddab, the horizontal nature of the stratigraphy is visible along the 

scarp of the plateau. The gentle dip of the Nubian plain exposes both the Dahkla and 

Nubian.  
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Figure 4.8 Structural Domains of the El Kasr. Select Beta Diagrams are displayed near 

the folds which they represent. In each diagram one domain is plotted in black and 

another in blue. The solid black line in each diagram represents the fold axial surface. 

The solid black lines on the map define the domain boundaries used for analyzing major 

folds. 
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Table 4.2 Stereographic analysis of the major and minor folds of the El Kasr structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Folds defined by domain pairs 1/8, 2/7, 3/6, and 4/5 are referred to as “Major Folds” 
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Each of the major folds form dense and coherent populations within the 

constructed Beta Diagrams, the exception being the fold defined by domains 2 and 7. The 

cause of this lack of coherency in the data may be due to secondary deformation of the 

limb defined by domain 7 through folding and/or faulting. This limb is clearly truncated 

by the Western Fault Zone. Evidence gathered in the field suggested that fault-bound 

blocks within the fault zone have been rotated by motion along the fault segments. 

Evident in the stereographic analysis is a distinct change in plunge of the hinge 

line of the folds defining the anticline between the basins. The syncline defined by 

domains 2 and 7 is categorized as gently plunging, reflecting the steeper plunge of the 

hinge line (12°) when compared to the other major folds. Conversely the syncline defined 

by domains 3 and 6 is categorized as subhorizontal, reflecting the gentle plunge (1°) of 

the hinge line. 

4.3.1.2 Minor folds. Multiple minor folds deform the limbs of the El Kasr 

structure. These folds form complimentary pairs (e.g., domains 1a and 1b, 8a and 8b) on 

opposing limbs of the main basin defining synclines. The compliment to the syncline 

defined by domains 2a and 2b, however, has been obscured from view by a combination 

of faulting and burial by alluvium (Figures 4.8 and 4.9). A second pair of minor folds, 

defined by domains 2b and 3 and 6 and 7, are anticlines. This complimentary pair of 

anticlines crop out in the southern portion of the structure where the basin visibly necks 

down in width and serve to separate the larger northern basin from the smaller southern 

basin. 

These minor folds are similar to the major folds in that they are upright (dips 

~89°) with broad inter-limb angles (161°-167°) (Table 4.2).  However, the plunge of 
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these minor folds (18
o
 and 19

o
) are steeper than those of the major northern and southern 

synclines (6
o
 and 8

o
).  

 

 

 

Figure 4.9 Google Earth image of the El Kasr with stereographically determined hinge 

lines of Major Folds as well as schematics of the folds.  
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The anticlinal minor folds differ in that the anticline to the west defined by 

domains 6 and 7 is steeply dipping (76°) and subhorizontal (3°). The fold defined by 

domains 2b and 3 is upright (89
o
) and gently plunging (14

o
). Both folds are gentle with 

identical interlimb angles of 161
 o
.  These anticlines potentially represent interference 

folds that develop during a subsequent deformation event that folded the original doubly 

plunging synclinal basin.  This younger deformation event resulted in formation of a 

subtle dome that subdivides the El Kasr structure into a two structural basins. The 

doming steepens the plunge of one of the main basin forming synclines (defined by 

domains 2b and 7) in comparison with similar synclines defined by domains 1a and 8a 

and domains 4 and 5, is also rotates the plunge of the hinge line to the south for the 

portion of the fold defined by domains 3 and 6 (Table 4.2).  The minor folds defined by 

the domains 2b and 3 and 6 and 7 are effected in a similar way. The plunge of the 

anticline defined by 6 and 7 is found to be much gentler (3
o
) than the minor folds in the 

northern basin (1a & 1b and 2a & 2b)     

 The field investigation of the El Kasr discovered the presence of a ridge of Dahkla 

Formation (seen in Figure 4.10) to the north of the structure with an associated fold. Data 

gathered on this fold reveals that its fold axial plane has an orientation of 076/80 and a 

hinge line with an orientation of 253, 15. These calculations were made on limited 

measurements (n=5). The discordant nature of the ridge relative to the structure as well as 

the presence of the drag fold indicates that a fault is present. 
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Figure 4.10 Field photo of Dahkla ridge. The El Kasr may be seen in the background. 

The presence of a drag fold at the southern end of the ridge indicates a left-lateral fault is 

present. 

 

 

4.3.2 Faulting. Remote sensing and field observations demonstrate that the El 

Kasr structure is bounded on both sides by normal fault zones informally referred to here 

as the Western Fault zone (WFZ) and the Eastern Fault Zone (EFZ). Faults related to the 

WFZ, although not mapped as truncating the El Kasr structure, were previously mapped 

by Issawi (1968) and shown on the geologic map of Egypt (Conoco, 1981). Woodward-

Clyde Consultants (1985) include the WFZ as part of a more laterally extensive north-

south fault reffered to as the Gebel El-Barqa Fault and show it truncating a portion of the 

western limb of the El Kasr structure. The laterally extensive Gebel El-Barqa fault has 

previously been mapped as a continuous feature of approximately 110 Km.  

Faulting associated with the EFZ was previously unrecognized. Evidence for the 

existence of the Eastern Fault Zone in the field included multiple offsets within Dahkla 

ridges to the south and east as well as the juxtaposition of a Dahkla ridge against a limb 

of the structure and an associated drag fold. 
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4.3.2.1Western fault zone. Along the southwestern limb of the structure the 

WFZ can be clearly seen in satellite imagery truncating resistant units of the Gara and 

Kurkur Formations near the nose of one of the synclines (Figure 4.11). In this location 

deformation related to fault slip is well defined by the presence of fault breccia (10’s cm 

in thick), abundant veining filled with coarse crystalline calcite, and cataclasite along 

multiple fault planes. In addition, sand-filled ground fissures in pediment surfaces 

parallel the strike of the fault indicating a period of younger slip (Figure 4.12).  

The fault plane(s) exhibit strikes of 295-310 and dip steeply to the east (73-87
o
) or 

are vertical, suggesting that the fault zone is composed of subparallel fault segments. 

Fault ornamentation and the plunge and trend of slickenlines (57
o
/335 and 65

o
/300) 

indicate normal oblique-slip (sinistral) motion along the faults. Thin (~10cm) beds of 

resistant marl in shales of the Kurkur Formation are juxtaposed against massive limestone 

of the Garra Formation along the fault. 

The strike and dip of the Kurkur Formation is variable within the fault zone but 

typically rotates towards the strike of the fault and steepens in dip (e.g., 307/48). A small 

triangular patch of Gara Formation, readily visible in satellite imagery (near 1 in Figure 

4.9), has primary bedding that is highly discordant (025/14) to the structural trend of the 

WFZ or the western limb of the El Kasr structure and is likely a fault bounded block that 

was rotated within the WFZ. 
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Figure 4.11 Google Earth image of a portion of the El Kasr structure. 1) Abrupt 

truncation of the Garra Formation; 2) Abrupt truncation of the Kurkur Formation; 3) 

Truncations of ridges of Dahkla.The solid black line that cuts across the structure in the 

image is a paved road.   

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Google Earth image of the El Kasr. 1) Thinned and truncated Garra; 2) 

Woodward-Clyde Consultants trench; 3) Ground-cracks along the trace of the fault. 

 

 



 

 

49 

Along strike to the north, the western limb of the El Kasr structure also appears to 

have been thinned by faulting (Figure 4.11). In this region the trace of the fault zone has 

been obscured by deposition of younger alluvium that also fills in the center of the El 

Kasr structure.  In this intervening area, the trace of the WFZ is locally marked by 

clusters of sand filled ground cracks and rare subdued fault scarps that develop in the 

quaternary alluvium pediments (see Figure 4.10 (circled ) and 4.11). These features were 

not observed in the wadi channels that dissect these surfaces, suggesting the youngest 

displacement along the WFZ occurred in the Quaternary. However, in the face of the 

trench that exposes the WFZ surfaces defined by younger gravels appear to have been 

displaced (Figure 4.10) (see also Woodward Clyde Consultants, 1985).    

4.3.2.2 Eastern fault zone Whereas the WFZ can be clearly seen, in both the 

field and in remote sensing imagery, truncating the Garra and Kurkur formations the EFZ 

is less well exposed in remote sensing imagery and in the field. The EFZ is inferred by 

the presence of numerous along strike structures. Multiple offsets within ridges of Dahkla 

Formation to the southeast of the structure define a splay of smaller faults originating 

from a larger master fault (Figures 4.13, 4.14, 4.15). The observed separation along these 

smaller faults can be as large as 2 meters. These faults displayed steep dips (near vertical) 

and dextral separation. It should be noted that separation is not the same as slip. Whereas 

slip is the true motion along a fault plane, separation is the apparent motion along a fault. 

While the offsets observed within the Dahkla appear to have been offset by dextral strike-

slip faults, it is possible that these observations may have resulted from a combination of 

dip-slip motion and erosion. The truncation of larger ridges within the Dahkla also serves 

to constrain the location of the Eastern Fault Zone (Figure 4.15). 
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Figure 4.13 Google Earth image of a portion of the El Kasr. 1) Ridge of Dahkla; 2) 

Truncation of Kurkur; 3) Offset within Garra; 4) Truncation of Garra; 5.) Woodward-

Clyde Consultants trench.  

