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ABSTRACT 

A diagrammatic approach is presented for the synthesis 

of multilevel NAND networks realizing combinational logic 

expressions. The network synthesized is restricted to only 

uncomplemented inputs. The synthesis algorithm involves the 

determination of minimum sum of products and product of sums 

expressions for a Boolean function, construction of an a-~ 

diagram from these expressions followed by implementation 

with NAND gates directly from the diagram. The resulting 

network is a minimal or near minimal NAND gate realization 

of the given function. The algorithm is applicable to com

pletely or incompletely specified Boolean functions and is 

extended to include NOR synthesis. 
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CHAPTER I 

INTRODUCTION 

The problem in logical design of synthesizing NAND 

networks with only uncomplemented inputs available has 

been and still is of great importance. The NAND element 

is chosen because of its inherent amplification and drive 

capability and because it is a universal logic element. 

6 

That is to say, any Boolean function may be realized using 

combinations of only these gates. Another reason for choos

ing the NAND element is the growing importance of integrated 

circuits in the digital field and the relative ease of fab

ricating these elements using integrated circuit techniques. 

The networks synthesized by the method described in 

this paper will be restricted to only uncomplemented inputs. 

Frequently the inputs to the networks to be synthesized will 

be the outputs from other NAND networks. The complemented 

outputs of these gates are generally not available. It is 

well known that if the theory of two-stage networks using 

AND and OR gatesis extended to this problem, the resulting 

networks will not necessarily be minimal or least-cost net

works. In this paper, a network will be said to be minimal 

if it realizes the desired Boolean expression with a min

imum number of inputs to a minimum number of gates. 

Smith (lf assumed the availability of both complemented 

and uncomplemented inputs in his synthesis procedure. A com-

*Numbers in parentheses are references to the Bibliography. 



puter was utilized to investigate all of the possible ways 

of interconnecting a given number of NAND elements and all 

of the functionsof three variables that each connection 

could generate. The minimum network was then selected. 

This procedure could become overwhelming for a greater num-

ber of variables. 

The recent work by Dietmeyer and Schneider (2) was to 

develop a programmable algorithm for the synthesis of NAND 

and NOR networks. Again, both complemented and uncomple-

mented inputs were assumed available. The algorithm was 
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developed so as to satisfy fan-in requirements of the gating 

used,by factoring in a prescribed manner. The object of 

this work is not to guarantee minimal networks but to pro-

vide speed and accuracy of design satisfying fan-in restric-

tion. 

The two papers already cited considered problems where 

both complemented and uncomplemented inputs were assumed. 

In this paper, the inputs are restricted to only uncomple-

mented variables. The papers reviewed below consider this 

latter class of problems. 

For functions of three variables the work done by 

Hellerman (3) is significant. An exhaustive method was 

employed to select the minimum NAND and NOR network for gen

erating functions of three variables with uncomplernented 

inputs available. All possible combinational networks with 

seven and fewer blocks (242 ) were examined (fan-in was lim

ited to three variables). The networks were examined in 
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ascending order of number of blocks with all combinations of 

inputs. The first network found to generate one of the 256 
Boolean functions of three variables was selected as were 

all others using the same number of gates. The one with the 

fewest inputs was then selected as the minimal network real-

izing that function. This was possible as all others to be 

obtained would contain a larger number of gates. When it is 

desired to synthesize functions of more than three variables~ 

a complete enumeration and selection techniques become un-

wieldy and impractical if not impossible byknown techniques 

and computing capability. This is easily seen by noting that 
4 

there are 22 = 65~536 functions of four variables not to 

mention the number of possible NAND implementations for each 

one. 

Maley and Earle (4) present an algebraic approach to 

the synthesis of functions of several variables using NAND 

gates. This approach is to factor a sum of products expres-

sion of the given switching function in a prescribed manner. 

With the judicious use of added redundanc~ a logically equiv

alent expression is obtained which is suitable for synthesis 

with NANDs. The complexity of the network realized using 

this approach depends on the facility of the user in manip

ulating the Boolean expression. For a large number of vari

ables, this algebraic approach can become quite inefficient 

with the possibility that the resulting network has more 

gates and inputs than the two-level network for the minimum 

sum of products expression with single-input gates used as 
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inverters. 

In the previously cited work by Maley and Earle. a 

method of factoring on a Karnaugh map is presented for the 

synthesis of multi-level NAND networks. This method is eas

ily applicable to functions of only a few variables. However, 

it has been this author's experience that networks synthesized 

by this map factoring approach tend to have excessive levels 

of logic. As with the previously mentioned algebraic method, 

the complexity of the network realized depends to a large 

extent on the skill of the user. 

NAND networks limited to three levels with only uncom

plemented inputs available have been called TANT (Three

level AND - NOT network with True inputs) networks by 

McCluskey (5) and Gimpel (6). Gimpel and McCluskey consider 

the same class of functions to be considered in this paper. 

However~ their solutions are limited to TANT networks. 

Gimpel describes an approach using prime implicants of the 

TANT expression which are analogous but not equivalent to 

the prime implicants in AND -OR synthesis. The approach 

is similar to the Quine-McCluskey algorithm for two-level 

AND -OR synthesis. The resulting network is a minimum gate 

count TANT network. The algorithm of this paper does not 

restrict the solution to a TANT network. 

