
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

2014

Computation of cross-talk alignment by mixed integer linear Computation of cross-talk alignment by mixed integer linear

programming programming

Qifeng Chen

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Chen, Qifeng, "Computation of cross-talk alignment by mixed integer linear programming" (2014). Masters
Theses. 7535.
https://scholarsmine.mst.edu/masters_theses/7535

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7535&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7535?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMPUTATION OF CROSS-TALK NOISE ALIGNMENT

BY

MIXED INTEGER LINEAR PROGRAMMING

by

QIFENG CHEN

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER ENGINEERING

2014

Approved by

Yiyu Shi, Advisor

Minsu Choi

Jun Fan

 2014

Qifeng Chen

All Rights Reserved

iii

ABSTRACT

Noise analysis has been an important and difficult part of design flow of very

large-scale integrated (VLSI) systems in many years. In this thesis, the problem of signal

alignment resulting in possible maximum peak interconnect coupling noise and propose a

variation aware technique for computing combined noise pulse taking into account timing

constraints on signal transitions has been discussed. This work shows that the worst noise

alignment algorithm can be formulated as mixed integer programming (MLIP) problem

both in deterministic window cases and variational window cases. For deterministic

window cases, it is assumed that timing windows are given for each aggressor inputs and

the victim net is quite. It compares the results from proposed method with the most

known and widely used method for computing the worst aggressor alignment – sweeping

line algorithm, to verify its correctness and efficiency. For variation window cases, as

variations of process and environmental parameters result in variation of start and end

points of timing windows, linear approximation is used for approximating effect of

process and environmental variations. One of the biggest advantages of MILP

formulation of aggressor alignment problem has also been discussed, which is the ability

to be easily extended to more complex cases such as non-triangle noise pulses, victim

sensitivity window and discontinuous timing windows, this work shows that such

extension can be solved by algorithm and does not require development of new

algorithms. Therefore, this novel technique can handle noise alignment problem both in

deterministic and variational cases and can be easily extended for more complex cases.

iv

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor Dr. Shi, who

helped me a lot during my graduate study, both in academic and in personal life, thank

you a lot.

I would also like to thank my committee members: Dr. Choi and Dr. Fan, from

whom I learned a lot.

Thanks to my lab mates, the atmosphere in lab is a boost to my graduate study,

thank you, Dian Ma, Geng Hui, Tao Wang, Li-Chia Chen, Jianming Liu, Weizhi Meng,

Uma, Khalid, Jinglan Liu, Ying Zhang.

Finally, thank my girlfriend, Chunyu Wang, who has made my life interesting and

meaningful. Last but not the least; thank my family for always being supportive.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... viii

SECTION

1. INTRODUCTION .. 1

1.1. BACKGROUND .. 1

1.2. PROBLEM FORMULATION.. 2

1.3. LITERATURE REVIEW ... 3

2. NOISE ALIGNMENT FOR DETERMINISTIC WINDOW 4

2.1. SWEEP LINE ALGORITHM .. 4

2.1.1. Modeling .. 4

2.1.2. Worst Coupling Noise and Superposition. ... 6

2.1.3. Aggressor Alignment with Timing Constraints. 8

2.1.4. Algorithm. .. 10

2.1.5. Complexity. .. 12

2.2. MIXED INTEGER LINEAR PROGRAMMING (MILP) ALGORITHM 12

2.2.1. Background and Modeling. .. 12

2.2.2. MILP Formulation in Deterministic Cases. ... 13

3. NOISE ALIGNMENT FOR VARIATIONAL WINDOW 16

3.1. BACKGROUND AND MODELING .. 16

3.2. MILP FORMULATION IN VARIATIONAL CASES 17

3.3. BRANCH AND CUT ALGORITHM .. 19

3.3.1. Branch and Bound Algorithm. ... 19

3.3.2. Cutting Planes Algorithm. .. 20

4. EXTENSIONS ... 21

5. EXPERIMENTAL RESULTS ... 23

vi

6. CONCLUSIONS .. 26

BIBLIOGRAPHY ... 27

VITA …………………………………………………………………………………….28

vii

LIST OF ILLUSTRATIONS

 Page

Figure 1.1 Circuit of Noise Cluster ... 2

Figure 2.1 Alignment of Aggressor Inputs Versus Alignment of Victim Peak Noise [4] .. 5

Figure 2.2 Timing Window Versus Aggressor Alignment [4] ... 6

Figure 2.3 Comparison of Four Aggressor Alignment Methods [4] 8

Figure 2.4 Reformulation of Aggressor Alignment [4] .. 9

Figure 2.5 Timing Window Adjustment (Stretched and Expanded) 10

Figure 2.6 Pulse Alignment and Superposition .. 13

Figure 2.7 Noise Pulse in Switching Window .. 14

Figure 3.1 False Overlap of Timing Windows ... 17

Figure 4.1 Discontinuous Timing Windows ... 22

viii

LIST OF TABLES

 Page

Table 5.1 Comparison of Sweep Line Algorithm with MILP in Deterministic Cases 23

Table 5.2 The Peak Noise Obtained From MILP in Variational Cases Compared with

Deterministic Cases on Max-width, Min-width and Nominal Window 24

1. INTRODUCTION

This section is organized as followed; it will cover the background of this

problem in Subsection 1.1, the problem formulation in Subsection 1.2, and the literature

review in Subsection 1.3.

