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ABSTRACT

If a control system is to be synthesized, it is inferred that a plant
or process is present which must be controlled, and the problem of how to
design the control system then arises. The first step is to decide on
performance specifications to which the complete system must conform. These
specifications may involve such things as the system steady state response,
transient response, or frequency response* Any of several synthesis methods
may then be applied to complete the system design.

In this study a synthesis method is developed for single-loop linear
feedback systems. First, the number of compensating poles and zeros and
the approximate location of each is determined by conventional methods* A
set of functions, one for each specification and one involving each plant
pole, is written in terms of the system singularities with the compensation
singularity positions as variables and each such function is equated to
zero. linear approximations of each of these generally non-linear functions
are obtained by expanding each function with a multivariable Taylor series
and retaining only linear terms. Expansion is about a point described by
the approximate singularity values. This linear set of equations is solved
by the Gauss-Jordan elimination method* Due to truncation of the Taylor
series, this does not give an exact solution to the original specification
equations but will serve as a second approximation which is used as a new
point of Taylor series expansion. This iterative process is repeated until
a satisfactory solution is found.

This entire iterative technique is adapted for digital computer pro-

gramming and flow charts for such a program are drawn.
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CHAPTER |

INTRODUCTION

A. Statement of the problem.

Assume a plant or process exists whose components are unalterable.

If the performance of this plant is not satisfactory, an attempt is made
to synthesize a control system by adding additional elements in an appro-
priate configuration to meet performance specifications. The plant must
remain a part of this control system.

In the past, most design procedures have involved cut-and- try methods
where various charts and graphs are often employed. The purpose of this
study was (1) to investigate an automatic method of linear control system
compensation design which was outlined by Zabroszky and Marsh”j (2) to
develop the technique into a form suitable for programming and write a
generalized digital computer program to carry out the design.

B. Importance of the problem.

For a designer to resort to cut-and-try methods makes both design
results and time spent in arriving at the results depend largely on the
experience of the designer.

Using the computer technique proposed, it is only necessary to make
an initial estimate of the compensation needed and to supply this infor-
mation with a description of the plant and performance specifications into
the computer as data. The initial estimate is then refined by the computer
until specifications are satisfied. This reduces the tedious routine work
of a synthesis problem and releases the designer's time for other phases

of the problem.



C. Organization of remainder of the thesis.

Chapter Il is a review of automatic design methods previously introduced*
The outset of Chapter IH introduces the notation to be used in this study.
Generalized forward and feedback-transfer functions are written in terms
of singularities. The equations relating several performance specifications
to these transfer function singularities are developed. A method of solving
these equations is then given and finally, a computer flow chart of a program

for executing the design is constructed.



CHAPTER 11

REVIEW OF THE LITERATURE

A number of ways have been contrived to make control system synthesis,
at least to some extent, automatic. Using a method presented by Aseltine”,
some closed-loop poles, some real open-loop poles, and a velocity constant
are specified. A rough inverse root locus plot is made to see if the speci-
fications are consistent and if so, a set of algebraic equations based on
the Inverse root locus geometry are written to impose the open-loop con-
straints. The solution of these equations gives an open-loop transfer
function containing the prescribed poles. The open-loop plant poles must
be real due to the fact that a segment of the real axis can always be made
part of the inverse root locus while this is not true for conplex poles.
Also, the predominant closed-loop poles which will exist in the compensated
system are found from design curves or from an analog computer study before
applying the method. The method is laborious if the system under considera-
tion has more than four poles because the equations written for such a
system are nonlinear.

A similar method was proposed by Zaborszky”™ using 180-degree and
0-degree root loci alternately to satisfy open* and closed-loop requirements.

Later a paper by Zaborszky and Karsh”™ introduced a method that could be
adapted to the digital computer which is the method incorporated in this

thesis.



