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ABSTRACT

This problem is concerned with the temperature history of
a semi-infinite solid bounded by one flat surface.

Heat was applied by convection from a hot fluid to the flat
surface of the solid which was originally at a uniform temperature.
Heat was radiated from the flat surface to black space and conducted
into the solid according to Fourier's law. The temperature at the
surface, and at several points beneath the surface, was determined
as a function of time.

A method for solution of such a problem is demonstrated here
by the use of numerical analysis and the Royal McBee LGP 30 Digital
Computer. The solution is applicable to all similar problems.

The result demonstrates that radiation from the flat surface
of the solid is very important because it results in depressing the
surface temperature far below that of the hot fluid in contact with

its one surface.
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I. INTRODUCTION

The heating of a semi-infinite solid may be accomplished in a
number of ways. For example, the solid may be heated by radiation,
by convection, or by conduction through contact with another solid.
If the application of heat is uniform on all the surface and if the
solid is homogeneous, the heat flow within the solid will be one
dimensional and normal to the surface of the solid.

In the case of most heat conduction problems, the temperature
rather than the heat flux specifies the boundary conditions for the
differential equations dictated by Fourier*s law for the conduction
of heat in solids.

It has been demonstrated by other graduate students of the
Mechanical Engineering Department of this school that with proper
technique, numerical methods and the digital computer are a powerful
combination for solving such problems. An excellent example of this
combination is shown in a thesis by B. W. Marshall (1). In his paper
the numerical solution was obtained by using the digital computer in
conjunction with a method of numerical analysis. That author's problem
was similar to this one, with the main difference being that he con-
sidered a plate of finite width, whereas the plate under consideration
here is of infinite width.

The types of heat flux considered here were radiation, con-
vection and conduction. Figure 1 shows the direction of flow assumed
for each mode of heat transfer. The solid was considered to be heated
by convection, while the surface was cooled by radiation. Internal

heat transfer was accomplished by conduction.



Figure 1« Types of heat flow, and their direction.

The problem to be investigated in this thesis was to determine
temperature distribution within the solid as a function of both time,
and distance from the surface. This temperature distribution will
show the effect of radiation as a means of controlling the surface

temperature and the temperature of various internal points.



11. REVIEW OF LITERATURE

The analytical approach to temperature variation in a semi-
infinite solid as a function of time may be found in most advanced
heat transfer texts. Schneider (2), Kern (3)» and Jakob (4) all
have a sampling of this type of problem. However, none of the above
mentioned authors have considered radiation in these problems.

Some papers written by graduate students of the Mechanical
Engineering Department of this school have investigated radiation,
but have done so with a finite solid. Notable among these is a
paper done by B. W. Marshall (1).

The lack of study concerning radiation in high temperature
cooling is also apparent in the space technology field. An article
by R. Hawkes (8) in a journal from that field indicates that after
12 years of rocket engine research, Rocketdyne* is now testing an
engine with the combustion chamber and esqgpansion cone cooled only
by radiation. Rocketdyne engineers now state the radiation cooling
would be more effective in space than in the laboratory. It is true
that there may be as much as 3 percent heat rejection by conduction
and convection to the atmosphere in ground tests, but the effective-
ness of the radiation process is hindered by the high energy ” back
pressure” of the atmosphere. The back pressure referred to here is
the re-radiation of heat back to the engine from the atmosphere
surrounding it. It was with this in mind that the author of this

thesis chose to radiate heat from the surface of the steel plate

* Rocketdyne, division of North American Aviation, Inc.



to so-called black space.

A treatment is presented by Jakob (*O concerning radiation and
absorption by gases. Since Jakob’s article is on a simp3i.fied level,
the solution and explanation of the phenomena of radiation and ab-

sorption by gases is still largely a matter of conjecture.



I11. DISCUSSION

The determination of the transient temperature within a semi-
infinite solid of uniform properties and initially at a uniform
temperature, while recieving and radiating heat at its one surface,

requires the solution of the well Fourier*s general equation

where t is temperature, & is time, x is distance, and c, k, and P are
the specific heat, thermal conductivity, and density respectively.

