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ABSTRACT

This problem is  concerned w ith  the tem perature h is to ry  o f  

a s e m i- in f in it e  s o l id  bounded by one f l a t  su rfa ce .

Heat was app lied  by convection  from a hot f lu id  to  the f l a t  

su rface o f  the s o l id  which was o r ig in a l ly  a t a uniform tem perature. 

Heat was rad ia ted  from the f l a t  su rface to  b lack space and conducted 

in to  the s o l id  accord ing to  F o u r ie r 's  law . The temperature a t  the 

su rfa ce , and a t s e ve ra l p o in ts  beneath the su rfa ce , was determined 

as a fu n ction  o f  tim e.

A method fo r  so lu tio n  o f  such a problem is  demonstrated here 

by the use o f  numerical a n a lys is  and the Royal McBee LGP 30 D ig ita l  

Computer. The so lu tion  is  a p p lica b le  to a l l  s im ila r  problem s.

The r e s u lt  demonstrates th a t ra d ia t io n  from the f l a t  su rface 

o f  the s o lid  is  ve ry  im portant because i t  r e s u lts  in  depressing the 

su rface temperature fa r  below th a t o f  the hot f lu id  in  contact w ith

i t s  one su rfa ce .
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I .  INTRODUCTION

The heating o f  a sem i-in fin ite  so lid  may be accomplished in a 

number o f ways. For example, the so lid  may be heated by radiation, 

by convection, or by conduction through contact with another so lid .

I f  the application o f heat is  uniform on a l l  the surface and i f  the 

so lid  is  homogeneous, the heat flow within the so lid  w i l l  be one 

dimensional and normal to the surface o f the so lid .

In the case o f most heat conduction problems, the temperature 

rather than the heat flu x  specifies the boundary conditions for the 

d iffe ren t ia l equations dictated by Fourier*s law for the conduction 

of heat in so lid s .

I t  has been demonstrated by other graduate students o f the 

Mechanical Engineering Department o f th is school that with proper 

technique, numerical methods and the d ig ita l computer are a powerful 

combination fo r solving such problems. An excellent example of this  

combination is  shown in a thesis by B. W. Marshall (1 ) .  In his paper 

the numerical solution was obtained by using the d ig ita l computer in  

conjunction with a method o f numerical analysis. That author's problem 

was sim ilar to this one, with the main difference being that he con­

sidered a p late o f f in ite  width, whereas the p late under consideration  

here is  o f in fin ite  width.

The types o f  heat f lu x  considered here were radiation , con­

vection and conduction. Figure 1 shows the direction o f flow  assumed 

fo r  each mode o f heat transfer. The so lid  was considered to be heated 

by convection, while the surface was cooled by radiation. Internal 

heat transfer was accomplished by conduction.
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Figure 1 • Types o f heat flow , and their d irection .

The problem to be investigated in  this thesis was to determine 

temperature distribution  within the so lid  as a function of both time, 

and distance from the surface. This temperature d istribution  w i l l  

show the e ffec t o f radiation  as a means o f controlling the surface 

temperature and the temperature o f various internal points.
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I I .  REVIEW OF LITERATURE

The analytical approach to temperature variation  in a semi- 

in fin ite  so lid  as a function o f time may be found in  most advanced 

heat transfer texts. Schneider (2 ) ,  Kern (3 )»  and Jakob (4 ) a l l  

have a sampling o f this type o f problem. However, none o f the above 

mentioned authors have considered radiation in  these problems.

Some papers written by graduate students o f the Mechanical 

Engineering Department o f this school have investigated radiation , 

but have done so with a f in ite  so lid . Notable among these is  a 

paper done by B. W. Marshall (1 ) .

The lack o f study concerning radiation  in  high temperature 

cooling is  also apparent in  the space technology f ie ld . An a rt ic le  

by R. Hawkes ( 8) in  a journal from that f ie ld  indicates that a fter  

12 years o f rocket engine research, Rocketdyne* i s  now testing an 

engine with the combustion chamber and esqpansion cone cooled only 

by rad iation . Rocketdyne engineers now state the radiation cooling  

would be more e ffective  in  space than in  the laboratory. I t  is  true 

that there may be as much as 3 percent heat re jection  by conduction 

and convection to the atmosphere in ground tests , but the e ffective ­

ness o f  the radiation process is  hindered by the high energy ” back 

pressure” o f the atmosphere. The back pressure referred to here is  

the re -rad iation  o f heat back to the engine from the atmosphere 

surrounding i t .  I t  was with this in  mind that the author o f  this 

thesis chose to radiate heat from the surface o f the stee l plate

* Rocketdyne, d iv ision  o f North American Aviation, Inc.



to so -called  black space.