Ellis (7) has developed a systematic procedure for 

synthesizing NOR and NAND networks limited to three levels. 

The procedure is essentially an extension of the algebraic 

approach of Maley and Earle utilizing redundancy and factor-
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ing so that the outputs of third-level gates may be shared 

by second-level gates. In this method, the prime implicants 

are listed and then grouped into one of three basic patterns. 

This grouping leads to possible reduction in the final NAND 

network by the sharing of gates on the input level of logic. 

These gates generate the negated variables in the prime 

implicants. 

This paper presents an approach to the synthesis of 

multi-level NAND networks which is a modification of the 

work done by Akers (8). In his paper, Akers utilizes the 

concept of an a-p diagram to develop a method for multi

level AND -OR synthesis. The approach is diagrammatic, 

i. e., the network is synthesized directly from a diagram 

which represents the switching function. This paper is 

concerned with the construction of a modified a-p diagram 

suitable for NAND networks, diagram simplification, and 

diagram transformation into minimal or near-minimal NAND 

networks. The techniques developed by Akers for the manip

ulation of the diagram applicable to the problem being con

sidered in this paper will be summarized when needed. It 

is the author 1 s feeling that the method herein described is 

easier to apply than those in the previously cited literature. 

This diagrammatic approach has the advantage of giving 

a visual interpretation to the concepts of fan-in, fan-out 

and levels of logic. In most instances, the network synthe

sized by this method will be minimal. Finally~ the procedure 

will be extended to include synthesis with NOR gates through 



ll 

the use of the duality property of the NAND and NOR. 
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CHAPTER II 

THE SYNTHESIS OF NAND NETWORKS USING a-~ DIAGRAMS 

As in Akers' method , the synthesis procedure to be 

presented in this chapter involves the construction and use 

of a diagram derived from the specifications of a switching 

function. A switching function F(x1 , x 2 , ... , xn) is 

described by Akers (9) as an ~ + !(column truth table defin-

ing for each n-bit binary input combination the correspond

ing value ofF (either 0 or 1). The table must be consist

ent which means that F cannot be both 0 and 1 for the same 

input combination. In his paper, Akers utilizes the concept 

of a logically passive function described in a previous 

paper (9) to obtain what he calls a and ~ sets. Stated 

simply, any switching function realizable with only AND and 

OR gates is logically passive. A diagram is constructed 

from these a and~ sets. This diagram is called the a-~ 

diagram. The diagram has the property that reading horizon

tally corresponds to logical multiplication and reading ver

tically to logical addition. This is illustrated in Figure 

1. 

A B A B 

c c D D f = ABAB + CCDD = AB + CD 

= ( A+C ) ( B+C ) (A+ D) ( B+ D) 

Figure 1. An a-~ diagram illustration 
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The method described by Akers for the construction of 

this diagram may be quite lengthy and is not particularly 

suited for our problem. For this reason, a different method 

of obtaining the diagram will be presented. This method has 

the advantage that it involves the familiar procedure of 

selecting minimal sets of prime implicants and implicates 

from a Karnaugh map. 

A. Construction of the a-{3 Diagram 

The usefulness of the synthesis method presented in 

this paper is based on the relative ease with which it may 

be applied. The construction of the a-{3 diagram is an inte

gral part of this procedure. It has been the author's ex

perience that the method presented by Akers for this con

struction is somewhat tedious and lengthy. Therefore, a 

new and simpler method will be developed in this paper. 

The a-{3 diagram is formed as a rectangular array having 

one row for each term in a sum of products representation of 

the switching function to be synthesized and one column for 

each factor in a product of sums representation for the same 

function. Since there may be more than one sum of products 

and product of sums representation of a given function, the 

possibility of more than one different a-{3 diagram repre

senting the same function is not obviated. Because of this, 

the question is raised as to whether or not one diagram may 

be better than another in so far as synthesis is concerned. 

This is indeed the case. It is necessary then to select the 

11 best 11 a-{3 diagram which will in turn yield a minimum or near 
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minimum network. The next two sections describe how to 

develop this "best" a-(3 diagram. 

1. The a-set 

The terms that comprise a sum of products expression 

for a functio~ f, will be called the a-set for that function. 

Clearly, there may be more than one a-set for any given func-

tion. The problem is to obtain an a-set that will include 

all of the minimal sum of products 

selection of such an a-set is best 

Consider the switching function, f, 

(f = ~ 2' 4, 5, 6, 8, 10, 11, 13, 

A B c D :tf 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 1 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 0 1 1 

0 1 1 1 0 

0 1 1 0 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 1 1 

1 1 1 0 0 

1 0 0 0 1 

1 0 0 1 0 

1 1 1 1 1 

1 0 1 0 1 

(a) 

expressions 

illustrated 

in Figure 

15) 

AB 

0 

0 

1 

1 

0 

1 

1 

0 

CD 
00 

0 

1 

0 

1 

for f. The 

by an example. 

2 (a) . 

01 11 10 

0 0 1 

1 0 1 

1 1 0 

0 1 1 

(b) 

F . 2 Example function for the a-set determination ~gure . 



15 

The function is first mapped on a Karnaugh map as shown 

in Figure 2(b). Then all minimum sum of products expressions 

are formed. Minimal expressions are of interest because they 

yield minimum row a-~ diagrams. It will be shown that simpli

fication of the a-~ diagram in terms of row and column elim

ination corresponds to simplification of the resulting NAND 

network. 