CHAPTER 111

MATHEMATICAL DEVELOPMENT

A* Notation#

The following synthesis method is based on properties of the open-

and closed-loop transfer functions of the system* A block diagram of

the single-loop system considered is shown in Figure 1* This system

can be described mathematically by the equations

TT Cs-2),)

GPCs) - K, 4y (1)
Tr(s-p<)
jrcs-to
Gc(s)=Ke (2)
TTCS-V;)
H Cs) = Ky» (3)
IV (s -«)
CCS) fr(s-Zi)TT'Cs-ti) TTCs-rO
«r( AX 1 A*l
K (s)= ft)
RCs) fc(s-fc;)
Where T a &-bS fj and it is assumed in the last expression that
] -f e This inequality must be satisfied or the constant

KjKg in K(s) will not be correct*



Feedback

HGURE 1

A GENERAL SINSIE-LOOP FEEDBACK SYSTEM



B. System specifications.

Any number of closed-loop specifications can be made as long as they
can be written mathematically in terms of system singularities. These
specifications may be for steady state response, transient response,
frequency response, etc.

Two specifications for the transient response to a unit step input
and one steady state response requirement are used in this study. They
are the peak time, per cent overshoot, and velocity constant respectively.

System stability will be considered a requirement. This will be
discussed in Chapter IV.

1. The equation for peak time.

The system output for a unit step ir$>ut is

ft(s-zi)TT(s--fci) TTCs-r")

ccs) = S (5)
TTCs-fc)
It is necessary at this point to assume K(s) to have a predominant
pair of poles, q . In particular, let
it be required that the real part of all other be at least three times

the real part of qj. By making these restrictions, all components of
the time response except that due to the predominant pole pair are damped
to small values which are negligible in comparison to the predominant
component at peak time. This will simplify the following work. Expanding
by partial fractions, C(s) becomes

B B*

sfr, © ... ° )

+

The in-verse Laplace transform results in the time response



C(£)- A + 2 |B] cos [co,t -h e« = (7)

Figure 2 shows the general form of this time function. To find the peak
time it is necessary to set the time derivative of c(t) equal to zero and
solve for t. In doing this the terms not written out in Eq. (7) are neg-
lected since they are almost completely damped out before tp is reached*

The result is

_2.Bl ¢, €9tf Cos[« -tr+/B 1

dt tp
(8)
296 € sm[&vtp +ZS-]=0
Solving Eq. (8) gives
or
tart wz&_ 1=, (9)
or
Z5s.1 (10)
FIGURE 3
From Figure 3 it is seen that
van a;. “ AT 0< 9 < X

and
Zii.="T+ 0 = T —-to.*" "



THE TIME RESPONSE TO A STEP INPUT



therefore
| I or _ it
CO, "™ 2m
The constants A and B will now be evaluated. They are
i c-zj xrc-ti)T rc-n)
A=CO0s)-s! =K ,K* 45' el
15-0 TTC-fc)
<m/
and
B=CCs) _ KKe 3T/~ F ~ X T
7T(% - £)
isgL

The angle of B is

Substituting Eq. (11) and Eq. (lli) into Eq. (9)

r y | r
fcp=<b:L~r-y A -Zi ~vy [ft-6;, -> [ft-ri * 7 "/g-ft 1
is/
One term of the last summation can be replaced as [fr, — N =

[E]-& #=If so that finally

«< y J I
fcP=5; [? ~T~/ft-~ -7~ ZItzii -~ y ~ [*]-&e]
The function* fP* will be defined as
r J

an

(12)

(13)

@9

(15)

(16)

fp'sr.ff -J~/9.-2j ~ J ~ ~ NV [Z.-r{ +) [*.-*< 1-Tp (17)
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where Tp is the specified peak time* This form will be convenient in

solving the set of condition equations*

2* The equation for overshoot*

Substituting the constants from Eq. (12) and Eq* (13) into Eg* (7)
and retaining only the predominant terms gives
T C-Zi) TTC-1:) T (-Ti)
A -1, - 11
CCip) = KK* Ja H (18)
TTC-fr)
KKt TTCfc-zOfr (& -+ ;)if
+ 2 e<r,tpcos[(j,ip-/B |
& fra-

where tp is given in Eq. (16). Prom Eq. (9) and consideration of Figure U

it follows that

COS"60,*tp +& e (19)

|*.1

Substituting Eq. (19) into Eq. (18) and dividing the cosine term by the

magnitude of the first term gives the overshoot, Mp, as a fraction of the

steady state output magnitude*
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] O/til )
50, ,WS/'/\‘IA-.I.:I—I /Q-tI|A:!|_|_I», ni 'I;'tl'l | fcl

