
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1966

An algorithm for the synthesis of NAND logic networks using a An algorithm for the synthesis of NAND logic networks using a

diagrammatic approach diagrammatic approach

Donald Robert Nelson

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Nelson, Donald Robert, "An algorithm for the synthesis of NAND logic networks using a diagrammatic
approach" (1966). Masters Theses. 5761.
https://scholarsmine.mst.edu/masters_theses/5761

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5761?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5761&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

2

ABSTRACT

A diagrammatic approach is presented for the synthesis

of multilevel NAND networks realizing combinational logic

expressions. The network synthesized is restricted to only

uncomplemented inputs. The synthesis algorithm involves the

determination of minimum sum of products and product of sums

expressions for a Boolean function, construction of an a-~

diagram from these expressions followed by implementation

with NAND gates directly from the diagram. The resulting

network is a minimal or near minimal NAND gate realization

of the given function. The algorithm is applicable to com

pletely or incompletely specified Boolean functions and is

extended to include NOR synthesis.

ACKNOWLEDGEMENT

The author would like to express his appreciation

for the encouragement and guidance he received from his

advisor, Dr. James H. Tracey.

3

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

LIST OF FIGURES

INTRODUCTION CHAPTER I.

CHAPTER II. THE SYNTHESIS OF NAND NETWORKS

USING a-~ DIAGRAMS

A. Construction of the a-~ diagram

1. The a-set

2. The ~-set

3. The a-~ Diagram

4. Simplification of the

a-~ Diagram

B. The Network Synthesis

1. The Synthesis

2. Extension to NOR Synthesis

3. Worked Examples

CHAPTER III. SUMMARY

BIBLIOGRAPHY

VITA

2

3

5

6

12

13

14

17

19

22

23

24

44

44

52

53

54

4

Figure

1

2

3

LIST OF FIGURES

An a-~ diagram illustration

Example function for the a-set

determination

Example function for the ~-set

determination

page

12

14

18

4 An a-~ diagram 20

5 Dual and complement a-~ diagrams 21

6 Illustration of algorithm step 2 25

7 Illustration of algorithm step 4 26

8 Illustration of algorithm step 6 27

9 Illustration of algorithm step 8 28

10 Illustration of algorithm step 10 29

11 Illustration of algorithm step 12 30

12 Redundant gate removal 31

13 Illustration of rule 1 32

14 Illustration of rule 2 33

15 Two-level equivalents 34

16 Illustration of reading the a-~ diagram 37

17 Modification of Figure 16 37

18 Decomposition of a diagram 43

5

CHAPTER I

INTRODUCTION

The problem in logical design of synthesizing NAND

networks with only uncomplemented inputs available has

been and still is of great importance. The NAND element

is chosen because of its inherent amplification and drive

capability and because it is a universal logic element.

6

That is to say, any Boolean function may be realized using

combinations of only these gates. Another reason for choos

ing the NAND element is the growing importance of integrated

circuits in the digital field and the relative ease of fab

ricating these elements using integrated circuit techniques.

The networks synthesized by the method described in

this paper will be restricted to only uncomplemented inputs.

Frequently the inputs to the networks to be synthesized will

be the outputs from other NAND networks. The complemented

outputs of these gates are generally not available. It is

well known that if the theory of two-stage networks using

AND and OR gatesis extended to this problem, the resulting

networks will not necessarily be minimal or least-cost net

works. In this paper, a network will be said to be minimal

if it realizes the desired Boolean expression with a min

imum number of inputs to a minimum number of gates.

Smith (lf assumed the availability of both complemented

and uncomplemented inputs in his synthesis procedure. A com-

*Numbers in parentheses are references to the Bibliography.

puter was utilized to investigate all of the possible ways

of interconnecting a given number of NAND elements and all

of the functionsof three variables that each connection

could generate. The minimum network was then selected.

This procedure could become overwhelming for a greater num-

ber of variables.

The recent work by Dietmeyer and Schneider (2) was to

develop a programmable algorithm for the synthesis of NAND

and NOR networks. Again, both complemented and uncomple-

mented inputs were assumed available. The algorithm was

7

developed so as to satisfy fan-in requirements of the gating

used,by factoring in a prescribed manner. The object of

this work is not to guarantee minimal networks but to pro-

vide speed and accuracy of design satisfying fan-in restric-

tion.

The two papers already cited considered problems where

both complemented and uncomplemented inputs were assumed.

In this paper, the inputs are restricted to only uncomple-

mented variables. The papers reviewed below consider this

latter class of problems.

For functions of three variables the work done by

Hellerman (3) is significant. An exhaustive method was

employed to select the minimum NAND and NOR network for gen

erating functions of three variables with uncomplernented

inputs available. All possible combinational networks with

seven and fewer blocks (242) were examined (fan-in was lim

ited to three variables). The networks were examined in

8

ascending order of number of blocks with all combinations of

inputs. The first network found to generate one of the 256
Boolean functions of three variables was selected as were

all others using the same number of gates. The one with the

fewest inputs was then selected as the minimal network real-

izing that function. This was possible as all others to be

obtained would contain a larger number of gates. When it is

desired to synthesize functions of more than three variables~

a complete enumeration and selection techniques become un-

wieldy and impractical if not impossible byknown techniques

and computing capability. This is easily seen by noting that
4

there are 22 = 65~536 functions of four variables not to

mention the number of possible NAND implementations for each

one.

Maley and Earle (4) present an algebraic approach to

the synthesis of functions of several variables using NAND

gates. This approach is to factor a sum of products expres-

sion of the given switching function in a prescribed manner.

