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INTRODUCTION 

A considerable amount of work has be~n done on the 

problem of hot shortness in steel. However, the results 

1 

of these studies have often been contradictory and incon­

clusive. More work is needed to determine the exact cause 

of hot shortness and on methods by which it can be avoidedo 

Fortunately, the addition of sufficient manganese to the 

steel will usually produce a material that is not hot shorto 

The most common explanation for hot shortness in steel 

claims that iron and iron sulfide form a low melting eutec­

tic which produces a liquid phase at the grain boundaries 

in the usual hot working temperature range~ This grain 

boundary liquid phase embrittles the steel. Manganese 

combines with the sulfur to form a more refractory sulfide 

which avoids the liquid phase. 

Certain facts are not entirely consistent with the 

common theory of hot shortness. The onset of hot short­

ness does not coincide with the temperature of the iron­

iron sulfide eutectic and there is apparently no discon­

tinuity of properties at that temperature. Furthermore, 

the literature indicates that hot shortness is confined 

to a certain temperature range and that the steel is ductile 
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above and below this range. 

Recent careful examinations of steels indicate that 

the true phase equilibria are very complex and that simple 

iron sulfide or manganese sulfide phases do not exist in 

commercial materials. The sulfide inclusions in steels 

are not necessarily single phase. Thus, the solubility 

and behavior of the sulfides is variable and depends upon 

other elements that may be present in addition to iron, 

sulfur and manganese. 

In this investigation an attempt was made to study the 

deformation of a number of laboratory-melted and commercial 

steels. A compressive load was applied to the steels at 

constant temperature and also during heating. The amounts 

and rates of deformation in these two types of tests was 

not consistent: in the constant temperature tests the hot 

short steels deformed more than the others while they 

appeared to deform less during heating. Metallographic 

examination of the sulfides indicated that the sulfides in 

cast steel are not stable and that they change during heat· 

ing and hot working. 
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REVIEW OF LITERATURE 

The lack of ductility in steels at elevated tempera­

tures is called hot shortness and sometimes red shortnessG 

According to the Metals Handbook (1)* hot shortness 

is defined as "brittleness in hot metal" and red shortness 

is defined as "brittleness in steel when it is red hot". 

Thus, the term hot shortness can be used for all metals 

while the term red shortness should only be applied to steel. 

However, no consistent terminology is used in the litera­

ture of steele The term hot shortness is used frequently 

and in this thesis it will be used to describe a condition 

of low ductility in steel at elevated temperatures that 

can be caused by sulfur. 

Wohrman (2) reviewed some of the early ideas on hot 

shortness and presented his own theory which was entirely 

different from the generally accepted theory. Wohrman 

intimated that Le Chatelier in 1903 was one of the first 

to ascribe hot shortness in steel to the "melting of sulfide 

at about 980°Ce" Wohrman continued, "Today hot shortness 

due to sulfur is fairly universally explained by this 

tendency of the sulfide to form continuous envelopes around 

the 'grains' of the metal. The envelopes break up the 

* Numbers in parenthesis refer to references in bibliographye 
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continuity of the metallic mass and cause, when melting 

at about 1795 degrees Fahr8 (980 degrees Cent.), the 

falling apart of the metal. At still higher temperatures 

the molten sulfide is absorbed (dissolved) by the iron which 

then regains its continuity and plasticity." The absorp­

tion (dissolution) of the sulfide by austenite at very high 

temperatures was an idea credited to Ziegler (3). 

Wohrman disagreed with the popular theory of hot 

shortness and proposed his own. He proposed that hot 

shortness was due to a natural lack of plasticity of aus­

tenite at the low end of its temperature range and that 

this low ductility was reduced to substantially zero by 

the solution of a small amount of sulfur. Furthermore, 

he felt that sufficient iron sulfide was soluble in aus­

tenite to cause hot shortness but that manganese sulfide 

was essentially insoluble. Since manganese effectively 

combined with the sulfur in the presence of iron, manga­

nese prevented hot shortness by keeping the sulfur out 

of solution .. 

Wohrman cited the work of Sauveur and Lee (4) on 

"critical plasticity" to substantiate his theory.. Sauveur 

and Lee had found that when a bar of steel was heated 

~11 into the austenite range at its center by a torch 

and then subjected to a twisting action, the steel did 
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not deform at the center where the temperature was highest 

but, rather, it twisted at points equidistant from the 

center on either side. It was found that the steel bar 

twisted at the position where the microstructure was essen­

tially all ferrite. This experiment convinced Wohrman that 

ferrite was plastic and that austenite was much less so. 

A slight reduction of the plasticity of the austenite by 

the solution of a little sulfur was all that was needed to 

cause hot shortness. Wohrman claimed that heating to very 

high temperatures caused the disappearance of hot short­

ness because the plasticity of the austenite increased with 

increase in temperature. Melting of sulfides was not 

involved in Wohrman's theory. 

Howe {5) was one of the first to describe the return 

of ductility to a hot short steel at very high temperatures. 

He claimed that hot shortness could be circumvented by 

heating to a higher temperature and that manganese counter­

acted hot shortness at all temperatures and from all causes. 

The fact that hot shortness was limited to a certain 

temperature range was difficult to explain. Wohrman ex­

plained it easily and simply. Ziegler's explanation was 

rather radical for his time. The solubility of sulfide in 

molten steel had been accepted for some time but sulfides 

were believed to be insoluble in solid steel. Solid solu-
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bility required proof. 

The solubility of sulfides and other materials in 

liquid steels was believed by Sims and Lillieqvist (6)~ 

Benedicks and Lofquist (7) and others to be responsible 

for determining the size, shape~ distribution and other 

characteristics of sulfides and other inclusions in steels. 

The nature of the inclusions, of course, determined their 

effects on the properties of the steel. 

The deleterious effect of sulfur on the hot working 

characteristics of steels has been explained with the aid 

of the iron-sulfur phase equilibrium diagram shown in 

Figure 1. Figure 1 was given by Hansen and Anderko {8). 

