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ABSTRACT

Present control system theory provides the criteria necessary to 

bring a second-order single-valued system to rest in a minimum time 

after a step input. The bang-bang type controller has been develop­

ed to obtain this optimum response.

However, existing theory fails to provide the necessary infor­

mation to obtain the optimum response from a second-order rotational 

system when multiple values of angular position are allowed. This 

thesis extends the control theory to include these multiple-valued 

systems by showing the existence of what are called optimum switching 

zones. These zones predict which of the infinite number of switching 

curves in a multiple-valued system is the optimum switching curve.

The switching zones are developed for three second-order systems.
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I. INTRODUCTION

A. Statement of the Problem
 

The early work of McDonald4 and Hopkin3 treat the problem of 

returning a system to rest in the shortest possible time following 

a step input. The results of this study for a second-order system 

are very well stated by Hopkin:

In order to make a servomechanism output change 
from one position to another in a minimum time, the 
control means must be able to bring about the follow­
ing operation:

1 . The maximum safe forward value of manipulated 
variable must be applied from the instant of the 
step input until a specific later time* In 
response to this maximum safe value of manipulat­
ed variable, the servomechanism will be accelerat­
ed at a maximum rate for each value of output 
velocity.

2. At a specific time the manipulated variable 
must be reversed to a max imiun safe reverse value 
so that the system will be decelerated at a max­
imum rate for each value of output velocity. The 
instant of reversal of the manipulated variable 
must be so selected that the system is decelerated 
to a stop precisely at the desired value of servo­
mechanism output.

It was shown that for optimum response the instant of reversal 

is that instant when the state of the system is coincident with a 

point in the phase plane on the deceleration trajectory which 

passes through the desired value of the output. Fig. (1) shows 

this deceleration trajectory, EF, and therefore the switching curve 

for a second-order system.

It can be seen that for states of the system described by any 

points to the right of the switching curve maximum negative effort 

should be applied until the state of the system is described by 

any point on the switching curve. At the instant of coincidence
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Fig. (1) Optimum Switching Curve for Second-Order System

Fig. (2) Optimum Switching Curves for Second-Order Multiple-Valued 
System.
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the driving force should be reversed, bringing the system to rest at 

the desired position along the deceleration curve. If the initial 

state of the system is to the left of curve EF, maximum positive 

effort should be initially applied. Upon intersecting the switching 

curve, maximum negative effort should be applied. The system will 

follow the deceleration curve to the desired final position. Paths 

ABC and A*8*0* of Fig. (1) illustrate the two possibilities.

For multiple-valued rotational systems Fig. (2) is a more com­

plete description. Fig. (2) represents a system where any designated 

final angular position, 9f, is equivalent to any of the other angular 

positions given by 0f + N360°, therefore an infinite number of switch­

ing trajectories passing through all of the angular positions, 0f + N360° 

(N = 0, 1, 2, •••), are possible. The representation of Fig. (1) is 

applicable to rotating systems if multiple values of angular displace­

ment are not allowed. For example, if 360° is not considered equal to 

720°.

With the introduction of the multiple values of final displace­

ment and thereby the multiple switching curves, Fig. (2) does not 

provide enough information to say which curve is optimum. Therefore, 

some criteria must be established to determine which of the switching 

curves is the optimum switching curve for the state of the system at 

the instant being considered. (Optimum in this thesis implies time 

optimum.) For example, consider a system in a state described by point 

A, Fig. (2). If curve EqFq is the dominant switching curve for this 

state, then path ABCD is the optimum path. On the other hand, if 

curve E-jF̂  is the optimum switching curve for state A, then path AB'C* 

should be followed.
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For a physical interpretation of the problem consider a system 

rotating in a clock-wise direction at the time a command is given to 

come to rest at a position, 0^, in a minimum time.

The question which must be answered Immediately is: by what 

series of inputs will the system reach the final state in the least 

time? The only possible answers are -

a. a counter-clock-wise torque is applied and the system is 

“backed-up” to 0^.

b. a dock-wise torque is applied, accelerating the system in a 

clock-wise direction, until, at a state designated by the switch­

ing curve passing through 0̂ , + N360°, a counter-clock-wise 

torque is applied bringing the system to rest at + N360°.

c. either (a) or (b) is applicable, i.e. both paths require the 

same time.

If the points satisfying (c), for a particular N, form a locus 

of points, this locus will describe boundaries between a zone where 

the optimum switching curve passes through 0^ + N360°; and a zone 

where the optimum switching curve passes through ©^ + (N + 1)360°, 

where N can be zero or any positive or negative integer.

It is the purpose of this thesis to investigate several multiple- 

valued second-order systems seeking to answer the above question, that 

is to determine the existence and boundaries of optimum switching 

zones and to interpret their physical meaning.