1.1. BACKGROUND

Continuing scaling of critical dimensions, reduction of supply voltage and

increase of complexity and density digital circuits makes signal integrity one of the major

problems in very large-scale integrated (VLSI) design.

Noise analysis has been an important and difficult part of chip design flow for

many years [1]. In this study, the problem of how crosstalk noise is affected by the

switching times of aggressors acting on a victim net has been discussed. It is assumed

that the driver strengths, wire spacing, spatial positions of aggressors, and the victim are

given and not changing. Signal arrival times can be adjusted to achieve the maximum

peak noise.

Increasing variability of transistor and interconnect characteristics makes noise

analysis today a even more challenging problem. Process and environmental variations

affect cross-talk noise in two ways. First, transistor and interconnect characteristics and

their variations can decide the size and the shape of the noise pulses. Second, the

variations change the time of signal transitions, which affects their relative alignment and

consequently the size of the total noise pulse.

The variability of signal delays accumulates along signal propagation paths. The

variability of signal switching times can be significantly larger than signal slews.

Therefore, process and environment variations have a huge impact on the signal

alignment thus affects the size of noise pulse. Moreover, it can move noise pulse out of

victim sensitivity interval, which means reducing the noise impact to zero. Therefore,

ignoring variability in noise analysis results in overestimation of crosstalk effects of

VLSI chips.

2

1.2. PROBLEM FORMULATION

Crosstalk noise occurs when a wire with switching signal affects another wire

through coupling capacitance between these wires. The net that is affected is called

victim net, on the other hand, the nets that injecting coupling noise into victim net are

called aggressor nets. A circuit that consists of a victim net and several aggressor nets and

their coupling capacitances is called a noise cluster, shown in Figure 1.1.

Figure 1.1 Circuit of Noise Cluster

Usually in noise cluster circuit, a victim net is coupled to more than one aggressor

nets. The total noise injected into the victim net is a combination of the pulses injected by

all individual aggressors. And usually the aggressors do not switch simultaneously.

Therefore, this noise analysis tool must compute the worst possible noise pulse that is

possibly created by all the aggressor nets. To compute its worst possible noise pulse

requires aggressor net’s switching times. However, the exact moment of the signal

transitions in a circuit are never known because it depends on the so many factors such as

gate and interconnect delays and their variations, crosstalk noise of the previous stage and

so on. Therefore, each net can only switch inside certain timing interval, called switching

window, which is calculated by timing analysis in the form of the earliest and latest

3

signal arrival times. So in order to computes worst possible alignment of aggressor, it is

assumed that each net can only switch inside its timing windows.

1.3. LITERATURE REVIEW

The problem of the worst aggressor alignment always attracted attention of EDA

research community. A unified method of computing the worst noise alignment is to

formulate as mixed nonlinear integer programming problems [2]. Unfortunately, there is

no known efficient algorithm of solving general nonlinear mixed integer programming

problem.

Sweeping Line Algorithm is the most known and widely used method for

computing the worst aggressor alignment in deterministic cases [4]. It has O(nlgn)

complexity so it is very effective and efficient. In Section 2.1, it will implement the

Sweeping Line Algorithm as the comparison of the proposed method.

However, both the mixed nonlinear integer programming algorithm and the sweep

line algorithm deal with process and environment variations by expanding timing

windows. The solution can be over pessimistic because it might create false overlap of

timing windows, which can cause overestimation of cross-talk noise.

There also are methods dealing with timing windows overlap in statistical timing

analysis [8]. However, the proposed approach computes only probability distribution of

bounding window overlap, and does not solve the problem of worst alignment noise. It is

basically Monte-Carlo technique and can be rather inefficient for large designs.

4

2. NOISE ALIGNMENT FOR DETERMINISTIC WINDOW

This section is organized as followed, it will talk about the sweep line algorithm,

which will act as the comparison of this algorithm in Subsection 2.1, and it will discuss

the detail of this MILP algorithm in deterministic cases in Subsection 2.2. Subsection 2.1

will cover the modeling, worst coupling noise and the superposition, the noise alignment

with timing constraints, the algorithm, and the complexity of the sweep line algorithm.

Subsection 2.2 will cover the background, modeling and the detail MILP formulation.

2.1. SWEEP LINE ALGORITHM

2.1.1. Modeling. In sweep line algorithm, the problem formulation is that for the

convenience of computing the worst alignment noise, make every individual peak noise

occurring at the same time, and it is achievable by changing the aggressor arrival time.