A treatment i s  presented by Jakob (*0 concerning radiation and 

absorption by gases. Since Jakob’ s a rt ic le  is  on a simp3i.fied leve l, 

the solution and explanation of the phenomena o f radiation and ab­

sorption by gases is  s t i l l  large ly  a matter of conjecture.
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I I I .  DISCUSSION

The determination o f the transient temperature within a semi­

in fin ite  so lid  o f uniform properties and in it ia l ly  at a uniform 

temperature, while recieving and radiating heat at its  one surface, 

requires the solution of the w e ll Fourier*s general equation

where t  is  temperature, &  is  time, x is  distance, and c, k, and P  are 

the specific  heat, thermal conductivity, and density respectively.

There are solutions to this equation which meet certain boundary con­

d itions. However, there are no exact solutions known to the author which 

meet the boundary conditions pecu liar to this problem.

The conditions involving an in fin ite  length, x, and an in fin ite  

t im e ,# , are the contributing factors to the author*s in ab ility  to 

arrive at an exact solution. There are, of course, solutions to 

d iffe ren t ia l equations involving an in fin ite  distance or in fin ite  

time. However, in combination with the conditions of this problem, 

the most generally used and taught method (Separation of Variables) 

w i l l  f a i l  to y ie ld  an exact solution, as is  demonstrated herein.

The conditions fo r this problem w i l l  allow  two boundary 

conditions to become immediately apparent. The in it ia l  temperature 

throughout the plate was 100°F, defining the f i r s t  boundary condition as
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7 f U jG )  r A '  ,  rtAere 0 - 0 7 x  ^ ° °

or

7 ? ^ o ; = / o o  ,

The fact that the temperature o f the p late w i l l  ultimately become 

stable and uniform throughout w i l l  cause the second condition to be

I t  should be noted that from this second equation, (2 ) ,  the 

ultimate temperature can be predicted* Since there is  no net heat 

exchange at the surface o f the p late when the condition o f s ta b ility  

is  f in a l ly  reached, there exists a heat balance between the convective 

flow into the face and the radiative flow from the face. This balance 

is

cJ x

or, at the surface where x = 0 ,

a x  = (2)

(3 )
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Since h, (f , £ , and t$ are known, tw  may be found a lgeb ra ica lly  as 

15^0° F.

In applying the Separation o f Variables Method of solution, 

the main assumption is  that the solution o f equation ( 1 ) can be 

written in a "product form", i . e .  a function o f x m ultiplied by 

a function o f &  , or

T r X (% ) * .

This assumption is  ju s t if ie d  by the fact that i t  w i l l  y ie ld  

solutions to a wide variety  o f engineering problems.

Substituting this form o f the function T into equation ( l )  

yields

where the prime notation indicates d iffe ren tia tion  o f that particu lar  

function with respect to the only variab le  present. Since each side  

o f the la s t  expression is  independent o f the other va riab le , their  

common value cannot be a function o f either x or &  9 and must therefore  

be a constant, say X  9 such that

or

* 0  , X " - \ I . sO
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The constant X  roay have only three possib le  ranges or values:

greater than 0, exactly equal to 0, o r le s s  than 0.

I f  the value of the constant is  to be greater than 0f the 
//

solutions o f  3T—X x  =  O  are exponential in  the variab le  x, 

implying that the temperature w i l l  r is e  exponentially as the distance 

x increases, which is  physica lly  unreasonable , considering the 

conditions o f th is  problem*

I f  the value o f the constant i s  less  than 0, the solutions  

o f x t f G  =  O  w i l l  y ie ld

approaches 0, causing the product solution  to approach 0* Since i t  

i s  apparent that the temperature w i l l  not approach 0 a fte r  consider­

able time, th is solution must also be rejected*

The remaining case i s  that o f X  = O  ® Using this value, we 

w i l l  find the solutions

Again, as the distance x becomes in f in it e ,  the product o f the lin ea r  

function and the constant must a lso  approach in fin ity *  This i s  again  

c lea rly  not in  agreement with the conditions o f the problem*

This im plies that as time O  becomes in f in it e ,  the function

@c<s>)-A

Thus i t  i s  shown that the Method o f  Separation o f Variab les  

has fa ile d  to y ield  an exact so lution  due to the conditions o f  th is
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problem, A numerical solution method o f  Dusinberre (5 ) and others, 

i s  found to be satis factory , which the author now shows.

