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ABSTRACf 

Morphology and internal structures of surface features of 

the [-.fare ilumoruf'l area were interpreted from photo graphs and tOiJO­

graphic maps. The postulated origin of certain features is based 

on analog comparisons with known terrestrial features. The laws 

of crate ring and a newly developed computer program were applied 

to t\110 representative classes of craters to determine the possibility 

of a meteoritic impact origin. Some of the craters formed by 

meteoritic impact and others, including those with a radius larger 

than 10 Km, probably resulted from volcanic activity. 

Hare Humorum formed from centripetal subsidence followed by 

extensive lava eruptions. Spacially related rilles and gravity 

faults on the east and west of the Mare are tension fractures 

resulting from directed radial forces produced by the subsidence. 

Bending and monoclinal centripetal warping on the north and south 

of the Mare resulted in inward til ted older craters. Wrinkle ridges 

of sub-parallel marginal pattern are lava filled fissures and surface 

highs of lava showing a rough anticlinal form. These and similar 

fractures were the channe lways for the extensive 1 ava eruptions which 

covered the Mare. 

An interpretive geologic and tectonic map demonstrated the 

important structural features of the Mare Ilumonim area. 
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Chapter I 

INTRODUCI'ION 

One of the most significant events in human history occurred 

when man through his inventiveness and carefully planned efforts 

showed that he no longer need be earth bound. Within his reach 

is travel in space and the ability to leave the Earth. The Moon, 

naturally, is his first target, because it is Earth's nearest 

celestial body. From the first photos of the Moon's backside in 

7 October 1959, and the impact of a satellite on the lunar surface 

by the Russians 13 September 1959, to the latest soft landing of 

cameras and other instruments by the Russians in 3 February 1966, 

our body of information has been rapidly expanding. 
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The Moon is of primary interest to geologists for the challenge 

it offers and the many answers it will provide for some basic 

scientific questions. Can it yield answers to the origin and 

history of the Earth? Has the absence of an atmosphere and presumed 

lack of erosion by water, ice and wind, resulted in the preservation 

of features on the Moon's surface very much the same as they were 

after their formation billions o'f years ago? What was the thermal 

history of the Moon and how did it compare to that of the Earth? 

Is the Moon a layered body or is it heterogeneous in make-up? 

Are surface features the result of exogenous or endogenous forces? 

What basically are the maria and the highlands? What differences 

do they have? These and many other questions await specific 

answers as surface lunar exploration faces reality in the predictable 

future. 



A. Purpose and Scope of Investigation 

The purpose of this investigation was to study in detai 1 
) 
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and as quantitatively as_possible, the surface features of a selected 

Mare of somewhat different characteristics than others on the Moon's 

surface. Mare Htunorum was chosen and its geororphic* and structural 

characteristics investigated from available photographs and 

topographic maps of this portion of the lunar sphere. Computer 

analysis of data was also determined for specific features. These 

results were used to theorize on the origin and tectonic history 

of the ltmar features. 

Specific reasons for the choice of Mare Humorum (Latin: Sea 

of Moisture) are: a) the Mare is a tectonic unit, is sub-circular 

and surrounded by highlands, and could be studied as a single body; 

b) unique features not recognized in other places on the Moon, such 

as the conspicvous faults along its western side and large craters 

partially buried beneath the surface of the Mare; c) lack of 

consni~ss scarps arotmd the Mare; d) downwarping characteristics 

versus scarp features of other Maria (Imbrium, Serenitatis, Crisium); 

e) ccmsp·icae1UJ rille development on west and east sides, and f) 

occurrence of other common features of the Moon in Mare Humorum. 

Some of these features are defined below: 

Wrinkle Ridges: Long, relatively narrow ridges that occur 

both singly and in complex en echelon systems. These may exceed 

·------------------------------*Geo - while commonly referred to Earth, ground, is here used to 
express Earth-like forms on the Moon's surface. Use of well 
established geologic terminology for Moon analogs will permit 
ease of reading the voluminous literature now available and 
which will continue to develop. 
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300 km in length. Individual ridges are typically 15 to 30 km long 

and may be more than 100 m high (p. 299, Shoemaker, ~· ~· , 1962). 