For example, assuming there are five aggressors represented by A1, A2, A3, A4, A5,

respectively, in Figure 2.1. P1, P2, P3, P4, P5 are the peak amplitude of the noise

generated by each aggressor at the victim’s output, respectively. Figure 2.1. shows the

typical timing relationship between aggressor arrival times and peak noise occurring

times. As it is shown, when make all aggressors have the same arrival time, peak noise

occurring time usually cannot have the same arrival time.

But also timing constraints need to be taken into account, which is, every

aggressor has a timing window which is bounded by its early mode arrival time and late

mode arrival time by timing analysis, so the problem became to find a location of an

imaginary sweep line, as shown in Figure 2.2. For the given timing windows such that the

total contribution of crosstalk noise from each intersected aggressor is maximum at this

location.

When no timing constraints considered, the aggressor alignment determines the

relative arrival times. On the other hand, when timing constraints considered, the

aggressor alignment determines the absolute values of the arrival times. The first

aggressor alignment is the foundation of the second aggressor alignment because the

shape of the sweep line is obtained through the first alignment.

5

Figure 2.1 Alignment of Aggressor Inputs Versus Alignment of Victim Peak Noise [4]

6

Figure 2.2 Timing Window Versus Aggressor Alignment [4]

2.1.2. Worst Coupling Noise and Superposition. Simulating designs with

complicated nonlinear driver models is often too much time and resource consuming.

Linear driver models are used in fast noise estimations.

Superposition holds for linear models [4]. When the noise amplitude becomes

larger, the coupling network is no longer purely linear and that will cause inaccuracy

when use superposition principle to do noise estimation. A modified linear network with

a piecewise linear victim driver model can capture the nonlinear voltage dependency.

In this section, it will discuss the relationship between the actual worst coupling

noise and the peak noise obtained from applying the superposition. For a relatively large

crosstalk, it will show the trend compared with smaller noise.

7

Four possible WCN analysis strategies based on aggressor alignment method is

listed. Assume m is the number of aggressors; M is the total number of noise calculation

(excluding addition).

A. Explicit aggressor alignment (exhaustive search). Noise output waveform is

obtained by properly aligning switching of all aggressors with appropriate

skew between inputs. The largest amplitude of this type is WCN. Usually

M>>m.

B. No aggressor alignment (zero skew). Noise output waveform is obtained for

simultaneous switching of all aggressors with zero skew between their inputs.

This is a special type of explicit aggressor alignment with zero skew. M=1.

C. Implicit aggressor alignment (superposition). Noise output waveform is

obtained by applying superposition principle. Each individual noise is

obtained when only one aggressor is injecting while all others are quiet, and

aligned such that their peak amplitudes occur at the same time. Total peak

noise is the summation over every individual peak noise. M= m.

D. Extension of the implicit aggressor alignment (sweep line algorithm).

Compared to method three, instead of adding the individual noise waveforms,

it “back-annotates” the signal skews, implied by the alignment of individual

peak noise to each aggressor’s inputs. And use those skewed aggressor

inputs to simulate or estimate the coupling stage again. M=m+1.

Figure 2.3 shows that about 31% difference in peak amplitude between Method A

and Method B and about 23% difference in peak amplitude between Method A and

Method C. Method A always has the largest peak noise. And sweep line algorithm is

usually a close approximation to Method A.

The result tells us that the direct addition of individual peak noise can cause

significant inaccuracy in worst coupling noise estimation. However, there is no clear

boundary as to when the overestimation will occur or when the underestimation will

occur. To avoid overestimation or underestimation induced by simple application of

superposition, two further steps are necessary: explicit aggressor alignment to find the

proper arrival times and recalculation to obtain the total peak noise. Due to the accuracy

tolerance in signal skew estimation, a simple method is used in sweep line algorithm to

8

find the required arrival times: the first step is back-annotation of individual peak noise

occurring time to the corresponding aggressor arrival time; the second step is

recalculation of total crosstalk noise when every aggressor is switching, with the new

arrival time. To increase accuracy, iteration can be applied until no more changes in

arrival times occur.

Figure 2.3 Comparison of Four Aggressor Alignment Methods [4]

2.1.3. Aggressor Alignment with Timing Constraints. In this section, the

worst-case coupling analysis for a quiet victim when timing constraints are specified is

considered. And to be more accurate, a more accurate formulation is needed.

First, introduce the concept and the formula for effective pulse width (EPW) [4]

of a noise waveform. EPW is a measure of the range of a noise waveform. Given a noise

waveform v0(t) , its EPW is defined as follows:

EPW =
tv0 dt

0

¥

ò
v0 dt

0

¥

ò (1)

9

There exists an easy yet efficient formula to estimate EPW.