For the example function there are three minimum sum of 

products expressions. 

fl = ABD + ACD + ABC + ACD + ABD 

f2 = ABD + ACD + ABC+ ACD + BCD 

f3 = ABD+ ACD + ABC+ ABC + ABD 

It appears that a decision must be mace as to which min-

imal expression to use. This decision will be postponed by 

constructing a sum of products expression for the function , 

and corresponding a-set which includes all minimal forms. 

The a-~ diagram will then contain a collection of all minimal 

sum of products of the function. Simplification of the a-~ 

diagram to be described later corresponds to selection of the 

best minimal form for NAND implementation. It is a relative

ly easy matter to perform this selection on the a-~ diagram 

as opposed to selection before diagramming. This points out 

an important advantage of the diagrammatic approach over the 

previously cited algebraic approaches. The minimum expres

sion which has this property can be obtained by first logic

ally multiplying together all minimal sum of products expres

sions. Thensimplify with only the following three theorems: 
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1. a·a = 0 

2. a·a =a 

3. a + ab = a 

An equivalent procedure, and one that will save time 

and effort in most cases is to first select the terms that 

appear in all minimum sum of products expressions for f. 

Designate the logical sum of these terms by r. The sums of 

the 

sl' 

remaining terms 

s2, s3 

fl = 

f2 = 

f3 = 

. . . 

r + sl 

r + s2 

r + 53 

r + s n 

s n 

in fl' 

. That 

f2' f3 .. 

is to say 

. f are designated by 
n 

where f 1 , f 2 , f 3 ... fn are the minimal sum of products 

expressions for f and therefore are all logically equivalent 

to f. 

It then follows that 

s 
n 

where f is the desired sum of products expression. It is 
a 

obvious that f is logically equivalent to f. 
a 

For the example function 



r = ABD + ACD + ABC 

Therefore 

s 1 = ACD + ABD 

s2 = ACD + BCD 

s 3 = ABC + ABD 

fa = ABD + ACD + ABC + ABCD + ABCD + ABCD 

and the a-set is 

{ABD, ACD, ABC, ABCD, ABCD, ABCD} 
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A summary of the steps involved in obtaining the a-set is as 

follows: 

1. Map the function. 

2. Read all minimal sum of products expressions. 

3. Logically multiply together all minimal sum of 

products expressions. 

4. Simplify the resulting sum of products expression 

by using only selected theorems. 

5· Select all resulting terms as elements of the 

a-set. 

2. The {3-set 

The set of terms from the dual of a product of sums 

expression for a function will be called the {3-set of that 

function. Again,there may be more than one {3-set for any 

given function. The {3-set will be obtained in a manner 

similar to that used for obtaining the a-set and will 

utilize the same Karnaugh map. The determination of the 

{3-set for the first example is trivial. Therefore, tc 

better illustrate the.: selection of the · ~-set con-sider the 



new function that is shown mapped in Figure 3. 

AB 

0 

0 

1 

1 

0 

1 

1 

0 

CD 
00 

1 

1 

0 

0 

01 11 10 

1 0 1 

1 1 1 

1 0 1 

1 0 0 
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Figure 3. Example function for the ~-set determination 

All minimum product of sums expressions are formed. 

Minimal expressions are of interest because they yield mini

mum column a-~ diagrams. As stated in connection with the 

a-set determination, simplification of the a-~ diagram in 

terms of column elimination corresponds to simplification of 

the resulting NAND network. For this example there are two 

minimal product of sums: 

fl = (A+ c + D)(B + c + D) (A + c + D)(A + B + D) 

f2 = (A + c + D)(B + c + D) (A + c + D) (A + B + c) 

The ~-set is determined from the dual expressions which 

are as follows, 

fl dual 
= ACD + BCD + ACD + ABD 

f2 dual 
= ACD + BCD + ACD + ABC 

The same procedure as was used in the determination of 

the a-set is now followed. All of these dual expressions 

are logically multiplied together. Simplification of the 

resulting expression is accomplished by the application of 

only the three Boolean theorems used in a-set simplification. 



The terms of the resulting expression, f co t't t ~ dual' ns 1 u e 

the ~-set. In the present example, 

f ~ dual = ACD + BCD + ACD + ABCD 

Note that by taking the dual of f~ dual ' a product of sums 

expression is obtained , f~, which is equivalent to f. 

f~ = (A+ C + D)(B + C + D)(A + C + D)(A + B + C + D) 

The terms of f~ dual form the elements of the ~-set. The 

~-set for the example is 

{ ACD ~ BCD' ACD' ABCD}. 

Therefore , the selection of which minimal product of sums 

expression to use is postponed to the a-~ diagram simpli

fication where it can be done with greater facility. 

3. The a-~ Diagram 

After the a and ~ sets have been determined , the a-~ 

diagram can be constructed. This diagram is formed as a 
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rectangular array having one row for each term of the a-set 

and one column for each term of the ~-set. The literals in 

each term of the a-set are the labels for the rows. The 

literals of each term of the ~-set are the labels for the 

columns. In square i,j are entered the literals that appear 

as labels for both row i and column j. Once the literals 

have been entered in the squares , the labels on the rows and 

columns may be omitted. The diagram constructed in this 

manner will be called the a-~ diagram. 