(20)
Ista  TTIN-NTTIZI-TTINTTINI
-<»i as- *»' *'1
Since |?,] == | JJ , it follows that (8*|2= &1 » and this will cancel

the first two terms in the product series of g™ Also* in the denominator

| Sa.Jr2*0, . Using these reductions gives

TT Ifc-zJ-TT Ifc-iJTTIfc-nITT Ifcl

M bx¢ A* A*Z <r,-tP (21)
p = —_—

"ff 1%- fCITTIZilft’ deTT X S!

4<3 =1 A«

or in natural logarithmic form

a* * S r
+ 21 Inlft-til +21 + X 1*Ifcl~]E! Ihl£/-£nl
At 44 *-j 173
(22)
« r i
X Inlzil —211«K a]—2- Inlril *+arctp 3H IrtM p
4t/ Aot
The function fmwill be defined as
-fm™ZXIn 1z;1) +Z§In 19d-1i |-1r=>1g]) +Z (In 1
Koo & AS Jinf

(23)

-Inini) -Z(Inlft-fcMn|9s|) +<tP- InM

where M is the specified overshoot*
3# The equation for the velocity constant*

Truxal”™ developed an equation relating the velocity constant to

system poles and zeros* It is
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M/[T.

The function ™ is now defined as

., ¢ E-tfEfe] @

*-[E£E *+ £ * et-fe-f-fcK-i <«
A*x* X » 1 a*1 /=*/
The only restriction is that CCsl/RCs™ *%=] ¢ This infers that the system
be type 1 if it has unity feedback. If the system does not have unity
feedback, its unity feedback equivalent must be type 1.
lu Equations for the plant poles.

The closed-loop transfer function can be written as

KCs) = Ge(s) G PCs) (26)
I + Gc<9GCs> HCs)
Solving for the forward-loop function gives
Hence for each plant pole, pe, I-K(s)H (s) must be zero. Then
TTCft-ifc) fT(R 8- 2i)frCRs-to tr(P «-n)
______________________ ; _ _ o (27)
fT(ft-n) TTCft-W
is

Both magnitude and angle of this expression must equal zero. Separate
expressions will, therefore, be written for these two requirements. Writing
Eqg. (27) in logarithmic form gives

AInIRr - *bi|—nK KaK*  In|Pe~ili1 J™ \N\ IPg-2(gft)

yICl

-ru iPc-t™ h o
Ko
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which must be satisfied for the magnitude requirement. The function fe

shall be defined as

2L

AM-UKLKKS =X IM]Pe-yil “ H i* \Pe-Zz |

1«
“|1 InIP*-t*| (29
~

The equation
t V « r
T M-Hx+r /R -1; A-Zi -r1r A -fc = a (30)
*» Al i*« 4s

a =0,z \t z, eee
must be satisfied for the angle requirement. The function ge shall be

defined as

X v h r
3*=HA-MI1+J~/Pg-l; +H A-Z; -T~A -~ -aaTT (3

It will now be shown that it is unnecessary to write equations like
Eq. (27) and Eq. (30) for both poles of a complex pair. Any complex pair
of plant poles, say pe and pe+” s pe*, can be written in terms of the
real and imaginary parts as pe - per ¢ j pej and pe+i - pOr - j Pej* For
example, applying this to any one of the simulations of fe, given in equation

(28), yields

£ U P«~&| ~y~£ Irt](kr_i*r) + (P«j —g.™) ]

< *S{

For a real g9 gj s 0 and a term of this summation is

2InPar )

For a complex conjugate pair of qj, the terms are

=rIn [(P*r- +Pqg- ]

and



zI«[(Rf (p<i

Now for the equation involving the conjugate of pe these last three terms

are

i1ln (Pe,-»,,m)*

Notice the terns in pe+” correspond exactly to those in pe. Hence both
function fe and fe+l are identical# Only the upper half plane pole of
a conjugate pair needs to be used in writing equations like Eq. (29 )e
A similar procedure will show the functions and ge+i> which are written
for pe and pQ*”™ z p©*, are also identical, and only the upper half plane
pole needs to be used.