The iron sulfide forms an eutectic with gamma iron at 988°C 

and 31 per cent sulfur (weight per cent). The solubility 

of sulfur in solid iron was determined by Rosenquist and 

Dunicz (9) and by Turkdogan, Ignatowicz and Pearson (10). 

The iron-rich side of this system is shown in Figure 2A 

and Figure 2B. The solubility in the gamma phase increases 

from 0.005 per cent sulfur at 913°C to 0.050 per cent 

sulfur at 1365°Co The invariant reaction at 1365°C is for 

the three phase equilibrium between gamma ferrite, delta 

ferrite and melt. The diagrams in Figure 2 show that 
0 

liquid may form in iron-sulfur alloys at 988 C if the sul-

fur is sufficiently high. The formation of this liquid 
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phase has been the basis of the explanation for hot short­

ness in steels. It has been argued that a continuous film 

of liquid sulfide at the grain boundaries destroys the 

cohesion between the grains and consequently the material 

fails during hot working. 

The solubility of sulfur in iron, Figure 2, would in­

dicate that no liquid can form in steels with less than 

about 0.01 per cent sulfur. Thus, low sulfur material 

should not be subject to hot shortness according to the 

usual explanation for hot shortness. On the other hand, 

an alloy containing over 0.01 per cent sulfur may contain 

a small quantity of a liquid phase within the temperature 

range of 988°-ll00°c. 

Ainslie and Seybolt (11) do not quite agree with the 

phase diagram determined by Turkdogan, Ignatowicz and 

Pearsono They feel that the solubility of sulfur is 0.029 

per cent at 900°c. There is general agreement that the 

iron-iron sulfide eutectic temperature is 988°C. 

Hilty and Crafts (12) determined the iron-iron oxide· 

iron sulfide diagram and found a ternary eutectic which 

melted at 925°C. 

The mintmum amount of sulfur which should not be 

subject to hot shortness is not known exactly. Figure 2 

indicates that hot shortness should disappear below 0.01 



per cent sulfur. However, some investigators (13) have 

reported that even when the sulfur content is as low as 

0.008 per cent hot shortness can occuro 

10 

In a paper published by Joseffson, Koeneman and 

Lagerberg (14) hot shortness is related to the heat treat­

ment of iron and steel. These investigators claimed that 

sulfur can cause hot shortness in steels by two different 

mechanisms. The first mechanism is a solid solution 

hardening effect. They showed that sulfur hardens and em­

brittles austenite, especially when the austenite is 

supersaturated with the sulfur, by showing that hot short­

ness was more pronounced in samples heated to a high tem­

perature, 1050°-1300°C, and then cooled to the testing 

temperature 850°-9Sooc, than in samples heated directly to 

the testing temperature. 

The second embrittling mechanism of sulfur proposed 

by Joseffson et al., involved the formation of thin grain 

boundary sulfide films. The effect of these films was 

demonstrated by quenching samples from 1300°C and then 

heating to 960°C where they were tested for hot shortnesse 

The samples were hot short upon reaching 960°C and grain 

boundary sulfide films could be seen in the microstructure 

of these samples. Holding at 960°C for various times be­

fore testing showed that the hot shortness decreased with 
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increased holding time and after 24 hours at 960°C the 

steel was no longer hot short. Metallographic examination 

revealed that the sulfide network spheroidized during hold­

ing at 960°C and that the degree of hot shortness was 

related to the degree of continuity of the grain boundary 

sulfides. Heating to 1150°C followed by furnace cooling 

to 960°C produced a very coarse grain boundary sulfide net­

work. This network would not spheroidize at 960°C and the 

hot shortness of these samples did not decrease with 

holding time at 960°c. 

Early work in torsional ductility studies was per­

formed at elevated temperatures by Clark and Russ and also 

by Ihrig (15), (16) on iron base alloys in the gamma range. 

In this method ·the number of twists made before failure 

was taken as a measure of hot workability. Ihrig's results 

showed that even a small addition of sulfur decreased the 

number of twists before failure in the temperature range 

of 2100-2450°F (1150-1343°C). Steels with 0.029 per cent 

sulfur and 0.092 per cent sulfur showed 170 turns and 70 

turns at 2100°F (1150°C), respectively. Clark claimed 

and emphasized that the rate of deformation was an impor­

tant factor. 

The significance of the torsion test results is 

questionableo The samples were about two feet long and 
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probably were not at a uniform temperature. Furthermore, 

a material that can survive 70 revolutions during torsion 

would appear to be ductile and the interpretation of the 

data is difficult~ However, the torsion test method for 

measuring ductility has been revived by Rossard and Blain 

(17) and by Guenssier and Castro (18). 

A recent study of iron-sulfur, iron-sulfur-oxygen and 

iron-sulfur-manganese alloys tested in tension in the tem­

perature range 1600° to 2400°F at strain rates of about 

0~001 to 100 per cent per second by Ogawa, King and Grant 

(19) revealed the following: 

''1. Ferritic iron alloys, with solid FeS inclusions, 

are more ductile at 1600°F than comparable aus­

tenitic alloys at 1700°F. The presence of the 

liquid FeS phase destroys all semblance of duc­

tility even in the presence of small amounts of 

oxygen, which tends to globularize the inclusions. 

Solution of the liquid iron sulfide in gamma iron 

restores some ductility at high temperatures, but 

the ductility is still greatly impaired by in­

creasing sulfur content. 

2. In view of the poor ductility, strain rate effects 

are not very significant in the straight Fe-S 

alloys. 
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3o The effect of strain rate becomes more evident 

in the more ductile Fe-s-o and Fe-Mb-S alloys, 

the ductility being greatest, apparently, at 

intermediate strain rates. 

4. Both oxygen and manganese additions effectively 

spheroidize the sulfide inclusions; ductility is 

largely regained in proportion to the amount of 

oxygen and manganese added. The oxysulfides tend 

to be coarser than the (Mn, Fe)S inclusions. 

High Mn:S ratios (above 20) at high manganese 

contents decrease ductility, even at 2400°F, 

through formation of a two phase eutectic-type 

structure." 