There are solutions to this equation which meet certain boundary con-

ditions. However, there are no exact solutions known to the author which

meet the boundary conditions peculiar to this problem.

The conditions involving an infinite length, x, and an infinite
time,#, are the contributing factors to the author*s inability to
arrive at an exact solution. There are, of course, solutions to
differential equations involving an infinite distance or infinite
time. However, in combination with the conditions of this problem,
the most generally used and taught method (Separation of Variables)
will fail to yield an exact solution, as is demonstrated herein.

The conditions for this problem will allow two boundary
conditions to become immediately apparent. The initial temperature

throughout the plate was 100°F, defining the first boundary condition

as



7fUjG) r A", rtAere 0 -07 X Nee
or
7?7o0; =/00 ,
The fact that the temperature of the plate will ultimately become
stable and uniform throughout will cause the second condition to be
cJx

or, at the surface where x = 0,

a x = (2)

It should be noted that from this second equation, (2), the
ultimate temperature can be predicted* Since there is no net heat
exchange at the surface of the plate when the condition of stability
is finally reached, there exists a heat balance between the convective
flow into the face and the radiative flow from the face. This balance

is

(3)



Since h, (f ,£, and t$ are known, tw may be found algebraically as
1570° F.

In applying the Separation of Variables Method of solution,
the main assumption is that the solution of equation (1) can be
written in a "product form", i.e. a function of x multiplied by

a function of & , or

T roX(%) *

This assumption is justified by the fact that it will yield
solutions to a wide variety of engineering problems.

Substituting this form of the function T into equation (I)

yields

where the prime notation indicates differentiation of that particular
function with respect to the only variable present. Since each side

of the last expression is independent of the other variable, their
common value cannot be a function of either x or & 9 and must therefore

be a constant, say X 9 such that

or

*0 , X"-\I.sO



The constant X roay have only three possible ranges or values:
greater than O, exactly equal to O, or less than O.

If the value of the constant is to be greater than Of the
solutions of 3T£Xx = 0 are exponential in the variable x,
implying that the temperature will rise exponentially as the distance
X increases, which is physically unreasonable , considering the
conditions of this problem*

I f the value of the constant is less than 0, the solutions

of xtfG = 0 will yield

This implies that as time O becomes infinite, the function
approaches 0, causing the product solution to approach 0* Since it
is apparent that the temperature will not approach O after consider-
able time, this solution must also be rejected*

The remaining case is that of X =0 ® Using this value, we

will find the solutions
@c<s>)-A

Again, as the distance x becomes infinite, the product of the linear
function and the constant must also approach infinity* This is again
clearly not in agreement with the conditions of the problem*

Thus it is shown that the Method of Separation of Variables

has failed to yield an exact solution due to the conditions of this



problem, A numerical solution method of Dusinberre (5) and others,
is found to be satisfactory, which the author now shows.
Conduction through the solid is defined by the Fourier conduction

equation

-Ka ifft W

where is the amount of heat flowing per unit time, A is the area
normal to the direction of the flow of the heat, and k is the pro-
portionality factor called the thermal conductivity. As applied to

this problem, equation (4) takes the form

% * -A -j- »

where L is the length of the flow path from point 2 to point 1, and
$ and are the temperatures of points 2 and 1 respectively.

In order to determine an expression for the convective heat flow
from a gas to a solid in contact with the gas at the solid*s surface,
the author applied the general linear solution of the Fourier expression
(4). In this process of heat transfer, the resistance to heat flow is
generally confined to a thin layer immediately adjacent to the wall
surface, and as a result, the temperature gradient is usually limited
to this same layer called the boundary layer. This thin layer conducts
heat from the wall to the main body of the gas. The thickness of this
layer shall be designated as so that it replaces its equivalent

L in the application of the equation. The conductivity of the gas
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now becomes k”, and the temperatures t~ and t* now become tW and tgg
respectively.