Conduction through the so lid  is  defined by the Fourier conduction 

equation

-K a  ifft w

where i s  the amount o f  heat flow ing per un it time, A i s  the area 

normal to the d irection  o f the flow  o f  the heat, and k is  the pro­

portion a lity  factor called  the thermal conductivity. As applied to 

this problem, equation (4 ) takes the form

%  *  - A - j -  »

where L  is  the length o f the flow  path from point 2 to point 1 , and 

$ and are the temperatures o f points 2 and 1  respectively .

In order to determine an expression fo r  the convective heat flow  

from a gas to a so lid  in contact with the gas at the so lid *s  surface, 

the author applied the general l in e a r  so lution  o f the Fourier expression  

(4 ) .  In  this process o f heat tran sfer, the resistance to heat flow  is  

generally confined to a thin lay er immediately adjacent to the w a ll 

surface, and as a re su lt , the temperature gradient is  usually  lim ited  

to th is same layer called  the boundary lay e r . This thin layer conducts 

heat from the w a ll to the main body o f the gas. The thickness o f  th is  

layer sh a ll be designated as so that i t  replaces i t s  equivalent 

L in  the application o f the equation. The conductivity o f  the gas
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now becomes k^, and the temperatures 

respective ly .

Thus we have

t^ and t^ now become t w and t
g9

« = (Vo - t„)
2 h

where A represents the cross-sectional area o f  the flow  path.

Owing to the d if f ic u lty  o f in terpreting and measuring an e f fe c t ­

iv e  film  thickness, i t  is  the usual practice to combine the quotient

As

&9
in to a single property h, and therewith express the general

boundary heat exchange as simply

(6)

Radiation from the so lid  is  governed by the Stefan-Boltzmann 

radiation equation

2 * fe e  ,  (7)

in  which € is  the emmissivity o f  the surface, and <T is  the Stefan- 

Boltzmann constant.

Equations (5) 9 ( 6) ,  and (7 )»  when summed, represent the net heat 

flow responsible fo r  a change in  the in ternal energy at any point a fte r  

time O  f according to the law o f conservation o f  energy. This change 

o f in terna l energy is  defined as;
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C r t V
~lTo f t ,  - i , )

(8 )

where c is  the spec ific  heat, w i s  the weight density, v is  the 

volume o f the node, A &  i s  the time increment, and t^* represents 

the temperature o f point 1 a fte r  the time increment has elapsed. 

Therefore, the heat balance equation is

h A O g - t y  Ztt+Kifc-i.)*Cjfifrt,'-**) ■ (9 )

Figure 2. D ivision  o f P late into nodes.

As i t  is  seen from Figure 2, the surface area, A, normal to the 

path o f flow  is  8 x / * 8  and the length o f the flow  path from 

point 1 to point 2 i s  ^

Substituting these into equation (9 ) ,  we have

1 )  -  >€> - A )  ,
o

and sim plifying
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f  t * +  - 1 )  = ( t ' ~ o  . ( 10)

By defin ing  Nusselts Number as ^ $  and the quantity ca lled

/  /thermal d if fu s iv e ity  as oC = -—  , the substitu tion  o f  these i s  now
c w

made into equation ( 10 ) so that

Again, from Figure 2, i t  i s  seen that the volume o f  the node i s

i / = « f —  * 1  = *
_ s

Substitu ting th is  into equation (1 1 ), we have

K  L L f ( 12)

Defining fu rther the Fourier Modulus as

vv a  As
= - j r

and applying th is to ( 1 2 )

A/ic f t * +t e -t j  = ,

&>AIU Ct9-o  -  t, * * = t -  < (13)
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Solving (13) fo r •

t f + z & C t i - t . ) + t  =  t '

t- 2 * > [ * / u t 9  +  t2  +  g  f 3- A / « ) J  # (14)

I f  the F ir s t  Law o f Thermodynamics i s  not to be v io la ted , then 

the coe ffic ien t o f t^ has to be greater than, or a t  le a s t  equal to, 

zero. In  equation form, th is is

(z<6> ~1~ 3- a/u)  — 0 - ( 15)

Solving equation (15) fo r  the Fourier Modulus ^  ,

____1________  _  _______ A
^  ~ $r3+0 ~ Z(Atii+Rt,3i-)<) O 6)

This equation represents a lim itin g  value o f  the Fourier Modulus 

in  order to stay within the requirements o f the F ir s t  Law o f Thermo­

dynamics.