The a-set for the function of Figure 2(a) was determined 

as 
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{lilln~ ACD~ ABC~ ABCD~ ABCD ~ ABeD} 

The {3-set is easily determined as 

{ ABD~ --
ABc}. BCD~ ACD~ 

The a-{3 diagram for this function is shown with the row and 

column labels retained for clarity in Figure 4. 

ABD BCD ACD ABC 

- -ABD B D AD A 

- - -ACD A CD D c 

- -ABC A B c B 

-ABCD BD c A AC 

ABCD D BC A ABC 

-
ABCD D B AC AB 

Figure 4. An a-{3 diagram 

From the preceeding example it is seen that the result-

ing a-{3 diagram may contain squares with more than one entry. 

The a-{3 diagram to be used in the synthesis algorithm must 

consist of squares with single entries. Before this problem 

is discussed~ it will be advantageous to make the following 

definitions. 

Definition 1. 

A column (row) of an a-{3 diagram that has as entries 

only complemented variables will be referred to as a comple-

mented column (row). 

Definition 2. 

A column (row) of an a-{3 diagram that has as entries 

only uncomplemented variables will be referred to as an 
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uncomplemented column (row). 

In the synthesis procedure it will be necessary to be 

able to form the a-{3 diagram of the dual and of the comple-

ment of a function if the a-{3 diagram of the function itself 

has already been determined. Since the dual of an expression 

is obtained by interchanging all occurrences of+ and ·~ and 

of 1 and o~ the a-{3 diagram of the dual of a function is 

obtained by simply interchanging the elements of the a and {3 

sets. This procedure is illustrated in Figure 5(a). By 

DeMorgan's Law~ the a-{3 diagram of the complemented function 

is obtained by interchanging the a and {3 sets and complement

ing all literals. This is shown in Figure 5(b). 

-
A B D D 

-
B c A B 

- -
D A B c 

a-{3 diagram of f 

(a) 

-
A B 

-B c 

D A 

- -D B 

-
A B D 

-B c A 

- -D A B 

D B c 

a-{3 diagram of the 

dual of f 

D 

-A 

B 

-c 

(b) a-{3 diagram of f 

Figure 5· Dual and complement a-{3 diagram 
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In this paper the different letters in a Boolean expres

sion used to denote statements concerning bivalued situations 

will be called variables. For example _, in the expression 

AB + AC + A ( D + E ) 

there are five variables A, B, C, D, and E. Each occurance 

of a variable or its complement is called a literal. There 

are seven literals in the example expression. In light of 

this definition, the literal B is not a variable but is the 

complement of a variable, namely B. Unless otherwise spec

ified, the terms variable and uncomplemented variable will 

be used interchangeably. 

4. Simplification of the a-~ Diagram 

The a-~ diagram to be used in the algorithm must consist 

of squares with a single entry. Akers (8) lists the follow

ing four rules which may be applied in simplifying the a-~ 

diagram: 

1. Rows and columns may be rearranged in any order. 

This is possible because no particular order is 

required in labeling the rows and columns with 

elements of the a-~ sets. 

2. If one row (column) has the same literals (and 

perhaps others) in the same squares as a second, 

it may be removed. 

3. A literal may be removed from any row (column) 

in which it does not appear alone. This must 

be done one at a time. 

4. All but one literal may be removed from any square. 
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When the a-~ diagram is being simplified, i.e.,reduced to a 

diagram consisting of squares with single entries, the lit

erals that are retained in given squares will be selected so 

as to yield a-~ diagrams with the following desired proper

ties. The list is in descending order of priority. 

1. Remove redundant literals so as to yield a 

diagram that contains only uncomplemented 

variables. 

2. Remove redundant literals so as to yield a 

row whose entries are a single complemented 

variable. 

3. Remove redundant literals so as to yield a 

diagram that contains only complemented 

variables. 

4. Remove redundant literals so as to yield a 

diagram with all columns complemented or 

uncomplemented. 

5. Remove redundant literals so as to form an 

uncomplemented row. 

6. Remove redundant literals so as to form a 

maximum number of complemented columns. 

Remaining columns should show a minimum 

number of complemented variables. 

After elimination of redundant literals according to rules 2 

or 5, reconsider the a-~ diagram exclusive of the complement-

ed or uncomplemented row. 

B. The Network Synthesis 



After the a-~ diagram is simplified~ the synthesis 

algorithm will be employed to obtain the required network 

realization. The word3 11 gate 11 and"NAND gate"will be used 

interchangeably in this algorithm. 

The concept of a level or stage of gating used in the 

24 

synthesis algorithm will be as described by Gimpel (6). A 

gate in a network is said to be a first-stage gate (or to be 

on level one) if it is an output gate. A gate is said to be 

th ( 1 1 ) 1'f 1't f d ( )th an n -stage gate or on eve n ee s only an n-1 _ 

stage gate (or gates). If a network is loop free~ i.e. free 

of feedback loops, then such a numbering scheme is well de-

fined. The networks synthesized by the following algorithm 

will be loop free. 

So as not to disrupt the flow of the algorithm from 

step to step, the algorithm will simply be stated. Justi

fication for the steps will follow. 

1. The Synthesis Algorithm 

Step 1. 