It can be seen that, in order for the switching zones to be mean­

ingful, the desired final position must be multiple-valued. This 

implies a rotational system with no spring like forces.

As an example of a possible use of the optimum switching zones
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consider a satellite. A bang-bang type control for a satellite is 

described by Lieberman^ and is also considered as system (A) below.

It is required that the satellite maintain a prescribed attitude 

with respect to some reference and it is desired to bring the 

satellite to this attitude in the shortest possible time after 

tumbling into orbit and/or after any severe disturbance. The 

reference position may be approached from either a clock-wise or 

counter-clock-wise direction. It is obvious that a controller 

that takes into account the optimum switching zones is required 

and that any other controller would be less than optimum.

As a second example consider a weapon used as a defense against 

fast moving aircraft or missiles. A tracking radar controls the 

direction of fire; a search radar and a computer provides target 

priority information. It is required that the weapon change targets 

upon command from the computer, in the shortest possible time. (Perhaps 

a target is destroyed or passes out of range and another target is 

rapidly approaching.) The weapon has a large inertia and is free to 

rotate through 3^0°. A bang-bang type controller is used to provide 

the quickest possible response. Again the controller must take into 

account the optimum switching zones to be able to predict the optimum 

path and therefore to provide the optimum response.

B. Systems to be Considered

The differential equation of a general second-order system is 

given by

/7 9 + J30 + C & + D = T
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Consideration in this thesis will be limited to those systems where 

C is zero. Thus, the three systems to be studied are described 

by the following differential equations:

A) Inertia only............. ........... . R ©  - T

B) Inertia plus Coulomb Friction....... . R ©  + D t

C) Inertia plus Viscous Damping. .......R§ + B ©  * T



-7-

II. REVIEW OF THE LITERATURE 

4 3McDonald and Hop kin were the first to show that the relay- 

type servo provides the optimum step function response. The phase 

plane method of analysis for this type of servomechanism was intro­

duced earlier by MacColl^ and Weiss^.
7

Bushaw' is credited with the first treatment of the time 

optimal bang-bang control. Later LaSalle® showed that the best 

bang-bang system was also the best of all available systems for 

achieving time optimum control. In 195& Bellman, Glicksberg, and 

Gross^ presented the first general approach to these systems using 

linear programming techniques. Recently Pontrjagin, Gamkrelidze, 

and Boltjanski^ studied the generalized problem from a more sophis­

ticated mathematical viewpoint using the calculus of variations.

Curtin^ has recently investigated the response of the bang-bang 

controller for step, ramp and sinusoidal reference by an extensive 

analog computer study.
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III. THEORETICAL ANALYSIS

A. System with Inertia Only

The differential equation describing this system is

FI 6  = T

where here, and throughout this thesis, T is the applied torque, 0 is 

the angular displacement and A represents the moment of inertia. This 

reduces to the form

e  = k t  (1 )

where K = 1 /A. Integrating Eq. (1):

©  = K ~T £ t  <©*

Integrating again:

9 = * T  ±  tz

Eliminating time between Eq. (2) and Eq. (3) yields

<9 - -  Go (^)
E K T

For a rotating system there are an infinite number of paths in 

the phase plane which may be traversed from any one initial point to 

any final point. Physically this means that the system may rotate any 

number of times before stopping at any designated final value, Fig.

(2) shows two of these paths, AB'C* and ABCD. The following calcu­

lations will be for all of the possible paths and will determine which

(2)

(3)
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of the paths will bring the system to rest at the designated final 

value in the least time* This path will be designated the optimum 

path, where, here and throughout this thesis, optimum implies the time 

optimum.

Fig, (2) shows the switching curves EF, which are the optimum 

switching curves for a single valued system repeated every 3^0° and 

identifies points to be used in the following calculations.

Calculation of time for path AB, The equation of path AB is given
• • •

by Eq. (2) with T positive, 0 = 0 and 0o = 0Q

O  = f r T  zt~ +  & o

Solving for time yields

-
*  K T  (5)

Calculation of time for path BC and path CD. The equation re­

lating to path BC is given by Eq, (3) with T positive, t--, equal to t
rso CD

(due to the symmetry of the acceleration and deceleration trajectories
j, •

in a pure inertial system1), 0 = 0, 0 = 8_ ando O B

-  ^ 3  +  C ~  & B +  C 6 *  -A J 3 6 > o ) J
_

where N = 0, 1,2, ••• • Substituting these values into Eq, (3) yields

[ " + (& f  - ^  3 6>ofj __ k T  ^ <9q
£2
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Solving for time yields

t e>c t && + Of 
KT

- W36>0
-J

±
z

But t^- equals t , therefore
SC CD

6 cp = 2 t =
[

—  (9a G f  ■“  A/36>0 \z

KT -J

JL

( 6 )