The effect of manganese on the solubility of sulfur 

in solid iron was determined by Turkdogan and Ignatowicz 

(10). Figure 3 shows their data for the manganese and 

sulfur contents of solid solutions in iron in equilibrium 

with manganese sulfide for 1200°and 1335°C. The low values 

of about 0.004 per cent at 1200°C in Figure 3 may be com­

pared with the solubility of sulfur in pure iron which is 

shown to be 0.031 per cent at this temperature in Figure 2B~ 

According to Gain(20) manganese may prevent hot short­

ness in iron when present to the extent of three times the 

sulfur percentage if the oxygen percentage is not above 
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0.04. The minimum amount of manganese needed to eliminate 

hot shortness in steels of various sulfur contents is not 

known. 

Oxygen alone should not cause any hot shortness. Gain 

said that oxygen in amounts up to 0.20 per cent does not 

cause hot shortness in pure iron if sulfur is below 0.01 

per cent, but the presence of considerable amounts of oxy­

gen in irons (0.1 per cent and above) tends to reduce the 

efficiency of manganese in preventing hot shortness because 

the manganese tends to be present as oxide rather than 

sulfide. 

Josefsson, Koeneman and Lagerberg (14) did not find 

oxygen to cause hot shortness and they said that there 

seemed to be no basis for assuming oxygen to cause hot 

shortness because the oxygen solubility in gamma iron even 

at high temperatures appears to be very small. 

The effect of copper content on hot shortness of iron 

and steel has been argued by many investigators for a long 

timeG No decisive conclusion has been reached. The iron­

copper phase diagram in Figure 4 shows that hot shortness 

should not occur in ordinary iron and steel because no 

liquid phase can form in the normal hot short temperature 

range. The equilibrium diagram shows that alloys contain­

ing over 7.5 atomic per cent (or about 8 weight per cent) 
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of copper can be partially liquid when heated above 1094°Cft 

The molten copper-rich constituent would tend to be formed 

at the grain boundaries and would cause hot shortness if 

hot working were attempted at such temperatures. Ordinary 

steels do not contain a sufficient amount of copper to 

form any liquid phase. However, if the copper became seg­

regated, it might become possible to form a liquid phase 

at the grain boundaries at 1094°C and above. 



18 

EXPERIMENTAL 

A, Tester: 

The compression tester used in this study is shown in 

the drawing of Figure SA, while Figure SB is a photograph 

of the apparatus .. 

Load was transmitted to the sample by two pieces of 

Type 304 stainless steel. The nature of the holes at the 

ends of these bars for holding the sample is shown in the 

drawings of Figure 6 .. The 3/16 in. groove on the side of 

the upper bar and the 3/16 in. diagonal hole permitted the 

placing of a thermocouple inside the sampleo A chromel­

alumel thermocouple was used in this manner to measure 

the temperature of the samples. 

The tube type furnace was 18 inches long and was con­

structed for this study.. Kanthal heating element wire was 

wrapped onto an alundum furnace tube. This was placed 

inside another ceramic tube which was surrounded by insu­

lating bricks. The outer shell was transite. 

Temperature control on the furnace was obtained with 

a second chromel-alumel thermocouple whose hot junction 

was located between the two tubes, immediately adjacent to 

the heating element, This control thermocouple and Leeds 

and Northrup controller activated a relay in a simple on-off 

control circuit .. 



~----------------------68~~¥------------------------·-t 
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Figure SA. Apparatus For Applying 
Static Compressive Load To Samples 

Figure SB. Apparatus For Applying 
Static Compressive Load To Samples 
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The location of the hot junction of the control ther­

mocouple gave a rapid response to temperature change and the 

thermal lag produced by the furnace tube gave a relatively 

uniform temperature in the sample for most of the constant 

temperature experiments. The portable potentiometer used 

for measuring the output of the sample thermocouple gave a 

constant reading in these experiments. In several experi­

ments, however, for some unknown reason the sample tempera­

ture cycled up and down in a temperature interval of approx­

imately 10 degrees Centigrade. 

Load was applied to the sample by means of a lever 

system. Two 2-inch angle posts were welded to the right 

end of the 9-inch channel which served as the base, see 

Figure SA and Figure SB. The lever arm was a 3-inch channel 

which was pivoted by a pin at the top of the posts. A hang­

er at the left end of the lever arm was provided to hold 

lead bricks which were used as the load. The lead bricks 

weighted 26 1/8 lb each. The geometry and weight of lever 

arm was such that a force of 420 lb was applied to the sam­

ple with one brick on the hanger. This load gave a stress 

of 2100 psi in a 1/2 in. diameter sample. 

The change in length was determined by means of a 

pointer attached to the lever arm and a scale attached to 

one of the l-inch angle iron posts which served as guides 
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for the lever arm. Gentle tapping of the lever arm prior 

to each reading avoided erratic readings due to sticking 

of the arm. The smallest division on the scale was 1/32 in. 

and the location of the scale was such that the length 

change of the sample was multiplied by a factor of 5.4. 

The length change was for both stainless steel bars and 

sample. It was assumed that the stainless steel bars did 

not deform measurably with the loads being used. However, 

the thermal expansion of the stainless steel bars caused 

a large part of the length change when the temperature 

changed. The thermal expansion of the stainless steel bars 

was assumed to be the same for each experiment. Length 

change was measured every 1/2 min. in the constant tem­

perature experiments and every 1 min. in the heating ex­

periments. 

B. Preparation of Specimen: 

Three commercial steels and several experimental steels 

were studied. The experimental heats were made by Yen (21). 

Yen melted the steels in an Ajax high frequency induction 

furnace. The nominal compositions of all the steels are 

listed in Table 1. 