With the judicious use of added redundanc~ a logically equiv

alent expression is obtained which is suitable for synthesis

with NANDs. The complexity of the network realized using

this approach depends on the facility of the user in manip

ulating the Boolean expression. For a large number of vari

ables, this algebraic approach can become quite inefficient

with the possibility that the resulting network has more

gates and inputs than the two-level network for the minimum

sum of products expression with single-input gates used as

9

inverters.

In the previously cited work by Maley and Earle. a

method of factoring on a Karnaugh map is presented for the

synthesis of multi-level NAND networks. This method is eas

ily applicable to functions of only a few variables. However,

it has been this author's experience that networks synthesized

by this map factoring approach tend to have excessive levels

of logic. As with the previously mentioned algebraic method,

the complexity of the network realized depends to a large

extent on the skill of the user.

NAND networks limited to three levels with only uncom

plemented inputs available have been called TANT (Three

level AND - NOT network with True inputs) networks by

McCluskey (5) and Gimpel (6). Gimpel and McCluskey consider

the same class of functions to be considered in this paper.

However~ their solutions are limited to TANT networks.

Gimpel describes an approach using prime implicants of the

TANT expression which are analogous but not equivalent to

the prime implicants in AND -OR synthesis. The approach

is similar to the Quine-McCluskey algorithm for two-level

AND -OR synthesis. The resulting network is a minimum gate

count TANT network. The algorithm of this paper does not

restrict the solution to a TANT network.

Ellis (7) has developed a systematic procedure for

synthesizing NOR and NAND networks limited to three levels.

The procedure is essentially an extension of the algebraic

approach of Maley and Earle utilizing redundancy and factor-

10

ing so that the outputs of third-level gates may be shared

by second-level gates. In this method, the prime implicants

are listed and then grouped into one of three basic patterns.

This grouping leads to possible reduction in the final NAND

network by the sharing of gates on the input level of logic.

These gates generate the negated variables in the prime

implicants.

This paper presents an approach to the synthesis of

multi-level NAND networks which is a modification of the

work done by Akers (8). In his paper, Akers utilizes the

concept of an a-p diagram to develop a method for multi

level AND -OR synthesis. The approach is diagrammatic,

i. e., the network is synthesized directly from a diagram

which represents the switching function. This paper is

concerned with the construction of a modified a-p diagram

suitable for NAND networks, diagram simplification, and

diagram transformation into minimal or near-minimal NAND

networks. The techniques developed by Akers for the manip

ulation of the diagram applicable to the problem being con

sidered in this paper will be summarized when needed. It

is the author 1 s feeling that the method herein described is

easier to apply than those in the previously cited literature.

This diagrammatic approach has the advantage of giving

a visual interpretation to the concepts of fan-in, fan-out

and levels of logic. In most instances, the network synthe

sized by this method will be minimal. Finally~ the procedure

will be extended to include synthesis with NOR gates through

ll

the use of the duality property of the NAND and NOR.

12

CHAPTER II

THE SYNTHESIS OF NAND NETWORKS USING a-~ DIAGRAMS

As in Akers' method , the synthesis procedure to be

presented in this chapter involves the construction and use

of a diagram derived from the specifications of a switching

function. A switching function F(x1 , x 2 , ... , xn) is

described by Akers (9) as an ~ + !(column truth table defin-

ing for each n-bit binary input combination the correspond

ing value ofF (either 0 or 1). The table must be consist

ent which means that F cannot be both 0 and 1 for the same

input combination. In his paper, Akers utilizes the concept

of a logically passive function described in a previous

paper (9) to obtain what he calls a and ~ sets. Stated

simply, any switching function realizable with only AND and

OR gates is logically passive. A diagram is constructed

from these a and~ sets. This diagram is called the a-~

diagram. The diagram has the property that reading horizon

tally corresponds to logical multiplication and reading ver

tically to logical addition. This is illustrated in Figure

1.

A B A B

c c D D f = ABAB + CCDD = AB + CD

= (A+C) (B+C) (A+ D) (B+ D)

Figure 1. An a-~ diagram illustration

13

The method described by Akers for the construction of

this diagram may be quite lengthy and is not particularly

suited for our problem. For this reason, a different method

of obtaining the diagram will be presented. This method has

the advantage that it involves the familiar procedure of

selecting minimal sets of prime implicants and implicates

from a Karnaugh map.

A. Construction of the a-{3 Diagram

The usefulness of the synthesis method presented in

this paper is based on the relative ease with which it may

be applied. The construction of the a-{3 diagram is an inte

gral part of this procedure. It has been the author's ex

perience that the method presented by Akers for this con

struction is somewhat tedious and lengthy. Therefore, a

new and simpler method will be developed in this paper.

The a-{3 diagram is formed as a rectangular array having

one row for each term in a sum of products representation of

the switching function to be synthesized and one column for

each factor in a product of sums representation for the same

function. Since there may be more than one sum of products

and product of sums representation of a given function, the

possibility of more than one different a-{3 diagram repre

senting the same function is not obviated. Because of this,

the question is raised as to whether or not one diagram may

be better than another in so far as synthesis is concerned.

This is indeed the case. It is necessary then to select the

11 best 11 a-{3 diagram which will in turn yield a minimum or near

14

minimum network. The next two sections describe how to

develop this "best" a-(3 diagram.

1. The a-set

The terms that comprise a sum of products expression

for a functio~ f, will be called the a-set for that function.