(7)

Calculation of total time for path ABCD. The total time is the 

sum of the times required to traverse each segment of the path, 

therefore

-A&C-P ac + tc Go + 2  [*- + &T ~^30>O- j 9
K T KT 3

TL (8)

Calculation of total time for path AB'C1* The equation of the 

path from G to point B* is given by Eq. (3) with T negative, 0 = 0, 

= -0g = ©^ (due to symmetry) and 0 = -0g - |~“ <$>a ~ ( * h)3 ao/J ^

therefore

_ &g -  -Cv+t)3&oj^ _ —  k T  £*

Solving for t__. yields 
GB*

Zf-G0' -
[

f a t / )  3 60 -  S t  

KT
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Bat due to symmetry, tg,^ is equal to tGQt therefore

* GCf i

Luti) 36o -  -  03 I 2
K T 0

Also due to symmetry,

Gft A0 - -  6>o
KT

Therefore the total time to traverse path AB’C* is 

=* t *>c '  ~

K T
i. +  Z  \ < * + ')3
T  L K

£0 - - (9,»* ^ 2
(9)

Determination of switching zone boundaries. To determine the 

boundaries where the time to traverse path AB'C' is equal to the time 

to traverse path ABCD, t ^ , ^  is set equal to t^gQD and the relation- 

ship between and 0Q is obtained. Equating Eq. (8) and Eq. (9) 

yields

- A ,  z [ Z * * ± * j  =  <9* + a  f £ M j£ l3 ** l
K T  L K T  J  K T  L KT J

Squaring both sides and reducing yields

2 2 G . [  (Aft/)3£>Q ~ ~
n T  (KT)

- 9 .  V 0 t  - _  S Z  +  l& s l - ̂  - • ] i
---------------  ~  ‘ KT L K T  J

(AUt)3 i>Q ~ 
K T

e •

(10)

If in Eq. (^) T is positive, 8 = ©g , 0q = 0 , 0 = 0 and 0 = 0Q , then,

- Z K T  &e (11)
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Substitution of Eq. (11) into Eq. (10) gives

&+ - isoU d*1)  -t 0e = &. - &SJ *

Squaring both sides and reducing yields

- 160 (7./V +ljj + 2 && ~ /60(2N+/j} + 9a

a- &o_ r (/!/+/) 3 bo -  e * l  -  &o &B

Substituting Eq. (11) into Eq. (12) and reducing gives

Q * - 3  £>o &a - [  - !8 o  ( 2 w +l)J2 -  O

( 12)

Solving the quadratic and choosing the negative radical yields

=  3  (oO _  ^ 3<>o*~ •+ ^ * '+ * )] J
(13)

Substituting Eq. (11) into Eq. (13) gives

= K T  { - 3 so + \ 3 ta *  + *+ [& * -  T Z T + jjJ s e }1 j (1*0

The curves EF of Fig. (3) are the optimum switching curves for 

this system. The heavy curves are zone boundaries and are plots of 

Eq. (1**) for N equal to 0, 1, and N. See Lieberman1 for an application 

of the system and the development of the optimum switching curves.

Interpretation of Figure (3). If, at the instant when a command 

is given to the system to proceed to an angular position 0^, the 

state of the system can be described by any point in zone-I, then the



Fig. (3) Optimum Switching Zones for System with Inertia Only.

I
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optinrum path is that path which is dictated by the optimum switching 

curve passing through 0^. If at the instant of command the state of 

the system is described by any point in zone-II, then the time opti­

mum path is that path which is dictated by the switching curve which 

passes through 9^ + 360°. (The sign will be that of the velocity at 

the instant of command.) Physically this means that less time will be 

required to reach 0^, if the system is first accelerated in a forward 

direction and then decelerated to 0^ + 360° rather than decelerated to 

zero velocity and then accelerated back to 0^. (The forward direction 

is the direction of rotation at the instant of command.)

In general, if the state of the system is described by a point in 

zone-N, the optimum path is dictated by the switching curve passing 

through + (N - 1)360°. If the point is to the right of the desig­

nated switching curve then a negative initial torque is required. If 

the point is to the left of the designated switching curve then the 

initial torque would be positive. In either case the torque is 

reversed upon intersection of the switching curve.

To illustrate the significance of the zones consider path ABC,

Fig. (3) • The initial state of the system is given by 0 = 0  and 
. °

= -12 deg/sec. The negative initial angular velocity in zone-II

indicates that the switching curve passing through 9^ - 360° dictates 

the time optimum path. (The negative sign is due to the negative 

initial Velocity.) Since the point is to the right of the designated 

switching curve, the initial command would be for a negative torque to 

be applied to the system until the phase plane trajectory intersects 

the switching curve, at which time a positive torque would be applied, 

bringing the system to rest at 9^ - 360°.
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As a second example consider path A'B1̂ ,  Fig. (3). The initial 

state of the system is given by 0Q = 0 and 0Q = 16 deg/sec. The 

positive initial velocity in zone-II indicates that the switching 

curve passing through + 3^0° dictates the optimum path. Since the 

point is to the left of the designated switching curve, the initial 

command would be for a positive torque to be applied to the system 

until the phase plane trajectory intersects the switching curve, at 

which time a negative torque would be applied, bringing the system to 

rest at 0̂ . + 3^0°.

