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ABSTRACT

The purpose of this thesis is to develop and implement a
meta-assembler for microprogramming. Different methods for optimizing

microprogram execution and storage are also investigated.

The meta-assembler is of an adaptive type. It allows complete
flexibility in the definition of the target machine op-codes and
microinstruction field formats. The assembly process consists of two
main phases. In the first phase the assembler builds a description of
the target machine in terms of its microinstruction field format
definitions. In the second phase the source program is assembled into
object microcode. The assembler is written in the language Pascal. The
assembler is fast, efficient and the syntax allows easy development of

source code.

Different techniques for optimization of execution time and storage
of microprograms are investigated, these include the description of the
high level language SIMPL which allows high level microprogramming and

generates optimized horizontal microcode.
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. INTRODUCTION

Microprogramming was introduced by Wilkes in 1951 as a systematic
alternative to the usual somewhat ad hoc procedure used for designing
the control section of a digital computer. Though initially
microprog ramming was defined as "the technique of designing the
control circuit of a digital computer to formally interpret and execute a
given set of machine operations as an equivalent set of sequences of
microoperations." Today, microprogramming is used in a wide variety of
applications for example emulation, support for operating systems,

graphics, communication controllers etc.

An objective of this thesis was to develop a meta-assembler for
microprogramming. Microprog rammable machines can be configured to
emulate different target machines. A general purpose software tool is
required, which can be wused for microprogramming different host
machines and also can accommodate changes in the definition of the
target machine. A meta-assembler can be used in different host
microprog rammable machines and can be configured to generate

microcode for different target machine architectures.

A meta-assembler for microprogramming was designed and
implemented. The operation of the assembler is divided into two main
steps. In the first step the assembler collects information about the
target machine. In the second step the object code for this target

machine is produced.



2

One question that needs to be addressed, is that of the wuse of
high-level languages for microprogramming. There are some
disadvantages to the use of high-level languages for microprogramming.
High-level language programming is concerned with implementing an
algorithm with little or no concern about the internal details of the
machine in which it is to be run, whereas microprogramming consists
principally of establishing a specific machine architecture in order to
implement some class of algorithms efficiently. The relative inefficiency
of object code produced by compilers defeats the purpose of defining an
inner machine fast enough to be a base for further programming levels.
The optimization techniques used in optimizing compilers can be applied
for producing microcode, however, these techniques still do not match a
good assembler programmer and furthermore they do not apply very
well for horizontal machines where a new level of optimization
(parallelism) can be put to work. Another disadvantage of high level
microprog rammi ng languages is that they have not yet achieved
machine independence. One major attempt to develop a high-level
language (SIMPL) to produce highly ©parallel and efficient object

microprog rams is described in this thesis.

Microprograms are optimized for execution time optimization and
control store optimization. Compilers which produce programs in an
algorithmic fashion (eqg, Syntax directed compilers) must produce
correctly functioning routines regardless of program sequences
involved. Hence, inefficiencies are introduced to protect against special
cases. Another cause of inefficient code might be that a program is

written to ease its maintenance and understanding, while a different
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organization of program subparts may be more desirable to reduce
execution time. Another reason for inefficient code can be the use of
library functions, if the program includes code drawn from the system
library, the user is not familiar with the internal structure of the
library routine. Therefore he may utilize only portions of the routine or
perform checks that are also performed in the library code. Techniques
for optimizing microcode execution time and control store requirements

are investigated.



[l. A MICROPROGAM META-ASSEMBLER

Every computer system is accompanied by at least one program assembly
language. An assembler is required to translate the assembly programs
into machine Jlanguage. As a consequence, at least one program
assembler must be developed for every computer system. This need led
researchers to look for ways to automate the construction of program
assemblers. This led to the creation of a new software tool called

meta-assemblers.

The objective of meta-assemblers is to facilitate the construction of
program assemblers. Likewise, the development of microprogrammed
computer systems led to microprogram assembly languages, microprogram
assemblers and microprogram meta-assemblers. With the advent of
microprogrammed computers, microprogram assembly tools analogous to
program assembly tools started appearing. At the beginning these
microprogram assembly tools were physically and functionally distinct
from the program assembly tools. Later some meta-assemblers which
could act both as program meta-assemblers and as microprogram

meta-assembler were constructed.

Figure 1 shows how dedicated and meta-assemblers work. A meta-
assembler is furnished with a "meta-language"”. The implementation of an
assembler with the help of a meta-assembler is a matter of describing
the desired assembler to the meta-assembler, using the meta-language,

this description is called the assembler definition.
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With the help of the assembler definition, the meta-assembler can
either generate the desired assembler or adapt itself to operate as the
desired assembler. In the first case the meta-assembler is called a
generative meta-assembler. In the second case the meta-assembler is

called the adaptive meta-assembler.

A. MICROPROGRAM ASSEMBLER DESIGN CONSIDERATIONS

The following discussion is directed specifically towards designing
microprogram assemblers for bit-slice computers, though it also applies

for other microprogrammable computers.

Bit-slice computers consist of high-speed circuit chips, several of
which are required to form a complete processor. These bit-slice
devices must be connected together with careful attention to logical and
timing detail. The sequence of internal register level operations
necessary to complete a function step is wusually controlled through a
sequence of bit patterns retrieved from the microprogram memory by a
sequence controller. The definitions of sequences and functions stored
in this memory comprise a microprogram. Completion of a good design
with bit-slice chips requires a detailed consideration of the hardware
aspects like the connection and timing details of the chips and the
firmware aspects like the functions and bit patterns of the

microprog ram.

A special requirement of microprogram assemblers which distinguish
them from other assemblers is the redefinable multiple-field format of

the object code.



A microprogram segment must specify the following things.
1. Sequence of microprogram control flow.
2. Control codes for ALU chips.
3. Register addresses.
4. Timing and enabling conditions for latches and switches.