Two different sample sizes were used. The larger had 

a diameter of 1/2 in. and length of 1 in. The other had a 



Specimen 
Number 

H3 
H4 
H5 
H6 
H7 
H8 

H11 
AISI 
1018 
AISI 
1042 
Ingot Iron 

c Si 

0.48 0.94 
0.40 0.25 
0.40 0.25 
0.40 0.25 
0.40 0.25 
0.40 0.25 
0.40 0.25 

0.15-0.20 -
0.44-0.52 -

TABLE 1 

COMPOSITION OF SPECIMENS 

p s Mn 

0.003 0.46 0.84 
- 0.10 -- 0.10 1.00 
- o. 30 1.00 
- 0.10 -- 0.05 -- 0.10 1.50 

0.04 0.05 0.60-0 .. 90 

0.04 0.05 1.10-1.40 

Cu 

-
1.50 
1.50 
1.50 
--

Al 

0.06 
0.10 
0.10 
0.10 
0.10 
0~05 

N 
w 
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diameter of 3/8 in. and a length of 1 ino All the samples 

were machined on a lathe. One end of each specimen was 

drilled axiallY. with a 3/16 inch drill to a depth of 1/2 

inch in order to provide a hole for the thermocouple. 

c. Test Procedure: 

The first step in making a compression test was to 

place the sample in the furnace. The sample was placed 

inside the hole in the lower stainless steel bar with the 

hole in the sample facing up. The thermocouple protruding 

from the upper stainless steel bar was inserted into the 

hole in the sample and the upper end of the sample went into 

the hole in the top stainless steel bar~ 

The lever arm was then put into position. Several 

pieces of soft copper and lead sheet were placed between 

the stainless steel bar and the lever arm in order to avoid 

point contact. The stainless steel bars and the sample 

were lined up as carefully as possible to give axial loading. 

With the sample and lever arm in place the apparatus was 

ready for the start of an experiment. For a constant tem­

perature test the power was turned on and the furnace heat­

ed to the test temperature. The temperature of the sample 

was watched and when it became constant, the required num­

ber, usually one, of the lead bricks was put on the hanger 



at the end of the lever arm. The temperature of the sam­

ple and the position of the lever arm were determined 

every 1/2 min. Figures 7 and 9 show data for this type 

experiment. 

25 

At the end of a test the load was immediately removed 

from the sample. If the sample deformed too much it became 

very tightly wedged in the holes in the stainless steel bars 

and it was extremely difficult to remove. Usually the 

stainless steel bar was pulled up from the furnace and the 

sample was removed as soon as possible. 

In the heating tests, the lead bricks were put on the 

hanger and the power turned on. The controller was set to 

limit the temperature rise of the furnace. The temperature 

of the sample and the position of the lever arm were deter­

mined every 1 min. until the highest temperature of the 

experiment was reached at which time the load was removed 

and the sample was taken out of the furnace. 

Some of the difficulties encountered in the work have 

been mentioned above. Others were: 

The controller functioned well most of the time but 

occasionally it would not hold a constant temperature 

and the temperature of the sample fluctuated up and down 

in an approximately 10 degrees Centigrade temperature 

range. Another annoying problem was caused by the furnace 
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temperature changing from one experiment to the next. In 

the constant temperature runs it was found that the con­

troller had to be adjusted for each experiment in order to 

have the sample at the correct temperature; the furnace 

would not bring the new sample to the same temperature as 

the laste This adjustment of sample temperature was time 

consuming and required exposing the sample and stainless 

steel bars to the high temperature for extra periods of 

time. It required approximately 1 hr. to obtain the cor­

rect constant temperature. 

The difficulty with the temperature control was 

particularly annoying because the stainless steel bars 

were not sufficiently heat resistant for the temperatures 

being usede Oxidation of the bars and sample were partly 

responsible for difficulty in removing the samples and it 

also limited the life of the bars. Another problem involved 

buckling of the bars which cracked the furnace tube on 

several occasions. It was necessary to straighten the 

stainless steel bars periodically during the investigation. 



RESULTS AND DISCUSSION 

A. Compression Testing: 

According to the commonly proposed theory for hot 

shortness in steel, sulfur produces a liquid phase at 
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the grain boundaries which destroys the cohesion between 

grains and allows the steel to fall apart. If this the­

ory was correct the original experiments in this inves­

tigation should have revealed the lower limit of the hot 

shortness range& These expertments applied a static com­

pressive load to the sample during heating. Upon entering 

the hot shortness range with the strength and ductility 

markedly reduced, the lever arm on the tester should have 

dropped or, at least, indicated some change in deformation 

rate. This did not happen. 

One of the first samples tested was an as-cast sample 

from the experimental steel H8. This steel contained no 

manganese and was known to be hot short. Yen (21) had 

attempted to forge this steel and had found it to be hot 

short. A somewhat sudden yielding of the sample upon 

entering the hot shortness temperature range was antici­

pated but was not found. 

The length change for the stainless steel bars and 

the H8 sample during heating to 1100°C is shown in Figure 7. 





Since the strength of the steel in the vicinity of the 

hot shortness range was not known, six lead bricks giving 

a stress of 9350 psi. were used in this experimento This 

stress caused the sample to start deforming at an appreci­

able rate at about 650°C. The deformation was indicated 

by a decrease in length, dropping of the beam, which con­

tinued over a temperature range up to about 800°C. The 

stationary range of the beam between 800°C and 900°C is 

probably due to the alpha and gamma iron existed together 

andapparentlythe gamma iron is stronger than alpha iron. 

After the equipment cooled down, an attempt was made 

to examine the sample. The sample was found to be upset 

in the holes at the ends of the stainless steel bars and 

was removed with great difficulty. No evidence of failure 

could be found in this sample. Apparently the sample had 

deformed below the hot shortness range and the length 

change above 900°C was due to thermal expansion of the 

stainless steel bar. 
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The supply of the experimental steels with no manga· 

nese was limited and further work to determine the proper 

stress level was done with ingot iron samples. The samples 

were heated to 1000-1100°C with no load and then various 

loads were applied to determine the load that would cause 

a slow deformation at the testing temperature. The early 
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experiments indicated that when the samples were allowed 

to deform as much as conditions would permit, their removal 

from the stainless steel bars after the experiment was a 

problem. For this reason the amount of deformation of 

samples was restricted by removing the load before the sam­

ple became tightly wedged in the holes in the stainless 

steel bars~ 

Figure 8 shows the results for an ingot iron sample 

in a static load, constant temperature run. The length 

change as a function of time is shown for two different 

stress levels. After the sample reached 1100°C and the 

lever arm reached a stable and constant position one lead 

brick was placed on the hanger to give 2100 psi in the 

sampleo The sample showed a rapid initial deformation. 