Clearly, there may be more than one a-set for any given func-

tion. The problem is to obtain an a-set that will include

all of the minimal sum of products

selection of such an a-set is best

Consider the switching function, f,

(f = ~ 2' 4, 5, 6, 8, 10, 11, 13,

A B c D :tf

0 0 0 0 0

0 0 0 1 0

0 0 1 1 0

0 0 1 0 1

0 1 0 0 1

0 1 0 1 1

0 1 1 1 0

0 1 1 0 1

1 1 0 0 0

1 1 0 1 1

1 1 1 1 1

1 1 1 0 0

1 0 0 0 1

1 0 0 1 0

1 1 1 1 1

1 0 1 0 1

(a)

expressions

illustrated

in Figure

15)

AB

0

0

1

1

0

1

1

0

CD
00

0

1

0

1

for f. The

by an example.

2 (a) .

01 11 10

0 0 1

1 0 1

1 1 0

0 1 1

(b)

F . 2 Example function for the a-set determination ~gure .

15

The function is first mapped on a Karnaugh map as shown

in Figure 2(b). Then all minimum sum of products expressions

are formed. Minimal expressions are of interest because they

yield minimum row a-~ diagrams. It will be shown that simpli

fication of the a-~ diagram in terms of row and column elim

ination corresponds to simplification of the resulting NAND

network.

For the example function there are three minimum sum of

products expressions.

fl = ABD + ACD + ABC + ACD + ABD

f2 = ABD + ACD + ABC+ ACD + BCD

f3 = ABD+ ACD + ABC+ ABC + ABD

It appears that a decision must be mace as to which min-

imal expression to use. This decision will be postponed by

constructing a sum of products expression for the function ,

and corresponding a-set which includes all minimal forms.

The a-~ diagram will then contain a collection of all minimal

sum of products of the function. Simplification of the a-~

diagram to be described later corresponds to selection of the

best minimal form for NAND implementation. It is a relative

ly easy matter to perform this selection on the a-~ diagram

as opposed to selection before diagramming. This points out

an important advantage of the diagrammatic approach over the

previously cited algebraic approaches. The minimum expres

sion which has this property can be obtained by first logic

ally multiplying together all minimal sum of products expres

sions. Thensimplify with only the following three theorems:

16

1. a·a = 0

2. a·a =a

3. a + ab = a

An equivalent procedure, and one that will save time

and effort in most cases is to first select the terms that

appear in all minimum sum of products expressions for f.

Designate the logical sum of these terms by r. The sums of

the

sl'

remaining terms

s2, s3

fl =

f2 =

f3 =

. . .

r + sl

r + s2

r + 53

r + s n

s n

in fl'

. That

f2' f3 ..

is to say

. f are designated by
n

where f 1 , f 2 , f 3 ... fn are the minimal sum of products

expressions for f and therefore are all logically equivalent

to f.

It then follows that

s
n

where f is the desired sum of products expression. It is
a

obvious that f is logically equivalent to f.
a

For the example function

r = ABD + ACD + ABC

Therefore

s 1 = ACD + ABD

s2 = ACD + BCD

s 3 = ABC + ABD

fa = ABD + ACD + ABC + ABCD + ABCD + ABCD

and the a-set is

{ABD, ACD, ABC, ABCD, ABCD, ABCD}

17

A summary of the steps involved in obtaining the a-set is as

follows:

1. Map the function.

2. Read all minimal sum of products expressions.

3. Logically multiply together all minimal sum of

products expressions.

4. Simplify the resulting sum of products expression

by using only selected theorems.

5· Select all resulting terms as elements of the

a-set.

2. The {3-set

The set of terms from the dual of a product of sums

expression for a function will be called the {3-set of that

function. Again,there may be more than one {3-set for any

given function. The {3-set will be obtained in a manner

similar to that used for obtaining the a-set and will

utilize the same Karnaugh map. The determination of the

{3-set for the first example is trivial. Therefore, tc

better illustrate the.: selection of the · ~-set con-sider the

new function that is shown mapped in Figure 3.

AB

0

0

1

1

0

1

1

0

CD
00

1

1

0

0

01 11 10

1 0 1

1 1 1

1 0 1

1 0 0

18

Figure 3. Example function for the ~-set determination

All minimum product of sums expressions are formed.

Minimal expressions are of interest because they yield mini

mum column a-~ diagrams. As stated in connection with the

a-set determination, simplification of the a-~ diagram in

terms of column elimination corresponds to simplification of

the resulting NAND network. For this example there are two

minimal product of sums:

fl = (A+ c + D)(B + c + D) (A + c + D)(A + B + D)

f2 = (A + c + D)(B + c + D) (A + c + D) (A + B + c)

The ~-set is determined from the dual expressions which

are as follows,

fl dual
= ACD + BCD + ACD + ABD

f2 dual
= ACD + BCD + ACD + ABC

The same procedure as was used in the determination of

the a-set is now followed. All of these dual expressions

are logically multiplied together. Simplification of the

resulting expression is accomplished by the application of

only the three Boolean theorems used in a-set simplification.

The terms of the resulting expression, f co t't t ~ dual' ns 1 u e

the ~-set. In the present example,

f ~ dual = ACD + BCD + ACD + ABCD

Note that by taking the dual of f~ dual ' a product of sums

expression is obtained , f~, which is equivalent to f.

f~ = (A+ C + D)(B + C + D)(A + C + D)(A + B + C + D)

The terms of f~ dual form the elements of the ~-set. The

~-set for the example is

{ ACD ~ BCD' ACD' ABCD}.

Therefore , the selection of which minimal product of sums

expression to use is postponed to the a-~ diagram simpli

fication where it can be done with greater facility.