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Field photo of dextral separation of Dahkla ridges 
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To the north a ridge of Dakhla Formation is discordant to the main synclinal 

structure oriented ~185/30. This ridge of Dahkla Formation displays moderate dips (18°-

32°) and is cut by multiple joints forming approximate conjugate sets (Figure 4.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Google Earth image of a portion of the El Kasr. 

1) Offset of Garra; 2) Truncated ridges of Dahkla; 3) Flat-lying 

and undeformed Dahkla. 

 

 

4.4 INTEGRATED GEOLOGIC MAP 

Field observations and the results of the remote sensing analysis were integrated 

with stereographic analysis to construct a geologic map of the El Kasr Desert Eye 

structure (Figure 4.16).  The Dakhla Formation (in green) crops out to the east and west, 

forming an irregular shaped map pattern, reflecting its generally horizontal nature in this 

area. In contrast, it is exposed as linear ridges nearest to the El Kasr structure. The 

Dakhla ridges to the east were studied in detail by members of this team, but the ridges to 
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the west have only been studied in remote sensing. These western ridges are located near 

the western-most fault (WFZ in Figures 4.1-4.4 and 4.9 ) and it is possible that these 

ridges also dip in toward the structure. If this is the case then these may represent 

possible drag folds along faults in the overlying Dakhla Formation. The Kurkur 

Formation (tan and orange) bound the Garra Formation in the north and form the ridges 

and smaller basin to the south (Figure 4.14). The Garra Formation (shades of blue) crops 

out in the center of the structure and contains multiple internal members (see Figure 

4.14). Successive generations of alluvium, mapped in shades of yellow, cover much of 

the study area and may be seen filling the center of the basin. Consistent color changes 

visible in each ASTER image suggest that the alluvium filling the basin is different in 

some way from the alluvium immediately adjacent to it. Cross-cutting relationships 

indicate that the alluvium within the basin is older than that coming off of the plateau as 

is visible in Figure 4.14.While map patterns at first indicate that the QC units is younger 

than the surrounding Q3 and Q4 units, closer investigation in remote sensing images 

reveals that the QC is a consolidated unit whereas the Q3 and Q4 units appear to be 

unconsolidated alluvium filling channels cut into QC. 

 

4.5 GEOLOGIC CROSS-SECTIONS 

Geologic cross-sections of the El Kasr structure were constructed along section 

line A-A’ (Figure 4.14) through the center of the structure perpendicular to the strike of 

the main fold axis. 



 

 

53 

 

 

 

F
ig

u
re

 4
.1

6
 I

n
te

g
ra

te
d
 g

eo
lo

g
ic

al
 m

ap
 o

f 
th

e 
E

l 
K

as
r 

an
d
 s

u
rr

o
u
n
d
in

g
 a

re
a.

 M
ap

 i
n
co

rp
o
ra

te
s 

fi
el

d
 

an
d
 r

em
o
te

 s
en

si
n

g
 i

n
v
es

ti
g
at

io
n
s.

 

 



 

 

54 

These cross-sections were constrained by structural data including the orientation (strike 

and dip) of units, unit thicknesses, fault locations, dip of fault planes, and the location of 

unit contacts. 

The EFZ was assumed to dip 75° into the structure, mirroring the dip measured 

for the WFZ. Remote sensing was used to supplement field data where necessary, 

particularly contact locations and orientations that were not collected in the field.  All 

sedimentary units are initially assumed to maintain a constant thickness across the 

structure. Thicknesses of sedimentary units were calculated, where possible, using the 

location of contacts and the dip of the units as measured in the field (Appendices A, B, 

and C), otherwise measured thicknesses from well data were used (Table 4.1). Initially, 

constant slip along the fault is assumed where possible. Previous mapping in the region 

and formations seen on the scarp of the Sinn El Kaddab Plateau confirm that these units 

are in fact flat-lying to the west.  

This study has constrained the vertical displacement along both the eastern and 

western bounding faults. This was done by employing the “three-point problem” 

procedure as described in Davis, et al., (2012).  By mapping the Dahkla/Kurkur contact 

along the scarp of the Sinn El-Kaddab Plateau and projecting it over the El Kasr 

structure, it was found that approximately 200 meters of throw is necessary in order to 

account for the present location of the Kurkur - Daklha formation contact. It should be 

noted that this displacement may be accommodated by multiple subparallel faults 

between the Gebel El-Barqa Fault and the Sinn El-Kaddab Plateau.  

4.5.1 Rollover Folding. Rollover was considered as a mechanism for the 

formation of the El Kasr structure and studied using balanced cross-sections. Xiao and 
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Suppe (1992) define rollover as the “folding of the hanging-wall fault blocks by bending 

or collapse in response to slip along nonplanar – commonly listric – normal faults”. A 

structure similar to the El Kasr may reflect a change in dip of the Gebel El-Barqa fault at 

depth. A concave fault surface would result in a void space between the hanging wall and 

foot wall along the length of the steeper upper fault segment. The subsequent 

collapse/folding of the overlying rocks to fill the void would result in the formation of a 

structural basin. This mechanism could result in the prominent bounding fault and 

moderate dips that have been documented. 

 Xiao and Suppe (1992) quantitatively relate the shape of a fault and the shape of 

the fold forming above. The shape of the fault is defined by the change in dip of the fault 

(φ) and the cutoff angle of the bedding in the upper fault segment (θ). The fold above the 

fault is then defined by the collapse direction (ψ) and the dip of the bedding in the 

rollover measured relative to the undeformed bedding (δ).  These variables are related by 

Equation 1. 
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Equation 4.1. Relating fault shape (θ and φ) to fold shape (ψ and δ). 

 

 

 

 The collapse direction describes the relative particle motion in the deforming 

hanging wall. A pair of axial surfaces for the fold defines the transition from undeformed 

bedding to the thinned dipping limbs of the fold. These axial surfaces are parallel to the 
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collapse direction of the hanging wall and are separated by a distance X, equal to the 

displacement along the lower fault segment. The orientation of the active axial surface is 

fixed to the bend in the fault (Xiao and Suppe, 1992).  

Field investigations of the El Kasr structure by Dr. John Hogan, Dr. Barbara 

Tewksbury, and Trevor Ellis placed tight constraints on the dip of the upper segment of 

the fault, contacts between units, as well as the dip of the units to the east. This data 

collected in the field gives a value for the variables δ (25°) and θ (80°) and places 

constraints on the value of ψ (25°-90°). The range in values for ψ is derived from the 

orientation of the dipping beds to the east. Because the beds dip at 25° the collapse 

direction must be greater than 25° but less than 90° (vertical). The average of these 

values (57°) was used for ψ due to poor constraints. Solving for φ it was found that the 

change in dip of the fault was 25°, resulting in a dip of 50°. The change in dip of the fault 

plane was placed at the unconformity between the Nubian Formation and the 

Precambrian Basement, reflecting a change in mechanical strength properties of the 

materials.  

 Figure 4.17 displays the cross section created using a dip of 50° for the lower 

portion of the fault segment and a collapse direction of 57°. This cross section conforms 

to the constraints determined in the field and does result in a structural basin with a 

prominent bounding fault to the west. 
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Figure 4.17 Rollover Cross-section of the El Kasr constraining the hanging wall. The 

model requires thinning of the deformed limb of the fold and exposure of the Nubian 

Formation at the surface of the footwall.  

 

 

 

Evident in Figure 4.17 is the striking change in thickness of the units between the 

limb of the fold and the undeformed units to the east. In order to maintain equal area, 

rollover requires the thinning of the deformed limbs of the fold (Xiao and Suppe, 1992). 

As shown in Table 4.3, the model presented in Figure 4.17 is true to the unit contacts as 
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mapped in the field and in remote sensing imagery and the unit thicknesses in this limb 

fall within the constraints given by previous studies (Issawi, 1968: Woodward-Clyde 

Consultants, 1985). Therefore the flat-lying units to the east as well as the flat-lying units 

within the structure must be thicker than the deformed limb. This new thickness was 

defined by the axial surfaces and it was found that the thickness of each unit increased by 

a factor of approximately 1.58. These results indicate that the undeformed Nubian would 

have a thickness of 710m while the undeformed Dahkla would have an undeformed 

thickness of 238m. Previous studies of the area have reported thicknesses of 39m-155m 

for the Dahkla and a maximum of 592m for the Nubian (Issawi, 1968). This drastic 

increase in unit thickness invalidates this construction of the rollover model for the 

formation of the El Kasr structure.  

The cross-section in Figure 4.17 also requires folding of the rigid basement. In 

order to rectify this problem the axial surface may be moved west. This then requires that 

the angle of the collapse direction decrease in order to maintain the proper lithologic 

contacts as mapped in the field. This approach, however, results in further increase in 

thickness of the undeformed units resulting in thickness of approximately 2.5 times their 

measured thicknesses. The offset required along the fault in Figure 4.17 dictates that the 

orientation of the hanging wall would result in the exposure of the Nubian Formation to 

the west. While little data was gathered west of the fault by members of this team, 

previous authors have mapped Dahkla to the west (Conoco, 1981; Issawi, 1968; 

Woodward-Clyde, 1985).  
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Table 4.3 Comparison of models of formation of the El Kasr structure 

Figure Model Constraints Pros Cons 

4.15 Rollover 
(Constraining the 

Hanging Wall) 

Unit thicknesses in 
limb of fold. 