Eight minutes after loading the sample stopped deforming. 

At eleven minutes the temperature began to drop and final­

ly became constant at 1030°C. A second lead brick was 

added 26 minutes after the first. This higher stress of 

3460 psi caused another short period of rapid deformation 

followed by a much reduced deformation rate. 

Experiments such as that described above indicated 

that a load of one lead brick, giving a stress of 2100 psi 

on a 1/2 in. diameter sample, was sufficient to deform the 

steel in the 1000-1100°C temperature range. The stress 



.. "J: .. ... . i I 1 ' .···;-· i ·: .] • ... 

·~:-:-:-:-t±~-:-:-:i~-~±+-::-:+=F:..r=+4:.:..::.j..:.::...:..:.F++~:;_,;,...~-J..:...:..+..:..+:..:...:::-it·.:...:··~·~.:..t.:.:.··~··f.:..:...:.+-:-··~··t-:-.. ..:...:··+·..:...:··--1·..:...:·..:...:·:..:..:...1. .. :.~_.·.·!·:.·: .. ·~~t-.:..:...:.L.~-~L-:-- .. .:...:J-·-: 
........ :::: .::· f. : :! .. . ! : !:::! .: 1::: 



32 

produced by the weight of the lever arm alone did not pro­

duce a measurable amount of deformation in the time involved 

in these experiments, Figure 9. The weight of the lever 

arm and hanger produced a stress of 635 psi. in a 1/2 in. 

diameter sample. 

Figure 9 shows data for an experiment with a sample 

of H8 steel. This was the constant temperature, static 

load test for which the data are shown in different form 

in Figure 10. The lever arm with no bricks on the hanger 

was applying load to the sample during heating. In the 

vicinity of 700°C slight irregularities in the heating and 

length change curves of Figure 9 are due to phase trans­

formation in the sample. In this experiment no difficulty 

was experienced in bringing the sample to the proper con­

stant temperature. The temperature became constant quickly 

and the thermal expansion of the bar and sample stopped 

as indicated by a constant value for the length. No meas­

urable length change occurred after the sample temperature 

became constant until the stress was raised by putting a 

lead brick on the hanger at the end of the lever arm 57 min. 

after the start of the experiment. A rather large contrac­

tion of the sample during the first one-half mi~ute of 

loading was measured and then further deformation occurred 

much more slowly. The data in Figure 9 are typical of the 



meters to the Centimeter 
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constant temperature, static load tests described below 

except for the fact that much more difficulty was fre­

quently encountered in bringing the sample to a constant 

temperature of 1100°C~ 

A series of experiments was run at constant tempera­

ture and constant static load to determine any difference 

in deformation behavior of steels known to be hot short 

and those not hot shorte The results of these experiments 

are shown in Figure 10. A static load of 2100 psi. was 

used and the temperature was 1100°C for all samples except 

H7 which was 1150°c. Steels H4, H7 and H8 had been found 

to be hot short by Yen (21). The AISI 1018 and 1042 steels 

and the ingot iron were commercial wrought materials which 

were not hot short. Steel Hll was an experimental steel 

on which no attempt at hot working had been made but this 

steel contained manganese and was probably not hot short. 

The results of the constant temperature tests appeared 

to separate the steels into two groups on the basis of 

deformation rate. The hot short steels were in one group 

while the steels that were not hot short were in the other 

group. The hot short steels were experimental heats to 

which manganese had not been added. The other steels con­

tained manganese. 

Figure 10 shows that both the initial rapid deforma-





tion rate and the subsequent slower rate for the hot short 

steels are greater than for the steels not hot short. The 

initial rapid deformation occurred during the first half 

minute. After one half minute of load application, the 

deformation of the hot short steels was greater in each 

case than that of the other steels. This deformation is 

given in column two of Table 2. The deformation at the 

end of six minutes is given in the third column and the 

last column in Table 2 gives the average rate of deforma­

tion during the period between one half and six minutes. 

The data show that after the first half minute rapid de­

formation period the rate of deformation was still more 

rapid in the hot short steels. 

The data for 1018, 1042 and ingot iron indicated 

relatively s~ilar behavior for these materials. The 

average rate of deformation during the first half minute 

was approximately 0.01 in./in. Their deformation rate then 

became approximately 0.005-0.006 in./in. The deformation 

rates are slightly different toward the end of the tests 

and are not in the expected relative order. The deforma­

tion rate of the 1042 steel was the greatest while that 

of the ingot iron was the least. Since the 1042 steel with 

its hiaher carbon content is the strongest of the three 

materials it seams reasonable to expect it to offer the 



TABLE 2 

AVERAGE DEFORMATION RATE FOR CONSTANT TEMPERATURE EXPERIMENT 
(SLOW DEFORMATION PERIOD) 

Specimen Deformation at 1/2 min. 
Number in/in. 

H8 0.0720 
H4 0.0695 
H7 Oo052Q 

Hll 0.0374 
AISI 
1042 0.0114 
AISI 
1018 0.0089 
Ingot Iron 0.0108 

Deformation at 6 min. 
in/in. 

0.1418 
0.1180 
0.0965 
0.0573 

0.0460 

0.0407 
Oo0359 

Average Deformation Rate 
in/in/min. 

0.0127 
0.0093 
0.0081 
0.0036 

0.0063 

0.0057 
0.0046 



most resistance to deformation. This unexpected order of 

deformation rates could probably be due to factors other 

than carbon content, such as grain size which tends to 

give more grain boundary area which should increase the 

viscous flow. 