3. The a-~ Diagram

After the a and ~ sets have been determined , the a-~

diagram can be constructed. This diagram is formed as a

19

rectangular array having one row for each term of the a-set

and one column for each term of the ~-set. The literals in

each term of the a-set are the labels for the rows. The

literals of each term of the ~-set are the labels for the

columns. In square i,j are entered the literals that appear

as labels for both row i and column j. Once the literals

have been entered in the squares , the labels on the rows and

columns may be omitted. The diagram constructed in this

manner will be called the a-~ diagram.

The a-set for the function of Figure 2(a) was determined

as

20

{lilln~ ACD~ ABC~ ABCD~ ABCD ~ ABeD}

The {3-set is easily determined as

{ ABD~ --
ABc}. BCD~ ACD~

The a-{3 diagram for this function is shown with the row and

column labels retained for clarity in Figure 4.

ABD BCD ACD ABC

- -ABD B D AD A

- - -ACD A CD D c

- -ABC A B c B

-ABCD BD c A AC

ABCD D BC A ABC

-
ABCD D B AC AB

Figure 4. An a-{3 diagram

From the preceeding example it is seen that the result-

ing a-{3 diagram may contain squares with more than one entry.

The a-{3 diagram to be used in the synthesis algorithm must

consist of squares with single entries. Before this problem

is discussed~ it will be advantageous to make the following

definitions.

Definition 1.

A column (row) of an a-{3 diagram that has as entries

only complemented variables will be referred to as a comple-

mented column (row).

Definition 2.

A column (row) of an a-{3 diagram that has as entries

only uncomplemented variables will be referred to as an

21

uncomplemented column (row).

In the synthesis procedure it will be necessary to be

able to form the a-{3 diagram of the dual and of the comple-

ment of a function if the a-{3 diagram of the function itself

has already been determined. Since the dual of an expression

is obtained by interchanging all occurrences of+ and ·~ and

of 1 and o~ the a-{3 diagram of the dual of a function is

obtained by simply interchanging the elements of the a and {3

sets. This procedure is illustrated in Figure 5(a). By

DeMorgan's Law~ the a-{3 diagram of the complemented function

is obtained by interchanging the a and {3 sets and complement

ing all literals. This is shown in Figure 5(b).

-
A B D D

-
B c A B

- -
D A B c

a-{3 diagram of f

(a)

-
A B

-B c

D A

- -D B

-
A B D

-B c A

- -D A B

D B c

a-{3 diagram of the

dual of f

D

-A

B

-c

(b) a-{3 diagram of f

Figure 5· Dual and complement a-{3 diagram

22

In this paper the different letters in a Boolean expres

sion used to denote statements concerning bivalued situations

will be called variables. For example _, in the expression

AB + AC + A (D + E)

there are five variables A, B, C, D, and E. Each occurance

of a variable or its complement is called a literal. There

are seven literals in the example expression. In light of

this definition, the literal B is not a variable but is the

complement of a variable, namely B. Unless otherwise spec

ified, the terms variable and uncomplemented variable will

be used interchangeably.

4. Simplification of the a-~ Diagram

The a-~ diagram to be used in the algorithm must consist

of squares with a single entry. Akers (8) lists the follow

ing four rules which may be applied in simplifying the a-~

diagram:

1. Rows and columns may be rearranged in any order.

This is possible because no particular order is

required in labeling the rows and columns with

elements of the a-~ sets.

2. If one row (column) has the same literals (and

perhaps others) in the same squares as a second,

it may be removed.

3. A literal may be removed from any row (column)

in which it does not appear alone. This must

be done one at a time.

4. All but one literal may be removed from any square.

23

When the a-~ diagram is being simplified, i.e.,reduced to a

diagram consisting of squares with single entries, the lit

erals that are retained in given squares will be selected so

as to yield a-~ diagrams with the following desired proper

ties. The list is in descending order of priority.

1. Remove redundant literals so as to yield a

diagram that contains only uncomplemented

variables.

2. Remove redundant literals so as to yield a

row whose entries are a single complemented

variable.

3. Remove redundant literals so as to yield a

diagram that contains only complemented

variables.

4. Remove redundant literals so as to yield a

diagram with all columns complemented or

uncomplemented.

5. Remove redundant literals so as to form an

uncomplemented row.

6. Remove redundant literals so as to form a

maximum number of complemented columns.

Remaining columns should show a minimum

number of complemented variables.

After elimination of redundant literals according to rules 2

or 5, reconsider the a-~ diagram exclusive of the complement-

ed or uncomplemented row.

B. The Network Synthesis

After the a-~ diagram is simplified~ the synthesis

algorithm will be employed to obtain the required network

realization. The word3 11 gate 11 and"NAND gate"will be used

interchangeably in this algorithm.

The concept of a level or stage of gating used in the

24

synthesis algorithm will be as described by Gimpel (6). A

gate in a network is said to be a first-stage gate (or to be

on level one) if it is an output gate. A gate is said to be

th (1 1) 1'f 1't f d ()th an n -stage gate or on eve n ee s only an n-1 _

stage gate (or gates). If a network is loop free~ i.e. free

of feedback loops, then such a numbering scheme is well de-

fined. The networks synthesized by the following algorithm

will be loop free.

So as not to disrupt the flow of the algorithm from

step to step, the algorithm will simply be stated. Justi

fication for the steps will follow.

1. The Synthesis Algorithm

Step 1.

Does the a-~ diagram contain only uncomplemented vari-

ables? If it does, go to step 2. If it does not, go to

step 3.

Step 2.

synthesize the function that is diagrammed, f, by using

two levels of logic. The variables on each row form the in

puts to second-level gates, one gate for each row. The out

puts of these gates are the inputs to a first-level gate.