In addition, consider Eq. (30) written for a real pole. One suianation

in the equation is

For a complex pair of the terms are

which cancel each other. For each real z»
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Therefor© where pe is real, Eq, (30) is not dependent on numerical values
of other system singularities. It is then not necessary to write equations
like Eq. (30) for real pe.
C. Modified notation.

It is now convenient to change notation for programming purposes as
follows:

zr£ are the G real zeros of , g

. it n it
Pri " 0 a poles VvV 8>

PR n T it it
tri r Zeros g0<8)
Api " T X N zeros T H(s)
rei " t ja T poles T H(s)
—— t T« T poles N K(s)
zcri are the real parts of the complex zeros of Gp(s)
Peri ot t t ¢t t poles of Gp(s)
nerj M T H © & & Tt t  zeros of Ge(s)
Fepj ¢ T ¢t o« JU T zeros of H(s)

n it it it it it it
reri Jc poles of H(s)
zcji are thel imaginary parts of the complex zeros of Gp(s)
reri U it n @ &t £c t poles of Gp(s)
Acri n it t t t n zeros of Gec(s)
FUTTEE L n w it JU n zero8 of H(s)
cri
N S t t ot W ic n poles of H(s)

rcri
ACri it it it It It it Tc n po'es of K(s)
Where + 5 ~cjl *s Pre<**ntnant closed-loop pole. Only the real

and upper half plane singularities are counted and given numbers, For

example the poles of K(s) would be numbered as shown in Figure *e



gerl

<?cji

gcr2

qcl?

gcr3

qcj3

-1.0 dri =-U.0
1.5 gr2 = -5*5
553*0
1»°
"5’0
2,0

FIGURE $

NOTATION FOR THE POIES OF K(s)

15
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The singularities were divided into real and complex types because
each type is handled differently in programming. For physical systems,
complex poles have to exist in conjugate pairs and they cannot, therefore,
be treated independently. In rewriting the condition equations, the
summations will be divided into two parts; one involving real and the other
involving complex singularities. For complex singularities, only the
upper half plane components are used but are used two times, first with
the imaginary part positive and then with it negative, to account for both
the singularity and its conjugate. With the new notation, a conjugate
pair of complex variables has been changed to two real variables with the
total number of variables remaining unchanged. This eliminates the possi-
bility of a pair of conjugate singularities varying independently.

Using the new notation the condition functions can be written as

follows .

Jeri-Zrli
“ 2 hut + \
J }/_(Kran G - 70 flan L
r*i-, —'fri-i ifcri /
_L(W‘—fcr1+ ~AJL+~ L)
_ E (* *x n r + w

(32)
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Fm = [S’ i~Zri) + ?%JiJ + T In ZrA*~
A1l
&
r fcltt g&e>-1«tr1) + ] s v 1
K
Jr

£ {tin[«-,-rd* --&" 1+ iu r~ |

Tr
~ {dInK&r7 *ACH JN 2 In ?ri e

is|
rc

+y~{4in[(&*~Zrd ~K<j—Zcjiif] + in (zeriV zja)

JUi

+ 4 in &>0-r Zo-if +("cj,+Zcj™] }

<
"A) -~ Q J (nCtcr*. i-i.cjk)
X

* 2 In[CAr,-lUrx)  +(jt<.j, +'Lci) 1}

+ M {'iln +(Ni-rerit] + In(rer®*+rgo

Axl

2.In[(?c»-1 rcri)
rt

r U[(Ecri %crx) + (%cj | ~Ci)_ In (jeri 4-/cjx)

+ 2rin[(n-- A + Ay )1 }

+ frer-i (-Fp +Tp)—1In M (33)
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N

) Yr Yc
afc= ' 1 - y F-_) , Y- 2tc«-X
L— Zrl 'vr Z_ ZerA*+ Zcj»* "*4— t-A N4 — tcrNM+icjx 2
Al »C A -< «*

AB 1 |

2. ITcrA

. Kv'I
- R NANK* *
ae PW o+ il Gty CNFH

(V)

Since the form of Eq. (29) will be slightly different for real and

complex pe, i1.e#, there is no imaginary part of pe to be considered for

pe real, the equations for each will be defined separately.