Contacts on fold 
limb 

Explains 
formation of 

structure with a 
single fault 

Requires 
unrealistic 

thickening of 
units outside of 
the structure. 

Exposes Nubian 
to the west where 

Dahkla is 
mapped. 

4.16 Rollover 
(Constraining the 

Foot Wall) 

Dahkla Exposed to 
west. Unit 

thicknesses in limb 
of fold 

Explains 
formation of 

structure with a 
single fault 

Requires 
unrealistic 

thickening of 
units outside of 
the structure. 

Exposes Garra to 
the east where 

Dahkla is 
mapped. 

4.18 Transtension/Drape 
Folding 

Unit thicknesses, 
Maintain constant 
thickness, mapped 
contacts, mapped 
units exposed at 

surface 

Incorporates both 
fault systems. 

Adheres to 
constraints 

mapped in the 
field 

Maintaining 
constant 

thickness results 
in space problem 
between Nubian 

and Basement 

4.19 Transtension/Drape 
Folding 

w/deformable 
Nubian 

Unit thicknesses, 
Mapped contacts, 

Mapped units 
exposed at surface 

Incorporates both 
fault systems. 

Adheres to 
constraints 

mapped in the 
field 

Does not adhere 
to constant 
thickness 
constraint 
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 The cross-section in Figure 4.17 investigates rollover as a mechanism of 

formation of the El Kasr by constraining the footwall of the Gebel El-Barqa, compared to 

the cross-section in Figure 4.18 in which the hanging wall is constrained. In Figure 4.17 

the footwall is fixed, exposing Dahkla Formation at the surface as previously mapped. 

This position of the footwall in turn dictates the position of the hanging wall, resulting in 

the exposure of the Garra Formation to the east, as well as obscuring most of the contacts 

mapped in the field and in remote sensing imagery. This model also suggests the 

presence of approximately 450m of alluvium within the structure. Similar to Figure 4.17, 

Figure 4.18 suggests that the rigid basement is behaving ductily. Attempts to correct this 

error result in similar thicknesses as those previously discussed related to Figure 4.17.  

4.5.2 Transtensional/Drape Folding Model. Transtension was investigated as a 

model of formation of the El Kasr in which overlapping fault zones would result in a 

local region of extension. This extension would be accommodated by the formation of 

normal faults within the zone as well as normal motion along the east and west bounding 

faults. Initially the units were projected into the subsurface from both east and west with 

a constant dip until they merged beneath the structure. This result predicted 

approximately 250 m of alluvium to be present in the basin. It was determined that this 

thickness of alluvium allowed for the presence of the Dungul Formation within 

the center of the structure. The addition of the Dungul Formation still allowed for over 

100 m of alluvium within the structure, suggesting that the units are flat-lying in the 

center of the structure, a style of folding more consistent with folds associated with 

extensional faulting (Sylvester, 1988). This approach reduced the alluvium in the center 
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of the basin to 10-20 m while still allowing for the presence of the unmapped Dungul 

Formation (see Figure 4.19).  

 

 

  

Figure 4.18 Rollover Cross-section of the El Kasr constraining the foot wall. The 

footwall is fixed adhering to the constraints from the field investigation, forcing the 

hanging wall into the location shown, exposing flat-lying Garra at the surface. 

 

 

The cross-section in Figure 4.19 predicts that the basement is divided into fault 

bound blocks with the outermost blocks rotated and dipping into the structure. These 

faults are not visible at the surface and are inferred to be blind, propagating an unknown 

distance into the cover. These faults are inferred by the dipping limbs of the structure, 
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allowing the limbs to dip into the structure without overlapping the basement. These 

inferred faults therefore allow for grabens to develop below the limbs of the structure. 

The constraints within the structure dictated that one of these faults would be located 

west of the previously mapped Gebel El-Barqa fault trace. The geometry of the structure 

to the east suggests that the eastern fault zone dies out near the surface within the Dahkla.  

Not visible in Figure 4.19 are the complexities of each fault zone manifested as 

offsets and multiple fault traces. Field and remote sensing investigations of both fault 

systems revealed that both zones are composed of these complexities. These secondary 

structures may be explained using the drape fold model as discussed by Withjack et al. 

(1990) and Sharp et al., (2000) in which secondary faults propagate up through the cover 

in order to accommodate folding. 

Draped folding involves the propagation of normal and reverse faults from the 

basement into the ductile cover. This results in the thinning and flexing of the limb of the 

folded sedimentary cover over the down-thrown basement. Sharp et al. (2000) outlines 

the growth and propagation of normal faults and associated normal and reverse faults as 

well as the folding of the cover. As normal faulting progresses, the basement behaves as a 

rigid “forcing member” while the sedimentary cover folds ductily. As the normal fault 

continues to propagate into the cover the monocline steepens and a series of upward-

steepening normal and reverse faults form subparallel to the normal fault in the 

immediate hanging wall in order to accommodate deformation (Sharp et al., 2000).  
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The observed offsets within the Dahkla Formation suggest that in the case of the 

El Kasr structure these normal and reverse faults may allow for the thinning and folding 

of the Nubian and Dahkla formations over the displaced basement below to the east. 

These secondary faults may not propagate into the Kurkur and Garra formations, which 
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may simply fold over the Dahkla and Nubian below in response to the displacement. 

Within the WFZ these secondary faults may cut up through the entire sedimentary 

section. This difference may be attributed to the maturity of each fault zone, where the 

WFZ is more mature than that to the EFZ and therefore contains both a greater number of 

faults as well as more extensive faults.  

While the cross-section in Figure 4.19 conforms to the constraints dictated by 

field and remote sensing investigations several unresolved questions remain. The cross-

section in Figure 4.19 predicts that fault-bound blocks within the basement have rotated 

in response to extension. Without this rotation the cross-section predicts a void space 

along the Nubian-Basement contact as seen in Figure 4.20. This rotation is poorly 

explained and appears to suggest that the brittle basement behaves in a ductile manner. 

However, Moretti et al. (1988) discusses rotation of rigid blocks in which the void spaces 

resulting from the rotation were filled with a softer material, such as catalysis.It is 

possible that the strain is taken up by motion along secondary structures (faults/joints). It 

is also possible that the basement within the structure is composed of grabens above 

which the sedimentary cover is deformed at the tips of the propagating normal faults 

according to the principles of trishear (Erslev, 1991).  

The void spaces visible in Figure 4.20 indicate that the El Kasr structure cannot 

be modeled by a balanced, restorable cross-section. This then indicates that the 

sedimentary cover is accommodating the strain in a manner shown in Figure 4.19 in 

which the Nubian Formation deforms to fill the potential void space. The Nubian is 

reported to be a poorly cemented sandstone (Issawi, 1968) and could therefore potentially 

deform in such a way as to address the potential space problem. 
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The Navajo sandstone of the southwestern Unites States is of a similar well 

sorted, poorly cemented lithology. Studies on the Navajo indicate that this lithology is 
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readily deformable through such mechanisms as deformation bands and “short 

unconnected slip surfaces” (Shipton and Cowie, 2001). It is possible that the Nubian 

Formation accommodates the strain in a similar way. It is also predicted that this 

accommodation of stress decreases up section, exploiting the poorly cemented Nubian 

Formation and shale layers within the Dahkla Formation.  

While the Nubian and Dahkla formations may accommodate the strain above the 

normal faults within the basement, the conservation of matter dictates that the units must 

thin at some point in order to account for the extra material required for the model as seen 

in Figure 4. 21. Moretti and Callot (2012) discuss the validity of the assumptions that  

bed thickness and bed length remain constant in the kink-band approach to geologic 

cross-sections. They found that the thickness, and therefore the length, of soft layers did 

not remain constant throughout deformation.  
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5. DISCUSSION 

Previous work in the study area has mapped the Gebel El-Barqa as a continuous single 

fault trace. However, this study has found that it is much more likely that the fault associated with 

the El Kasr structure are zones comprised of multiple fault segments as opposed to continuous 

faults. These findings are consistent with those concerning the east-west faults in the region 

including the Seiyal and Kalabsha faults (El Etr et al., 1982). These previously unreported fault 

segments likely influenced the formation and evolution of the El Kasr structure.  

The El Kasr synclinal basin may be the result of deformation within a local region of 

extension related to strike-slip faulting. Transtension would require the presence of a second fault 

or fault segment bounding the structure to the east in conjunction with the well studied fault to the 

west. This study has mapped a previously unrecognized fault zone to the east of the structure. The 

presence of multiple offsets within the Dahkla Formation, truncations of Dahkla ridges as well as 

a fold and ridge within the Dakhla Formation to the northeast of the structure serve to constrain 

its location. Mapping of these fault systems suggests that they may merge to both the north and 

south of the structure, though this is as of yet unconfirmed. As seen in Figure 5.1 a left-handed 

step-over of left-lateral faults would result in the predicted zone of extension.  