EPW = CiRii
CiÎC

å
 (2)

C is the set of interconnect capacitance and loading capacitance for he coupling

circuit, including line-to-ground capacitance and coupling capacitance. Ci is the ith

capacitance in C. Rii is the equivalent resistance (including driver resistance and

interconnect resistance) seen across capacitor Ci when all other capacitances are open. In

other words, EPW can be estimated by the sum of open circuit time constants.

By simulation, it is found that the width of the noise pulse cannot be neglected

and the actual shape of noise pulse is not always “sharp” at its top. Therefore, partial

contribution (when the peak noise is not perfectly aligned) of each crosstalk noise which

has been ignored.

So the aggressor alignment can be reformulated as explained in Figure 2.4. Figure

2.4(a) shows the original timing window and sweep line. In Figure 2.4(b), the sweep line

has been straightened. Therefore, the timing windows have been moved to satisfy the

following condition: a line sweep in (a) is equivalent to that of (b), in terms of vertical

intersections with particular aggressor windows. In Figure 2.4(c), timing window has

been expanded to include the width of the noise pulse. The total expanded portion for

each timing window is the corresponding pulse width EPW.

Figure 2.4 Reformulation of Aggressor Alignment [4]

(a) Original Timing Window. (b) Stretched Timing Window.

(b) (c) Expanded Timing Window.

10

So the problem becomes:

Each timing window shown in Figure 2.4(c) is considered as a line segment n the

channel. And the width of the timing window corresponds to the length of the segment.

The peak noise is a weight of the original portion of the segment. The expanded portion

has a weight equal to a fraction of the peak noise. The leftmost and rightmost points of

the expanded window have zero weights. A linear function is used to approximate the

weight in the expanded portion.

2.1.4. Algorithm. Step 1: Compute the peak amplitude (Pi), its occurring time (ti

), and the EPW for each individual waveform. WL

(i)
 and WR

(i)
 are defined as

()i

L iW EPW (3)

() (1)i

R iW EPW (4)

Where r is an experimental data and 0 < r < 0.5.

Step 2:

Adjust timing windows, as shown in Figure 2.5.

Figure 2.5 Timing Window Adjustment (Stretched and Expanded)

11

From this step, it obtained 4n nodes in total (n aggressors). Each node is

associated with a x-coordinate value, a segment number and a node type. The fur node

types have been defined in Figure 2.5. where N2
 and N3

 denotes left and right endpoints

of the stretched timing window, respectively, the N1
 and N4

 denote the left and right

endpoints of the expanded timing window. The ith segment represents the timing window

for the ith aggressor. The x-coordinate value is defined by

X1

(i) = TL
(i) +Ti -WL

(i)

 (5)

X2

(i) = TL
(i) + ti (6)

X3

(i) = TR
(i) + ti (7)

X4

(i) = TR
(i) + ti +WR

(i)

 (8)

Step 3: Weighted Channel Density (WTCD) Algorithm.

begin

sort the nodes lexicographically on x-coordinates such that Node[1] is leftmost

and Node[4n] is rightmost.

Max = 0; (maximum density)

Cur = 0; (current density)

Xmax = 0; (x-coordinate value for Max)

LTree = 0; (a balanced tree to store the point of the left expanded window)

RTree = 0; (a balanced tree to store the point of the right expanded window)

x1 = 0; (current x-value)

for k=1 to 4n do:

(Let i and X be he segment number and x-coordinate value associated with N)

N = Node[k];

x2 = x1; (previous x value)

x1 = X;

cur+ = Pj i((x1 - x2) /WL

(i))
jÎLTreeå

 (adjust density)

cur- = Pj i((x1 - x2) /WR

(i))
jÎRTreeå

 (adjust density)

12

if cur >Max , then Max = cur ; Xmax = x1
 ;

if N ÎN1 , then LTree® insert(i)

else if N ÎN2 , then LTree® delete(i)

else if N ÎN3 , then RTree® insert(i)

else (N ÎN4) , then RTree® delete(i)

end

2.1.5. Complexity. The complexity of the WTCD algorithm is determined by two

factors: the first one is the sorting algorithm, the other one is the insert and the delete

operations in the for loop. The time complexity of the sorting algorithm is O(nlgn).

Within the loop, balanced trees are used to store the endpoints, in these cases, red-black

tree is used, so the insert and the delete operation only take O(lgn). Since the for loop can

executes at most 4n times, the time complexity of the WTCD algorithm is only O(nlgn).

2.2. MIXED INTEGER LINEAR PROGRAMMING (MILP) ALGORITHM

2.2.1. Background and Modeling. Conventionally noise analysis assumes linear

approximation for combined noise pulse injected with several aggressors. According to

that model, the combined noise pulse is a linear superposition of the pulses injected by

the individual aggressors. As discussed in sweep line algorithm, linear model is

sufficiently accurate. Even when higher accuracy is required, the linear model of noise

superposition is used for computing initial approximation of the worst aggressor

alignment. Without the approximation, the search of the worst alignment using nonlinear

model can be too expensive.