B. System with Inertia and Coulomb Friction

The differential equation describing this system is

R& ± T> = T

where D represents the coulomb torque and will have the sign of the 

velocity. This reduces to the form

<9 ± K, = K T

where K = 1/a  and = D/A. Taking the Laplace transform for a step 

forcing function yields

ecs) - &o _4> h t  t  k,
>5 s ’

Taking the inverse Laplace transform yields

a c t ) = e . t - * (15)



-16-

Taking the time derivative yields

8 a )  = e .  +  [ K T *  K j t  (16)

ELiminating time between Eq. (15) and (16) leads to

<9 - ^  & - e \  07)
Z ( k T

Fig* W  shows the well known switching curves for this system2 

and identifies points to be used in the following calculations.

In section A zones were developed which predicted the optimum 

path to any designated final angular position for any initial condit­

ion. These zones in effect answer the question: which of the infinite 

number of possible paths is the optimum path? In this section the time 

to traverse any of the paths AI^C* is compared to the time to traverse 

the one path ABCD, which must terminate at 0f. Therefore, in addition 

to answering the above question, zones will be developed which answer 

the question: will it require less time to go back to 9f or will it 

take less time to go on to Qf + N360° where N is any integer? This 

provides a means of predicting the number of revolutions which can be 

traversed in a forward direction in the same time as it would take to 

bring the system back to The curves might be used in a system

where it is desired to get the maximum possible number of revolutions 

while moving the system to 0f in a fixed time. Possibly they are of 

academic value only, but the author feels that it is important to point 

out the existence of these zones.

First consider path ABCD. The system is initially accelerated to
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E
\

\

Fig* (40 Optimum Switching Curve for System with Inertia and 
Coulomb Friction*
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a positive velocity 0^ and then decelerated to zero velocity at the 

designated 0^.

Calculation of tine for path AB. In Eq. (16) let K«j be negative, 
• • •

T be positive, 0Q = 0Q and 0 = 0

O -  ®. + (K T  + K.) t

Solving for time yields

f\e>
-  Gc (18)
CKr+*\)

In Eq. (15) let 0 = 0 ,  0 = 0Q , K. be negative and T beO D I

positive

e a = e . t  + (K T + k ,)  £

Using time as given by Eq. (18) yields

-j.
Cktt<c,) U*r>K,)

- 2.
-  e (19)

Calculation of intersection C, Fig. (3)# The equation of path BC 

is given by Eq. (17) with both T and positive, 0Q= 0g an£ g _

therefore

& - 

and

• 2 
G

2-OcT-K.)

• 2
<9 = 2 (© - © e K ^ ' T - ^ )

(20)
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The equation of path CD is given by Eq. (17) with T negative, K-j posi- 
• • • •

tive, 0 = 0, 0 = 0_ = 0, 0 = 0_ = 0 and 0 = 0« , thereforeO C O C X

a* - & =* -  Q z
2-Ck t - v:,)

and

©z = z {94- e>)(KT-vO (21)

Equating Eq. (20) and Eq. (21) and solving for 0 = 6q , where is 

the angular displacement at the intersection point C, yields

9c -  & * ( K T - K t) + <9fCKT + k,) (22)
2 KT

Substituting Eq. (19) in Eq* (22) and reducing leads to 

• 2
© c = Ckr-kr,) +  &+ ( k -r + K,)  (23)

^•KTCkT+k,) Z K T

Note that in calculating ^  an N term was not included as was done in 

section A. This does not allow path ABCD to terminate at any point 

other than 0f.

Calculation of time for path BC. For path BC the angular displace 

ment as a function of time is given by Eq. (15) with both T and Kj

positive, 0 = 0O , 0 = 0  and 0 * 0r , thereforeO d o o

&c - -  ( k t -  K, )  t
7L

£*gC - (24)

and

j~2 (&<■- Q a ) ~] * L K T-  K, J
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Substituting Eq. (19) and Eq. (23) into Eq. (24) and simplifying 

yields

^  j 9 ?  Ckt- k.)  A r j )  C Arr- J
/ 2 kr7~ ArT / (25)

Calculation of time for path CD. Time t ^  is equal to time tQD 

and is easily calculated, see Fig. (4). In Eq. (15) T is negative,

is positive, 0 = 0„ , 0 = 0  and 0 as 9 thereforeo x o  o

- &-f - - Ck T + H . )

and

t c j ,  -  * O /*/ r2 ( -  <9c)l * 
L * T  + kr, J (26)

Substituting Eq. (23) in Eq. (26) yields

CO
_/____ J&m ( * r -  K, ) y.