The output of this gate is f. This procedure is illustrated

in Figure 6.

A B c

D E F

G H I

a-p diagram satisfying

conditions of step 2.

The variables A, B, C,

etc. are generalized

and all functions of

the same variables.

c

Figure 6. Illustration of algorithm step 2

25

f

Does the a-p diagram contain a row with a single comple

mented variable? If it does, go to step 4. If not, go to

step 5.

Step 4.

Remove from the a-p diagram that row whose entries are

all the same complemented variable, say A. The new a-p dia

gram represents f 1 where f = f 1 + A. f 1 is then synthesized

by applying the algorithm to its a-p diagram starting with

step 1. The variable A is input to the output gate for f 1 .

With the addition of the A input the output of this gate is

now the desired function, f. The general procedure is illus-

trated in Figure 7(a) with a specific example in Figure 7(b).

26

-
f == fl + A

(a)

A B c

D E F ..
- - -
G G G -

G G G

and finally

c---t .._____.

f

(b)

Figure 7. Illustration of algorithm step 4

27

Step .5..

Does the a-~ diagram contain only complemented variables?

If it does, go to step 6. If not go to step 7.

Step 6.

Form the complement of the a-~ diagram, a-~. Synthesize

a-~ with two levels of logic as in step 2. The output of the

network obtained is f. The desired function, f, is obtained

by using f as the input to a single-input gate. The output

of this gate is f. This step is illustrated in Figure 8.

- -A D

- -B E

- -c F

a-~ diagram for f

c ----1 .____.,

f

Figure 8. Illustration of algorithm step 6

Step ']_.

Does the a-~ diagram consist of only complemented

and uncomplemented columns? If it does, go to step 8. If

not, go to step 9·

28

Step 8.

Synthesize the function, f, with a TANT network. The

variables in each complemented column are the inputs to

third-level gates, one gate for each column. The outputs of

all third-level gates are inputs to all second-level gates,

one for each row, along with the uncomplemented variables in

each row. The outputs of the second-level gates are inputs

to the first-level gate. The output of the first-level gate

is f. This is illustrated in Figure g.

A

c

A
B ---1

D--~~....,__,...,

A

D

D

A

-
A B c

-c D A

-
B D A

-
A D c

a-~ diagram of f

A

B

c
D

B

D

A

B

-D

-
A

-
A

-
B

Figure g. Illustration of algorithm step 8

--·-------------------

f

29

Step 2.·

Does the a-~ diagram contain an uncomplemented row? If

it does~ go to step 10. If not, go to step 11.

Step 10.

The uncomplemented row in the a-~ diagram for the func

tion~ f~ is removed. The removed row represents f 2 and the

remaining a-~ diagram represents f 1 where f = f 1 + f 2 . The

diagram of f 1 is then synthesized by applying the algorithm

to its a-~ diagram starting with step 3. The variables in

the uncomplemented row are the inputs to a single gate. The

output of this gate~ which is f 2 , is then input to what was

the output gate of f 1 • The output of this gate is now the

desired function f. This procedure is illustrated in Figure

10.

A I B I c
c B A

[

Figure 10. Illustration of algorithm step 10

30

step 11.

Does the a-~ diagram have at least one complemented

column? If it does, go to step 12. If not, go to step 13.

Step 12.

The variables in each complemented column are the inputs

to third-level gates, one gate for each complemented column.

The outputs of all third-level gates are inputs to all second-

level gates. There is one second-level gate for each row.

The literals in each row exclusive of those in the comple-

mented columns are inputs to the second-level gates. If a

literal in a complemented column is repeated in its row, it

will be input to the second-level gate for that row. If a

literal input at the second stage is a complemented variable,

it will be formed by using a single-input gate as an inverter.

The outputs of the second-level gates are the inputs to the

first-level gate. The output of this gate is the desired

function f. This step is illustrated in Figure 11.

B

A

c

~~ffi rn

f

A

Figure 11. Illustration of algorithm step 12

31

Step l3_.

It is well known that two levels of NAND logic, or NAND -

NAND networks, are equivalent from terminal considerations to

AND - OR logic. Select the minimal sum of products expres-

sion for the function that contains the fewest complemented

variables. Synthesize the function with two levels of NAND

circuitry as if synthesizing with AND - OR logic. If comple-

mented variables are needed they will be obtained by using a

single-input gate as an inverter on the third level.

A network synthesized by formal application of the

algorithm may contain gates which feed the same gates and

have identical inputs. All but one of these gates are re-

dundant and may be removed. This simplification is so obvious

that such gates would normally not be generated even though

specified by the algorithm. This procedure is illustrated

in Figure 12.

-c B c
- - -
A B B

-c A c A

B
a-~ diagram for f

A

Redundant

B

Figure 12. Redundant gate removal

32

After the network has been realized, it may be possible

to reduce the number of inputs. The following two rules will

be helpful in the reduction.

Rule 1. Consider a gate, N1 , that has as inputs

the set of inputs { x} = x 1 , x 2 , . • · xn

and the outputs of at least two gates, N2

and N3. Also assume that {x} is a set of

inputs to N2 along with the set of inputs

{y} = y 1 , y 2 , .•. yn~none of whose ele

ments are included in {x}. Further assume

at least one of the inputs {y}, y 1,is an

input to N3 . The input to N1 from N3 is

redundant and may be removed. This is

illustrated for the general case in Figure

13(a). A more specific example is shown in

Figure 13 (b) .

{x} { -

{y} { --

Figure l3(a). Illustration of rule 1

Inputs marked by an X are redundant and may be removed.