For each
real pole of Gp(s) write the equation
“PXIL'In[( P r e ~ e?2c/]
-HtU(Prs-ZrT ~YL In[(Pr=Z<r0* +Z.j*]
~JchWp~~-U)1 ~>I5|| Ul(pre-ic”),’+ -Ltul]
ju
~Xe. InCPtx-JjrO -EU C (fV .-ll.n)Vy«~]-UK .K.Kn (35)

For each upper half plane complex pole of Gp(s) write the equation
I«

"fee ~ XIsMXP™e"? w) +eReft] -Ei1INBPc,”) +HPNed

Y
Xl'alwL(Pt»-A"tA)2+ ]
A«

Jr
“"zZZirln [(Pcre"iJr;) -PPcjc. ]

2{(n[(per.-%rXf+ (Pge-$cjJ*] + |K)](Pcr + (Pcje+ #eja) ]}

*C N\

"XNitolfrcr-~Zcr;) ~N(Rje "*2cjx) 1™M*In [Cfer™MZerA) "MPeih+Z )

AS | n
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y
~NMa'{In[(P«.r»-iwi)+(Pcj«-4<;jd)a]l +In[(Ptrc“ t™")*+CP i«+i<J»)a]}

L ya

—E*gi{ln [(Pc,«-N)+(Rie-NJ]+ In[(Rrc- ifoaN+Fyp»+

In ki K* Kn (36)

Also, for each upper halT plane complex pole of Gp(s) write

1 Pcic <& i Zda
- y~ban i; o
y&) Pcr/\_zr* * I,an ‘fere ~"2I<rA
Y*
N Pdc —teu Pcje t- Lcii,
Pcrc  tr* o9 —"terl Pcre —tcri )
i* ) "
Pg% P an  PIE
liel Pcre- ~ A a ] Per « Pcye - )
* o, . i .
A Pcje Pcje — S*cj; L pej* + Srgi
%ﬁ_ta " Poe YA " Pere —goa T X2N poie )
k 2TT wherq  <X.s?0/ :k\i :t2v *** (37)

Since three equations for response specifications, py equations
for the real plant poles, and (2 = equations for the upper-half-plane
complex plant poles are written, the total number of equations is finally
(3 o fir) +(2 =fiA
D* Solving the equations#

This proceeding set of equations must be satisfied for a system to
give the desired performance* It was assumed initially that only the
plant poles and zeros were known, leaving the remaining parameters to be
selected* The design must provide as many parameters as there are

equations in order for a solution to exist*
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A closed form solution of these equations is not generally possible
since they are not linear. To solve the equations an approximate solution
will first be found by any conventional method of synthesis and then refined
by the following procedure.

Let the unknown system parameters be variables, x~, X2> x”~, Xn,
in the set of condition functions, and let the approximate solution be
X1l s al> x2 z a2* x3 * xn = an* UsinE an n-dimensional Taylor
series the functions can be expanded about some n-dimensional point. If
this point is chosen as the approximated solution, and only the linear

terms of the expansion are retained, the result for one function is

-Ga')= 0 (38)
or

Y* 3f
*~3X, aaa 'p (39)

«C|

By treating each condition function in this manner a set of linear equations
results which can be solved for the x~. This would be an exact solution
for the condition equations except for Taylor series truncation error.
Using the new values, the process can be repeated several times until a
solution of any desired accuracy is achieved. Convergence is not assured
but should present no problem if the initial solution is reasonably accurate.
Expressions for the partial derivatives of each function with respect
to each variable are given in the appendix.
Notice that all singularity values except the VAwill appear directly
in the solution of the condition equations. Since the forward-loop compen-

sating poles (the v”) do not appear as variables* and hence do not appear
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in the solution they are found after solving the condition equations*
Substituting into Eq* (26) the expressions for Gp(s), G(s), and H(s),

as given in Eqgs. (1), (2), and (3), yields

KiKe TT<s-zOTTC5-tATTCs-n>
KCs) = -j (e

IICs-p) TJCs-Vi) [ (s-n 1 KK TT(s201T<s- ) TT(s

The denominator of Eq* (2*0) can be equated to the denominator of Eq. (i*)

giving

TT(s-N) = L}I’Cs—p"jT(s—Vi'i TT(s-n)
(Ia)