The hot working characteristics of the Hll steel were 

not known but the composition of this steel was such that 

it was not believed to be hot short. There was some doubt 

about the validity of the test data on this steel. The 

initial rapid deformation rate was high for a steel not 

susceptible to hot shortness. The rapid deformation rate 

of Hll was intermediate between the hot short group and 
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the not hot short group. The subsequent slow deformation 

rate for Hll was not very constant as shown in Figure 10. 

The data showed that the temperature did not remain constant 

during the experiment. The controller did not function 

properly and allowed the sample temperature to fluctuate. 

While the temperature was increasing (from approximately 

1095°C to 1105°C) the curve showed a slow deformation rate 

and while the temperature was decreasing (in approximately 

the same temperature range) the curve showed a more rapid 

deformation rate. During heating, thermal expansion would 

counteract the deformation from the compressive load while 

the thermal contraction during cooling would increase 
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the apparent deformation. The low deformation rate during 

the later stages of the test does not appear to be signifi­

cant. The reason for the relatively high initial deforma­

tion rate is not known. 

Experimental steel H7 apparently picked up some man­

ganese from the crucible in which it was melted even though 

none was added intentionally (21). This steel behaved 

much like the other two hot short steels but showed lower 

deformation rates which could have been the result of the 

small amount of manganese present in this steel. However, 

this could have been the result of experimental error. 

The difference in deformation rates between H7 steel and 

the other two hot short steels is the expected difference 

if hot short steels deform more rapidly in this test and 

if the manganese in H7 decreased its degree of hot short­

ness slightly. 

All the experimental steels tested in the constant 

temperature series of experiments were in the as-cast 

condition. The samples were machined from the ingotso 

The initial rapid deformation rate of these experimental 

steels was higher than that of the commercial wrought 

materials. The difference in deformation rate could have 

been due to differences between cast and wrought metals. 

Static load, constant temperature tests were performed on 
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both cast and wrought samples of three different experi­

mental steels in order to determine if the differences in 

deformation rates shown in Figure 10 were due to hot short­

ness in some of the steels or if it was a difference between 

cast and wrought steels. The results of this series of 

tests is shown in Figure 11. 

The ~teels used in the cast versus wrought metal tests 

were those which Yen (21) had worked into 3/8 in. rods. 

These were his H3, H5 and H6 steels. Samples were cut from 

the rods and from the ingots of these steels. They were 

all 3/8 in. diameter. The same load was used in these ex­

periments as was used in the tests whose results are shown 

in Figure 10. The smaller diameter of the samples in this 

series resulted in a higher stress of 2800 psi. 

The results of the tests on the cast and the wrought 

samples presented in Figure 11 show that the amount of 

deformation during the first half minute of load applica­

tion was approximately the same for all the samples, 0.05-

0.06 in./in. The subsequent deformation rate varied 

considerably and indicated no consistent variation with 

condition of the metal, cast or wrought. The deformation 

of the H3 samples after the first half minute was erratic~ 

The cast sample from H6 steel deformed more rapidly than 

the wrought sample while the reverse was true for the HS 
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steel. Since there was no consistent and definite dif­

ference in deformation rate during the slow deformation 

period in the later part of the tests and since the initial 

rapid deformation rate was the same for both cast and 

wrought samples it would appear that cast and wrought samples 

behave in a s~ilar manner in the static load, constant 

temperature tests. The test results shown in Figure 11 

indicate that the difference between the H4, H7 and H8 steels 

compared to the Hll, 1042, 1018 and ingot iron shown in 

Figure 10 is not the difference between cast and wrought 

metalo The difference between the two groups of samples 

in Figure lOJif it is significan~could be a difference 

between hot short steels and steels that are not hot short. 

The results of the heating exper~ents are shown in 

Figures 12 and 13. The curves are all very close together 

and they are presented in two figures in order to separate 

them. All the samples in these experiments had a diameter 

of 1/2 in. and they were all heated while stressed to 

2100 psi. 

In Figures 12 and 13 "expansion" which is the ordinate 

is actually the total increase in length of the stainless 

steel bars and the sample divided by the original length 

of the sample. The total increase in length was due to 
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thermal expansion of bars and sample less any contraction 

of the sample due to deformation by the compressive load. 
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The data for the H8 curve in Figure 12 was obtained 

from the data shown in Figure 9. This sample was actually 

loaded with the weight of the lever arm but this was not suf­

ficient load to cause deformation. Figure 9 shows that with 

this light load no length change occurred in the sample as 

long as the temperature remained constant. The H8 sample 

with the lever system expanded a total of 29.9 in./in. of 

sample upon heating to 1080°C. Comparison of the H8 curve 

with the other curves shows that the 2100 psi stress was 

sufficient to deform the austenite during heating. 

The five steels heated with a constant static stress 

of 2100 psi were H4, H7, Hll, 1018 and 1042. Steels H4 

and H7 had not survived hot forging and were known to be 

hot short. The 1018 and 1042 were commercial wrought steels 

and could not have been hot short. Steel Hll contained 

sufficient manganese to prevent hot shortness but had not 

been hot workedo Thus, H4 and H7 were hot short while Hll, 

1018 and 1042 were not. 

All five steels gave very similar curves for tempera­

tures below the critical range. Their behavior in the crit­

ical range was somewhat erratic. Above the critical range 

where they became austenitic two differences could be 
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detected between the two types of steel, the hot short 

steels and those that were not hot short. First, the 

curves for the hot short steels were steeper than the others. 

This can be seen in Figure 12 where the curves for H4 and 

H7 above about 750°C are approximately parallel and steeper 

than the curve for Hll. Comparison of the slopes of the 

curves for Hll, 1018 and 1042 in Figure 13 shows that they 

too are approximately parallel. 

The second difference was in the maximum of the curve. 

The two hot short steels expanded more and reached higher 

temperatures before the rate of deformation of the sample 

under the compressive load exceeded the rate of thermal 

expansion of the stainless steel bars and the sample. The 

hot short steels H4 and H7 had maxima at 1125°-1150°C. 

Hll steel had a maximum at about 1110°C while the two com­

mercial wrought steels bad maxima around 1070°C. 