CkT-VK.) [_ TLhcT
C * Tt/c,)(*rT-X,J

#r-r J
(27)

Calculation of total time for path ABCD. The time t ^ g ^  = (t^ +

tgc + tCD), therefore

'4 B C.& 2 krT P i  (X T -* ,) 4. r+tJfJtT-A-)
2-KT KT

(28)
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Next consider path AB^*, Fig. (4). The system is initially 

accelerated in a forward direction to a state described by point B* 

then is decelerated to zero velocity at the designated position 0̂ . - 360°.

Calculation of intersection B*. The equation of path AB* is
• •

given by Eq. (17) with both T and K1 negative, 0Q = 0, 0 = eB », 0 = 0 ^
• •

and 0. = 0 . therefore o o
~~ &  3'

Z cKT -  AT, )

and

£ >s' =  <sC -  Z  &e ' ( J r T - « J  (29)

The equation of path B'C* is given by Eq. (17) with T positive,

negative, 0Q = 0B ,, 0 = 0f - N360°, 0Q = 0B , and 0 = 0, therefore

. 2.
-  A / 3 6 0  -  -  ~  & & '

and

• 2- .
=  2  ( kT - HC , )  C +  / P 3 * 0  ~  ( ^ q )

Equating Eq. (29) and Eq. (30) and solving for 0B , yields

&s ,  _  <£>.V _  Z . ( K r + > C , ) 0 V 3 6 P  - O f )  ( 3 1 )

Calculation of time for path AB1. The equation of path AB' is

given by Eq. (16) with both T and K. negative, 0 = 0 , and 0 = 0rt,
• B °

therefore

&a- - e .  =  - O c T - * , )  t „ e r
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and

i t e '  = KT -  K,

Substituting Eq, (31) into Eq. (30) and reducing yields

e* Ckr +k,) +
Z KT

C K T  t / C , ) { * C T -  -  Jr,) ( 3 6  0 — &£ )  

K T

(32)

(33)

Substituting Eq. (33) into Eq. (32) and choosing the negative sign for 

the radical yields

+ _i , j ( k t +*,) -f.
K T - k % Kr-Ky I 2 K T

( *rrtk,) CkT-rjC/Vibo - f * )X
T~ -1

(3^ )

Calculation of time for path B'C1. The equation of path B'C' is
• • •

given by Eq. (16) with T positive, negative, 6 * 0  and * 0g*, 

therefore

-  £>0 '  -  -J-kJ t

qr>H

*T+Jr,
(35)

Substituting Eq. (33) into Eq. (35) and choosing the negative sign for 

the radical yields

e 'c '  = (ki~+jcJ  
z *cT

+ ( JrT / * , )  CKT-tr . )  (V 3 <p0 -  &*)r/
kTik;

K T

(36)
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Calculation of total time for path AB1C1. The time required to 

traverse path AB'C* is the sum of t^g, ̂ , and tgf c, , therefore

w «  + .  Z K T  (HTt-fc,) +  (  KT/
XT-K Oc t L z * t jTF----------- J (37)

Determination of switching zone boundaries. To determine the bouncL- 

aries where the time to traverse any of the possible paths AB'C* is equal 

to the time to traverse path ABCD, t ^ , ^  is set equal to and the

relationship between and is obtained. Equating Eq. (28) and Eq. 

(37) yields

9 *  +  Z * T
KT-K, (KT)

-  Z-P
*CT

* r j
[_ 2 /cr

El- y- [4 1

(kT-k) + C kT +*')(kr-K,) (ns z

K T

Ckt-jcJ  + f r o t r  
Z K T  V

H c J O r ^ j l  z

J
which reduces to

&o +
**<9. C*T f* )  (kTjk,)(kT-f<,) (4/3<*0 -  2

2ArT /rr J
=  r Z CkT- kr,) + L9* (* T+A'J ( k T -Ar,) j *

L 2 /r 7~

Squaring both sides and reducing leads to

*T+ tr ,  + ( A r T - k ' , ) ( H 3 * o
zkT~ L

£
/ <*>. CkT+k.) y. Orr+A-,J - <9+)

■>]

-L

2 * r Arr*
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Squaring both sides and reducing yields

Sc “ '  z  &-f ~ JV3 6 0  ( k t ~- K,)

(38)
JL

+ \lz9fk* +H3b0(KT-K<)]X + Utorf-k*] ( JV3(oO - z

Fig* (5) shows the optimum switching curves, EF, and the zones 

bounded by Eq, (38) for N = 1, 2, and 3* See Kaplan2 for a discussion 

of the system and development of the switching curves and switching 

criteria.