5. Constants for comparison, preloading or masking.

The control code groups may be bit patterns for direct control of
gates, or they may be encoded functions. The typical microinstruction
then is a bit pattern of several fields, each of the fields may be of
different length in bits. Specifying the content of each microword in an

assembly language requires multiple assignments.

The typical line of a bit-slice microprogram therefore, differs from
a conventional one-address computer instruction line in that it has
multiple opcodes. Also different opcode patterns may call for different
field groupings in successive microinstructions. A jump instruction, for
example, might call for only two fields: the field specifying the jump
function and a long field giving the jump address within the
microprogram memory. On the other hand, an ALU operation might
require several short fields containing codes giving the first and second
operand source location within the register set, the code for the ALU
operation to be performed, the destination of the result, and bits to
control the handling of carries and condition codes. The bit-slice
assembly format should allow several alternative groupings of multiple

assignments.



B. DESIGN OF A MICROPROGRAM META-ASSEMBLER

To achieve the changeability of the assembler's target machine the
processing of the program is split into two phases:
1. Definition
2. Assembly
Figure 2 shows the general scheme of the microprogram meta-assembler.
The definition phase reads a specification of the microinstruction
formats including number, sizes, positions and default values of the
several fields of each format of microinstruction. The mnemonic tags to
be associated with each opcode and, the association with the appropriate
formats and field values are also defined. The first main step of the
assembler is to acquire these definitions and to construct an internal

description of the target machine.

In the second or assembly phase the processing by the assembler
is more like assembly language processing of a fixed architecture
computer. The basic task is to scan lines of input symbols translating
mnemonic codes, statement labels and field values into sequences of
binary microinstructions. Fields specified in the definition phase are

pulled together, aligned and stuffed into microwords.

The post processing phase reformats the binary object code for
use. The use may be simulation directly from the numerical format of
the assembly output or it may be implemented in ROM or PROM
according to the format specified for the memory design or may be
implemented by PLA’'s specified by the designer. The post processing

phase is not implemented in this design.



RAM OR ROM PLA’s
ROM SIMULATER

Figure 2. Control Flow for the Meta-Assembler
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1. The Definition Process. Procedure definition reads the
definitions of the field formats and constructs a definition table which

represents the description of the target machine.

a. Data Structure For Definition Table. The data structure used
for storing the microinstruction definition is shown in figure 3. The
array ARRY1l is a array of pointers. Each element of ARRY1l has two
pointers, FIRST and LAST, which point to the beginning and end
respectively of a doubly linked Ilist of records associated with that
element. Each of these records is the first node of a separate linked
list. These linked list have records of type NODEREC, which are used
for storing information about a microinstruction field, each of these
linked lists are used for storing information about a microinstruction
format definition which may consist of the definition of several fields in
that microinstruction. The diffrent fields of the record NODEREC are

shown in figure 4.

As it is expected that the entries in the definition table would be
referenced frequently during the assembly process, a hash function was
used to index into ARRY1l . The hash function computes the sum of the
ordinal values of the first, second , fourth, fifth, seventh, ninth,
seventeenth and nineteenth characters of the microinstruction field

format definition names and then computes the mod with the size of the

array ARRY1, this value is used as the index for array ARRYL1.

It is possible that more than one definition name will hash into the
same index, hence the technique of chaining is wused to resolve

collisions. All the records in a linked list have the same hash address.



Figure 3.

Data Structure for the Definition Table

1
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When a new definition is to be added, the hashing function is computed
to calculate the array index, then the record is inserted with
alphabetical ordering of the definition name. This reduces the time

required to search for a definition in a linked-list.

In a microinstruction field format definition, any number of fields
in each format may be defined. A record is associated with each field
definition. As the definition of each field in a microinstruction format
definition is constructed, it is inserted at the end of the linked list

associated with each microinstruction format definition.

The wuse of dynamic variables to construct records results in
efficient utilization of memory space. The design of this data structure

is an important consideration for the performance of the meta-assembler.

b . Construction Of The Definition Tabje. The procedure
BUILDDEFTABLE constructs the definition table. The flow chart for
procedure BUILDDEFTABLE is shown in figure 5. The format of

microinstruction format definition is as follows:

definition name DEF (fieldposition v/c number of bits <modifier> value).

The assembler also allows a numerical value to be assigned to a

name. The format is shown below:

name EQU <modifier> value.

Items enclosed in < > are optional. Items enclosed in ( ) can be



SYMB

DEFTYPE

VARIABLE

NUMBITS

LEFTPOS

VALUE

MODIFIER

LLINK

RLINK

NFIELD

Figure 4.

13

FORMAT DEFINITION NAME

TYPE OF DEFINITION

CONSTANT OR VARIABLE

NUMBER OF BITS FOR THE FIELD

POSITION OF FIELD

DEFAULT VALUE OF FIELD

MODIFIER FOR THE FIELD

POINTER TO PREVIOUS FORMAT DEFINITION

POINTER TO NEXT FORMAT DEFINITION

POINTER TO NEXT FIELD DEFINITION IN
THE SAME MICROINSTRUCTION FORMAT
DEFINITION

Record for Storing Field Attributes
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repeated more than once. The microinstruction format definition begins
with the definition name followed by the keywords def, this is followed
by the specifications of a field in the microword. The type of field
(variable or constant) is specified by v or c¢ respectively, this s
followed by the number of bits in the field. Specification of the field
modifier is optional. Finally a numerical value is specified which
corresponds to the default value in the case of a variable field and is

the value of the constant in the case of the constant field.

The definition file is read one word at a time, and the attributes
of the instruction field is stored in the definition table. The constants

defined by the EQU definition are stored in the symbol table.