A

B

B

c

B ------1

C-----1...___

Figure 13(b). Illustration of rule 1

Rule 2. Consider a gate, N1, that has among its

inputs the output of a gate, N2 . Suppose

further that N2 feeds only N1 and that N1

and N2 have some common inputs, x 1 , x 2 ,

. x . These inputs are redundant inn

puts to N2 and may be removed. This is

illustrated in Figure 14.

Inputs marked by an

X are redundant and

may be removed.

Figure 14. Illustration of rule 2

33

f

34

The following discussion is intended to support the

synthesis algorithm and network simplification rules. As

previously stated, it is well known that two levels of NAND

logic is equivalent from a terminal point of view to two

levels of AND - OR logic. This equivalent property is illus

trated in Figure 15.

f 1 = AB CD = AB + CD

(a)

f 2 = AB + CD

(b)

Figure 15. Two-level equivalents

In general, if Boolean equations are arranged in a form

where the output gate is an OR (sum of products of sums of

products, etc.), they may be implemented in NAND logic simply

by changing all gates in the AND - OR implementation to NANDs

and complementing all single variable inputs to odd levels.

To illustrate this consider the Boolean function

f = A + BCD + BCD

The AND - OR network is

B
D

c

A J----f

D

and the equivalent NAND representation is

c~-A-ID-t
B

D----t_ _ __.

If complemented variables are not available~ as is the

assumption in this paper, single-input NANDs would be used

35

to form C and D to give a total of five gates. If redundancy

is added and f is factored as A + BD(C + D) + BC(C + D) a

savings of gates may be obtained by using a single gate to

generate the common factor. A NAND network using only four

gates that represents this factored expression is

c

D
f

36

It 1s clear from the previous discussion that if a

Boolean function is to be implemented in NAND circuitry and

only uncomplemented inputs are available~ any variable that

appears complemented in the function must be an input to an

odd-level gate. Further~ from an extension of the two-level

NAND and AND - OR equivalence~ it is obvious that odd-level

NAND gates perform an equivalent OR operation with single

inputs complemented and even-level gates the AND operation.

From the foregoing illustration and discussion one can

deduce that when implementing a Boolean function in NAND

logic~ it is desirable to arrange the function in a form

where the output gate is an OR with all occurrencesof comple

mented variables appearing singly in a sum. Complemented

variables appearing singly in a sum corresponds to the vari

able itself as an input to an equivalent OR~ or odd-level

gate~ in the NAND realization. Also~ the judicious addition

of redundancy and factoring in such a manner that common

factors are obtained corresponds to the sharing of gates in

the network realization.

The addition of redundancy and proper factoring of a

function to produce a minimum or near minimum NAND network

is easily implemented through use of the a-~ diagram.

Akers has shown that reading the a-~ diagram horizon

tally corresponds to logical multiplication and that reading

vertically corresponds to logical addition. A sum of pro

ducts expression may be read by forming the logical sum of

the rows. Likewise~ a product of sums expression may be

read by forming the logical product of the columns. An

illustration of this is shown in Figure 16.
~

c A
~

A c

A B
= (A+ C + B)(A + C)

Figure 16. Illustration of reading the a-~ diagram

Multilevel expressions may be obtained by combinations of

the above two procedures. Thus, multilevel forms of the

example are:

f = AC + A(C + B)

and

f = (A+ c)(A + C) + AB

Akers has also shown that one may let a section of an

37

a-~ diagram be represented by a new variable. Consider such

a modification of Figure 16 shown in Figure 17.

c
D

A

A B

Figure 17. Modification of Figure 16

One method for reading this diagram yields f = CD + AD + AB

where D =A + C. Therefore f = C(A +C) + A(A +C) + AB.

With the preceeding discussion in mind, attention will

now be focused on the individual steps of the algorithm. An

a-~ diagram which satisfies the conditions of each step will

be shown. The algebraic expression will be read and the

38

resulting network indicated.

An a-p diagram satisfying the condition of step 1 is

A B

C B

The two-level sum of products expression for this diagram is

read as AB + BC. By application of step 2 the NAND network

is

A

B

B

c

AB + BC

whose output is the desired function as indicated.

An a-p diagram satisfying the condition of step 3 is

B c
- -
A A

The sum of products expression for this diagram is A + BC

and by application of step 4 the required NAND realization is

B

c ----l..___ A---1
A+ BC

.___

39

Clearly, the removal of a row with a single complemented

variable is equivalent to forcing this complemented variable

to appear singly in the sum. The simplest implementation

will show this variable as an input to the output gate. The

conditions of step 5 are satisfied by the following a-~

diagram. The complement a-~ diagram, a-~, is also shown.

~

B
~

A

a-~

~

c
~

c
~
~

a-~

The complement of the function is read from a-~ as c + AB.

By step 6 the desired function is synthesized by the follow-

ing network,

c

A

B

= CA + CB

the output of which is the function read from the a-~ diagram.

An a-~ diagram containing all complemented variables usually

requires a large number of inverters at the input. Comple-

mentation of the a-~ diagram has the effect of performing

this complementation with a single inverter on the output.

As an example of an a-~ diagram that fulfills the con-

dition of step 7, consider that of the EXCLUS!VE-OR func

tion AB + AB shown below. The breakdown of the diagram by

40

step 8 is also shown to indicate how the procedure of remov

ing a complemented column is equivalent to the addition of

redundancy so that a gate may be shared.

-
A B

-
B A

The expression read in this manner is A(A + B) + B(A + B) and

the resulting NAND network is

A------~

+ B(A + B)=

The conditions of step 9 are satisfied by the next

a-{3 diagram.