As it was mentioned above for each net, timing analysis predicts its switching

window where the net can have signal transition. It is assumed that a noise pulse can

appear at any time moment inside its switching window.

Therefore, in Mixed Integer Linear Programming Algorithm, the problem of

computing the worst aggressor alignment and the corresponding worst noise pulse can be

formulated as follows:

Knowing a set of aggressor noise pulses, and a set of aggressor switching

windows where the noise pulses may appear compute the highest possible combined

13

noise pulse and the corresponding alignment of the pulses. In other words, it is required

to find such set of the overlapping switching that the linear superposition of the

corresponding noise pulses has maximum height. It is possible that the overlap of the

timing windows is so small that the corresponding noise pulses are only partially aligned.

Most often the injected noise pulses are modeled with triangle or trapezoid. The problem

of worst noise alignment is illustrated Figure 2.6, where timing windows are depicted as

rectangles on timing axis.

Figure 2.6 Pulse Alignment and Superposition

2.2.2. MILP Formulation in Deterministic Cases. It derived this Mixed Integer

Linear Programming Formulation of aggressor alignment problem in Cartesian

coordinate system where the abscissa represents time t and the ordinate represents voltage

of the noise pulses. First, start this derivation with inequalities expressing the fact that a

point Gi with coordinates (t,vi) lies inside a triangle defined with its tip point (ti ,hi > 0)

and the rise and fall slopes (ri > 0) and (fi > 0) of its side, as it is shown in Figure 2.7.

14

Figure 2.7 Noise Pulse in Switching Window

(vi - hi)- ri(t - ti) £ 0 (9)

(vi - hi)- fi(t - ti) £ 0 (10)

vi ³ 0 (11)

Adding switching constraints and assuming N triangular pulses Di ,i = 1,...,n, it can write

linear program formulation for maximum sum of the ordinates vi of the pointsGi

belonging these pulses and laying inside timing windowsWi = [Tim,TiM].

Maximise
ti ,t

vi
i=1

N

å

Subject to (vi - hi)- ri(t - ti) £ 0

 (vi - hi)- fi(t - ti) £ 0

 vi ³ 0

 Tim £ ti £TiM

The solution of this linear program gives maximum height of the combined noise

pulse subject to switching window constraints imposed to each individual noise pulse D i
.

This linear problem has a solution when there is nonempty intersection of all switching

windows expanded by the left and right widths of their noise pulses. Otherwise the

switching window constraints are incompatible and the linear program has no solution.

15

The problem of the worst aggressor alignment requires finding the subset W of

the intersection active switching windows and their noise pulses contribution to the worst

noise pulses. The choice of the subsets can be done through binary variables pi selecting

active windowsWi
.

When pi = 0 the switching window Wi
 is excluded from subset W by multiplying

the height of the noise pulse D i
 by pi = 0, reducing the contribution of this pulse into

combined noise pulse to 0.The constraints defined by window Wi
 is relaxed by

expanding the window both to left and to right by large value Q . This makes window Wi

overlap with all other windows and the constraint is always satisfied. Constant Q is

selected to be sufficient larger to provide overlap of any switching windows. For

simplicity Q can be set the value to max(TiM)+ max(w(Di)), where w(Di) is width of

pulse D i
.

Introducing binary variables pi into linear program formulation, it is transformed

into the following mixed integer linear program (MILP).

Maximise
ti ,x,pi

vi
i=1

N

å

Subject to (vi - pihi)- ri(t - ti) £ 0

 (vi - pihi)- fi (t - ti) £ 0

 vi ³ 0

 Tim - Q(1- pi) £ ti £TiM + Q(1- pi)

This MILP find the amplitude of the largest cumulative noise over all possible

combinations of noise pulses satisfying the constraints defined by the switching timing

windows.

16

3. NOISE ALIGNMENT FOR VARIATIONAL WINDOW

Section 3 is organized as followed, Subsection 3.1 will cover the background and

the modeling of noise alignment problem for variational window, Subsection 3.2 will

cover the MILP formulation for this kind of problem, Subsection 3.3 will cover the

branch and cut algorithm which will solve the MILP problem.

3.1. BACKGROUND AND MODELING

Similar to signal arrival times, timing windows depend on process and

environmental parameters: Leff, Tox, metal and dielectric thickness, supply voltage,

temperature, etc. Variations of beginning and ending times of timing windows are highly

correlated with each other. For example, at lower supply voltage, gate delays are higher.

Therefore, both start and end moments of timing windows are shifted to the right.

Obviously the correlation is not perfect, which complicates the analysis. If noise analysis

ignores this correlation, the conservatism of noise estimation can be achieved only by

proper expansion of timing windows to encompass their variability. However, the

resulted solution will be obviously too pessimistic, which is shown in Figure 3.1 Where is

shown that the window expansion created false overlapping of timing windows.