When the word DEF is read from the definition file, the procedure
DEFTABLE starts searching for information for the current definition of
the microinstruction field formats. A record of type NODEREC s
created to store this information.The fields of this record are shown in
figure 4. This record is pointed to by the pointer WORK. The
position of the field is stored in WORK| .LEFTPOS. |If the field s
defined as a variable field then the boolean variable WORK|.VARIABLE
is set to TRUE or else it is set to FALSE. The number of bits in the
fields is assigned to WORK|.NUMBITS. The optional modifier is stored
in WORK |.MODI FIER. The default value in the case of a variable field

is stored in WORK]|.VALUE.

When all the information for a field definition is available in the
record pointed to by WORK this record is inserted in the appropriate

linked list as explained in the section 'Data Structure for the
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Definition Table'. If a linked list does not exist a new one is created.

Any number of fields may be defined for a microinstruction field format.

When the procedure DEFTABLE reads the word WORDLENGTH in
the definition file, it expects a number to follow, This number is stored
in a variable MIC ROWORDLENGTH which indicates the width of the

target microprogram memory.

Symbolic names which are defined as constant values are stored in
a table called the SYMBOL TABLE. This reduces the time to search for

the values during the assembly process.

If a error occurs in the definition specification then procedure
ERROR is called which outputs the appropriate error message, and the
position of the error in the definition file. The procedure DEFINITION

returns after a error occurs.

2. ASSEMBLY. The assembly phase consists of the procedure

FIRSTPASS and the procedure SECONDPASS.

a. Procedure FIRSTPASS. The flow <chart for procedure
FIRSTPASS is shown in figure 6. During the first pass the assembler
uses the location counter to construct the symbol table, this allows the
second pass to use offsets of the identifiers to generate operand

addresses. This also allows forward references in the microprogram.

The symbol table with a few example entries is shown in figure 7
The symbol table is a array of records of type SYMBREC. The field

SYMBOL stores the symbol name. The field VALUE stores the value of



Figure 5.

Flow Chart for

Procedure BF1LDDFFTABLF
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Figure 5. Continued
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Figure 6. Flow Chart for Procedure FIRSTPASS
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the symbol, the field RELOCATIONBIT is a boolean variable which is
set to TRUE in case the value of the symbol changes if the
microprogram is relocated in memory, otherwise it is set to FALSE. The
MODIFIER field is used for storing any modifier if specified for the

VALUE field.

The procedure FIRSTPASS scans the source program and when a
statement label is read, the label is inserted in the symbol table, and
the relative position of the microinstruction in the microprogram memory
is inserted in the VALUE field of the symbol table. The
RELOCATIONB IT field for this entry in the symbol table is set to
TRUE, indicating that the VALUE field will change if the microprogram

is relocated, the modifier field is not used for statement labels.

At the end of each statement the relocation counter is incremented.
If the same statement-label s defined more than once, procedure
ERROR is called and the procedure FIRSTPASS returns. Values of
constants defined during the execution of procedure DEFINITION are
also entered, but the RELOCATION bit for the corresponding entry in
the symbol table is set to FALSE, as these values do not change if the

microprogram is relocated.

b. Procedure SECONDPASS. The flowchart for procedure
SECONDPASS is shown in figure 8. The format of the assembly line is

described as follows.

First a optional statement Ilabel can be specified. The statement

label must be followed by The microprogram assembler statement
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begins with a microinstruction format definition name followed by
numerical values or symbols. The symbol may be a symbolic constant
defined during the definition phase or statement labels (for a branch
address). The numerical values are assignhed to the default value.
Values can be preceded by an optional modifier. More than one
microinstruction format definition may be specified, these
microinstruction format definitions are separated by the character If
a bit in the variable field of a microinstruction format definition
overlaps a bit specified in a variable of a previous microinstruction
format definition then that bit can be changed only if variable OVERLAP

was set to TRUE during the initialization.

In the second pass, fields specified in the definition phase are
pulled together, aligned, and stuffed into a microprogram word
(microinstruction). The value of a constant field is looked up from the
definition table. If a numerical value is specified for a variable field it
is inserted into the field position specified by LEFTPOS for this field in
the definition file, if a symbol is specified for a variable then the value
of the symbol is looked up from the symbol table. If in the source
program a value is not specified in the variable field then the default
value is looked up from the definition table. Before a field is inserted
in the microword, it is modified by the associated modifier. If a
microinstruction format definition name that is specified in the source
file does not exist in the definition table, then the procedure error is
called. If procedure ERROR is called then a error message is displayed,
and the position of the error in the source file is indicated. After a

error occurs the assembly process is stopped and the procedure



SYMBOL VALUE MODIFIER RELOCATIONBIT

INV 1011 £ FALSE

START 0000 % TRUE

Figure 7. Symbol Table



Figure 8.

Flow Chart for Procedure SFCONDPASS
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Figure 8. Continued
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SECONDPASS returns.

C. Function FINDBITS. The flow chart for function FINDBITS s
shown in figure 9. The assembler allows all numerical values to be
specified in Hex, Octal or Decimal (by using a suffix of H, Q, or D
respectively). If a suffix is not used the number is assumed to be
decimal by default. The function FINDBITS converts the number to a

binary string.

d. Procedure ERROR. When the procedure ERROR is called a
error message is displayed which indicates the type of error, also the
position of the error (the line number and the position of the error in
that line) are displayed. The boolean variable flag is set to FALSE, this

stops the assembly process.

e. Procedure INSERTMICROFIELD. This procedure inserts the
binary number passed to it as a parameter into the microword at the
position specified by LEFTPOS. The binary string is modified by the

modifier specified by MODF before insertion in the microword.



Figure 9

Flow Chart for

Function FINDBITS
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(1. OPTIMIZATION FOR HORIZONTAL MICROPROGRAMMING

Machine or assembler languages are difficult to use for coding large and
sophisticated microprog rams. It was, therefore unavoidable that
high-level languages be developed to provide microprog rammers with the
facilities already offered to programmers. The nature of
microprog ramming, however, requires other features from a high-level
language (and its compilers) that are not always to be found at the
programming level. These are:

1. The compiler should provide optimized code. (This is particularly
relevant for compilers implemented to provide object microcode for a
horizontal machine in order to take full advantage of the data path
parallelism)

2. The language must be flexible, so that it can be compiled into a
variety of microcodes far exceeding the variety of machine Ilanguages.
The format of microinstruction vary considerably from one machine to
another, ranging from a format (vertical) resembling machine-language
instructions to a much more elaborate format (horizontal) containing

several concurrent microoperation specifications.