Thus we have
« = (Vo- t,,)

where A represents the cross-sectional area of the flow path.
Owing to the difficulty of interpreting and measuring an effect-
ive film thickness, it is the usual practice to combine the quotient
As into a single property h, and therewith express the general

&9
boundary heat exchange as simply

(6)

Radiation from the solid is governed by the Stefan-Boltzmann

radiation equation

2 *fee, (7)

in which € is the emmissivity of the surface, and <T is the Stefan-
Boltzmann constant.

Equations (5)9 (6), and (7)» when summed, represent the net heat
flow responsible for a change in the internal energy at any point after
time O f according to the law of conservation of energy. This change

of internal energy is defined as;
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(8)

where c is the specific heat, wis the weight density, v is the
volume of the node, A& is the time increment, and t™* represents
the temperature of point 1 after the time increment has elapsed.

Therefore, the heat balance equation is

hAOg-ty Ao PGRft>) m (9)

Figure 2. Division of Plate into nodes.

As it is seen from Figure 2, the surface area, A, normal to the
path of flow is 8 x / * 8 and the length of the flow path from
point 1 to point 2 is

Substituting these into equation (9), we have

1) - & “A)

and simplifying
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t*+-1) = (t'~o . (10)

By defining Nusselts Number as ~$ and the quantity called

thermal diffusiveity as oC = C/— , thé substitution of these is now
w

made into equation (10) so that

Again, from Figure 2, it is seen that the volume of the node is

_ _ S
i/ =«f — * 1 - *

Substituting this into equation (11), we have

K LLf (12)

Defining further the Fourier Modulus as

VvV a As

= - J r
and applying this to (12)

Alc ft*+te-tj = ,

&>AlU Ct9o - t**=t-< (13)
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Solving (13) for .

tf+2z& Cti-t.)+t =1t

t-2 * > [ * / u t 9+ 12 +g f3A/«)I # (14)

If the First Law of Thermodynamics is not to be violated, then
the coefficient of t» has to be greater than, or at least equal to,

zero. In equation form, this is
(<6>~1~ 3au—0 - (15

Solving equation (15) for the Fourier Modulus »

1 A
N~ $r3-0 ~  ZAtii+Rt,3-)<) 0 6)

This equation represents a limiting value of the Fourier Modulus
in order to stay within the requirements of the First Law of Thermo-
dynamics.

The values of the constants used were now selected in order to

solve (16) for its limiting value. The selected constants, and their

corresponding references, are as follows:

A* [Z + BTU/Hr Fr 6>
/= 488.0 U, / FcS (6)
A » SO.OBTU/tlr Fex T (7)
e * 0.75 (7)

¢c=0.11BTU/Lk "F )
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The initial uniform temperature of the solid was 100°F and the temp-
erature of the gas at the surface was 2000°F. Having selected the
distance between nodal points as S = 0.5 inches (Figure 2), the
limiting value of the Fourier Modulus was now calculated.

Applying the values of the constants to (16)# we have

2 /Z4- _
« 75x-*7/3 */0'** 560*J =

Z4 N

Therefore, the maximum value of & is 0*426 < The nearest fraction
to this which will give a simple solution to the internal equations
without exceeding 0.426, is 1/3* This was chosen so that the internal
conduction equations would have as simple a numerical form as possible,
as is shown later. Having established this value, the author now
solved for the time increment™” according to the definition

c(AG & Ctrd

AS - A (17)

Solving equation (17) yields

AG - *025 Ar =

Therefore the time increment for successive calculations is 1.5

minutes



15

Figure 3. Structure of nodes

Having determined the equation for the surface temperatures
and the limiting value of the Fourier Modulus,”® , the author began
the final step, that of determining a numerical relationship between
successive internal temperatures, governed by the value of the Fourier
Modulus. If it is assumed, as in Figure 3t that the solid is composed
of nodes joined by conducting rods, each with a uniform conductivity

of "k", then it can be stated that the heat flow between nodes is

= - k dt . (18)