These results from the heating exper~ents agree with 

the theory advanced by Joseffson et al. (14) and, on the 

other hand, they do not appear to agree with the results 

@f the constant temperature tests whose results are shown 

in Figure 10. These peculiarities of this data are dis­

cussed below. 

Joaeffaon and h1'a co-workers claimed that sulfur causes 

bot abortaeaa in steels because of ita effect on tbe 
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properties of austenite. To some extent, this is similar 

to the theory proposed by Wohrman (2). Dissolved sulfur 

lowers the ductility and raises the strength of austenite. 

The addition of manganese to steels is effective in the 

elimination of hot shortness because it preferentially com­

bines with the sulfur forming a sulfide that is practically 

insoluble. When manganese is not present the sulfur in 

the form of iron sulfide dissolves sufficiently to affect 

the properties of the austenite adversely. 

The three curves for the stressed samples in Figure 12 

show that the steel with the least manganese had the high­

est resistance to deformation. and the steel with the high­

est manganese deformed most at temperatures in the ~ustenite 

range. The curve for steel H4 had the highest maximum which 

indicated the least deformation and this steel contained 

no manganese. The Hll steel had 1.5 per cent manganese 

and had the lowest maximum. It is interesting to note that 

metallographic examination of heated samples of the H7 steel 

indicated that it contained a small amount of manganese, 

probably inadvertently added to the steel from the slag 

of a previous heat remaining in the crucible in which it 

was melted (21). The H7 steel with somewhat higher man­

ganese showed a lower maximum than H4 steelo 

If the results from the heating experiments are the 
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expected results based on the effect of dissolved sulfur 

on the properties of austenite, the results of the con­

stant temperature experiments shown in Figure 10 appear 

to be the reverse of the expected results. The curves 

in Figure 10 show that the hot short steels, those which 

should have the highest concentration of dissolved sulfur, 

deformed the most under the compressive load at constant 

temperature. It seems reasonable to expect the same de­

formation process to operate at constant temperature as 

the process operating during relatively slow heating. This 

would mean the hot short steels should either deform the 

most or the least in both sets of ernperiments. No expla­

nation can be offered for the different behavior of the 

hot short steels in these experiments. 

Yen's (21) experience with the experimental steels 

studied during this investigation indicated that manganese 

is very effective in eliminating hot shortness~ Steels to 

which no manganese was added were found by Yen to be hot 

short while those to which some manganese was added were not 

hot short. Steel H8 with only 0.05 per cent sulfur and with 

no manganese was hot short. Steel H3 with 0.46 per cent 

sulfur and only 0.84 per cent manganese was not hot shorto 

A small amount of manganese can apparently overcome the 
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adverse effect of very high sulfur. 

Ogawa, King and Grant (19) found pure iron-sulfur 

alloys to be insensitive to strain rate with tensile loads. 

The addition of oxygen and manganese increased sensitivity 

to strain rate giving highest ductility at intermediate 

rates, Ool-1.0 per cent elongation per second. In this 

investigation no evidence of failure from the static com­

pressive loads was found. Steels that failed quickly from 

the impact loading of a forging hammer flowed readily in 

these testso These steels were sensitive to strain rate 

under compressive load and the results suggest that sen­

sitivity to strain rate may vary considerably for tensile 

and compressive loads. 

B. Metallographic Examination: 

The sulfides were examined metallographically in an 

attempt to gain additional information on the hot short­

ness phenomenon. 

Metallographic specimens were taken from the tested 

samples and from the bar stock and ingots from which the 

samples were madeo Polishing was similar to the procedure 

used by Yen (21). The final polishing was done on 

Microcloth or silk using Linde B polishing compound. 

Examination and photomicrography were done on a Bausch & 

Lomb Research Metallograph. 
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Metallo8raphic examination indicated that the nature 

and distribution of the sulfides in the cast steels were 

not stable and they changed when the steel was hot worked 

or heated to the temperatures used in these experiments. 

The sulfides in the wrought steels showed very little 

change as a result of the heating and deformation in 

these experiments. The presence of iron sulfide in a 

cast steel does not indicate a susceptibility to hot 

shortness but iron sulfide in a steel that has been 

heated for a long time at a sufficiently high temperature 

is probably an indication of a degree of hot shortness~ 

Certain sulfide shapes and distributions may also indicate 

hot shortness in heated steelso 

Typical photomicrographs of the sulfide inclusions 

in the steels are shown in Figures 14-36. 

The samples from the H3, HS and H6 steels showed that 

there was an appreciable change in the sulfides when the 

ingots were worked into bars, Figures 14, 16, 18, 20, 22 

and 24. The sulfides in the bars were elongated in the 

longitudinal direction indicating that the sulfides were 

plastic at hot working temperatures. Steels HS and H6 

showed clusters of sulfides in their ingots, Figures lR 

and 22, which were eliminated by hot working and they w~re 

not found in the bars wrought from these steels, Figures 
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20 and 24. Examination of the various specimens indicated 

a tendency for the sulfides to be smaller in the wrought 

bars than in the ingots from which the bars were madeo 

This effect was noticeable in the very high sulfur steel, 

H3, which had very large sulfides in the ingot, compare 

Figures 14 and 16. Duplex sulfide inclusions, inclusions 

which appeared to contain two phases, iron sulfide and man­

ganese sulfide, were found in the ingot of steel H3. See 

inclusions which are marked "D" in Figure 14. No duplex 

sulfides were found in the H3 bar or in any samples of 

this steel that had been heated to 1100°C. After heating 

or hot working, the sulfides in H3 steel were all manganese 

sulfide. Iron sulfide could be differentiated from man­

ganese sulfide by its color and because it was optically 

anisotropic in polarized light. The anisotropic iron sul­

fide became alternately bright and dark when it was viewed 

through crossed nicol prisms with polarized light while it 

was being rotated with the stage of the microscope. The 

optically isotropic manganese sulfide remained dark in all 

positions when examined under these conditions. 