The advantages expected from a high-level microprog ramming
language are generally the same as those offered by high-level
programming languages. These are:

1. Writing programs is easier because algorithms rather than
implementation details are described. This also makes reading and
understanding the programs easier.

2. The ability to write machine-independentprograms provides

portability for those programs on any machine where a compiler for the
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same language is implemented (This is a classical advantage of

high-level languages that is not always implemented).

A high-level microprogramming language should enable the user to
write microprograms in a conventional sequential, and procedural
fashion and permit these microprog rams to be compiled into efficiently
executable microcode. The desirable properties of a high-level
microprogramming language must be a compromise between machine
dependency, ease of detecting and representing explicit and implicit
parallelism, and the innate "naturalness" required for all programming

languages to establish effective man-machine communications.

A high-level Jlanguage tends to produce inefficient object code
unless some effective optimization techniques are applied. A
microprogram generated from a high-level language may be optimized
with respect to execution time and memory space at two program levels,

global and local.

A. GLOBAL OPTIMIZATION

The global level refers to the instruction streams that can Dbe
partitioned into independently executable program segments. Global level
optimization generally minimizes microprogram execution time by
multiprocessing. This involves detection of parallel microprogram
streams and code movement. For detection of parallel microprogram
streams a microprogram is partitioned into independently executable
segments that may be assigned to multiple processors for concurrent

execution .
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B. LOCAL OPTIMIZATION

Local microprogram optimization is performed on each independently
executable microprogram segment. Reduction of execution time is
achieved by the exploitation of concurrent micro-operations, this also

results in the minimization of memory requirements.

There are two major considerations for local microprogram
optimization through the use of concurrent microoperations. The first is
the detection of parallel executable operations in a microprogram
depending upon data dependency constraints. The second is the Ilimited
availability of microprogram resources. Since parallel operations at this
level are performed by a single processor, it requires both detection of
parallel executable operations in a microprogram and allocation of
concurrently usable microprogram resources. Two parallel executable
operations detected in a microprogram, for instance, may not be
executed in parallel if they use the same resources such as an adder,
shifter, register etc (A resource may be a storage resource or a
datapath resource). The high Ilevel language SIMPL detects parallel
microoperations and resolves resource conflicts automatically allowing

local optimization of horizontal microprog rams.

1. Detection Of Program Parallelism: Single Assignment Approach.
The single assignment approach is wused for detecting parallelism in
microprog rams . This approach confines a variable to represent no more
than one value throughout program execution. A variable therefore may
be assigned a value and never be reassigned another value during the

course of program execution. This restrictive property permits a
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statement to be executed without regard to its sequential order in the
program as soon as the variables necessary for its execution have been

assigned values. Consider the following program segment.

b - 4 1
c = 12.5 2
a=>b/ c 3
d = a*b 4
e = c*b - a 5
f = c/b6 6
g =3 *c 7

After the first scan of the program, the variable dependency of a
statement is represented by a set of variables that must have values
assigned before the execution of the statement is initiated. Figure 10
shows the variable dependency of the statement in the example program
segment. Statements 1 and 2 may immediately be executed concurrently
since they do not depend on any variable for execution. After variables
b and ¢ have Dbeen defined, all  the statements whose variable
dependency is satisfied by one or both of these variables can be

executed. Thus, statements 3, 6, and 7, may be executed concurrently.
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Statements 4 and 5 will be executed upon satisfaction of their variable
dependency that occurs after the execution of statement 3. Thus the
single assignment property enables detection as well as execution of
parallel executable statements in a sequential program without regard to
the order of the statements appearing in a program. The memory
requirement of this approach is proportional to n, the number of source

program statements.

2. Single Identity Microprog ramming Language (SIMPL). One
property of SIMPL that distinguishes SIMPL from other
microp rog ramming languages is that it allows the compiler to -easily
detect parallelism in the sequentially coded high-level source
microprogram and to compile it into an efficient object microprogram in a
horizontal format. SIMPL allows the user to microprogram sequentially
using conventional high-level programming techniques with little notion
of parallelism and object code optimization, thereby drastically reducing
his burden of microprogram coding. It permits automatic optimization
and compilation of sequential microp rog rams into horizontal

microprograms.

For the single assignment concept to be adaptable to the design of
mic rop rog ramming languages certain differences in the design
approaches with programming languages must be clarified. In particular,
the environment in which these languages will be used is quite diffrent.
A single assignment language adapts to a multiprocessing environment,
whereas a microprogramming language is wused to specify multiple

elemental operations in horizontal microinstructions. The problems



Figure 10. Variable Dependency of Statements
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associated with the application of the single assignment concept to the
microprogramming language design arise from the following differences
with programming languages.

1. Variables in a microprogram represent storage resources.

2. It is not the resources themselves, but rather their contents to
which the single assignment concept must be applied.

3. Concurrent processes are executed by multiple processors
asynchronously whereas concurrent micro-operations are executed
synchronously in one clock cycle.

4. Concurrent processes are realized in a microprogram by parallel data
paths and registers instead of multiple processors.

5. A programming language can be translated to a machine independent
intermediate code whereas a microprogramming language is translated
into a directly executable microprogram that generally consists of

complex horizontal microinstructions.

To apply this single identity principle, a source microprogram is
analyzed and partitioned into subblocks. A subblock is a portion of a
microprogram having at most one control transfer (single or
multiple-branch) microoperation to other subblocks. It can be
considered as an independent segment of a microprogram and, hence
can be analyzed independently for detecting possible parallel executable

statements.