Woodward-Clyde Consultants (1985) reported that sinistral motion has occurred 

along the Gebel El-Barqa fault. Similar motion occurred along the north-south trending 

faults of northeast Africa during the Late Eocene as Africa and Eurasia began to collide 

(Guiraud et al., 2001). This left-lateral motion along with the observed relationship 

between the El Kasr and the fault zones would result in the predicted region of 

transtension (Figure 5.1).  

 

 



 

 

69 

 
Figure 5.1 ASTER of the El Kasr structure and Gebel El-Barqa Fault. Relative motion of 

the faults is shown by the arrows. This geometry would result in the predicted region of 

extension  
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Folding of the Garra and Kurkur formations within the structure may be explained 

through folding of the sedimentary cover over the displaced basement blocks below. To 

the east, offsets were observed within the Dakhla Formation. Because the younger units 

have been eroded way, it is not possible to determine if these offsets had yet propagated 

up section. These offsets may represent the normal and reverse faults that accompany 

propagating normal faults into the sedimentary cover and the subsequent drape folding, 

as predicted by the models of Withjack et al., (1990) and Sharp et al., (2000). If this is the 

case, then it is likely that the Garra and Kurkur are folding in response to the down-

thrown basement blocks. 

The inability of balanced cross-sections to completely analyze the structure 

suggests that some mechanism is operating in order to resolve the space problem along 

the unconformity. It appears that the poorly cemented Nubian and possible the 

incompetent shales within the Dahkla have deformed in such a way as to thicken and 

accommodate the strain. This thickening of these formations near the uncomformity  

must in turn require that the units be thinned elsewhere in order to maintain equal volume 

within the structure.   

Wu et al. (2009) investigated the effect of transtension on pull-apart basins 

opposed to simple strike-slip using analogue models. Many of the characteristics of the El 

Kasr structure appear to match the characteristics of transtensional analogue models that 

have undergone moderate displacement. The transtensional model that underwent 

moderate displacement displayed two distinct depocenters, one larger than the other, 

bounding normal fault along the larger depocenter, and a through-going dextral fault 

found between the depocenters. These characteristics are all found in the El Kasr 
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structure which has a composite nature and a prominent western bounding-fault. A 

dextral offset trending 060 (36 Q 448860.69 m E, 2636985.05 m N) was reported from 

the field near the interbasin high. This offset is not readily apparent in remote sensing 

imagery but is consistent with predictions made with analogue models (Wu et al., 2009).  

Competing models for the composite nature of the El Kasr structure include initial 

formation of adjacent structures, refolding of the original basin, and differential 

displacement along normal fault planes. The analogue models performed by Wu et al., 

(2009) resulted in the formation of adjacent depocenters similar to the El Kasr structure. 

Stereographic analysis demonstrates the presence of anticlines that define an anticlinal 

dome which separates the northern and southern basins. This anticlinal dome within the 

El Kasr structure may be an interference fold pattern indicating that the structure was 

subsequently deformed, possibly by brief reactivation of the Gebel El-Barqa fault system 

as right-lateral, resulting in transpression. If the northern portion of the structure subsided 

as the southern portion remained fixed, an anticline with the observed features as well as 

expose the Garra in the north as seen. 

This thinning may also serve to explain the formation of the fold above the 

extensional zone. Folds often occur in compressional regimes, though many are found in 

extension, in which horizontal shortening is accommodated by folding of the units. The 

El Kasr occurs within an extensional zone and therefore the folding must  

The Western Desert of Egypt represents a unique setting that may promote the 

formation of the Desert Eye structures. El Etr et al. (1982) reported that the major E-W 

faults in the region are not continuous features but are instead discontinuous segments. 

Similarly, El-Khashab et al. (1991) note that many of the faults in the region branch, 
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forming smaller faults. These complexities within the fault systems of the region may 

indicate that many of the Desert Eyes form through processes similar to that of the El 

Kasr structure in which the interactions of fault segments results in local stresses that 

result in the formation of the observed structures. Tewksbury et al. (2009) discuss the 

possibility that shale mobilization within various units of the stratigraphy may be related 

to the formation of these structures and identify mass movement features visible in 

Google Earth imagery. It is possible that locally rheology plays a significant role in the 

formation of these structures, particularly ductile shales and weakly cemented sandstones, 

both of which are prominent in the stratigraphy of the Western Desert .  
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6. CONCLUSIONS 

 Detailed field and remote sensing investigation of the El Kasr structure has 

revealed that the structure is closely associated with a pair of bounding fault zones. 

Previous authors have mapped the western-most fault as a portion of the more laterally 

extensive Gebel El-Barqa Fault (Woodward-Clyde Consultants, 1985) which has been 

shown to have accommodated dip-slip (Issawi, 1978) motion as well as strike-slip 

(Guiraud et al., 2001; Abdeen et al., 2000) motion throughout its history.  

 Based on detailed field study the Western Fault Zone is composed of steeply 

dipping (73°-87°) subparallel fault segments striking 295-310. Truncated units within the 

fault zone were found to be rotated towards the strike of the fault. The Eastern Fault Zone 

is inferred from the presence of a variety of associated structures. The presence of a 

Dahkla ridge that is discordant with the structure, as well as an associated drag fold 

constrain the location of a fault. To the east of the structure the truncation of multiple 

ridges of the Dahkla Formation as well as multiple offsets within the Dakhla Formation  

suggest the presence of a fault zone.            

 Stereographic analysis of the folds defining the El Kasr structure demonstrates 

that both the major and minor folds of the structure have broad inter-limb angles. The 

northern and southern major folds of the structure display similar plunge values of 6 and 

8 respectively. Stereographic analysis suggests that the central folds of the structure 

appear to have been rotated, steepening the hinge line of one fold while an adjacent fold 

became subhorizontal. A similar pattern is visible in the adjacent minor folds of the 

structure where the hinge line of the minor folds adjoining the larger and smaller basins 

display strikingly different plunge values of 14° and 3°. 
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  Cross-sections constructed of the structure predict that the El Kasr structure has 

formed in a zone of transtension as the sedimentary cover folds over fault-bound blocks 

within the basement, employing drape folding near the margins to thin and deform the 

cover. These cross-sections do not properly address the motion along the westernmost 

fault or the rotation of fault-bound blocks within the basement.    

Detailed field and remote sensing study of the El Kasr structure as well as 

stereographic analysis and the construction of balanced cross-sections indicate that the El 

Kasr structure has formed over an extensional zone along the trace of a strike-slip fault. 

The left-handed step-over of the left-lateral fault traces would result in the predicted zone 

of transtension (Figure 5.1). Drape folding as discussed by Withjack and Peterson (1990) 

and Sharp et al. (2000) induces the propagation of normal and reverse faults into the 

deformable sedimentary cover. The space problem presented by Figure 4.18 is still 

unresolved, but it is believed that the majority of the strain is accommodated by the 

Nubian Formation and decreases up section (Figure 4.19). This is supported by the 

multiple off-sets and truncations found within the Dahkla Formation and the relatively 

undeformed Kurkur and Garra formations. 

As reported in Guiraud et al. (2001), North Africa was subjected to a brief yet 

strong compressional event with the main shortening in the NW-SE direction in the Late 

Eocene. The stress Late Pleistocene stress field as described by Bosworth and Strecker 

(1997) may have induced sinistral motion along N-S trending faults in the region. This 

motion along the fault would have resulted in the predicted transtensional motion and 

potential formation of the El Kasr structure.  
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The counterclockwise rotation of the stress field in eastern Africa places 

constraints on the formation of the El Kasr structure (Bosworth and Strecker, 1997). This 

rotation is suspected to be a plate-wide event and occurred prior to 125,000 years ago.  

This study has found that the El Kasr structure has likely developed due to 

transtension and it is possible that similar mechanisms are responsible for the formation 

of other Desert Eye structures. El Etr et al. (1982) stated that the east-west oriented faults 

are discontinuous and El-Khashab et al. (1991) describe the branching of faults as “a 

normal feature in the area”. These discontinuous and branching faults may allow for 

regions of transtension, resulting in basins, and regions of transpression, resulting in 

domes. The inability to construct a balanced cross-section of the El Kasr structure 

indicates that deformation within the sedimentary cover played a significant role in the 

formation of the structure.  
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2010 
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  Dr. 
Hogan 
Data, 
2010 

          

  Stop Lat/Northing Lon/Easting Strike Dip Notes 

1 1.2 2633251 44886 244 28 Low whitish grey mound of very fine 
grained massive limestone, rises ~2m 
above basin floor. Rock breaks into 
thin "flag stones" @ surface- along 
bedding (?) below surface more 
massive blocks (so could be 
exfoliation feature) defined by joints. 
Rock has a very peculiar texture on 
bedding planes accentuated by wind 
abrasion (micro ripples) or some 
dessication feature. Dips may reflect 
exfoliation rather than primary 
bedding.  

        192 27   

        54 57 Joint 

        67 70 Joint 

        149 85 Joint 

2 1.3 2638329 448914 172 17 Possible fault, located in drainage 
cross cutting structure, beds 
truncated and offset. Strike and Dip 
taken on N-side of drainage. 
Resistant unit truncated. Possible 
drag. 

3 1.4 2638648 448873 175 28 Distance determination of strike and 
dip by settign a point in distance @ 
same elevation (strike line). "grey 
unit" below white with several 
alternating resistant units location is 
on the S edge of a V notch in 
structure. White unit has been 
disrupted by bulldozing, it contains 
good stromatolite mound almost a 
meter in size.  