-1t KAKIKrtfTCs-zO ttCs-iO T T (s-ai)

A |

from which
'IS'I'CS—V;) (r2)
TTCs-Pu) frcs-n)

The right hand side of Eq. (1*2) will result in a polynomial whose roots

are the poles of G(s)*
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CHAPTER IV
PROGRAMMING THE PRCBIEM

Programming consists of two primary parts: first evaluation of
the condition functions and their partial derivatives to obtain the
linear equation coefficients; second, solving these linear equations for
the next approximation and looping back to part one* The approximation
obtained by conventional design methods is used to initiate the process.
A number of other steps are, however, involved in the program. They are:
(1) Test the solution after each iteration to see if it is near enough to
the correct solution. This is accomplished by evaluating each function
and testing to see if its value is near enough to zero. The figure for
comparison which will be used is 0.01. This will permit, for example, a
peak time which is within +0.01 seconds of that specified, or an over-
shoot within +I£ of that specified; (2) check the closed-loop poles after
each iteration to be sure they have not moved into the right half of the
s-plane; this would cause instability in the system; and (3) check the
conditions | «@N31 S™*-*\ <2 1 3]9c%).

A flow diagram, indicating the basic parts of this program, is given
in Figure 6. A general program for the solution is quite lengthy, but
programming is principally straight forward. |If extensive use is to be
made of this technique, it is time saving to write a generalized program
rather than to program each problem individually.

Two points warrant mentioning. First, notice that in the functions

some multiple of 2ir is subtracted. This multiple will not generally
be the same for any two of these functions and may vary from one iteration

to the next. This operation can be approached as follows. Each time one



FIGURE 6

THE BASIC A.OW DIAGRAM

Print solution

2k
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TABLE 1

DATA SUPPLIED TO THE PROGRAM

(see Flow Chart in Figure 6)

VARIABIES—specify initial values

gri rri for i yri
*5cri rcri teri ycrl
qcji rcji tcji ycji
k2 Kn

CONSTANTS

zri Pri Kv

zcri Peri TP

zcji Pcji M

Constants to be used to set up the number of loops in a multi-loop calcu-

lation.

Jr Tr

SIc JU Jc %

The notation is explained in Chapter 111,
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of thesQ functions is to be evaluated, 2 TT is subtracted repeatedly until
a residual equal to or less in magnitude than TT remains* This residual

is the value of the function* Second, many computer languages have a
command for finding the arctangent but only give the principal value*
Usage in this problem requires the angle to be located in the correct
quadrant. A routine for this purpose is shown in Figure It is only

necessary to define N and D and then transfer to this routine*



FIGURE 7

A ROUTINE FOR COVPUTING 9 =tan"

gl
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CHAPTER V

ILLUSTRATIVE EXAMPIE

A relatively simple compensation problem will now be presented to

illustrate the method and results, A plant with transfer function

will be considered, When used in a unity feedback single-loop configu-
ration, as shown in Figure 8, the response characteristics of concern to

this example are found by analysis to be

Kv = S
tp * 1,0U£ seconds

M

QD

0,35>1

Assume that a shorter peak time, less overshoot, and a higher
velocity constant are required for satisfactory system operation. In

particular, let the specifications be

K¢ s 10
Tp a 0,613 seconds
Mp x 0.127
The uncompensated system root locus is shown in Figure 9. By adding
derivative compensation and additional forward path gain it should be
possible to meet the specifications. An approximate root locus plot for
the system with this compensation is shown in Figure 10, Initial values

for the five variables of the new system are estimated from this plot as



\ 10 )
SCS+2)

FIGURE 8

THE UNCOVPENSATED CIOSED-LOOP SYSTEM



FIGURE 9 FIGURE 10

ROOT LOAUS PLOT OF THE UNCOVPENRATED SYSTEM APPROXIMATE ROOT LOCUS PLOT OF THE QOVPENSATED SYSTEM
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qcrl - -3 tri =-6 K2 * 5
Qcjl 23 Qrl = *9