Instead of using Static Timing Analysis, in variational window cases, use

Statistical Static Timing Analysis, Statistical Static Timing Analysis computes beginning

and ending times of switching windows in a linear canonical forms [15], [16]:

t = t0 + aiDXi + aRDR
i=1

n

å
 (12)

Where t0 is a nominal value of the timing quantity, DXi is a variation of

parameter X modeling its chip to chip variability, DR is a random variable modeling an

uncorrelated variation, ai and aR are sensitivities to those variations respectively. This

representation contains all information about correlation of switching windows.

17

Figure 3.1 False Overlap of Timing Windows

The problem of computing variation aware aggressor alignment can be formulated

as follows. Knowing beginning and ending moments of aggressor switching windows

expressed in linear canonical forms, variation range of each variational parameter and

shape of the noise pulses, compute the worst aggressor alignment and the corresponding

worst noise pulse.

Straightforward approach to solving this problem is enumeration of all possible

values of variational parameters, computation of worst noise pulse for each of those

combinations and selection of the worst pulse among those pulses. Obviously this is a

method that is extremely inefficient.

3.2. MILP FORMULATION IN VARIATIONAL CASES

Variations of process and environmental parameters result in variation of start and

end points of timing windows. Therefore, Tim and TiM are functions of variational

parameters X j . Conventionally, linear approximation is used for approximating effect of

18

process and environmental variations. Therefore, start and end points Tim and TiM of

timing windows are expressed within linear forms:

Tim = Tim,0 + aim, jX jj=1

n

å (13)

TiM = TiM ,0 + aiM , jX jj=1

n

å (14)

Substituting linear expressions of start and end points Tim and TiM into the MILP

formulation and adding constraints of variational parameter X j , it obtain MILP

formulation of alignment problem for variational windows.

Maximise
ti ,x,pi

vi
i=1

N

å

subject to (vi - pihi)- ri(t - ti) £ 0

 (vi - pihi)- fi (t - ti) £ 0

 vi ³ 0

Tim,0 + aim, jX j - (1- pi)Q £ ti
j=1

n

å

TiM ,0 + aiM , jX j - (1- pi)Q ³ ti
j=1

n

å

X j,min £ X j £ X j ,max

Solving this problem it is found that the maximum noise peak satisfying

constraints of switching windows and constraints on process variations, the solution gives

also the time moments when the maximum noise occurs a set of binary variables having

value 1, which defines the set of overlapping timing windows with maximum noise, and

values of variational parameters resulting in maximum noise. Analyzing the LP problem

that is a part of the MILP solution a set of variation parameters actively restricting noise

peak and sensitivities of noise can be got to those parameters. This information is

important for finding which variability is critical for noise and how change of the range

of variability affects the noise.

19

3.3. BRANCH AND CUT ALGORITHM

One way to solve MILPs is to enumerate all the integer solutions in the feasible

region and individually check each one for optimality. However, as the dimensions of the

problem, n grows, enumeration becomes NP hard, meaning that the number of feasible

integer solutions grow exponentially, instead of growing by order of some polynomial,

p(x) = axn +bxn-1 + ...+ ex0
, the enumeration will grow by order p(x) = sx for some

function s.

As the numbers of aggressors is not very large MILP problem can be solved

efficiently. The efficiency can be improved if branch and cut method explores binary

variables in the order of the height of the noise pulses. The branch and cut algorithm is a

combination of branch and bound algorithm and cutting plane algorithm. Cutting planes

algorithm helps quickly get tighter bounds of the solution and reduce the search. For

large noise clusters, the branch and bound algorithm can split the set of aggressors into

two or more subsets and solving MILP problem for each subset can find an approximate

solution.

3.3.1. Branch and Bound Algorithm. To solve using branch and bound

algorithm, first need to solve the problem with relaxation, which means solving it by

using the Revised Simplex as if there were no integer restrictions. From this it can obtain

the relaxation solution z.

Next, pick up a non-integer variable and branch on it. Most commonly branch it

on the most fractional variable, which means the one that is closest to half way between

its floor and its ceiling.

For example, if the z got is z = (1.25,3.45,2.75,5), branch on z2
, because 0.45 is

closer to 0.5. By branching a variable, the root problem is taken and two sub-problems or

nodes are created. In this problem, in one node add constraint z2 £ 3, in the other node

add the constraints z2 ³ 4 . Let S be the feasible solution set of the LP relaxation:

 S = z :Az £ b ∩ z ³ 0{ }, now have:

S1 = S ∩ {z : z j £ z jêë úû} (15)

S2 = S ∩ {z : z j ³ z jéê ùú} (16)

20

For here each of the branches must be solved and checked for optimality. After

solving the original system and branching on the first variable, each created node is

eventually either branched or pruned. A node can be pruned in different ways, optimality,

bounds, and infeasibility. Continue to solve the problem in the following manner:

Step 1: Infeasibility

Pick a node and solve it with the Dual Simplex Method with updated constraints.