As before, if S is chosen sufficiently small, then the heat flow
can be expressed as the finite difference -/fdZTwhere At is the
temperature difference between adjacent nodal points. Therefore, the

total heat conducted in the time increment AS is

- MAdt A& . (19)
Q

As described in equation (8), the change in internal conditions is

given by
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Ccwyv) <Jt t

or expressed as a finite difference,

(20)
where At' refers to (t~# - t7), b©inS the temperature after the
time increment has elapsed# Then in terms of finite differences, we
have the heat balance

£ KttAO= Cvw At' (21)

If the nodes in Figure 3 sere now considered, equation (21) will now

take the form

(22)

Since this is a one dimensional network based on the conducting area

/) - £ *JL , then
AW / = k f-k
In the surface equation derivation, it was shown that c(-= GAW
_ Of 4O
and *Oi ~ —-gt—  # These substitutions along with the coefficient k

can now be made into equation (22) to give

t|"‘ +t3+ t, (23)



17

Having defined the Fourier Modulus for this problem as /3t

equation (23) will now yield
{ £3 +e £3 + £*
& (24)

Having found the equations for the surface temperature, and for
the internal points for successive time intervals, the actual comput-
ations began. The Flow Chart for the computation of the problem is
found on page 26, and the program for the Royal MeBee LGP 30 Computer
is found on page 25*

It is well known that numerical solutions of partial differential
equations are subject to several different types of error. The first
of these is truncation error, which is due to the use of finite sub-
divisions. Naturally, as these subdivisions become smaller and
smaller, the numerical results approach the corresponding exact values
more and more closely. This is refered to as the convergence of the
numerical system. A second kind of error, known as the numerical
error, is often thought of as consisting mainly of so-called "round-
off” errors. Thus if it were possible to carry along an infinite
number of decimal places in the calculations, there would be no
numerical error. The way in which numerical errors grow or decay
with time is though of as the stability of the difference equation.
With regard to convergence, it is shown in Schneider (2) that the

largest value of the internal modulus, , for which con-
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vergenee will be guaranteed is i* This same maximum value also can be
used as the criterion for guaranteeing stability. The value chosen iIn
this thesis for , is 1I/3» which is safely within the limits, so

that convergence and stability are both guaranteed#
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TABLE 1

Temperature, °F, at distance from surface

TIKE. MIN. o" 1 2" 3"
0.0 100.00 100.00 100.00 100.00
3.0 359.88 100.00 100.00 100.00
6.0 456.52 144.6" 100.00 100.00
9.0 521.98 189.69 106.71 100.00
12.0 573.29 231.69 118.90 100.94

15.0 615.98 270.25 134.40 103.55
18.0 652.70 305.61 151.74 107.91
21.0 684.99 338.14 170.00 113.82
27.0 713.83 368.21 188.64 121.01
27-0 739.91 396.14 207.31 129.23
30.0 763.72 422.18 225.80 138.23
33.0 785.61 446.57 243.98 147.84
36.0 805.87 469.78 261.77 157.90
39.0 824.73 491.09 279.14 168.28
42.0 842.36 511.51 296.04 178.89
45.0 858.90 530.87 312.49 189.65
48.0 874.48 549.26 328.47 200.48
51.0 889.20 566.77 454.99 311.45
54.0 903.14 583.47 359.07 222.21
57.0 916.38 599.70 373.71 233.03
60.0 928.97 614.72 387.94 243.78
90.0 1029.12 739.12 510.56 344.77

120.0 1099.57 829.34 605.45 431.68
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TABLE 1 (ContfdO

Temperature, °F, at distance from surface

TIME* MIN. 5" 6" 7"

0.0 100.00 100.00 100.00 100.00
15.0 100.12 100.00 100.00 100.00
18.0 100.61 100.01 100.00 100.00
21.0 101.65 100.10 100.00 100.00
24.0 103.34 100.32 100.01 100.00
27.0 105.70 100.74 100.05 100.00
30.0 108.71 101.42 100.15 100.01
33.0 112.34 102.38 100.33 100.03
36.0 116.53 103.66 100.61 100.07
39-0 121.22 105.26 101.01 100.14
42.0 126.35 107.17 101.55 100.26
45.0 131.87 109.39 102.25 100.45
48.0 137.71 111.91 103.12 100.66
51.0 113.8" 114.17 104.15 100.97
54.0 150.21 117.78 105.36 101.36
57.0 156.74 121.08 106.7~ 101.84
60.0 163.52 124.62 108.29 102.40
90.0 235.02 168.60 131.98 113.62