Constants of the plant and its control system are

kX = 10 =2

Prl =° SRiT«, Tec=1

Pr2 = -2 *c >, *«, ARjJ*Jj, jit=0

Kn =1

The set of equations for this problem would be

*
~ TT +m "t<\N\Ir— — — *t - .
fa fcii . Werr -3tri an NeCri * "EX\i 0.613
2.
«fm— 2in[(?cn -h + zIlvi"b V1
elvi[(?*cri + ?c¢cj(] + z In

(-fp 4-0.6/3) - In 0.|27

o%r i U

i~ 2.U[-"-ri] + In[(- Sc.n'f+ #cj?]- 2M-twei]— U Ok

£
mfst , TINE'2“1r»] + In[(-2- $cr)+ ?2t4f]~z - v
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Recall that it is not necessary to -write out these equations when a general*

ized program is used* They are written here for illustration.

The computer, after ten iterations, gave these values for the variables.

trl = -5

<?crl - 2.3
qcjl * k*6
gri - -7.55

K2; a
An analysis of the system using these values shows the specifications are

satisfied. The compensation zero position is known but the pole position

must be found from Eq. (U2).

(S~Pr,)(S-Pri)

(S+a.3“j4.6)(S+a.34j4-.6)Cs+7.5S-) -/0 -H'S-r.5j
S(S+2)

= s* + jis.is a +S1.3
S+ 2

= S + 10. 15

Therefore, the compensation network required is

4 (S+5)

Gce<s) (S+ 10.5)
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

A* Discussion

Certain restrictions will be pointed out and discussed briefly.
First, the system considered is required to have a predominant pair of
complex poles which is equivalent to saying that it must behave as a
second order system. This permitted neglecting all but the predominant
terms when writing equations for peak time and overshoot. The error
due to this assumption, being in the order of 5%, is admissible in most
cases* Including other modes would complicate the mathematics considera-
bly.

Specifying a critically damped or underdamped system is not allowed
when using the given condition equations. However, other equations could
be derived for this purpose.

The work presented here does not terminate the possibilities of this
method. Many other system specifications could be used. Settling time,
bandwidth, damping factor, or the transient response to excitation other
than a unit step could be incorporated. Also, the specifications used in
this development could have been written with inequalities as

peak time Sl Tp

overshoot ~ M

velocity constant 5s
instead of with equalities. Perhaps some method could be contrived to
solve the equations in terms of inequalities and, in doing so, reduce the

amount of compensation required.
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B* Conclusions

The proposed digital computer method will refine an initial estimate
of the plant compensation needed to meet certain closed loop specifications*
While it is subject to a few limitations, and still requires some judgment
and preparation by the designer, it is an aid to design which should prove
useful*

Emphasis has been placed on meeting a set of performance specifi-
cations* Compensation may also be required for a system which is unstable*
Since it is not necessary for the uncompensated system to be stable when
using the computer technique, an additional benefit arises in that stability
may be achieved concurrently with meeting the other specifications*

The digital computer is seen to be a convenient tool for linear control

system design and many possibilities exist for extending the work presented

here*
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APPENDIX

THE PARTIAL DERIVATIVES OP THE CONDITION EQUATIONS
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£<>f ~
- N *e(jc*-~ (?ej#ryn)* (&~ $¢-'0 'vrrg« )
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A—V( NIy -Z< ¥ +e (84| ~ 20]’\)2 (PCri —z<ray*+ (fcji 4ZC\I)2J

r*

NI <A 4+ %<Ji -h "tcj }
A*I{ Cferi —£<*-*)*+(&J*—£d4*  (%<*el—Ecri)*4" ( fcji

iy5/ fe/* ~.C*a 4 fez* ziiZLii

A7 A2 (fer™ 7 - 124-(Te| """ )

3 &ji A fejl 4- fej*

3-ff
3

e d'gfe/l “"2</;) (ftir “ ><ref£) + ( £c/t+ ?<Ja)
| "-(fart —&Fe= fcrt—£
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(fe***—f e , (4- fej**
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