If the Dual Simplex is unbounded then the problem is infeasible and the node is pruned

by infeasibility. This occurs when the new constraints disagrees with the constraints that

are already established.

Step 2: Optimality/Bounds

Check for bounds and optimality.

Step 3: Branching

If z is not in integer form then branch on the variable which is most fractional.

Step 4: Repeat

Pick a new node and repeat starting on Step1, until all nodes are pruned, at which

time the node associated with the lower bound is optimal.

3.3.2. Cutting Planes Algorithm. Adding cutting planes to the system is another

good way to solve MILPs. Cutting Planes are very fast but unstable. The idea of cutting

planes is to cut out of the feasible region based on information from the optimal

dictionary. First solve the relaxation in the Revised Simplex Method, take a look at the

information from the optimal dictionary and from here it is able to deduce an inequality

that will ‘cut’ out of a piece of the feasible region, then add the new cut to the system and

re-optimize using the Revised Simplex Method. The process is repeated until the required

variables are integers.

21

4. EXTENSIONS

One of the biggest advantages of MILP formulation of aggressor alignment

problem is its ability to be easily extended to more complex cases. Any such extension

can be solved by the same optimization package and does not require development of

new algorithms.

 NON-TRIANGLE NOISE PULSES

MILP formulation can be constructed for noise pulses of any convex piece-wise

linear shape. For example, if noise pulses are trapezoidal as it is shown in Figure 2.7 (b),

the top points defined here are (t1i ,hi) and (t2i ,hi) with the rise and fall slopes (ri ³ 0)

and (fi £ 0) of sides of the trapezoidal, then the formulation can be constructed by

following inequalities.

(vi - hi)- ri(t1i - ti) £ 0

(vi - hi)- fi(t2i - ti) £ 0

vi £ hi

vi ³ 0

 VICTIM SENSITIVITY WINDOW

As it was mentioned above that a victim net is sensitive to noise only in certain

timing interval called victim sensitivity window. These constraints can be included in

MILP formulation by adding these:

Tvm,0 + avm, jX j - (1- pi)Q £ t
j=1

n

å

TvM ,0 + avM , jX j - (1- pi)Q ³ t
j=1

n

å

22

 DISCONTINUOUS TIMING WINDOWS

If aggressors belong to different lock domain it is required to consider

discontinuous switching windows, such as windows consisting of many timing intervals

as it is shown in Figure 4.1.

Figure 4.1 Discontinuous Timing Windows

MILP formulation can be modified to consider such cases like followings: IF

aggressor net A has discontinuous timing window consisting of K timing intervals

W1,W2,...,Wk
, which can be replaced with K imaginary aggressors A1,A2,...,Ak switching

in continuous timing windows and thus can formulate the problem as described and the

solution should be the same.

23

5. EXPERIMENTAL RESULTS

This section shows experimental results of worst coupling noise and its runtime

obtained from Mixed Integer Linear Programming (MILP) Algorithm. In deterministic

windows, the Sweep Line Algorithm is considered as accurate. For alignment 1, compare

the peak noise obtained from proposed method with the results from Sweep Line

Algorithm. For alignment 2, compare the results from the method in variational timing

window with the results obtained from the max-width timing window, min-width timing

window and the nominal deterministic timing window.

Assume the technology is 0.35um . For Table 5.1, generate eight cases that have

one victim and two aggressors for analysis. Each case differs in signal arrival timing

window, victim’s driving strength, coupling lengths, etc. Table 5.1 shows the comparison

between MILP algorithm and sweep line algorithm in deterministic cases. It is shown that

the noise voltage of the sweep line algorithm and MILP method are the same.

Table 5.1 Comparison of Sweep Line Algorithm with MILP in Deterministic Cases

 SWEEP LINE MILP

Case # Voltage(V) Run Time(µs) Voltage(V) Run Time(µs)

1 0.2193
144 (1)

0.2193 1166 (8.1×)

2 0.3191 186 (1) 0.3191 866 (4.6×)

3 0.4289 180 (1) 0.4289 736 (4.1×)

4 0.6861 140 (1) 0.6861 625 (4.5×)

5 0.8243 184 (1) 0.8243 1116 (6.1×)

6 1.1867 156 (1) 1.1867 777 (4.9×)

7 1.2567 138 (1) 1.2567 821 (5.9×)

8 1.3674 181 (1) 1.3674 546 (3.0×)

24

For Table 5.2, five cases that also have one victim and two aggressors are

generated, while the timing windows are expressed in linear form, and each case differs

from the nominal arrival time, the nominal required arrival time, the sensitivities of

multiple variational parameters, Table 5.2 shows the peak noise obtained from the

variational timing window and the peak noises obtained from the deterministic cases like

the max-width timing window, the min-width timing window and the nominal timing

window. Note that the time is in µs. From Table 5.2, it is shown that The MILP algorithm

can also deal with variational timing windows, from the experimental results, it is shown

that the peak noise generated by the MILP is always greater or equal to the peak noise

generated from three different deterministic timing windows, which means the result got

from MILP is the largest possible peak noise.