Does the a-~ diagram contain only uncomplemented vari-

ables? If it does, go to step 2. If it does not, go to 

step 3. 

Step 2. 

synthesize the function that is diagrammed, f, by using 

two levels of logic. The variables on each row form the in

puts to second-level gates, one gate for each row. The out

puts of these gates are the inputs to a first-level gate. 

The output of this gate is f. This procedure is illustrated 

in Figure 6. 



A B c 

D E F 

G H I 

a-p diagram satisfying 

conditions of step 2. 

The variables A, B, C, 

etc. are generalized 

and all functions of 

the same variables. 

c 

Figure 6. Illustration of algorithm step 2 
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f 

Does the a-p diagram contain a row with a single comple

mented variable? If it does, go to step 4. If not, go to 

step 5. 

Step 4. 

Remove from the a-p diagram that row whose entries are 

all the same complemented variable, say A. The new a-p dia

gram represents f 1 where f = f 1 + A. f 1 is then synthesized 

by applying the algorithm to its a-p diagram starting with 

step 1. The variable A is input to the output gate for f 1 . 

With the addition of the A input the output of this gate is 

now the desired function, f. The general procedure is illus-

trated in Figure 7(a) with a specific example in Figure 7(b). 
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-
f == fl + A 

(a) 

A B c 

D E F .. 
- - -
G G G -

G G G 

and finally 

c---t .._____. 

f 

(b) 

Figure 7. Illustration of algorithm step 4 
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Step .5.. 

Does the a-~ diagram contain only complemented variables? 

If it does, go to step 6. If not go to step 7. 

Step 6. 

Form the complement of the a-~ diagram, a-~. Synthesize 

a-~ with two levels of logic as in step 2. The output of the 

network obtained is f. The desired function, f, is obtained 

by using f as the input to a single-input gate. The output 

of this gate is f. This step is illustrated in Figure 8. 

- -A D 

- -B E 

- -c F 

a-~ diagram for f 

c ----1 .____., 

f 

Figure 8. Illustration of algorithm step 6 

Step ']_. 

Does the a-~ diagram consist of only complemented 

and uncomplemented columns? If it does, go to step 8. If 

not, go to step 9· 
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Step 8. 

Synthesize the function, f, with a TANT network. The 

variables in each complemented column are the inputs to 

third-level gates, one gate for each column. The outputs of 

all third-level gates are inputs to all second-level gates, 

one for each row, along with the uncomplemented variables in 

each row. The outputs of the second-level gates are inputs 

to the first-level gate. The output of the first-level gate 

is f. This is illustrated in Figure g. 

A 

c 

A 
B ---1 

D--~~....,__,..., 

A 

D 

D 

A 

-
A B c 

-c D A 

-
B D A 

-
A D c 

a-~ diagram of f 

A 

B 

c 
D 

B 

D 

A 

B 

-D 

-
A 

-
A 

-
B 

Figure g. Illustration of algorithm step 8 

--·-------------------

f 
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Step 2.· 

Does the a-~ diagram contain an uncomplemented row? If 

it does~ go to step 10. If not, go to step 11. 

Step 10. 

The uncomplemented row in the a-~ diagram for the func

tion~ f~ is removed. The removed row represents f 2 and the 

remaining a-~ diagram represents f 1 where f = f 1 + f 2 . The 

diagram of f 1 is then synthesized by applying the algorithm 

to its a-~ diagram starting with step 3. The variables in 

the uncomplemented row are the inputs to a single gate. The 

output of this gate~ which is f 2 , is then input to what was 

the output gate of f 1 • The output of this gate is now the 

desired function f. This procedure is illustrated in Figure 

10. 

A I B I c 
c B A 

[ 

Figure 10. Illustration of algorithm step 10 
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step 11. 

Does the a-~ diagram have at least one complemented 

column? If it does, go to step 12. If not, go to step 13. 

Step 12. 

The variables in each complemented column are the inputs 

to third-level gates, one gate for each complemented column. 

The outputs of all third-level gates are inputs to all second-

level gates. There is one second-level gate for each row. 

The literals in each row exclusive of those in the comple-

mented columns are inputs to the second-level gates. If a 

literal in a complemented column is repeated in its row, it 

will be input to the second-level gate for that row. If a 

literal input at the second stage is a complemented variable, 

it will be formed by using a single-input gate as an inverter. 

The outputs of the second-level gates are the inputs to the 

first-level gate. The output of this gate is the desired 

function f. This step is illustrated in Figure 11. 

B 

A 

c 

~~ffi rn 

f 

A 

Figure 11. Illustration of algorithm step 12 
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Step l3_. 

It is well known that two levels of NAND logic, or NAND -

NAND networks, are equivalent from terminal considerations to 

AND - OR logic. Select the minimal sum of products expres-

sion for the function that contains the fewest complemented 

variables. Synthesize the function with two levels of NAND 

circuitry as if synthesizing with AND - OR logic. If comple-

mented variables are needed they will be obtained by using a 

single-input gate as an inverter on the third level. 

A network synthesized by formal application of the 

algorithm may contain gates which feed the same gates and 

have identical inputs. All but one of these gates are re-

dundant and may be removed. This simplification is so obvious 

that such gates would normally not be generated even though 

specified by the algorithm. This procedure is illustrated 

in Figure 12. 