As soon as all subblocks have been defined, an analysis for
parallelism is initiated on each subblock applying the single identity

principle. By the single identity principle, a variable that has been
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assigned a value is considered to be defined for all the statements that
appear before a statement that reassigns a new value to the variable,
the same variable is not considered to be defined for the statements

referring to it elsewhere.

3. Constrained Statements. In many computers an out-gate timing
pulse of a register is generated earlier than an in-gate pulse in the
same clock cycle. This means that there will be no resource conflict if
two statements that wuse this register as source and destination
respectively are executed simultaneously. The statements are called
constrained statements. Once a statement is in the execution ready list,
all of its following constrained statements can be checked for possible

simultaneous execution.

C. SIMPL COMPILATION

The SIMPL compiler compiles a sequentially coded source microprogram
into an object microprogram in a horizontal microinstruction format.
Besides basic syntatic and semantic analysis it identifies and localizes
subblocks, performs concurrency and timing analysis, and optimizes the

object microcode.

The SIMPL compilation procedure consists of the following four
phases syntatic analysis, semantic generation, microoperation
concurrency and timing analysis, and microoperation timing optimization.
A schematic diagram of the compilation procedure is shown in figure 11.
A description of the compilation procedure that follows  will be

illustrated by the example microprogram in figure 12.



SYNTACTIC SEMANTIC
ANALYSIS \\ GENERATION

Figure 11.

/
/

SIMPL Compilation Procedure.

MICRO-OPERATION
CONCURRENCY

AND

TIMING
ANALYSIS

NS

MICRO-OPERATION

TIMING

OPTIMIZATION

CO



begin
comment: determine sign of product in R3 ;
ACC = RI and MI;
ACC - R2 OR ACC;
R3 = ACC and MI;
comment: force both operands to positive
if R < 0then Rl = RO-RI;
if R2 < 0 then R2 = RO - R2;
comment: extract and determine exponent for product.
ACC = RI and M3;
R4 = R2 and M3;
ACC = R4 + ACC;
R3 = R3 or ACC;
comment: extract mantissa and clear ACC;
Rl = RI and M4;
R2 = R2 and M4;
ACC = RO
comment: multiplication proper by shift and add.
while R2 < > 0 do begin
ACC = ACC* - 1

R2 = R2* - 1;
if UF = 1then ACC = RI f ACC;
end;

comment: if product mantissa overflows, adjust to normalize;
if ACC and M5 < > 0 then begin
ACC = ACC' -1
R3 = R3 4 MI;
end;
comment: pack exponent and mantissa into floating-point format;
R3 = R3 or ACC;
comment complement mantissa if product sign is negative;
if R3 < 0 then ACC = RO - ACC;
end;

Figure 12. SIMPL Microprogram for 64-bit.

Floating Point Multiplication
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1. Syntatic Analysis. Syntactic analysis verifies the grammatical
correctness of each statement and constructs variable name tables that

will be referenced in the subsequent compilation phases.

2. Semantic Analysis. In this phase the semantics of a statement
is identified and corresponding symbolic code generated. Several
statements are linked to form a block. Each block constitutes an

independent set of microoperations, upon which subsequent concurrency
analysis is performed. After the completion of this phase, an
intermediate microprogram consisting of a number of blocks that contain
nonoptimized sequential semantic code is generated. Fig 13 shows the
intermediate microprogram. The broken lines in the figure indicate the

partitioning of the sequential code into subblocks.

3. Concurrency and Timing Analysis. The intermediate
microprogram in the form of partitioned semantic code is subjected to
further analysis for detection of local parallelism. This analysis
determines the minimum number of cycles to execute each subblock
without regard to microprogram resource allocation. It is performed in
four steps. The first step scans sequential symbolic code of every
subblock, determines the variable dependency of each microoperation
and links all microoperations in a subblock according to their variable
dependency. The linked microoperations in symbolic code generated in
this step constitute the maximal possible parallelism (in each subblock)

that assumes no microprogram resource contention.

Applying the single identity principle to the linked



"igure 13.

ACC = Rl and MI; (@)
ACC = R2 exor ACC; (&))
R3 = ACC and MI; A
Rl = RI or RO; @
zero/pos branch (©)
RI = RO - RI; ®)
* R2 = R2 + RO; @)
__ zero/pos branch; ®
R2 = RO - R2; (©))
~  ACC = RI and M3; 10)
R4 = R2 and M3; 1)
ACC = ACC or R4; (12)
R3 = R3or ACC (13)
RI = Rland M4 (€))
R2 = R2and M4; (15)
ACC = RO; a6)
ACC = ACC - 1 an
R2 = R2 - 1; as)
U/F branch (19
R2 = R2 + RO; 0)
zero branch (@4
[ >4
ACC = Rl + ACC; 22
N R4 = ACC and M5; (23)
R4 = R4 + RO; (@Z))
— zero branch (25)

Sequential Semantic Code
Semantic Analysis

Generated by
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ACC = ACC - 1;
R3 = R3 + M5;

R3 R3 or ACC;
R3 = R3 + RO;
zero/pos branch

ACC = RO - ACC;

Figure 13. Continued
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microoperations, the second step determines the earliest execution time
of each microoperation. Figure 14 shows the earliest execution time of
the example microprogram. The numbers in the figure refer to the
corresponding statements in figure 12. Note that statements 13 and 16
are constrained statements that may be executed concurrently if the

in-gate and out-gate timings of the ACC (accumulater) permit.

The third step scans the linked microoperation whose earliest and
latest execution times are the same. These are called critical
microoperations. In figure 15 wunderlined numbers indicate noncritical
microoperations. The critical microoperations constitute the minimum
sequence for a complete microprogram provided unlimited microprogram

resources may be always allocated.

4. Microoperation Timing Optimization. This phase of compilation
introduces complete machine dependence to generate the object code.
The hardware organization and operating characteristics are defined by
the microinstruction definition that is represented internally in the
compiler. In each subblock, a timeframe refers to execution timing of
cncurrent, critical microoperations relative to those assighed to other

time frames .