Interpretation of Fig. (5). The zones in Fig. (5) compare the 

time to traverse path ABCD, where for this case path ABCD must term­

inate at with the time to traverse paths terminating at angular

positions 9 + 360°, 6 + 720°, 0 + 1080° etc. In zone-II the
f " f “ f  “

system can be brought to rest at + 360° in less time than it can

be brought to rest at 0 . (The sign will be that of the initial velo-
f

city.) In zone-III the system can be brought to rest at 0 + 720°
f ""

in less time than it can be brought to rest at 0^. In zone-IY the

system can be brought to rest at 0 + 1080° in less time than it can
f -

be brought to rest at 9^, and so on and so forth for an infinite 

number of zones.

In each case the zones extend an infinite distance to the left 

for negative initial velocities and an infinite diatance to the right 

for positive initial velocities; therefore, zone-HI, zone-IV and any 

additional zones will be in zone-H; zone-IV and any additional zones 

will be in zone-III, etc.

Although only three boundaries are shown to avoid cluttering the 

figure, there are an infinite number of these boundaries and this



Fig. (5) Zones Which Predict the Number of Revolutions Which Can Be Traversed In A Forward 
Direction
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infinite number of boundaries is repeated every 3^0°.

Note that these zones are in no way optimum zones, they predict 

only the number of revolutions that may be traversed in a forward direc­

tion in the time it would take to stop and back-up to 0^. To illustrate 

the meaning of the zones, consider a system in a state described by 

point A, Fig. (5)* that is , a system that has an initial velocity of

-13 deg/sec, when a command is given to come to rest at 0 . The nega-
f

tive velocity in zone-HI indicates that the system can continue in the 

negative direction past 0^ -360° and make one more complete revolution 

to -720° (path AB*^) in less time than would be required to stop and 

back-up to 0£ (path ABCD). In other words, approximately one and one- 

half revolutions can be completed in the direction of the initial 

velocity in the time it would take to stop and back-up to the desired 

final position. These zones would be useful in a system for which it 

is required that a final position be obtained in a fixed time and in 

which it is desirable to obtain the maximum number of revolutions in 

the direction of the initial revolution.

In order to establish the optimum switching zones consider the 

before neglected zone-I. It can be seen that any point in zone-I re­

quires less time to reach 0^ than any other angular position 0^ + N36O0 . 

Also, for any initial state outside of zone-I there is a path to the 

desired final angular position which requires less time than the path 

which terminates at 0^. For example, every point not in zone-I is in 

zone-II and points in zone-II require less time to reach 0^ + 3^0° than 

to reach 0^. Therefore it can be concluded that zone-I is the optimum 

switching zone for the switching curve passing through 0^. As zone-I 

is repeated every 36O0 the optimum switching zones are established 

for the entire phase plane. Note that the zone boundaries
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will be the boundary for N = 1 repeated every 3^0°• Fig. (6) 

the optimum switching zones. The significance of these zones 

exactly the same as that given to the optimum switching zones 

in section A.

C. System with Inertia and Viscous Damping

The differential equation describing this system is

H &  -t 3  & =• T

where B represents the viscous-damping coefficient. This reduces to 

the form

<9 +K, 6  - k T

where K = 1/A and = B/A.

Applying the Laplace transform for a unit step forcing function 

and reducing leads to

-S'  6>£s>) -  & 0S  -  <9. + *1 [ s  ~ - J ^ p

and

- iSX k t _
=  ^  1  +■ Ar  *  5 1 ____ZEL (39)

3  S  3  + Hr,

Taking the inverse Laplace transform:

shows

is

developed

(40)
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Taking the time derivative yields

9 KZ + 
k\

jrr
KrJ

- K , t
m

Solving for time from Eq. (41) leads to

Replacing time in Eq. (40) and reducing yields

& - a. - &o_ C &o-&) -f. KT ( 0 ~ )
*'  ( * . - % )  * ’ * ( * ’ % )  m

+  « r  ( * - % )

(T ^ W )
At this point in the development of sections A and B expressions

were derived for the intersection points C and B*, Fig. (2) and Fig.
♦

(4), in terms of 0 and 0. In this case the author knows of no way
e

of solving for 0 explicitly in terms of 0. Therefore the method of 

setting the velocities equal, as was done in the previous cases, is 

not applicable. Attempts to equate angular displacements were unsuc­

cessful. Therefore it was concluded that an analytical expression 

for the switching boundaries was not obtainable.

This left only a trial and error solution. This could have been 

accomplished using the digital computer facilities of the school, but 

a graphical method was decided upon. A graphical method, although 

laborious and less accurate, tends to develop a feel for the system 

which is useful.