4 1.5 2638188 449240     otc of "Limestone Spatter" lifht tan-
buff limestone, not bedding visible, 
crops out in irregular blocks on 
slopes seperated by sand and as a 
irregular loose material on flats, ridge 
former. Blocks are several meters on 
sides, and are composed of very 
irregular shaped pieces of limestone 
stuck together, edges of pieces 
defined by irregular cracks. 
"Appearance of spatter stuck 
together" high surface roughness 
(show up on radar) cantact to the 
east is sharp but boulders end and 
sandy gravel begins. 
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5 1.6 2636219 448659 357 12 Dip slope of massive light grey 
limestone surface polished by wind 
abrasion, scalloped, holes cross-cut 
by multiple joints very common. 
Strike and dip best estimate based on 
dip slope. Contact with "spatter 
limestone" (older) along ridge crest 
light grey limestone (younger) 

6 2.1 23.84134 32.4925 330 33 Following ridge of "spatter limstone", 
bedding difficult to observe, here best 
chance @ strike and dip. (330 33 
"average") Here is where the ridge 
dramatically thins to the south is a 
good size wadi (beds have slumped 
into the wadi) N-side als a wadi-could 
less resistant unit have been buried 
after being eroded down? (alternative 
to faulting) 

        310 38   

        335 35   

7 2.2 23.84472 32.49159 307 48 along the edge of the wadi, adjacent 
to the white-grey massive limestone 
area dramatically changes in dip, 
breccia, and calcite filling fractures, 
and slickenlines indicate fault (dip 
slip) Fault has more than one trace.  

        310 75 Of Fault 

        296 73 measurements taken drirectly on fault 
plane 

        310 18   

        296 87   

8 2.3 23.84546 32.49073     Ground cracks within a raised surface 
comprised of abundant angular 
fragments of the whote/grey 
limestone. Trend 320-325 recent? Of 
slumping reactivated? 

9 2.4 23.84596 32.49021 270 6 excellent example of a cataclastic 
fault rock! Thinly bedded marl 
juxtaposed against white-grey 
massive limestone, along edge of the 
wadi to this tip where we are now-
massive gray/white limestone 
brecciated the entire way, wadi 
probably exploited the main fault (? 
notes unclear) and we are on the 
edge. Cataclastis dominated by 
vertical fractures parallel to trce of 
fault ~325+/-5 (strike and dip taken 
on marl, but variable "flat-lying") marl 
cataclasite-not well cememnted or 
indurated, in contrast the white-grey 
limestone is...age of fault...older 
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10 2.6 23.84755 32.4893 25 14 isolated block of rock in wadi, visible 
on Google image, beds are "rotated" 
relative to the trend of our basin, the 
color banding on Googl matches this 
change. -This is the unit with the 
alternating thin tarnish resistant beds 
seperated by less resistant unit 
(several meter spacing) capped by 
the white/grey massive limestone 
(strike and dip variable) 

11 2.7 23.84802 32.48967 300 5-
14 

Low otc in a thin band silty-very fine 
grained sandstone. Grityy; massive, 
no obvious bedding, orange brown-
orange buff color. Otc x-cut by 
abundant joints, at leat 3 prominent 
sets (160, 82; 090, 80; 180, 90) not a 
"fault rock" but showing lots of brittle 
strain 

        285 20   

12 2.8 23.84698 32.4931     Several scattered otc of the very fine 
grained red-brown sandstone- form a 
strike line ~060 but dip not possible-
spheroidal weathering along fractures 
is excellent 

13 2.9 23.34795 32.49654 185 23 Low ridge west of poer lines, 
grey/white massive limestone, ridge 
is all loose broken rock, with several 
ridges that are slightly more resistant 
(ridge is ~3m high) 

14 2.10 23.84595 32.49614 185 25 Scruffy layer on side of ridge using 
for strike and dip 

        184 21   

15 2.11 23.84421 32.49615 187 23 following ridge, collecting strike and 
dip to characterize fold 

        197 16   

16 2.12 23.84343 32.49521 276 18 around the nose of the fold following 
the limestone ridge (dip may be high, 
looked shallower, hard to get) thin 
scruffy layer was measured 

17 2.14 23.84437 32.49342 313 24 taken in the unit just above the 
grey/white ridge, 10m to the north 

        296 27   

        309 5   

        305 14   

        311 20   

18 2.15 23.8426 32.49486 266 10 light tan to buff thinly bedded 
limestone, looks flat (nose of fold) 
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19 3.1 23.83542 32.49598     Otc between "spatter" limstone same 
as knobbly limestone of barb and red 
flaggy limestone +Fe concretions. 
This otc is first appearnce of otc this 
side of road. Red sandstone fine-
medium grained well sorted, very well 
indurated with silica and Fe cement 
broken surfaces have a quartzite 
appearance contains good current 
ripples, interbedded with light brown-
tan sandstone below "Dakhla 
Formation" 

20 3.2 23.83455 32.49641 225 5 "Flat-lying" subtle dip on the light tan, 
soft, thinly bedded sandstone, not 
indurate, friable. Bedding is highly 
disrupted as the unit breaks into 
various size flag stones and rotates 
from collapse so south side up based 
on stratigraphy 

21 3.3 23.83389 32.49801 300 22 On contact between Fe rich red 
brown flaggy sandstone (Dakhla) and 
spatter knobby limestone (kurkur). 
Dakhla is "disrupted" by mass 
wasting movement, probaly cloe to 
horizontal. Strike and dip are of 
"bedding in Kurkur 

        310 19   

22 3.4 23.83322 32.49845 340 14 In this location on google map it has 
a sense of a small syncline on s side 
of fault in Dakhla. Here Dakhla is 
dipping consistently over a 10's of 
meter range but on other hill dips are 
variable 

        320 15   

23 3.5 23.83188 32.5005 287 5 Fault contact between red brown Fe 
rich sandstone(Dakhla) and whitish 
spatter limestone(Kurkur) contact not 
exposed but can be "straddled". 
Contact trend 126 

        200 6   

        297 6   

        270 5 on limestone 

24 3.6         Barb collected data on Dakhla near 
nose of fold, strike and dips were @ 
high angle to structure 

25 3.7 23.83214 32.50155 225 24 collecting strike and dip near nose of 
fold in kurkur limestone; primary 
bedding is impossible to see, so best 
guess 

        230 23   

        230 20   

        225 25   

26 3.8 23.83314 32.50089 270 10 unit with very thin flaggy resistant 
layers seperated by several meters of 
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shale? 

27 3.9 23.83338 32.50178 172 26 strike and dip in kurkur-better chance 
of bedding 

        172 23   

        172 19 might be better indicator of bedding 

28 3.10a 23.83313 32.50361 169 42 Dakhla, surprising steep dips 

        170 50   

        169 48   

29 3.10b 23.83306 32.50345 160 43   

        164 43   

        155 51   

        159 32   

30 3.10c 23.83309 32.50338 158 68   

        157 70   

        160 76   

        160 62   

31 3.10d  23.83331 32.50304 164 35 series of linear steeply dipping ridges 
of resistant red brown sandstone with 
friable tan sandstone in between. 
Ridges are 10's of meters long and 
offset-probably by splays of faults 
coming off of the fault between these 
ridges and the kurkur, this fault 
probably merges with the other fault 

        170 42   

32 3.11 23.83071 32.50364 185 82 ridges of Dakhla sandstone, part of 
this fault system 

33 3.13 23.83531 32.50418 155 18 bedding on chalky white friable 
surface. Dakhla tan-buff friable, red 
cometatn and tan competant 
sandstone layers in a small wadi 
buried beneath pediment surface 
highly weatherd beneath last outcrop 
for km's east 

34 3.14 23.83993 32.50313 192 21 High long ridge of Dakhla. Last ridge 
east, steep slope on east side cut by 
a wide wadi. Sand sheets and small 
dunes to NE. Height of ridge ~similar 
to other ridges in syncline, surface 
seems to be an old pediment 

        172 17   

        183 25   

35 3.12 23.84035 32.50201 184 37 another ridge of Dakhla. Fairly linear 
and sinuous. 

36 3.15 23.84044 32.50147 165 67 Dips are variable-rotated 
beds(locally) how? Kinks? Drag fold? 
(Dakhla) 

        168 38   

        175 53   
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37 3.16 23.84035 32.49973 184 13 Bedding as best we can tell. Kurkur 
limestone defining the ridge on east 
side of syncline. Dakhla obvious 
thinned stratigraphically on the se 
side of the basin-reverse fault? 

        180 15   

38 3.17 23.83904 32.49855 203 17 in desperation a strike and dip was 
taken on a thin tan-buff shell hash 
limestone, not sure if this is real 
bedding, very thin scruffy low ridge 
cropping up in gravelly wadi within 
basin. 

39 3.18 23.8375 32.49653 027 3 other side of fold, same as tan-buff 
limestone as in 17. Shell hash, again 
a desperate attempt at strike and dip 
as bedding is hard to see 

        345 3-5   
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DR. JOHN HOGAN FIELD NOTES,  

2011-2012 
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  Dr. Hogan 
Data 

        

Stop  Lat/Northing Lon/Easting Strike Dip Notes 

1/1/2012 23.85718 32.50125 183 22 Kurkur Limestone (?), 
weathers buff, light gray with a 
vuggy appearance and 
"spatter"-which may be an 
erosional feature mssu with 
poorly develpoed bedding 

1/1/2012     145 30   

1/1/2012     40 45 (?) 