Thus each line of figure 14 and 15 constitutes a time frame.
Critical microoperations assigned to the same time frame are examined
"gp their resource wusage and conflict, and if they create resource
conflict, they are ordered in sequence in the object code to resolve

their resource contention. Sequential ordering of critical microoper ation

is confined within the same time frame relative to those assigned
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to other time frames. For example, two critical microoperations assigned
to the same time frame that use the same adder cannot be executed
concurrently, hence they are reassigned to seperate steps with the
same time frame in the object code. If they use no conflicting resource
and can be coded in the same microinstruction they are coded for
concurrent execution. This process generates a minimum set of
microinstructions that includes all the critical microoperations without
resource conflict. The remaining noncritical microoperations are placed

in this set of microinstructions at their earliest execution times to

achieve higher parallelism. This procedure is illustrated by the
flowcharts of figure 16 and 17. Figure 16 shows the procedure for
rearranging critical microoperations by testing resource conflict.

Resource conflict is determined by two tests Ilabelled "any operation
conflict" and "register conflict" in the figure. The ith element of array
K contains the number of critical microoperations that are assignhed to
the ith time frame. This number is used to exhaustively test resource
conflict of all critical microoperations at each time frame. This
procedure generates a minimum set of microinstructions that constitute a
sequence of critical microoperations. Figure 17 show's the procedure for
detecting concurrency of noncritical micro-operations and placing them
in the minimum set of microinstruction. Variables CONCURNT and NEXT
in the figure are lists of microoperations that may be specified in the
current and next microinstructions respectively. Two tests labelled
"operation conflict" and "register conflict" detect resource conflict.

Each noncritical microoperation is coded into appropriate fields of a
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Figure 16. Continued
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Figure 17. Continued

46



47
microinstruction that executes at its earliest execution time without
resource conflict. If it cannot be coded into a microinstruction before
its latest execution time, an additional microinstruction is introduced.
Figure 18 shows <concurrency of microoperations coded in the object

microp rog ram.

SIMPL may be compiled effectively into vertical as well as
horizontal microprograms. The SIMPL compiler is designed to be highly
transportable. Its compilation procedure involves largely manipulation
of the source and intermediate microprograms for optimization. These
procedures are independent of the machine for which microprograms are
compiled. Machine dependency is introduced only at the last phase of
compilation. This suggests that small modifications should suffice to

adapt the compiler for diffrent microprog rammed machines.
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IV. MINIMIZATION OF ROM WIDTH

Some of the factors that are to be <considered for optimizing
microprograms using bit reduction techniques are coding efficiency, bit
packing, and function extraction. Coding efficiency is an ad hoc
procedure for estimating microcode utilization. Unfortunately this s
insufficient to completely describe microcode utilization because a degree
of randomness in the bit patterns of the ROM needs to be considered.
Bit packing and function extraction are rudimentary forms of ROM width
reduction. The microcode is analyzed on a column-wise basis to search

for patterns, symmetry, or functions which can be removed from the

control storage and replaced by external circuitry. As an ad hoc
approach they are employed, at best, in short microprograms. For
longer microprog rams specialized methods like conflict partition

algorithms need to be used. A drawback of reducing ROM width is that

it results in increasing path delays in circuitry external to the ROM

and hence results in lower speed. Since any bit reduction will require
some encoding of the micro-orders there will be a loss of flexibility.
Hence the inherent flexibility of a widemicroinstruction is lost as

microinstructions are encoded more tightly.

A. GENERAL CONSIDERATIONS FOR ROM WIDTH REDUCTION

1. Coding Efficiency. Coding efficiency is a measure of
degree of randomness of the bits of ROM. As such it serves to identify
an "utilization level” of the ROM asa control store for the

microprograms via the pattern of the 1s and Os in the rows and
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columns for the actual microprogram under investigation. The bit
patterns are analyzed based upon purely statistical considerations. If
the degree of randomness is low, pattern extraction by subsequent
external hardware implementation may be possible. However if the bits
are random, it may be difficult to extract patterns which can be

implemented by external logic.

The measure of randomness will be defined as the coding
efficiency, CE, of a ROM. CE is a wupper Ilimit on the amount of
information stored in the ROM expressed as a percentage of the

maximum amount storable in the same number of bits.

Let B be the width of the ROM and W be the number of words in
the ROM. The number of bits of information, N, contained in the ROM
is :

N = PQ log2 1/PO + P1 log2l/P1 B.W
and the coding efficiency is defined as:

C = N/B.W .100

A graph of coding efficiency vs fractionalbit content is shown in
figure 19. To employ the coding efficiency asa measure, count the
lesser number of 1s or O0s in each column and divide by the number of
available ROM bit positions to get the fractional bit content. This is the
fractional bit content of the ROM. The potential maximum coding
efficiency of the ROM can be determined from figure 19. Complementing
a column leaves information content unchanged. The number obtained
from figure 19 represents the percentage of theoretically maximum

coding efficiency for a ROM of some given size. For example, if a



Figure 19. Coding efficiency Chart
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fractional bit content of 0.22 is obtained for some ROM, the ROM

processes a coding efficiency within 75°% of the theoretical maximum.

The coding efficiency measures the degree of randomness in the

distribution of bits inthe ROM. Ifa microprogram has maximum
efficiency, little can bedoneto reduce the number of bits. Hence an
exercise to reduce theROM may not succeed. Efficiencies less than

maximum suggest the existence of a pattern in the ROM, although
extraction may not be obvious. Coding efficiency simply measures the
capacity of a ROM to be minimized but does not give any indication of

what can be done successfully to reduce the width.