-c B c 
- - -
A B B 

-c A c A 

B 
a-~ diagram for f 

A 

Redundant 

B 

Figure 12. Redundant gate removal 
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After the network has been realized, it may be possible 

to reduce the number of inputs. The following two rules will 

be helpful in the reduction. 

Rule 1. Consider a gate, N1 , that has as inputs 

the set of inputs { x} = x 1 , x 2 , . • · xn 

and the outputs of at least two gates, N2 

and N3. Also assume that {x} is a set of 

inputs to N2 along with the set of inputs 

{y} = y 1 , y 2 , .•. yn~none of whose ele

ments are included in {x}. Further assume 

at least one of the inputs {y}, y 1,is an 

input to N3 . The input to N1 from N3 is 

redundant and may be removed. This is 

illustrated for the general case in Figure 

13(a). A more specific example is shown in 

Figure 13 (b) . 

{x} { -

{y} { --

Figure l3(a). Illustration of rule 1 



Inputs marked by an X are redundant and may be removed. 

A 

B 

B 

c 

B ------1 

C-----1...___ 

Figure 13(b). Illustration of rule 1 

Rule 2. Consider a gate, N1, that has among its 

inputs the output of a gate, N2 . Suppose 

further that N2 feeds only N1 and that N1 

and N2 have some common inputs, x 1 , x 2 , 

. x . These inputs are redundant inn 

puts to N2 and may be removed. This is 

illustrated in Figure 14. 

Inputs marked by an 

X are redundant and 

may be removed. 

Figure 14. Illustration of rule 2 
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f 
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The following discussion is intended to support the 

synthesis algorithm and network simplification rules. As 

previously stated, it is well known that two levels of NAND 

logic is equivalent from a terminal point of view to two 

levels of AND - OR logic. This equivalent property is illus

trated in Figure 15. 

f 1 = AB CD = AB + CD 

(a) 

f 2 = AB + CD 

(b) 

Figure 15. Two-level equivalents 

In general, if Boolean equations are arranged in a form 

where the output gate is an OR (sum of products of sums of 

products, etc.), they may be implemented in NAND logic simply 

by changing all gates in the AND - OR implementation to NANDs 

and complementing all single variable inputs to odd levels. 

To illustrate this consider the Boolean function 

f = A + BCD + BCD 

The AND - OR network is 



B 
D 

c 

A J----f 

D 

and the equivalent NAND representation is 

c~-A-ID-t 
B 

D----t_ _ __. 

If complemented variables are not available~ as is the 

assumption in this paper, single-input NANDs would be used 
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to form C and D to give a total of five gates. If redundancy 

is added and f is factored as A + BD(C + D) + BC(C + D) a 

savings of gates may be obtained by using a single gate to 

generate the common factor. A NAND network using only four 

gates that represents this factored expression is 

c 

D 
f 
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It 1s clear from the previous discussion that if a 

Boolean function is to be implemented in NAND circuitry and 

only uncomplemented inputs are available~ any variable that 

appears complemented in the function must be an input to an 

odd-level gate. Further~ from an extension of the two-level 

NAND and AND - OR equivalence~ it is obvious that odd-level 

NAND gates perform an equivalent OR operation with single 

inputs complemented and even-level gates the AND operation. 

From the foregoing illustration and discussion one can 

deduce that when implementing a Boolean function in NAND 

logic~ it is desirable to arrange the function in a form 

where the output gate is an OR with all occurrencesof comple

mented variables appearing singly in a sum. Complemented 

variables appearing singly in a sum corresponds to the vari

able itself as an input to an equivalent OR~ or odd-level 

gate~ in the NAND realization. Also~ the judicious addition 

of redundancy and factoring in such a manner that common 

factors are obtained corresponds to the sharing of gates in 

the network realization. 

The addition of redundancy and proper factoring of a 

function to produce a minimum or near minimum NAND network 

is easily implemented through use of the a-~ diagram. 

Akers has shown that reading the a-~ diagram horizon

tally corresponds to logical multiplication and that reading 

vertically corresponds to logical addition. A sum of pro

ducts expression may be read by forming the logical sum of 

the rows. Likewise~ a product of sums expression may be 



read by forming the logical product of the columns. An 

illustration of this is shown in Figure 16. 
~ 

c A 
~ 

A c 

A B 
= (A+ C + B)(A + C) 

Figure 16. Illustration of reading the a-~ diagram 

Multilevel expressions may be obtained by combinations of 

the above two procedures. Thus, multilevel forms of the 

example are: 

f = AC + A(C + B) 

and 

f = (A+ c)(A + C) + AB 

Akers has also shown that one may let a section of an 
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a-~ diagram be represented by a new variable. Consider such 

a modification of Figure 16 shown in Figure 17. 

c 
D 

A 

A B 

Figure 17. Modification of Figure 16 

One method for reading this diagram yields f = CD + AD + AB 

where D =A + C. Therefore f = C(A +C) + A(A +C) + AB. 

With the preceeding discussion in mind, attention will 

now be focused on the individual steps of the algorithm. An 

a-~ diagram which satisfies the conditions of each step will 

be shown. The algebraic expression will be read and the 
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resulting network indicated. 

An a-p diagram satisfying the condition of step 1 is 

A B 

C B 

The two-level sum of products expression for this diagram is 

read as AB + BC. By application of step 2 the NAND network 

is 

A 

B 

B 

c 

AB + BC 

whose output is the desired function as indicated. 