The values o f the constants used were now se lected  in  order to 

solve (16) fo r  i t s  lim itin g  va lue. The selected constants, and th e ir  

corresponding references, are as fo llo w s :

A* /Z.+ BTU/Hr Fr <6>

*/ = 4 8 8 . 0  U, / F c S (6 )

A »  SO.O BTU/tlr Ft* T  (7)

e  *  0 . 7 5  (7 )

c  = 0 .1 1  B T U / L k  "F  (7)



14

The in i t i a l  uniform temperature o f  the so lid  was 100°F and the temp­

erature o f the gas at the surface was 2000°F. Having selected the 

distance between nodal points as S  = 0 .5  inches (F igure 2 ), the 

lim itin g  value o f  the Fourier Modulus was now calcu lated .

Applying the values o f  the constants to (1 6 )# we have

&  « ________________/ Z 4 -
.75x-*7/3 * /O '** 560*

Z 4 -J =  .

Therefore, the maximum value o f  &  i s  0*426 • The nearest frac tion  

to th is  which w i l l  give a simple so lu tion  to the in terna l equations 

without exceeding 0.426, i s  1/3* This was chosen so that the in te rna l 

conduction equations would have as simple a numerical form as p o ss ib le ,  

as is  shown la t e r .  Having established th is  value, the author now 

solved fo r  the time increm ent^^ according to the d e fin itio n

c(AG
A S  -

*&T CtrJ
A (17)

Solving equation (17) y ie ld s

AG  - * 0 2 5  A r  = .

Therefore the time increment fo r  successive ca lcu lations i s  1.5

minutes
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—*—  S --------

.... © Z =  H Z ©  3

Figure 3 . Structure o f nodes

Having determined the equation fo r  the surface temperatures 

and the lim itin g  value o f  the Fourier M odu lu s ,^  , the author began 

the f in a l step, that o f determining a numerical re lationsh ip  between 

successive in ternal temperatures, governed by the value o f the Fourier 

Modulus. I f  i t  i s  assumed, as in  Figure 3t that the so lid  i s  composed 

o f  nodes joined by conducting rods, each with a uniform conductivity  

o f  "k " , then i t  can be stated that the heat flow  between nodes is

= -  k  d t  . (18)

As before, i f  S is  chosen su ff ic ie n t ly  sm all, then the heat flow  

can be expressed as the f in it e  d iffe rence  -/fdZTwhere A t  i s  the 

temperature d ifference between adjacent nodal po in ts. Therefore, the 

to ta l heat conducted in  the time increment A S  i s

Q - —M dt A & . ( 19)

As described in  equation ( 8) ,  the change in  in ternal conditions i s  

given by
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Ccwv) <Jt t

or expressed as a f in i t e  d iffe ren ce ,

( 20)

where A t '  re fe rs  to ( t ^ # -  t ^ ) ,  b©inS the temperature a fte r  the 

time increment has elapsed# Then in  terms o f f in i t e  d iffe ren ces , we 

have the heat balance

- £  k t t A 0 =  C v w  A t '. (21)

I f  the nodes in Figure 3 sere now considered, equation (21) w i l l  now 

take the form

( 22)

Since th is  i s  a one dimensional network based on the conducting area 

/) -  £  * JL , then

A W /  = k f - k  .
_  A

G WIn  the surface equation derivation , i t  was shown that c( =■
Of y\ 4Q»

and *Oi ~ — -g t— # These substitutions along w ith the c o e ff ic ie n t  k

can now be made into equation (22) to give

t ' ~  +  t3 +  t , (23)
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Having defined the Fourier Modulus fo r  th is  problem as l/3t 