As an example of ROM coding efficiency, consider the ROM shown
in figure 20. This microprogram has six lines of code with six output
control signals. The fractional bit content is 11/36 = 0.3. From figure
19, a fractional bitcontent of 0.3 isequivalent to an 88° maximum
coding efficiency. Thus this ROM is coded to within 88 0 of its
theoretically maximum coding efficieny for a 36 bit ROM. In figure 20 no

apparent visual bit pattern can be observed. This ROM is sufficiently

uti lized.

2. Function Extraction And Bit Packing. These are elementary
procedures for ROM minimization. In the <case of function extraction
columns in the ROM are examined for some intrinsic boolean

relationship. For example, if the fourth column in a ROM is identical to
the sixth column in the same ROM, this equivalence relationship allows
the elimination of one column from the ROM, Hence the bit dimension of

the microprogram is reduced by one bit. In the case of bit packing the



Figure 20. ROM for Coding Efficiency Example
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columns are again examined to find individual micro-orders or groups of
micro-orders that are individualy activated or group-wise activated
respectively. These micro-orders are non-conflicting. Hence such

micro-orders can be encoded without destroying the microprogram.

As an example consider figure 21. Here an eight word
microprogram energizes eight micro-orders m”*..mg. Note that
micro-orders m"* and m2, whenever energized are equivalent for every
ROM word. Therefore one column can be eliminated since they are
identical. The ROM is now reduced by one column. Column 4 is the
boolean complement of column 3. The complement of column 3 can used
for energizing micro-order . In figure 22, combine columns 1 and 2
into one column and combine previous columns 3 and 4 into a new
column 2. The ROM is now reduced by two columns 1 L 2, namely the
boolean AND of columns 1 and 2 by using the external gate inverter in
figure 22. Lastly column 7 and 8 in the previous ROM cannot be

reduced. The eight column ROM is reduced to five columns.

3. Conflict Groups. A group of micro-orders are nonconflicti
no two micro-orders in the group are activated simultaneously. For

example consider the ROM of figure 23. Here the Ilast microinstruction

when retrieved energizes micro-order and no other micro-order. Also
when the fifth microinstruction is called is energized alone. |If other
micro-orders are found they are singly activated for any

microinstruction. These mutually exclusive activated micro-orders can be
grouped into one field, and a decoder can be used at the output of the

ROM to select outputs.

ng

if
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A graphical procedure is described to implement the method of
examining a ROM layout for conflict groups. |In figure 23 there are ten
micro-orders to be energized, m”*...m"Q. By examining simultaneous
column outputs or micro-orders, a conflict diagram can be generated.
This conflict diagram will be wused in grouping or encoding the original

ROM in order to reduce the ROM width.

When micro-order m" is activated in microinstruction 1 and 3,

micro-order and m™"Q are simultaneously activated. In the conflict
diagram a line is drawn from m" to m-|@ This indicates that when is
energized, it is also possible that either m” or m ~ may be
simultaneously energized. In the third microinstruction, micro-order m,
is energized along with m”*. Hence in figure 24 a connecting line s
drawn between m* and mg. At this point when micro-order is

energized, it is possible that m”, mg, or m” may be also energized and
thus mj conflicts with mg, mg, or m”. The procedure is repeated for
all remaining micro-orders and their conflicts, making the appropriate
connecting link (to designate a conflict ) between the conflicting

micro-orders.

As it is needed to find columns of a ROM which never appear
simultaneously as outputs, combine into a set (field) all nonconflicting

micro-orders. This grouping procedure is aided by the conflict diagram.
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B. ALGORITHMS

1. A Conflict Partition Algorithm. A algorithm for searching
through conflict sets to obtain compatible sets for encoding bits s
described. The flowchart for the algorithm is shown in figure 25. The
first step is to search through the conflict diagram for the set or sets
which have the greatest number of conflicts and to isolate all such sets.
The objective is to separate these sets into groups which cannot be

used as inputs to the same decoder. These partitioned sets are called

disjoint sets. The next step is to group remaining sets into
compatibility sets. Eventually such sets will serve as inputs to
decoders. Finally check to see that all micro-orders have been
assigned, returning to the first step, orcompleting the ROM width

reduction by encoding these sets into fields.

To illustrate this algorithm consider the ROM of figure 23. Begin
by grouping disjoint n-maximal conflict sets, where n is the largest
conflict micro-order to be found. In figure 23 start with m”, which is
three maximal conflict. Micro-order m2 is two-maximal conflict which is
compatible with is a one-maximal conflict micro-order, and is

compatible with all micro-orders.

The diagram is examined to find all lesser conflicting micro-orders
which are compatible with the previous entries. The process is

continued wuntil all micro-orders are searched.

A NOP (no operation)is included inevery set in the disjoint

grouping (m”, m9, m”, m<, m” ). The NOP is included as a micro-order
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for a maximum number of six elements in this set. A one out of eight
decoder is chosen. The eight possible choices need only three inputs,
m-j, , m™, m~, rriy can be reduced to three columns. Next, the value
of n is checked, if n is not equal to 1 then the algorithm proceeds
through the conflict diagram again checking for those micro-orders
which have not been incorporated in a previous set. Beginning with the
three-maximal conflict micro-orders, Micro-order mg conflicts with m”",
m2 and . Arbitrarily choose mg as a member of a new set. Since no
other three-maximal conflict micro-order exists (which has not been
assigned to some previous disjoint group ), include any two maxima
micro-order compatible with mg. Since mg is compatible with mg it can
be included. Similarly and can also be included in this set
Again determine if all compatible micro-orders have been found at the
current n-maximal conflict level. In this example m”g remains. However
all other micro-orders have been tested for compatibility with rn-jg
Hence, m”"g is assighed to a separate group and the search is now

complete. Finally each compatible group is encoded.

Application of the conflict partition algorithm to the ROM in figure

23 generates the following set:

m'l, m2/ m3| m5l m7

m4' m6' m8' m9

TO-
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Each of these fields also includes a NOP. For field 1A assign the

coding 000 to the NOP, 001 to micro-order , 010 to micro-order m”"

etc. A three to eight decoder is used. Likewise for field 1B again a
three to eight decoder is used. The final encoded ROM with the

decoded output is shown in figure 26 The ROM has been reduced from

10-bit width to 7-bit width.