A B

-c A

-
A c

The sum of products expression is AB + AC + AC. Implementa-

tion by step 10 provides a gate for the term AB on the second

level as shown in the resulting network below.

A

B

41

A(A + C) +
c(A + c) =

AB + AC + AC

Prime implicants with no complemented variables have been

termed "frontal prime implicants" by McCluskey (5). The

variables of such terms will appear as inputs to a second-

level gate in the minimum network realization.

An a-~ diagram which satisfies the condition of step 11

is shown below.

The multilevel expression A(B + A) + C(A + B) may be ~ead so

that the third-level gate generating A+ B may be shared.

The network which results by application of algorithm step

12 is

42

A

B

C(A + B) + A(A + B)

BC + AB
= "Ac + Ai3

c--

The reading of complemented columns in this manner allows for

sharing of gates on the third level and reduces the number of

gates that must be used as inverters to generate complemented

variables.

Support will now be given to the input simplification

rules. The function realized by the network of Figure 13(b)

before application of rule 1 is

A(A + B)(B +C) + B(A + B)(B +C) + C(A + B)(B +C)

After application of rule 1~ the function realized is

A(A + B) + B(A + B)(B + C) + C(B + C)

It can easily be shown that the two expressions are logically

equivalent. Application of rule 1 is an application of the

Boolean simplification theorem

x(x + Y) (Y + z) = x(x + Y)

The output of the network in Figure 14 before the appli-

cation of input reduction rule 2 is

It is clear that x 1 and x 2 are redundant in the term x 1x 2x 3 .

Application of rule 2 removes these redundant literals by

application of the Boolean identity

X+ XY =X+ Y.

43

In some cases when a large a-~ diagram is encounteredJ

it may be advantageous to decompose the diagram into smaller

diagramsJ each corresponding to a subfunction of the original

Boolean expression. This will be most desirable with dia

grams that are to be synthesized by application of step 13,

which results in a two-level network plus inverters on some

inputs.

A description of the process of decomposition using

a-~ diagrams is given by Akers (1). Given the diagram of a

function FJ cut the a-~ diagram into smaller a-~ diagrams

G and H. H and G may now be synthesized independently. A

network realization of F may be obtained by combining the

outputs of the networks realizing G and H in a manner similar

to that shown in Figure 10. This procedure is illustrated

in Figure 18.

F

a-P diagram of F

G
H

H

Figure 18. Decomposition of a diagram

In decomposing the a-~ diagram one should usually

attempt to form smaller a-~ diagrams which rank higher on

the priority list (see page 23) than the original diagram.

2. Extension to NOR Synthesis

44

The NOR function is the dual of the NAND. To synthesize

a given function using NOR gates, obtain the a-~ diagram as

in synthesis with NANDs. Form the dual a-~ diagram before

any simplification is employed. As previously described,

the dual a-~ diagram is formed by simply interchanging the

a-set and ~-set. The dual a-~ diagram is then simplified

as described for NAND synthesis. The algo~ithm can then

be applied directly to the dual a-~ diagram, substituting

NOR gates for NANDs in the final network realization. This

procedure is simply that of taking the dual of the given func

tion twice, once forming the dual a-~ diagram and once by re

placing NAND gates with NOR gates.

3. Worked Examples

In order to illustrate the diagrammatic procedure pre

sented in this paper, three examples will be worked in detail.

EXAMPLE PROBLEM 1. Design a NAND circuit which realizes

the switching function, x, shown

mapped below.

AB

0

0

1

1

0

1

1

0

CD
00

0

0

1

0

01 11 10

0 0 0

1 0 0

1 0 1

0 0 1

45

There is only one minimal sum of products expression and

one minimal product of sums expression. Therefore, the

a-set is easily determined as

and the [3-set is

{ CD, BC, AD}

The a-[3 diagram is then constructed and is shown below.

The row and column labels are retained for clarity.

CD BC AD
-

ABC c B A

-
BCD c B D

-ACD D c A

Since each square contains only one literal no simplification

is necessary. The algorithm is then applied to the a-[3 dia-

gram. The conditions of algorithm step 7 are the first to

be satisfied and the network is synthesized by step 8. The

NAND realization is

c
D

A

B

B
X

D

A

c

This function has been synthesized by Ellis (7). In that

work the solution was arrived at by a partly systematic

46

and partly trial and error procedure. The synthesis by the

algorithm of this paper is simple and straight-forward,follow

ing only well defined steps.

EXAMPLE PROBLEM 2. Design a NAND circuit which realizes

A

0

0

1

1

B

0

1

1

0

CD
00

1

1

1

1

the switching function, y, shown

mapped below.

01 11 10

0 0 1

1 1 1

0 1 1

1 1 1

Solution: The a-set is determined from the logical multi

plication of the two minimal sum of products expressions

yl = D + AB + AB + AC

y 2 = D + AB + AB + BC

After this multiplication and the allowed simplification

yly2

from which the a-set is

= D + AB + AB + ABC

{ D, AB , AB , ABC}

There is one minimal product of sums expression from which

the ~-set is determined as

{ ABD, ABCD }

The a-~ diagram is then constructed and is shown below.

47

ABD ABCD

- -
D D D

-
AB A B

-
AB B A

ABC AB c

The removal of either A or B in the bottom row is arbitrary.