1/2/2012 23.85705 32.50333 196 20 Low SW dipping continuous 
ridge of fossiliferous light gray 
weathering Limestone (fizzes 
vigourously) broken surface is 
a mottled white, orange-red, 
and fine black lines, possibly 
outlines of shells.-Lots of 
broken shel fragments 
(nearshore?) Kurkur 
Limestone 

1/2/2012     192 23 (shooting across outcrop) 

1/3/2013 23.85692 32.50361     Irregularly bedded calcareous 
sandstone with smooth round-
angular grains-pebbles of 
quarts, chert, and ? Poorly 
sorted. Flaggy weathering -
Could be a much younger 
unit? -Could be an angular 
unconformity and a younger 
fault (less likely) sample taken 

1/4/2012 23.85602 32.50509 142 4 Outcrop defining the 
"horizontal" irregular ridge on 
google earth. Outcrop capped 
by a "mssu" indurated .5m 
thick that is actually very finely 
bedded with local mounds-
when broken open  coarse cc 
can be seen in places but its 
fine sandstone below this unit 
is a more "shaly" in 
appearance unit that is 
argillaceous  fine grained 
sandstone (pebbles  absent) 
weathered surface light gray, 
fresh orange brown, Can have 
vuggy horizons. Photos show 
outcrop and rip up clasts. 
shallow shelf? 

1/5/2012 23.85617 32.50308 186 32 Back of dipping ridge, gray-
buff weathering, orange rusty 
fresh, shell fragments common 
also pebbles, near shore? 
Oyster shell fragments large 5-
6 cm 
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1/6/2012 23.85543 32.50324 142 45 Change in unit, change in 
strike and dip. Well sorted very 
fine grained sandstone, slight 
fizz, iron stain, ripples give a 
chippy appearance to the 
outcrop. Fault splays? Pebble 
sand, oyster bed, fine grained 
sandstone, and pebble sand 
all same unit, near shore, 
interbedded 

1/6/2012     155 39 Trevor 

1/6/2012     130 44 Eman 

1/7/2012 23.8552 32.50332 155 30 "same unit" pebble sand 
above oyster lag, near shore 

1/8/2012 449548 2638021 174 58 Ridge of coarse grained 
pebbly sanstone with round 
and angular fragments, poorly 
sorted. Weathers buff gray, 
dark brow-orange on fresh 
surface 

1/8/2012     180 29   

1/8/2012     186 34   

1/8/2012     174 43   

1/9/2012 23.8528 32.50409 187 30 cross-strike taverse towards 
road, thin ridges cropping out 
of pediment deflation surface. 
Bedding very fine grained well 
indurted well sorted 
sandstone. Gray weathering, 
dark blackish gray fresh, wavy 
chippy bedding.  

1/10/2012 449392 2638019 198 24 Rusty shell fragment limestone 

2/1/2012 449427 2638098 174 24 Ridge of Dakla-must be 
careful as spherodial 
weathering creates a 
secondary fabric that can 
appear as a psuedo bedding 
and when buried is confusing. 
"fibrous" cc occurs with this 
feature 

2/2/2012 23.85245 32.50452 178 27 Dakla ridge interbedded fine 
grained sand pebbly 
sandstone, several cm thick. 
Pebbly sandstone misture of 
shell fragments and rock 
fragments , dark blackish color 
on fresh surface gray on 
weathered. Matrix supported? 
Sample taken. 

2/2/2012     182 17   

2/3/2012 23.85153 32.5029 184 21 Low ridge at edge of valley 
before kurkur limestone ridge, 
light gray orange pebbles , 
shell fragments, fizz. Based on 
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dip slope on weathered rock 

2/4/2012 23.85032 32.50278 180 32 fine grained, well sorted 
sandstone. Buff wethering, 
maroon on fresh surface, well 
indurated, hummocky 
appearance, good bedding. 

2/5/2012 23.8489 32.50306 155 38 small group of outcrops in 
middle of waddi low ridges, 
very thin wavy bedding light 
gray weathering, dark blackish 
brown on fresh surface. Looks 
like a fine grained sandstone 
with a lot of cc cement. 328 43 
cc filled fracture fairly common 
but hard to see blend in 
coarse dark red brown cc. ? 
change in strike, cc-
fractures...fault? close by? 

2/6/2012 23.84805 32.50324 154 34 Continuing along ridge-low fins 
of scattered outcrop all along 
this trend. Fine grained well 
indurated sandstone gray 
weathering, orange brown 
when fresh, lacks the dark cc 
of last stop 

2/7/2012 23.84755 32.50345 157 46 Continuation of same ridge of 
low outcrop, strike seems to 
be slowly rotating, same gray 
buff fine grained sandstone, 
orange brown fresh 

2/8/2012 23.84731 32.50362 130 51 Last bit of outcrop on this 
ridge, flat pavement, thinly 
bedded small wavelength 
cross-bedded sandstone. -
Mapping consistent ridges as 
we are on the edge of a 
hummocky topography where 
mound are "rock" and 
depressions may have held 
water-in this area the strike 
from mound to mound is 
inconsistent so disrupted by 
weathering and fault, or what?  

2/8/2012     123 45   

2/8/2012     134 42 looks to be best 

2/9/2012 23.8476 32.5041 153 74 fine grained well sorted buff 
inside and out sandstone, thin 
beds and small ripples. Small 
ridge in wadi. 

2/9/2012     160 76   
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2/10/2012 23.84655 32.50388 183 30 Low ridge of fine grained gray 
sandstone that is rusty red 
brown on broken surface. Well 
sorted, we indurated, thinly 
bedded on a wavy surface 

2/10/2012     180 32   

2/11/2012 23.84585 32.50461 70 76 Dramatic change in strike 
suggests possible drag fold 
related to displacement along 
a fault which may go through 
the "disrupted" outcrop/mound 
area. Fine grained buff 
sandstone 

2-11a-12 23.84582 32.50447 245 63 fine grained buff sandstone 

2-11b-12 23.84571 32.50434 215 64 fine grained sandstone, dark 
gray inside 

2-11c-12 23.84553 32.50425 190 36 fine grain sandstone, gray 
inside and out 

2/12/2012 449595 2637249     photos of deformation bands. 
Rubly outcrop, flat pavement 
float with deformation bands 
abundant. Fine grained well 
sorted light gray sandstone 
deformation bands have 
cement halos not enough 
outcrop to get a sense of 
shear, sandstone weathers to 
a bumpy surface-cement 
spheroids? -Ridge where we 
had lunch lots of float with 
deformtion bands, however 
finding stuff in place is 
impossible.  

2/13/2012 23.84427 32.5035 176 48 Low ridge of fine grained well 
sorted sandstone with iron 
oxide specs scattered 
throughout, buff weathering 
light orange buff inside 

2/14/2012 23.84467 32.502753 204 33 very low fins of the same fine 
grained sandstone as last 
stop-in middle of wadi all cover 
until kurkur ridge very thin 
bedding planes forms a chippy 
outcrop 

2/15/2012 23.84369 32.50222 198 46 same fine grained sandstone, 
very small exposure 

2/15/2012     205 44 Better 

2/16/2012 23.84344 32.50299 188 63 Med ridge "bumps" of aligned 
outcrop of the fine grained 
sandstone, light gray 
weathering but blackish 
mottled gray fresh surface 
flaggy bedding. 

2/16/2012     195 48   

2/16/2012     190 50   
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2/18/2012 23.84287 32.5035     Finally outcrop with 
deformation bands in place, 
deformation bands seem to be 
confined to this ridge of fine 
grained well sorted sandstone. 
Deformation bands have 
cement halos. Ladders 
suggest sinistral. 295 68 for 
main set, 078 85 for ladder 

2/19/2012 23.84082 32.50362 167 50 Low low ridge of clean 
sandstone. Barely crops out. 
Very fine grained well sorted, 
tan buff inside and out.  

2/19/2012     166 53   

2/20/2012 23.84123 32.50264 196 20 Outcrop along mod size ridge 
mottled black gray sandstone 

2/21/2012 23.84171 32.50124 195 35 Low pavement in wadi fine 
grained well sorted sandstone 
buff to rusty orange 

2/21/2012     183 42   

2/22/2012 23.84031 32.50197 206 16 fine grained well sorted 
sandstone with abundant cc 
cement flaggy wavy bedding 
forms low ridge 

2/22/2012     203 17   

2/23/2012 23.83538 32.50423 143 24 Near seismic line outcrop in 
wadi tough shape fine grained 
sandstone well sorted rusty 
and Mn oxide 

 3-1-12 23.83753 32.49654 280 6 Low outcrop of fossiliferous 
limestone is in syncline 9280 6 
is best estimate as clear 
bedding surfaces are in?) 