The conflict group approach represents another ad hoc method for
ROM reduction, which is useful for short microprograms. It is possible

to combine both function extraction and conflict grouping in the

conflict-partition algorithm. Micro-orders and in the original ROM
are identically activated for all microinstructions. and could have
been reduced to one line Dbefore invoking the conflict grouping

procedure.

2. A Compatibility Class Algorithm. In this algorithm, instead of
persuing the bit-reduction problem by isolating the conflict groups, an
exhaustive search is done through the microprogram words  for
micro-orders that are compatible. Also the wuse of smallest number of
decoders is obtained. This algorithm essentially partitions the
micro-orders into a minimal number of groups. The procedure begins
by finding the word, w., which has the largest number of micro-orders,
m] The minimal number of groups cannot be less than mj. In the worst
case the maximal number of groups cannot exceed the the number of

bits in the word. In w., assign a group designation, G. to each

micro-order. Proceed through the remaining words one at a time to
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assignh micro-orders to the previous groups if they are pairwise
compatible or else introduce a new group for each incompatible
micro-order. Micro-order assignment to the groups is made according to
the following set of rules:

Rule 1. All micro-orders in the same word must be placed in different

groups.

Rule 2. Previously assigned micro-orders found in the current word
must not have been combined into the same group. Any new micro-order
in the current word must be assigned to groups not in prior use in the

word.

This algorithm must exhaustively evaluate all micro-order
candidates for possible pairwise compatibility. If after examining the
first six words, the compatibility property (rulel) is violated between
two micro-orders in the seventh word (because of a previous group
assignment of these two micro-orders), the algorithm then reassigns the
micro-orders in the previously examined words so as to insure
compatibility of the two micro-orders in the seventh word. This s
shown in figure 27a. Suppose that m® and m2 have been assigned to
G”, but upon examination of w?", it is seen that m* and m2 are
incompatible (rulesl and rules2) hence and are reassigned to
different groups (rulel). Assign m2 tO Gry. Also in Wg cannot be
assigned to or G2(rules 1 and 2). It is these type of situations that

require multiple iterations through the entire ROM. This, of course is a
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drawback for manual reduction but less so for automated means. It has
been shown that it is possible to obtain the minimal number of groups.
However this minimal number of groups does not guarantee that the

minimal width of the ROM has been achieved.

The algorithm is applied to the ROM of figure 27b. Begin with the
word the largest number of micro-orders. Since w?”, has the maximum
number of micro-orders, assign one micro-order to each of six groups

as shown below:

ur U2
stepl (m*)(mg)  (mg) (m4) (m5) oy

step2 (m-j) (mg,mg) (iTig. Pig) mg M3 “’8;
step3 (m-j)) (m2,m7) (m3,mg) (m~"mg) (m*)
stepd (mg,mg,m”*), (m"), (mg,m*)

step5 ... no change

In w%, rp-?,omo, and mg}, are activated. Hence rulel requires that
each of these micro-orders be placed in different groups. The
micro-order rrig is already assigned to Gg and m”, mg, and mg are
activated. Hence, rulel requires that each of these micro-orders be
placed in different groups. The micro-order mg is already assigned to
Gg and m”, mg and mg must be separated. Assign to G9 since it is
compatible with mg. Likewise, assigh mg to G4 and mg to Gg. For Wag,
m~ and mg have already been assigned but rule 2 prevents the
assigning of mg, mg or m”*g to any groups which contain and m9. mg
and mg will be ignored since they are already assigned and m~g will be
assigned to Gg (m”g cannot be assigned to G” since rule2 prohibits this

assignment ). In w®, m” cannot be assigned to G” (by rules 1 and 2).
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Also in it is seen for the first time, that mg and are not
compatible (by rule 1). Hence return to the step which made the mg
assignment and reassign mg (as well as any other micro-orders if
necessary). Reassignh mg to Gg. However, in Wg m”g needs to be
reassigned (Since mg, mg, and m*"Q must be separated). Assigh m*Q to
Gg. Now, upon return to w”, only m” remains unassighed. Choose Gg.
For Wg, all micro-orders have now been assigned. The groupings are

now complete and are shown below.

G1G2 G3 G4 G5G6

(m-j) (mg, my) (mg,mg,m?”) (m?) (mg,m") .



69

V. CONCLUSION

Efficient microprogram assemblers are of primary importance for
developing firmware for microprog rammable machines. A small but firm
step has been taken towards the design of system software for
microprogramming. The development of a meta-assembler eliminates the
need for developing separate assemblers for different host and target
machine configurations, Hence a microprogram meta-assembler is an
excellent tool in an environment for firmware development. The

assembler is fast, efficient and has a reasonable syntax.

Although microprogram assemblers are widely used for
microprog ramming, there are some advantages of using high-level
languages for microprogramming. Large and sophisticated microprograms
are easier to write in a high-level language, also reading and
understanding the programs is easier. A high-level language for
microp rogramming should produce efficient object microcode. The code
should be optimized for taking advantage of the parallelism in the
data-path of the machine. The complexity of high-level microprogram
language compilers and the Ilimited use of microprogramming have Ilimited
there development. The current microprogramming trends may change
this situation. Detection of concurrently executable microoperations is
an important consideration for effective horizontal microprogramming.
The detection of concurrency is highly machine dependent and requires
knowledge of highly intricate features of a machine. Techniques used
for detection of concurrency and for generating highly parallel and

efficient object microprograms in horizontal format are investigated.



70

Minimization of the dimensions of the control memory belongs to the
general problem of optimizing microprograms. A single microprogram
memory word may be as much as 100 bits long. At some point in the of
a microprog rammable control unit, it may be desirable to minimize the
storage dimensions of the ROM. Techniques used for optimization of

control memory space are analyzed.
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