The details of this method are given in Appendix A, but basically

the method consists of repeatedly superimposing the various
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trajectories, reading off the points of intersection, substituting

in the appropriate equation, calculating and comparing t and
ABCD

t^B*^ until the difference between and t ^ f̂  is acceptably

small .

This results in a locus of points in the phase plane which 

represents states of the system for which equal time is required to 

come to rest at 0^ - N360° or at 0^ - (N + 1)360°, therefore this 

locus is obviously one of the optimum zone boundaries. The resulting 

points are tabulated in Table I. It is evident from the symmetry of 

the switching curves that this boundary is repeated every 360°.

Fig. (7) shows the optimum switching curves and the optimum switching 

zones formed from the calculated boundary repeated every 360° • The 

significance of these zones is exactly the same as that given to the 

optimum switching zones developed in section A.



Jig* (7) Optimum Switching Zones for System with Inertia Plus Viscous Damping.
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IV. CONCLUSIONS

This thesis points out that present optimum control theory does 

not provide enough information to obtain the time-optimum step-input 

response for a second-order multiple-valued control system* This is 

because it is necessary to determine which of the infinite number of 

paths that are possible in a multiple-valued system is the optimum 

path.

Zones were shown to exist which determine the time optimum path

for rotational multiple-valued systems. Figs. (3)» (6) and (7) show

the resulting optimum switching zones for the three systems considered.

It can be concluded that these zones also exist for any system 

which meets the second-order multiple-valued constraints applied in 

this thesis (a rotational system with no spring like forces and 0^ 

equivalent to 0^ + N36O0 where N is any integer) • This is true because

the single-valued switching curves are simply the deceleration curves

of the system which, for the constraints applied, are not dependent 

on displacement. They can thus be repeated every 360° without cross­

ing. Since the switching curves extend from infinity in one direction 

to infinity in the other direction without crossing, every point in 

the phase plane is surrounded by only two switching curves, one of 

which must be crossed to reach any switching curve not adjacent to the 

point. Therefore, for any particular point in the phase plane there 

are only two paths which have the possiblity of being the optimum path 

to a particular final position. This is because any path which crossed 

a switching curve to reach the final position would be less than an 

optimum path, due to the nature of the optimum switching curves. This
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indieates that the method of equating the time required to traverse 

two general paths (ABCD and A^C* of Figs. (2), (4) and (8)) as was 

done in this thesis will locate optimum switching zones for any second- 

order system subject to the constraints mentioned above.

Also, zones were developed which predict the number of revolutions 

which can be traversed in a forward direction in the same time as it 

would take to bring the system back to some designated final angular 

position.
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APPENDIX A

Graphical Solution for System with Inertia

Plus Viscous Damping

It was pointed out in Chapter III that it was not possible to 

obtain an analytical expression for the optimum switching zone bound­

aries for a system with inertia plus viscous damping. This was 

because of the difficulty in expressing the points of intersections 

C and B 1, Fig. (8), analytically. A graphical method eliminates this 

difficulty.

The equations of motion, which were developed in Chapter III, 

were used to make overlays of the phase plane acceleration and decel­

eration trajectories of the system. These overlays can be superimposed 

on a scaled reference coordinate system and the critical intersection 

values read off. The graphically determined values of displacement 

and velocity are used in the equations of Chapter III to determine 

time. Since the optimum switching zone boundaries are desired, a trial 

and error method is used to locate points where the time to come to 

rest at an angular position + N360° is equal to the time to bring 

the system to rest at 0f + (N + 1)360° (N is any integer). Fig. (8) 

shows the switching curves and identifies points to be used in the cal­

culations.

Assume the following constants. KT = 0.573 and K1 = 0.0573. 

Therefore, from Eq. (^2)
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Pig. (8) Optimum Switching Curves for System with Inertia Plus 
Viscous Damping.
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The points which must be determined graphically are initial 

and final velocity • These points are easily determined on portions 

of the curves that have a large slope but where the trajectories 

approach the horizontal a small error in velocity will cause a 

large error in the time calculated by Eq. For this latter

case an average velocity is approximated and the change in angular 

position is read from the graph. Then time is given by

*  =  A A  <*5>

Examples will illustrate both cases.

Overlays were made of Fig. (10) (Overlay-l) and Fig. (11) 

(Overlay-II). Fig. (10) is a plot of the deceleration curves of 

the system given by Eq. (39) with the assumed constants and the 

proper initial conditions. (Note that the deceleration curves 

are also the switching curves**.) Fig. (11) shows both the accel­

eration and deceleration portion of the phase plane trajectory.

The shape of the phase plane trajectories are not dependent on 

displacement therefore Overlay-I and Overlay-II are valid repre­

sentations of the trajectory throughout the phase plane as long 

as the zero velocity reference is maintained. That is the over­

lays can be manipulated right or left but not up or down. By 

correctly manipulating the overlays all of the trajectories needed 

in these calculation can be represented.