3/1/2012     330 10 another estimate, sample 
collected  

3/2/2012 23.83723 32.49847 153 14 Outcrop of buff weathering 
fossiliferous limestone (same 
as 3-1) sub-horizontal dips but 
sag on outcrop. 153 14 taken 
from dip surface 

3/3/2012 23.83924 32.49862 207 25 same limestone measing a 
pavement surface that may or 
may not reflect bedding 

3/3/2012     188 15   

3/3/2012     179 5   

3/3/2012     180 16   

3/4/2012 23.83957 32.49941 171 20 light gray-dirty white 
weathered light brown tan 
fresh fossiliferous limestone, 
171 20 taken from dip slope 

3/5/2012 23.842 32.49894 195 25 low ridge of fossiliferous 
limestone, buff light gray 
weathering light brown inside 

3/5/2012     198 32   
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3/6/2012 23.84203 32.49955 185 20 long ridge of fossiliferous 
limestone (kurkur) 185 20 
taken from well developed flat 
flaggy surface 

3/7/2012 23.83545 32.50012 136 22 (?) best chance for being "in 
place" among rubble (kurkur 
limestone) 

3/7/2012     120 15   

3/8/2012 23.8347 32.50077 155 10 another scruffy kurkur 
limestone outcrop amongst 
rubble, could be weathering 
surface  

3/9/2012 23.83625 32.50034 155 25 kurkur limestone base of ridge 
"shooting" the dip slope in an 
area that may reflect bedding 

3/10/2012 23.83665 32.50184 155 76 thin shark fins in the desert, 
several along strike steeply 
dipping thin wavy bedding well 
indurated, fine grained  well 
sorted brown weathering 
smooth surface orange tan 
brown on fresh surface. 
Sample taken. Second normal 
fault down to the west, steep 
dips from drag on fault, 
younger against older instead 
of out of the syncline thrust 

3/11/2012 23.83581 32.50223 141 60 shark fin red-brown thinly 
bedded fine grained 
sandstone same as 3-10 
cross-cut by cc viens (275 43) 

3/12/2012 23.8354 32.50239 138 83 outcrop of "clean" buff 
sandstone cross-bedded, 
good bedding, right side up, 
sample taken 

3/12/2012     140 88   

3/13/2012 23.83468 32.5027 153 69 shark fin same sandstone 
layer wavy bedding just past 
old seismic survey -Found a 
good fault, looks like bedding 
plane faults with ramps, Trevor 
and Eman working on it 

3/14/2012 23.83219 32.50413 174 22 red-brown flaggy fine grained 
sandstone well indurated 
brown on fresh surface 

3/14/2012     158 36 good bedding, clean 
sandstone, sample taken 

3/15/2012 23.83094 32.50434 172 32 low fins of red brown 
sandstone from last stop 

3/16/2012 23.82884 32.50455 165 6 Low pavement shallow dips -
variable strike, clean light tan 
fine grained sandstone with 
desert varnish 

3/17/2012 23.82838 32.50428 118 18 several thin ridges parallel to 
strike spaced 10's of meters 
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apart, big change in strike 
(cross fault line?) 

3/18/2012 23.82941 32.50363 170 67 low fins of the red brown well 
indurated fine grained 
sandstone looks "cleaved", 
170 67 bedding or cleavage? 
?the fault splay heading up the 
valley, sample takend 

3/19/2012 23.83241 32.50375 165 36 fine, dark gray (fresh) light 
gray weathered sandstone. 
Thick 3cm and thin flaggy 
bedding. Good bedding 

4/1/2012 23.8761 32.49913 197 27 NE corner of structure, edge of 
large gravel fan in wadi. Low 
ridges of the fine grained well 
sorted well indurated thinly 
bedded sandstone. Weathers 
light gray-gray fresh surface, 
over all orange sandstone 

4/1/2012     198 26   

4/2/2012 23.87702 32.49907 177 22 Contact, angular unconformity 
between a well indurated 
conglomerate of sand grains 
and rounded  sub rounded 
clasts supported on top of 
dakla (?) Sandstone (same as 
last stop), conglomerate looks 
horizontal. Small outcrops of 
conglomerate scattered on 
edge of stream cut as well as 
dakla with shallow dips 

4/3/2012 23.84734 32.49638 211 18 low pavement ridges of the 
light tan sandstone fine 
grained well sorted but with 
something weathering out, 2nd 
porostiy thinly bedded 

4/3/2012     185 8   

4/4/2012 23.87502 32.4981 185 20 N end of prominent low ridge 
thinly bedded "slaby" wavy fine 
grained sandstone red brown 
weathering charcoal gray 
inside fine grained well sorted 
well indurated -ridge cut by 
small faults -look to be offsets 
across strike on conjugate 
sets, which in places may 
connect to bedding plane 
parallel faults 

4/5/2012 23.87476 32.49807 186 18 Same unit, good main bedding 
trend 

4/6/2012 23.84345 32.49782 206 21 along dextral offset, trend 
approx 060, good regional 
bedding 

4/7/2012 23.87458 32.49806 199 33 same ridge, locally dips will 
steepen, good bedding -drag 



 

 

93 

on hanging wall of a normal 
fault? 

4/8/2012 23.87385 32.49797 196 37 same ridge, here steppening 
of dips and break drag fold on 
hanging wall normal fault 

4/8/2012     174 18   

4/9/2012 23.87267 32.49757 230 34 good pavement of the clean 
thinly bedded sandstone light 
tan weathered, light brown 
fresh, very fine grained, well 
sorted.collecting data on a 
drag fold (?) units strike at 
high angle to syncline, 
possible fault? 

4/9/2012 23.87272 32.4976 205 20 same outcrop, bedding 
changing 

4/10/2012 23.87375 32.49644 205 30 clean fine grained well sorted 
sandstone, light brown inside 
and out. Good bedding, low 
pavementscruffy outcrop, high 
angle to el kasr 

4/11/2012 23.87401 32.4963 210 34 same stuff as 4-10 last ridge to 
west scruffy outcrop, then 
buried by gravel 

4/12/2012 23.87304 32.49517 120 18 low ridge of kurkur limestone 
has that appearance…on west 
end (shooting the outcrop)  

4/13/2012 23.87262 32.49575 120 22 bumps of kurkur 

4/14/2012 23.87213 32.49565 140 27 low scruffy ridge of kurkur 
limestone, light gray with fresh 
pinkish gray, very fine grained, 
could be bedding 

4/15/2012 23.87144 32.49568 144 22 at slope break thinly bedded 
limestone, chippy weathering, 
light gray light pink gray fresh, 
very fine grained 

4/15/2012     140 21   

4/17/2012 23.86515 32.49775 165 24 low linear ridge of kurkur 
limestone in valley fine grained 
and full of pellets 

4/18/2012 23.8584 32.5041 168 10 flat gravel pavement eroded 
edge light tan and black 
pebbles  with red orange 
brown fresh matrix supported 
matrix very fine grained, looks 
more horizontal overall  

4/19/2012 23.83755 32.50187     gigapan 

4/20/2012 23.83362 32.50179     gigapan 

4/21/2012 23.834856 32.5014     gigapan 

4/22/2012 448523 2636096 298 4 "flat" thinly bedded friable 
clean sandston weathers tan 
same inside 
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    Trevor 
Data 

        

  Stop Northing  Easting Strike Dip Notes 

1 1-1 2638521 449210 183 22 Massive gray limestone. Vuggy, some rust 
stains. Primary structures difficult to find 

1 1-1     145 30   

1 1-1     40 45   

2 1-2 2638489 449426 190 23 Massive, gray, vuggy limestone, fossiliferous. 
Effervesces with HC. Ridge east of road, dips 
toward El Kasr 

3 1-3 2638477 449453 350 18 Small outcropjeast of ridge. Rust colored marl. 
Smooth pebbles abundant, reacts with HCL, 
no fossils. Dips east away from El Kasr. 
Flaggy weathering 

4 1-4 2638377 449603 142 4 Rust colored fine grained sand with 
calcareous cement, laminated, few pebbles, 
no fossils. Apparently continuous with 1-2. 
Interbedded massive layers. Some pebbly 
pieces found with shell fragments 

5 1-5 2638343 449419 166 38 Massive Gray unit. Ridge east of El Kasr. 
Large shel fragments, 7cm 

6 1-6 2638311 449423 155 39 Small ridge. Well sorted, very fine grained, 
sligh fizz with HCL, flaggy. Some Fe rich 
clasts. Sandstone thinly bedded, some ripple 
marks or cross bedding 

7 1-7 2638285 449427 155 30 Ridge east of El Kasr dipping toward El Kasr, 
pebbly marl 

8 1-8 2638021 449548 180 29 Ridge East of El Kasr, flaggy marl 

9 1-9 2637999 449490 188 34 Flaggy ridge marl 

10 1-10 2638019 449392 186 22 rusty marl, pebbles, shell fragments 

11 2-1 2638098 449427 174 24 pebbly marl ridgesare dakla formation. 
Formation exhibits spheroidal weathering that 
may be taken as bedding if not careful 

12 2-2 2637976 449545 182 17 dakla ridge, just above compositional change. 
Dips towards El Kasr dark gray, pebbles, 
some Fe 

13 2-3 2637906 449513 189 49 dakla ridge, south of change in strike 

14 2-4 2637812 449474 214 32 dakla ridge, south of change in strike 

15 2-5 2637741 449368 171 32 Dakla ridge west of ridge at 2-4, East of Road 

16 2-6 2637688 449522 219 13 Ridge East of road. Fine to Very Fine grained, 
well sorted, well cemented, Fe stained. Nearly 
horizontal, may be weathering. Layers seem 
too consistent to be weathering. No pebbles or 
shells 

17 2-7 2637614 449486 205 34 Dakla ridge cut by wadi 

18 2-8 2637575 449479 217 11 low ridge of very fine grained, well sorted, Fe 
stained unit. East of road 
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19 2-9 2637411 449452 130 62 fine grained to very fine grained sandstone 
unit flush with ground surface, does not form 
ridge. Strike and dip difficult to get due to poor 
exposure. Strike of beds appears to change 
from N-S to E-W 

20 2-10 2637430 449518 123 55 Very fine grained, well sorted, well cemented 
sandstone with some Fe stains. Low lying, 
does not form ridges. Some Fe found along 
strike. Strike curves south. 