Table 5.2 The Peak Noise Obtained From MILP in Variational Cases Compared with

Deterministic Cases on Max-width, Min-width and Nominal Window

 MILP MAX WIDTH MIN WIDTH NOMINAL

Case # Voltage(V) Run Time(µs) Voltage(V) Voltage(V) Voltage(V)

1 0.8146 1389 0.8146 0.8146 0.8146

2 0.9582 2367 0.8805 0.9582 0.9117

3 1.1602 2419 1.1545 1.1206 1.1428

4 1.2937 2149 1.2937 1.2937 1.2937

5 1.46374 2261 1.46374 1.3441 1.4107

Note that all the experiments are ran on a machine with following characteristics:

2.5 GHz dual-core Intel Core i5 CPU Turbo boost up to 3.1 GHz, 4GB RAM, the

software is as follows: MacOS, GCC.

25

To sum it up,

 In deterministic cases, MILP algorithm can get the same WCN with sweep line

algorithm, which verifies the correctness of MILP on deterministic cases.

 The MILP algorithm can also deal with variational timing windows, from the

experiment results, it is shown that the peak noise generated by the MILP is always

greater or equal to the peak noise generated from three different deterministic timing

windows, which means the result got from MILP is the largest possible peak noise.

 In deterministic cases, the sweep line algorithm works the fastest in existing

methods and MILP is not as efficient as it, but MILP can also deal with variational

cases and it is easy for more complex situations.

26

6. CONCLUSIONS

This thesis has developed a novel technique for computing the worst noise

alignment for deterministic and variational cases. The method is mainly based on a new

way of problem formulation, which leads the problem into a Mixed Integer Linear

Programming problem, in which branch and cut algorithm is used to solve efficiently.

The correctness of this algorithm is verified with sweep line algorithm, which is now the

most efficient method to compute the worst alignment noise in deterministic cases.

This algorithm not only can handle deterministic cases but also are capable of

dealing variational cases, and can be easily extended to more complex situations such as

non-triangle noises, non-continuous timing windows and so on without requiring any

other algorithms.

27

BIBLIOGRAPHY

[1] R. Levi, D. Blaauw, A. Dasgupta and V. Zolotov, “Clarinet: A noise analysis tool

for deep submicron design,” in DAC, pp. 223-238, 2000.

[2] K. L. Shepard, V. Narayanan, P. C. Elmendorf and G. Zheng. “Global Harmony:

Coupled noise analysis for full-chip RC interconnect networks,” in DAC, pp. 139-

146, 1997.

[3] R. Kumar. “Interconnect and noise immunity design for the Pentium 4

processors,” in DAC, pp. 938-943, 2003.

[4] L. H. Chen and M. Marek-Sadowska. “Aggressor alignment for worst-case

crosstalk noise,” in IEEE Trans. on CAD, pp. 612-621, 2003.

[5] R. Gandikota, D. Blaauw, and D. Sylvester. “Modeling crosstalk in statistical

static timing analysis,” in DAC, pp. 974-979, 2008.

[6] A. B. Kahng, B. Liu, X. Xu. “Statistical timing analysis in the presence of signal

integrity effects,” in IEEE Trans on CAD, pp. 1873-1877, 2007.

[7] S. Shrivastava, and H. Parameswaran. “Improved timing windows overlap check

using statistical timing analysis,” in International Conference on VLSI Design, pp.

70-75, 2011.

[8] H. Fatami, and P. Tehrani. “Crosstalk timing window overlap in statistical timing

analysis,” in ISQED, pp. 245-251, 2013.

[9] D. S. Chen, R. Batson and Y. Dang. “Applied Integer Programming: Modeling

and Solution,” Joe Wiley and Sons, 2011.

[10] S. Sirichotiakul, V. Zolotov, R. Levy and D. Blaauw. “Driver modeling and

alignment for worst-case delay noise,” in DAC, pp. 720-725, 2001.

[11] C. Visweswariah, K. Ravindran, K. Kalafala, S. Narayan and S. G. Walker.

“First-order incremental block-based statistical timing analysis,” in DAC, pp. 331-

336, 2004.

28

VITA

My name is Qifeng Chen, I was born in Xiantao, Hubei, China. I earned my

bachelor degree in Electrical Engineering at Beijing University of Chemical Technology

at 2012. Currently, I plan to obtain my Master Degree in Computer Engineering from

Missouri University of Science and Technology in Dec 2014.

	Computation of cross-talk alignment by mixed integer linear programming
	Recommended Citation

	II