As a first example of this trial and error method assume 

= 108° and first try initial velocity ©o = -5 deg/sec.

Step 1. Place Overlay-I over Fig. (9), the reference coordi­

nates, so that the 0^ axis passes through 108° on Fig. (9). This



-37-

should place the optimum switching curves of Overlay-I at 108° 

and at 108° - 360° = -252°.

Step 2. Place Overlay-II over Overlay-I so that the axes 

line up and the curve opens to the right and approaches a positive 

velocity of 10 deg/sec. Adjust until the curve passes through 

8 = 0 °  and 0O = -5 deg/sec. This provides a picture of path ABCD,

Fig. (8). 8c can be read from the graph as approximately 7«05 deg/sec.

Step 3* Manipulate Overlay-II so that the curve opens left 

and approaches a negative velocity of 10 deg/sec. Line up the 

axes and again adjust the curve to pass through 0 = 0° and 

0O = -5 deg/sec. This provides a picture of path AI^C*. Ogt can 

be read as approximately 9*0 deg/sec.

Step 4. Using these values in Eq. (44) yields

tAc -  /?, y s [J r  f/o Oe-7, t>$j* /?. ?s-£A

Step 5- Compare t^gQj) and t^giq » • If t^gQj) is larger choose 

a more positive initial velocity. If tAB»c* is larger choose a 

more negative initial velocity. Repeat steps 1 through 5 until the 

difference between t a n d  t^gic* becomes as small as desired.

In this example t^gic* is larger therefore a more negative initial

* 4 * ' 9 a  IS  [ j i t  -~jr) -J U o jJ  = ) ?, vs [/ . L O lifJ
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velocity should be chosen*

Choosing an initial velocity of -6 deg/sec the following 

parameters were found: 0q = 7*2 deg/sec and 0B* ='9*1 deg/sec*

Using these values in Eq* (44) yields

+ * )-£ ,  C 'o -7 .2)] «■

tco - n.fs-lX, (,0,7.1) - ]  - /7,<fslO.IfJ

l7>VS-[i.lgSt] c =

t^g- ' /;. x r / X  />/- 'i * m ]

4 c' * //.*r/ O o j j  = l7.?J-p>.W7t>]
3 7 *6  Sec -  4 , '< f  '

Since t^gQD is larger, a point on the zone boundary has been 

isolated between -5 deg/sec and -6 deg/sec*

As a second example let 0f * 36° and try an initial velocity 

of 0O = -10 deg/sec.

Step 1. Place Overlay-I over Pig* (9) so that the 0f axis 

passes through 36° and 36° - 360° = -324°.

Step 2. Place Overlay-II over Overlay-I so that the axes 

line up and the curve opens to the right* The curve should 

approach a velocity of positive 10 deg/sec* 9 q is read as approx­

imately 6*5 deg/sec*

Step 3* Manipulate Overlay-II so that the curve opens to the 

left and is flat on the lower side* Line up the axes and again 

adjust the curve to pass through - 10 deg/sec* Obviously Eq* (44)
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can not be used as it indicates that an infinite time is required 

to reach point B*. Therefore an average velocity of -10 deg/sec 

is assumed. 0b * is read from the graph as approximately -270°.

Step 4. Calculating time using Eq. (44) and Eq. (45) yields

tAC - /?. 9s[J>7 ('o ho) /7**rp' 8HL]

tCD -  -JLo*)J  = n.rj-p.s-oot]
!7. f s [ l.  !»!*]= Sec * ttacD

£  . . .  =r / / o * ^  =  21-iSrc.

^«'c' = O t + ,c) 04)  -- / w lO ■ L13/J *  l* -'s<’ c
39.!see. •»

Step 5- Comparing times shows that Is larger than

tA,ptgi, therefore the boundary passes at a more positive velocity.

After several trial solutions were made the zone boundary was
♦

found to pass through the point 0 = -9*8 deg/sec.

The points obtained are tabulated in Table-I and are 

plotted in Fig. (7 ).

If this graphical method was to be used extensively it would 

be convenient to calibrate the curves in terns of time so that a 

change in time from one point on the curve to another point on the 

curve could be read directly.
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TABLE I.

Tabulated Results of Graphical Calculations 

Zone Boundary for Inertia Plus Viscous System

Angular
Position
JPeg.I,

180

144

108

72

36

0

-18

-36

-54

Angular
Velocity
(Deg/Sec)

0

- 2.1

-5.3

- 6.8

-9.8

- 12.0

-14.0

- 16.5

-18.5
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<D

^•g • (10) Overlay-I



-4-3-

Fig. (11) Overlay-II
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