21 2-11 2637414 449541 148 58 Low lying well sorted very fine grained tan 
sand interbedded with more resistent gray fins 

22 2-12 2637411 449538 140 40 Resistant gray fin within tan sand 

23 2-13 2637363 449605     Hummocky topography outcrops at tops of 
hills show huge variation in strike. Very difficult 
to tell what is in place, hills form small rises 
aprox 1m high. Few larger depressions aprox 
10 m across 

24 2-14 2637353 449583     Last exposure of tan sand before hummocky 
topography approx 7m from hummocks 

25 2-15 2637248 449590     deformation bands present in fine grained gray 
unit. Some in place, some not. Appears to 
trend 175 chalk found a few cm below surface 

26 2-16 2637060 449502     top of ridge. Gray sand. Some dark coarser 
grains present. 

27 2-17 2637070 449520 176 6 East side of ridge from 2-16. Clean tan sand, 
interbedded with Fe. Nearly horizontal 

28 2-18 2637058 449499 181 50 Fins of gray sand at top of ridge. Deformation 
bands abundant, but nothing in place  

29 2-19 2636999 449492     Clean tan sand on side of ridge, nearly 
horizontal 

30 2-20 2636983 449467     deformation bands present on top of ridge. 
None in place though follows general trend of 
152. Bands so far only observed in gray unit. 

31 2-21 2636942 449448 311 86 Deformation bands on top of ridge in gray unit 

32 2-22 2636851 449442 330 82 In place deformation bands in gray unit on top 
of ridge 

33 2-23 2636853 449434 1 39 Clean tan sand on side of ridge. Some Fe 

34 2-24 2636824 449426 151 27 clean tan sandat base of ridge. Strike and Dip 
of layers change 

35 2-25 2636818 449423 190 22 clean tan sand at base of ridge 

36 2-26 2636722 449416 230 43 Clean tan sand. Fresh surface is rusty color. 
Edge of ridge 

37 2-27 2636530 449370 202 16 Gray unit on top of ridge 

38 2-28 2636306 449309 127 21 dark gray unit, very fine grained, Fe inclusions 

39 3-1 2636329 448731 280 6 Small outcrop in drainage, strike and dip 
approx., bedding difficult to find. Fine grained 
shell fragments, Fe 
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40 3-2 2636358 448957 181 17 Small outcrop, appears to be same unit as 3-
1. fine grained, shell fragments, bedding 
difficult to see. Strike and dip approx. 

41 3-3 2636518 448938 174 15 dip of surface, same limestone as 3-1 and 3-2 

42 3-4 2636551 449041     Prominent ridge of highly weathered 
fossiliferous limestone. Bedding impossible to 
find. 

43 3-5 2636465 449218 215 24 small dipping fins of dakla. 3-1 through 3-4 
kurkur formation. Small dakla fins closest to 
kurkur formation 

44 3-6 2636432 449256     offset en-echelon pattern of dakla ridges, 
offset approx 2m 

45 3-7 2636396 449271     apparent right-lateral offset of gray unit within 
dakla. Dark gray fins stand up out of low lying 
clean tan sand. Dark gray unit continuous, 
showing drag of fault. Total offset approx 3m 
152 54, 145 45, 145 49 

46 3-8 2636403 449269 141 65 deformation bands present in dark gray layer 
and clean tan sand. Bands appear to be on 
strike but have different dip than beds 

47 3-9 2636408 449272     distinct right lateral offset of dark gray layer 
within clean tan sand dark gray layer cleanly 
broken and translated 15-75 cm. Faults seem 
to have slightly different orientations.strike and 
dip measurements on offset layer 150 60, 149 
60. trends of "faults" 214, 227 

48 3-10 2636421 449273     right lateral offset of dark gray layer. Layer not 
continuous. Offset approx 2m, trend of fault 
205 

49 3-11 2636421 449273     Offset dark gray, right lateral. Offset approx 
3.5m. Gray layer not continuous. Fault trends 
210 

50 3-12 2636347 449272     Deformation bands present near right lateral 
offset. Deformation bands run along strike of 
displaced gray layer. Deformation bands trend 
151, fault trends 206 

51 3-13 2635838 449426 161 52 Possible normal fault motion along bedding. 
Strike of bedding changes where fault 
transfers to new planes. 

  3-13     179 19   

52 3-14 263589 449422 159 80 Clean tan sand 

53 3-15 2635855 449395 161 52 Clean tan sand 

54 4-1 2640605 449006 162 24 Northeast corner of structure. Small outcrop of 
gently dipping beds. Weathered dark gray, 
fresh surface very fine grained, orange, 
speckled with dark brown. Dakla 
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55 4-2 2640625 449049 171 48 Northeast corner of structure. Steeply dipping 
dakla. Dipping toward structure. Possibly drag 
fold 

56 4-3 2640701 449002     unconformity between very fine grained dakla 
and gravel conglomerate. Dakla dips gently 
west toward structure, conglomerate appears 
to be horizontal. Conglomerate consists of 
pebbles a mm to 10 cm. Grain supported 

57 4-4 2640476 449771     dahkla and conglomerate side by side, though 
nonein place. Ptotentially faulted. 
Conglomerate displays some fabric, possiblye 
bedding. 

58 4-5 2640476 448740     small conglomerate outcrop. Conglomerate 
exhibits fabric resembling bedding. Fabric 
appears to be nearly horizontal. 

59 4-6 2640413 448888 186 29 Northeast corner. Dahkla ridge. Ridge dips 
toward El Kasr, though dips vary. Dips 
steepen suddenly up dip, folds seen down dip, 
forming horse-shoe like structures. Some 
features may be visisble in high-res imagery. 
Structures may form conjugate sets, limbs 
cure toward one another. 

60 4-7 2640380 448888 175 32 Dahkla ridge, down strike of 4-6. Pictures 
show offset of ridge down strike. Pictures 
show fins cutting across bedding and 
changing strike.  

61 4-8 2640387 448889 199 16 Down strike on dahkla ridge. Ridge cut by 
joints, beds steepen across joint. Pictures 
display joints and steepening beds. 

62 4-9 2640277 448856 197 11 Down strike of ridge. Strike of ridge changes, 
wraps around, coming in line with syncline. 

63 4-10 2640272 448852 202 13 Down strike of 4-9 

64 4-11 2640255 448845 186 12 Down strike of 4-10 

65 4-12 2640250 448848 172 19 Down strike of 4-11. Dark gray resistant layers 
interbedded with low lying clean tan sand. 

66 4-13 2640241 448847 175 17 Down strike of 4-12. Farther down strike beds 
curve again to a high angle with syncline. 
Pictures show changes in strike, conjugate 
sets, joints and bedding, beds approaching 
syncline at high angle.  

67 4-14 2640041 448847 12 20 Kurkur highly weathered gray limestone. No 
visible bedding, but unit appears to be nearly 
horizontal. 

68 4-15 2640037 448845     Near base of ridge, slightly higher 
topographically from 4-14. Fins that appear to 
be Dahkla. Possible contact between Dahkla 
nad Kurkur. In place kurkur present above, but 
no dahkla 
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69 4-16 2639948 448758 162 12 Small kurkur outcrop at base of outcrop at 
base of ridge some layering perhaps bedding 
or weathering.  

70 4-17 2639936 448721 151 18 Side of ridge, thinly bedded limestone 

71 4-18 2639736 448431     Sample taken from within structure 

72 4-19 2639421 448915 169 30 Small low lying ridge east of structure. 
Bedding difficult to find. Surface may be 
weathering 

73 4-20 2638695 449426 125 10 East of structure. Gently dipping rust colored 
limestone.  
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APPENDIX E. 

 

CHARACTERISITICS OF STRUCTURES 

ALONG THE GEBEL EL-BARQA FAULT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

101 

 

 

Table 3. Characteristics of Structures found along the Gebel El-Baqa Fault 
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APPENDIX F. 

 

CALCULATION OF DISPLACEMENT ACROSS  

THE GEBEL EL-BARQA FAULT 
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       The Dahkla/Kurkur contact was mapped along scarp of the Sinn El-Kaddab 

Plateau on Google Earth using maps as a reference (Conoco, 1981). Control points were 

then used to collect elevation data and calculate the orientation of the contact. The strike 

and dip of the contact was found to be 209/<1. Structural contours were then projected 

over the El Kasr and the elevation difference was calculated.  
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