An a-p diagram satisfying the condition of step 3 is 

B c 
- -
A A 

The sum of products expression for this diagram is A + BC 

and by application of step 4 the required NAND realization is 

B 

c ----l..___ A---1 
A+ BC 

.___ 
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Clearly, the removal of a row with a single complemented 

variable is equivalent to forcing this complemented variable 

to appear singly in the sum. The simplest implementation 

will show this variable as an input to the output gate. The 

conditions of step 5 are satisfied by the following a-~ 

diagram. The complement a-~ diagram, a-~, is also shown. 

~ 

B 
~ 

A 

a-~ 

~ 

c 
~ 

c 
~ 
~ 

a-~ 

The complement of the function is read from a-~ as c + AB. 

By step 6 the desired function is synthesized by the follow-

ing network, 

c 

A 

B 

= CA + CB 

the output of which is the function read from the a-~ diagram. 

An a-~ diagram containing all complemented variables usually 

requires a large number of inverters at the input. Comple-

mentation of the a-~ diagram has the effect of performing 

this complementation with a single inverter on the output. 

As an example of an a-~ diagram that fulfills the con-

dition of step 7, consider that of the EXCLUS!VE-OR func

tion AB + AB shown below. The breakdown of the diagram by 
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step 8 is also shown to indicate how the procedure of remov

ing a complemented column is equivalent to the addition of 

redundancy so that a gate may be shared. 

-
A B 

-
B A 

The expression read in this manner is A(A + B) + B(A + B) and 

the resulting NAND network is 

A------~ 

+ B(A + B)= 

The conditions of step 9 are satisfied by the next 

a-{3 diagram. 

A B 

-c A 

-
A c 

The sum of products expression is AB + AC + AC. Implementa-

tion by step 10 provides a gate for the term AB on the second 

level as shown in the resulting network below. 



A 

B 
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A(A + C) + 
c(A + c) = 

AB + AC + AC 

Prime implicants with no complemented variables have been 

termed "frontal prime implicants" by McCluskey (5). The 

variables of such terms will appear as inputs to a second-

level gate in the minimum network realization. 

An a-~ diagram which satisfies the condition of step 11 

is shown below. 

The multilevel expression A(B + A) + C(A + B) may be ~ead so 

that the third-level gate generating A+ B may be shared. 

The network which results by application of algorithm step 

12 is 
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A 

B 

C(A + B) + A(A + B) 

BC + AB 
= "Ac + Ai3 

c--

The reading of complemented columns in this manner allows for 

sharing of gates on the third level and reduces the number of 

gates that must be used as inverters to generate complemented 

variables. 

Support will now be given to the input simplification 

rules. The function realized by the network of Figure 13(b) 

before application of rule 1 is 

A(A + B)(B +C) + B(A + B)(B +C) + C(A + B)(B +C) 

After application of rule 1~ the function realized is 

A(A + B) + B(A + B)(B + C) + C(B + C) 

It can easily be shown that the two expressions are logically 

equivalent. Application of rule 1 is an application of the 

Boolean simplification theorem 

x(x + Y) (Y + z) = x(x + Y) 

The output of the network in Figure 14 before the appli-

cation of input reduction rule 2 is 

It is clear that x 1 and x 2 are redundant in the term x 1x 2x 3 . 



Application of rule 2 removes these redundant literals by 

application of the Boolean identity 

X+ XY =X+ Y. 
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In some cases when a large a-~ diagram is encounteredJ 

it may be advantageous to decompose the diagram into smaller 

diagramsJ each corresponding to a subfunction of the original 

Boolean expression. This will be most desirable with dia

grams that are to be synthesized by application of step 13, 

which results in a two-level network plus inverters on some 

inputs. 

A description of the process of decomposition using 

a-~ diagrams is given by Akers (1). Given the diagram of a 

function FJ cut the a-~ diagram into smaller a-~ diagrams 

G and H. H and G may now be synthesized independently. A 

network realization of F may be obtained by combining the 

outputs of the networks realizing G and H in a manner similar 

to that shown in Figure 10. This procedure is illustrated 

in Figure 18. 

F 

a-P diagram of F 

G 
H 

H 

Figure 18. Decomposition of a diagram 



In decomposing the a-~ diagram one should usually 

attempt to form smaller a-~ diagrams which rank higher on 

the priority list (see page 23) than the original diagram. 

2. Extension to NOR Synthesis 
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The NOR function is the dual of the NAND. To synthesize 

a given function using NOR gates, obtain the a-~ diagram as 

in synthesis with NANDs. Form the dual a-~ diagram before 

any simplification is employed. As previously described, 

the dual a-~ diagram is formed by simply interchanging the 

a-set and ~-set. The dual a-~ diagram is then simplified 

as described for NAND synthesis. The algo~ithm can then 

be applied directly to the dual a-~ diagram, substituting 

NOR gates for NANDs in the final network realization. This 

procedure is simply that of taking the dual of the given func

tion twice, once forming the dual a-~ diagram and once by re

placing NAND gates with NOR gates. 

3. Worked Examples 

In order to illustrate the diagrammatic procedure pre

sented in this paper, three examples will be worked in detail. 