equation ( 2 3 ) w i l l  now y ie ld

Having found the equations fo r  the surface temperature, and fo r  

the in te rn a l points fo r  successive time in te rv a ls , the actual comput­

ations began. The Flow Chart fo r  the computation o f  the problem is  

found on page 26 , and the program fo r  the Royal Me Bee LGP 30 Computer 

i s  found on page 25*

I t  i s  w e ll known that numerical so lutions o f p a r t ia l  d i f fe r e n t ia l  

equations are subject to severa l d if fe re n t  types o f  e rro r . The f i r s t  

o f  these i s  truncation e rro r , which i s  due to the use o f  f in i t e  sub­

d iv is io n s . Naturally , as these subdivisions become sm aller and 

sm aller, the numerical re su lts  approach the corresponding exact values 

more and more c lo se ly . This i s  re fered  to as the convergence o f the 

numerical system. A second kind o f  e rro r , known as the numerical 

e rro r , is  o ften  thought o f  as consisting mainly o f  so -c a lled  "round­

o f f ” e rro rs . Thus i f  i t  were p o ss ib le  to carry along an in f in it e  

number o f decimal p laces in  the ca lcu lation s, there would be no 

numerical e rro r . The way in  which numerical errors grow o r decay 

with time is  though o f as the s t a b i l i t y  o f  the d iffe rence  equation. 

With regard to convergence, i t  i s  shown in  Schneider ( 2) that the 

la rg e s t  value o f  the in te rn a l modulus, , fo r  which con-

{  £3 +• £ 3  +  £*
& (24)
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vergenee w i l l  be guaranteed i s  i*  This same maximum value a lso  can be 

used as the c r ite r io n  fo r  guaranteeing s t a b i l i t y .  The value chosen in  

th is  thesis fo r  , is  l/3» which i s  s a fe ly  w ith in  the lim its , so 

that convergence and s t a b i l i t y  are both guaranteed#
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TABLE 1

Temperature, °F, at distance from surface

TIKE. MIN. 0" 1” 2” 3"

0.0 100.00 100.00 100.00 100.00

3.0 359.88 100.00 100.00 100.00

6.0 456.52 144.6^ 100.00 100.00

9.0 521.98 189.69 106.71 100.00

12.0 573.29 231.6 9 118.90 100.94

15.0 615.98 270.25 134.40 10 3.55

18.0 652.70 305.61 15 1 .7 4 10 7.9 1

21.0 684.99 338.14 170.00 113 .8 2

2^.0 7 13 .8 3 368.21 188.64 121.01

27-0 739 .91 396.14 20 7.31 129 .23

30.0 76 3.72 422.18 225.80 138 .23

33.0 785.6 1 446.57 243.98 147.84

36.0 805.87 469.^8 2 6 1.7 7 157.90

39.0 824.73 491.09 279.14 168.28

42.0 842.36 511.51 296.04 178.89

45.0 858.90 530.87 312.49 I 89.65

48.0 874.48 549.26 328.47 200.48

5 1.0 889.20 566.77 454.99 311.45

54.0 903.14 583.47 359.07 222.21

57.0 916.38 599.^4 373.71 233.03

60.0 928.97 614.72 387.94 243.78

90.0 1029.12 739.12 510.56 344.77

120.0 1099.57 829.34 605.45 431.68



20

TABLE 1 (ContfdO

Temperature, °F , a t  distance from surface

TIME* MIN. 5" 6" 7"

0.0 100.00 100.00 100.00 100.00

15.0 100.12 100.00 100.00 100.00

18.0 100.61 100.01 100.00 100.00

21.0 10 1.6 5 100.10 100.00 100.00

24.0 103.34 100.32 100.01 100.00

27.0 105.70 100.74 100.05 100.00

30.0 108.71 101.42 100.15 100.01

33.0 112.34 102.38 100.33 100.03

36.0 116.53 103.66 100.61 100.07

39-0 121.22 105.26 101.01 100.14

42.0 126.35 10 7 .17 10 1.55 100.26

45.0 131.87 109.39 102.25 100.45

48.0 137.71 1 1 1 .9 1 10 3.12 100.66

51.0 1^3.8^ 114.17 104.15 100.97

54.0 150 .21 117 .7 8 105.36 10 1.36

57.0 156.74 121.08 106.7^ 101.84

60.0 163.52 124.62 108.29 102.40

90.0 235.02 168.60 131.9 8 113 .6 2

120.0 305.51 219.92 165.75 133.79
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r/. CONCLUSIONS