Heating samples machined from the ingots to approxi­

mately 1100°C as was done in most of the experiments in 

this investigation caused some changes in the sulfide in­

clusions. There was a tendency for the sulfides to coarsen. 
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This is pronounced in steel H3, Figures 14 and 15, and is 

also noticeable in many of the other experimental heats. 

In a steel like H4 in which the as-cast sulfides tended 

to be grain boundary film-like inclusions, Figure 28, the 

heating and slight deformation during the test caused the 

long film-like inclusions to break up. 

In the hot short steels, H4, H7 and H8 practically all 

of the sulfides in the ingots were iron sulfide which, in 

H4 and H7, had a tendency to be film-like, Figures 28 and 

30. The sulfides in H4 and H8 were still iron sulfide in 

the samples after testing. In H7,which contained a small 

amount of manganese, most of the sulfides after testing 

were manganese sulfide and only a small amount of iron 

sulfide could be found in the tested sample. The hot short 

steels displayed some sulfides with a triangular shape 

after testing, Figures 29 and 31. These triangular in­

clusions were almost all iron sulfide. It is believed that 

these inclusions were located at the junctions of grain 

boundaries and that they had been liquid at high tempera­

tures. Since the iron-iron sulfide eutectic can melt at 

988°C, liquid could have been present in the hot short 

steels H4, H7 and H8 at the temperatures used in the tests. 

Other sulfide inclusions in these steels appeared to be 

located in a grain boundary pattern. 



Metallographic examination of these samples created 

the impression that the theory of hot shortness which 

postulated liquid iron sulfide at the grain boundaries 
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was the correct theory. In the hot short steels iron 

sulfide tended to stay at or move to austenite grain bound­

aries and the shape of these inclusions indicated that 

they could have been molten at the elevated temperature. 

Manganese sulfides which have a higher melting point than 

iron sulfides appeared to be more or less randomly dis­

tributed in the steels that were not hot short. 

The film-like grain boundary sulfides in steel H4 

were occasionally found to have a blue or brown color. 

These colors may have been produced by the 145 per cent 

copper present in this steel. H4 had no manganese and was 

hot short while the HS and H6 steels were not. H5 and H6 

steels had 1.5 per cent copper and 1.0 per cent manganese. 

HS had 0.1 per cent sulfur while H6 had 0.3 per cent com­

pared to 0.1 per cent sulfur for H4. It would appear 

that copper may be present in the sulfide phase of a steel 

but that copper will not prevent hot shortness. 

The commercial, wrought steels AISI 1018 and AISI 1042 

and the ingot iron did not show a noticeable change in 

their inclusions during testing in these experiments. 

There was nothing unusual about the inclusions in these 
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materials. 
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Figure 15. Sulfide Inclusions In H3 Steel 
Ingot Sample After Test. Unetched, 500X 
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Figure 16. Sulfide Inclusions In H3 Steel 
~rought 3/8 Inch Bar. Unetched, 500X 
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Figure 17. Sulfide Inclusions In H3 Steel 
~rought Sample After Test. Unetched, 500X 
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. Figure 19. Sulfide Inclusion In H5 Steel 
Ingot Sample After Test. Unetched , 250X 
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_Figure 21. Sulfide Inclusions In HS Steel 
Wrought Sample After Test. Unetched, 250X 
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~igure 23. Sulfide Inclusions In H6 Steel 
Ingot Sample After Test. Unetched, 250X 
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Jigure 24. Sulfide Inclusions In H6 Steel 
Wrought 3/8 Inch Bar. Unetched, 250X 
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Figure 25o Sulfide Inclusions In H6 Steel 
Wrought Sample After Test. Unetched, 250X 
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Figure 27. Sulfide Inclusions In Hll Steel 
Ingot Sample After Testo Unetched, 250X 
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Figure 29. Sulfide Inclusions In H4 Steel 
Ingot Sample After Test. Unetched, SOOX 
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Figure 31. Sulfide Inclusions In H7 Steel 
Ingot Sample After Test. Unetched, 500X 
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Figure 33. Sulfide Inclusions In H8 Steel 
Ingot sample After Test. Unetched, SOOX 
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CONCLUSIONS 

1. 4ot short steels do not fail during slow deformation 

by compressive load. 

2. The deformation characteristics of the hot short 

steels were found to be somewhat erratic. During 

heating with a static compressive load applied, the 

hot short steels deformed less than the steels which 

were not hot short. The hot short steels deformed 

more than the others in the constant temperature 

experiments. 

3. No sudden loss of strength by hot short steels was found 

~·1hen these steels entered their hot short range during 

heating under a static compressive load that would 

cause only slow deformation.. In fact, no indication 

of hot shortness was found under these conditions~ 

4.. The hot short range, if it exists, has not yet been 

determined experimentally. If melting of an eutectic 

containing iron sulfide is the cause of hot shortness, 

the hot short range may be a limited temperature ranc;e 

for low sulfur steels, perhaps up to about 0~05 per 

cent sulfur, where the sulfur present can be dissolved 

at high temperatures. However, in higher sulfur 

materials the liquid phase cannot be eliminated above 



the eutectic temperature and it does not appear 

reasonable to expect hot shortness to disappear at 

high temperatures in such materials. 
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5. Appreciable amounts of iron sulfide can be present in 

an as-cast steel even when manganese is present. 

The presence of much sulfur and some iron sulfide in 

an as-cast steel does not mean the steel is hot short. 

The presence of sufficient manganese can eliminate hot 

shortness when sulfur is as high as 0.5 per cent and 

perhaps when it is higher. 

6. Steels that are not hot short will not contain any 

iron sulfide after they have been heated to sufficiently 

high temperatures for sufficiently long times and/or 

been hot worked. The time-temperature relationship 

for eliminating iron sulfide from cast steel was not 

studied. However, the presence of iron sulfide in a 
~ 

steel after prolonged heating at high temperature 

probably indicates that the steel is susceptible to 

hot shortness. The presence of grain boundary networks 

of sulfides and triangular-shaped sulfides at the 

junctions of grain boundaries in heated steels also 

probably indicates a susceptibility to hot shortness. 
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