120.0 305.51 219.92 165.75 133.79
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r/. CONCLUSIONS

Curve No. 1 shows one very important fact, which is that the
surface temperature is only going to reach 70 to 75 percent of the
temperature of the hot gas to which it is exposed. Under similar
circumstances, a problem like this one, but without radiation
accounted for, would show a surface temperature very nearly as great
as the gas temperature. Even in this problem the coefficient of surface
conductance was chosen to be high so that a great amount of heat could
be put into the surface. Yet, as the surface temperature passed 500°F
it may be seen that the radiation factor became significantly large,
and began to approach in value, that of the heat input. The radiation
outflow of heat became an insulator which, after the first hour,
allowed only a small net amount of heat to flow into the plate.

As it was stated in the introduction, equation (3) may be solved
for the ultimate surface temperature of the solid. Inserting in
equation (3) the values chosen for this problem yields a temperature
of 1570°F at a time of infinity. This would be the temperature computed
by this numerical solution if the computer had been allowed to run for
an infinite time. The surface temperature curve on Curve No. 1 would,
if extrapolated, approach asymptotically this ultimate temperature.

This small amount of net heat flow into the plate is the reason
that points more distant from the surface do not have a larger tem-
perature gain in the time intervals beyond 60 minutes. The conductivity
used for this steel is not especially high, which also contributes to

holding down the internal (beyond 3 in.) temperatures.
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As it was pointed out previously, the insulator effect of the
radiation from the surface is a very important factor in space problems,
particularly in problems of ultra-high speed flight in the near-space
region of the atmosphere* In both of these cases the radiation into
a void from the body is an important factor in maintaining the proper
temperatures, both from a strength standpoint as well as from the
standpoint of the operating temperatures for the many components
involved. In the field of manned space vehicles, it is obvious how
great the need is for a controlled environment.

It can safely be said that the radiation factor is of great
importance to this problem, as was borne out by the temperature

curves.



V. APPENDIX A

PROGRAM FOR LGP 30 COMPUTER

;0006000*/0000000*

r 6300 *u0400+h4000-1c0128 *110002* 160000 b4012* 1h4400+
1z6006»b4016»>m4010*d4014*h4034*b4022*d4014*m40 26*
m4010*d4008*h4028*b4002*a4010*h4046*b4012~ 4010*14048*
b4012* a4000 *h4052* 2c01 28*210002* 2e0000 «2b4400» 2a4402* 224404
d4006 *2h5000 *s4052* t 6058* 2x6039+ b4006 *a4004*m4008 *
a4012*a401 2*a4l 02*h4056 *b4400 «a4056 *h4060*b40 28*d4014*
ra4060 *m4o60 *h4036* b4002* d4032* s4036» s4034* s4002, m4060 *
a4402* a4056*h4038* b4034*m4024» a4038*m4032*h4050 *b4044*a4046
h4044*ra0000 *b4404*z4010 *dO000*s40 56 *z000 2 f dOO0O *

1c0128* 110002 * 10000 3c0004* 310002* 320000 * 1b500021h4402»
s4052*r61 44* 1b5000 »+z0002tdO000* 1z61 38* 3261 30 *mMO000 *dOOO0 »
dOOO0 »ubl 28 *b4050 *s40 56 *h4400 *m0O000 *u60 36 *

. 00060000+

2**05-M” 2" 3*M2’,5,+01-»100,,124,+01-»50 e
11 '+02- ***60»750 " '+0 3- *2460 «173*+11-o f =



APPENDIX B.
fLOW ChiIART

Hu,
compute:
1
COMPUTE: *x
| res

Print: ti, *V, IV, *Ar.

5
A/? "aecuU*ac
SURRIC/Mrf,

R,®»

y*s

26
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