Curve No. 1 shows one very important fac t , which is  that the 

surface temperature is  only going to reach 70 to 75 percent o f the 

temperature o f the hot gas to which i t  is  exposed. Under sim ilar  

circumstances, a problem lik e  th is one, but without radiation  

accounted fo r ,  would show a surface temperature very nearly as great 

as the gas temperature. Even in th is problem the co e ffic ien t o f surface  

conductance was chosen to be high so that a great amount of heat could 

be put into the surface. Yet, as the surface temperature passed 500°F 

i t  may be seen that the rad iation  fac to r became s ign ific an tly  la rge , 

and began to approach in value, that o f the heat input. The rad iation  

outflow o f heat became an in su lator which, a fte r  the f i r s t  hour, 

allowed only a small net amount o f heat to flow  into the p la te .

As i t  was stated in  the introduction, equation (3 ) may be solved  

fo r  the ultimate surface temperature o f the so lid . Inserting in  

equation (3 ) the values chosen fo r  th is problem y ie ld s a temperature 

o f 15^0°F a t a time o f  in f in it y . This would be the temperature computed 

by this numerical solution i f  the computer had been allowed to run fo r  

an in fin ite  time. The surface temperature curve on Curve No. 1 would, 

i f  extrapolated, approach asymptotically th is ultimate temperature.

This small amount o f  net heat flow  into the p la te  is  the reason 

that points more distant from the surface do not have a la rge r tem­

perature gain in  the time in te rva ls  beyond 60 minutes. The conductivity  

used fo r  th is stee l i s  not espec ia lly  high, which also contributes to  

holding down the internal (beyond 3 in . )  temperatures.
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As i t  was pointed out previously, the insu lator e ffe c t  o f the 

rad iation  from the surface is  a very important factor in  space problems, 

p articu la r ly  in problems o f u ltra -h igh  speed f l ig h t  in  the near-space 

region o f the atmosphere* In both o f these cases the rad iation  into  

a void from the body is  an important facto r in  maintaining the proper 

temperatures, both from a strength standpoint as w ell as from the 

standpoint o f the operating temperatures fo r the many components 

involved. In the f ie ld  o f manned space veh icles, i t  i s  obvious how 

great the need i s  fo r  a controlled environment.

I t  can sa fe ly  be said that the rad iation  factor i s  o f great 

importance to th is problem, as was borne out by the temperature 

curves.



V. APPENDIX A

PROGRAM FOR LGP 30 COMPUTER

;0006000*/0000000*
r 6300 *u0400•h4OO0•1 c0128 * 110002* 1eOOOO•b4012 * 1h4400• 
1z60O6»b4Ol6»m4O10*d4O14*h4034*b4022*d4014*m40 26* 
m4010*d4008*h4028*b4002*a4010*h4046*b4012 ^ 4010**14048* 
b4012* a4000 *h4052* 2c01 28* 210002* 2e0000 • 2b4400»2a4402* 2a4404 
d4006 * 2h5000 * s4052* t6058* 2x6039• b4006 * a4004*m4008 * 
a4012*a401 2* a4l 02* h40 56 * b4400 • a40 56 *h4o60*b40 28 *d4014* 
ra406o *m4o6o *h4036* b4002* d4032* s4036» s4034* s4O02,m4060 * 
a4402* a4056*h4038* b4034*m4024» a4038*m4032*h4O50 * b4044*a4046 
h4044*raOOOO * b4404* z4010 * dOOOO * s40 56*zOOO 2f dOOOO *
1c0128 * 110002 * 1eOOOO•3c0004* 310002* 3eOOOO * 1b5000•1h4402» 
s4052*r6l 44* 1 b5000 • z0002t dOOOO * 1 z6l 38 * 3z61 30 *m0000 * dOOOO • 
dOOOO »u61 28 * b4O50 * s40 56 * h4400 *m0000 *u6o 36 *

* •

. 00060000•

2**0 5 -M ”  2"  3* M2’ , 5,+01-»100, , 124,+01-»50 
11 '+ 02-  * **60«»750 ’ '+0 3-  * 2460 • • 17 3 *+11- •  f  •
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APPENDIX B. 

fLOW  Chi ART

c o m p u t e :
H u , R , •»

1
COM PUTE: * *

| res

Print: t i  , *V , iV, *Ar.

A/<?
✓ 5

"a  ecu * a c  y *s
S U R R IC / M rf ,
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