For this example, B will be removed. The algorithm is then

applied to the a-~ diagram and the complemented row, D, is

removed by step 4. The resulting diagram is

A B

-
B A

A c

to which the algorithm is applied. The conditions of step 9

are the first to be satisfied and the uncomplemented row is

removed by step 10. The remaining diagram

GI!J
GI!J

is synthesized by step 8. The result of thissynthesis is

A

B

48

With the addition of the gate for the uncomplemented row and

the input to the output gate for the complemented row, the

synthesis 1s complete and the NAND realization is

A

B

A

y

EXAMPLE PROBLEM 3. Design a NAND network which realizes

CD
AB

00

01

ll

10

00

l

0

0

0

the switching function, z, shown

mapped below.

01 11 10

l 0 1

l 0 1

0 l 0

l 0 1

The a-set is easily determined from the two minimal sum of

products expression as

{ ABCD J ACD' ACD J BCD J BCD J ABCD}

There is one product of sums expression from which the ~-set

is determined as

{Acfi , BCD , ABD , ABC, ACD, BCD}

The a-~ diagram before simplification is

ABCD

ACD

:A ciS

BCD

BCD

ABCD

CD

-c
-
D

c

D

A

BCD

--CD

-c

D

c
D

B

ABD ABC

--AB AB

AD A

-A AC

BD 13

B BC

D c

ACD

A

AD
-AC

D

c

CD

BCD

B

D

c

BD

BC

CD

The redundant literals are removed according to the

simplification priority. The diagram for z is then

- - - - - -c c A A A B

- - - -c c A A D D

- - - -
D D A A c c

1--· - - - -c c B B D D

- - - -D D B B c c

A B D c D D

The uncomplemented row is removed by step 10 and the

resulting diagram is synthesized by step 12 as

49

B

c
D

A

B

A

50

c--r--.....

D---1 ...___

With the addition of the gate for the removed uncornplernented

row , the final network is

51

The input to gate n marked by an X is redundant and is re

moved by input reduction rule 1. This function has been

synthesized on page 149 of Maley and Earle (4) using a map

factoring technique. Considerably less effort was involved

using the technique of this paper.

CHlU'TER III

SUMMARY

52

The general approach to the synthesis of NAND logic

networks presented in this paper differs considerably from

the algebraic and map methods. It has been assumed here

that complemented variables are not available as network

inputs. Akers was the first to suggest synthesis of Boolean

functions through the use of an a-p diagram. The author's

development is a modification of Akers• work to produce

minimal NAND-NOR networks. This diagrammatic approach

yields minimal or near minimal networks without the com

plexities of trial and error procedures inherent in the

algebraic and map methods. The synthesis algorithm of

this paper consists of a set of well defined steps leading

directly from an arbitrary Boolean expression to the final

network. It is applicable to both completely and incom

pletely specified Boolean functions.

53

BIBLIOGRAPHY

1. SMITH, R. A., Minimal Three-Variable NOR and NAND Logic
Circuits, IEEETEC, Vol. EC-14, No. 1,
pp. 79-82, February, 1965.

2. DIETMEYER, D. L. and SCHNEIDER, P. R., A Computer Oriented
Factoring Algorithm for NOR Logic Design,
IEEETEC, Vol. EC-14, No. 6, pp. 868-874,
December, 1965.

3. HELLERMAN, L., A Catalog of Three Variables OR-Invert and
AND-Invert Logical Circuits, IEEETEC, Vol.
EC-12, No. 3, pp. 198-223, June, 1963.

4. MALEY, G. A. and EARLE, J., The Logical Design of Tran
sistor Digital Computers, Prentic Hall,
Englewood Cliffs, Jew Jersey, 1963.

5· McCLUSKEY, E. J., Logical D~sign Theory of NOR Gate Net
work with No Complemented Inputs, Proc.
Fourth Annual Symposium on Switching Circuit
Theory and Logical Design, Chicago, Illinois,
pp. 137-148, October, 1963.

6. GIMPEL, J. F., The Synthesis of TANT Networks, IEEE Con
ference Record on Switching Theory and
Logical Design, Ann Arbor, Michigan, pp.
105-125, October, 1965.

7· ELLIS, D. T., A Synthesis of Combinational Logic with
NAND or NOR Elements, IEEETEC, Vol. EC-14,
No. 5, pp. 701-705, October, 1965.

8. AKERS, s. B., Jr., A Diagrammatic Approach to Multilevel
Logic Synthesis, Proc. of the Fifth Annual
Symposium on Switching Circuit Theory and
Logical Design, Princeton, New Jersey, pp.
165-173, October, 1964. IEEETEC, Vol. EC-
14, No. 2, pp. 174-181, April, 1965.

9. AKERS, s. B., Jr., A Truth Table Method for the Synthesis
of Combinational Logic, IEEETEC, Vol. EC-
10, No. 4, pp. 604-615, December, 1961.

VITA

The author was born on October 21, 1940, in Berwyn,

Illinois. He received his primary education in Berwyn,

Illinois and graduated from J. Sterling Morton High School

in Cicero, Illinois in 1958. He was awarded the Iowa State

Club of Chicago Scholarship and obtained a Bachelor of

Science degree from Iowa State University in Ames, Iowa

in May, 1962.

He was enrolled in the Graduate School of the University

of Missouri at Rolla in September, 1962 and held a graduate

assistantship in Electrical Engineering until June, ~963.

He joined the staff of the Electrical Engineering Department

in September, 1963 as a half time instructor and since June,

1964 has held a full time appointment.

Mr. Nelson is a member of Phi Eta Sigma, Kappa Mu

Epsilon, Tau Beta Pi, Eta Kappa Nu, and the Institute of

Electrical and Electronics Engineers.

	An algorithm for the synthesis of NAND logic networks using a diagrammatic approach
	Recommended Citation

	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054