EXAMPLE PROBLEM 1. Design a NAND circuit which realizes 

the switching function, x, shown 

mapped below. 

AB 

0 

0 

1 

1 

0 

1 

1 

0 

CD 
00 

0 

0 

1 

0 

01 11 10 

0 0 0 

1 0 0 

1 0 1 

0 0 1 
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There is only one minimal sum of products expression and 

one minimal product of sums expression. Therefore, the 

a-set is easily determined as 

and the [3-set is 

{ CD, BC, AD} 

The a-[3 diagram is then constructed and is shown below. 

The row and column labels are retained for clarity. 

CD BC AD 
-

ABC c B A 

-
BCD c B D 

-ACD D c A 

Since each square contains only one literal no simplification 

is necessary. The algorithm is then applied to the a-[3 dia-

gram. The conditions of algorithm step 7 are the first to 

be satisfied and the network is synthesized by step 8. The 

NAND realization is 

c 
D 

A 

B 

B 
X 

D 

A 

c 



This function has been synthesized by Ellis (7). In that 

work the solution was arrived at by a partly systematic 
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and partly trial and error procedure. The synthesis by the 

algorithm of this paper is simple and straight-forward,follow

ing only well defined steps. 

EXAMPLE PROBLEM 2. Design a NAND circuit which realizes 

A 

0 

0 

1 

1 

B 

0 

1 

1 

0 

CD 
00 

1 

1 

1 

1 

the switching function, y, shown 

mapped below. 

01 11 10 

0 0 1 

1 1 1 

0 1 1 

1 1 1 

Solution: The a-set is determined from the logical multi

plication of the two minimal sum of products expressions 

yl = D + AB + AB + AC 

y 2 = D + AB + AB + BC 

After this multiplication and the allowed simplification 

yly2 

from which the a-set is 

= D + AB + AB + ABC 

{ D, AB , AB , ABC} 

There is one minimal product of sums expression from which 

the ~-set is determined as 

{ ABD, ABCD } 

The a-~ diagram is then constructed and is shown below. 
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ABD ABCD 

- -
D D D 

-
AB A B 

-
AB B A 

ABC AB c 

The removal of either A or B in the bottom row is arbitrary. 

For this example, B will be removed. The algorithm is then 

applied to the a-~ diagram and the complemented row, D, is 

removed by step 4. The resulting diagram is 

A B 

-
B A 

A c 

to which the algorithm is applied. The conditions of step 9 

are the first to be satisfied and the uncomplemented row is 

removed by step 10. The remaining diagram 

GI!J 
GI!J 

is synthesized by step 8. The result of thissynthesis is 

A 

B 
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With the addition of the gate for the uncomplemented row and 

the input to the output gate for the complemented row, the 

synthesis 1s complete and the NAND realization is 

A 

B 

A 

y 

EXAMPLE PROBLEM 3. Design a NAND network which realizes 

CD 
AB 

00 

01 

ll 

10 

00 

l 

0 

0 

0 

the switching function, z, shown 

mapped below. 

01 11 10 

l 0 1 

l 0 1 

0 l 0 

l 0 1 

The a-set is easily determined from the two minimal sum of 

products expression as 

{ ABCD J ACD' ACD J BCD J BCD J ABCD} 

There is one product of sums expression from which the ~-set 

is determined as 



{Acfi , BCD , ABD , ABC, ACD, BCD} 

The a-~ diagram before simplification is 

ABCD 

ACD 

:A ciS 

BCD 

BCD 

ABCD 

CD 

-c 
-
D 

c 

D 

A 

BCD 

--CD 

-c 

D 

c 
D 

B 

ABD ABC 

--AB AB 

AD A 

-A AC 

BD 13 

B BC 

D c 

ACD 

A 

AD 
-AC 

D 

c 

CD 

BCD 

B 

D 

c 

BD 

BC 

CD 

The redundant literals are removed according to the 

simplification priority. The diagram for z is then 

- - - - - -c c A A A B 

- - - -c c A A D D 

- - - -
D D A A c c 

1--· - - - -c c B B D D 

- - - -D D B B c c 

A B D c D D 

The uncomplemented row is removed by step 10 and the 

resulting diagram is synthesized by step 12 as 
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B 

c 
D 

A 

B 

A 
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c--r--..... 

D---1 ...___ 

With the addition of the gate for the removed uncornplernented 

row , the final network is 
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The input to gate n marked by an X is redundant and is re

moved by input reduction rule 1. This function has been 

synthesized on page 149 of Maley and Earle (4) using a map 

factoring technique. Considerably less effort was involved 

using the technique of this paper. 



CHlU'TER III 

SUMMARY 
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The general approach to the synthesis of NAND logic 

networks presented in this paper differs considerably from 

the algebraic and map methods. It has been assumed here 

that complemented variables are not available as network 

inputs. Akers was the first to suggest synthesis of Boolean 

functions through the use of an a-p diagram. The author's 

development is a modification of Akers• work to produce 

minimal NAND-NOR networks. This diagrammatic approach 

yields minimal or near minimal networks without the com

plexities of trial and error procedures inherent in the 

algebraic and map methods. The synthesis algorithm of 

this paper consists of a set of well defined steps leading 

directly from an arbitrary Boolean expression to the final 

network. It is applicable to both completely and incom

pletely specified Boolean functions. 
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