Rilles: Long narrow depressions in the lunar crust. They may 

exceed 250 km in length, and be less than 5 km in width and 1 km in 

depth (p. 209, Fielder, 1961). 

Craters: This term is applied to all the circula~ depressions 

on the lunar or terrestrial surface irrespective of their origin. 

For a complete crater nomenclature see Figure 5. 

Terrae: "Relatively bright, relatively high surfaces or 

island-like single areas, usually '"ith distinct relief." (p. 3, 

8ulM~·,: J ~ !!..·' 1961). 

Marta: "Relatively dark, relatively low level surfaces, with 

more or less smooth surfaces and little relief surrounded by Terrae." 

(p.4, Bulow,!!_!!_., 1961). 

In addition to the descriptive and interpretive portion of this 

report, a tectonic and geologic map of the Mare is presented which 

summarizes the results of this investigation. 

B. Location, Size and Shape of Area 

Mare Humorum is in the southwestern part of the Moon's visible 

surface (Figure 1). It extends from latitude 15° S to 32° S and 

from longitude 28° W to 50° w. This coordinate system is the same 

as that followed by the u.s.G. S., U.s.A.F., N.A.S.A. and others. 

'7he coordinate origin is the point that would be the 
center of the Moon's visible disk if all librations* 
were simultaneously at their zero values". (p. 19, 
Alter, 1963) 

*Libration is the irregularity in the Moon's movements around the 
Earth which results in its not keeping exactly the same face towards 
the Earth. 
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Longitude is measured 360° around the equator from this point, 

·clockwise ' . · ·· ·' for an observer at the Moon's north pole. Latitude 

is measured along meridians and reaches 90° at each of the poles. 

''These coordinates are selenographic longitude and latitude" (p. 19, 

Alter, 1963). 

The area investigated includes Mare Humorum and the Terrae 

surrounding it to approximately 100 km from the margins of the Mare. 

Oceanus Procellanum botmds Mare Humorum on the North, Mare Nubium 

on the East and Terrae on the West and South (Figure 1). 

The area studied extends 500 km north-south and 600 km 

east-west and includes 250,000 square kilometers (about 100,000 

square miles). Half of this area is occupied by Mare Humorum. 

Gassendi, a large crater, lies on the northern margin of the 

Mare and occupies 9,000 square kilometers. U.oppelmayer on the 

southern margin is next largest and occupies 3,000 square kilometers. 

Craters of smaller size are irregularly distributed outside and 

inside the Mare (Figure 2). The Terrae occupy the rest of the area. 

Maps of the Moon are cornpi led according to the follm'ling 

resolution by the International Astronomical Union at its triennial 

meeting at Berkeley in August, 1961 (p. 20, Alter, 1963). 

"Resolution Number 1. 
For compiling new maps of the Moon, the following 

conventions are recoJJUiended: Astronomical maps for 
purposes of telescopic observations are oriented accarding 
to the astronomical practice, the south being up. To 
remove confusion the terms east and west are deleted. 
Astronomical maps for direct exploration purposes, are 
printed in agreement with ordinary terrestrial mapping, 
north being up, east at right and west at left. Altitudes 
and distances are given in the Metric System." 



Astrogeologic studies ordinarily utilize conventional maps 

with north at the top. This ~ystem is followed in this study. 

Because ~1are Humorum is some distance from the center of 
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the visible lunar surface, its shape is somewhat distorted on 

photographs. The distortion varies from a minimum in a direction 

concentric to this center to a maximum of about 30% shortening of 

distances in a direction radial to it. The area appears therefore, 

as an ellipse with its major axis in a NW direction and its minor 

axis in a NE direction. If the photographs studied are not 

projected on a sphere to eliminate this distortion care should be 

taken to make the necessary corrections when measuring distances 

and directions. Some of the photographs used in this study were 

not corrected for distortion. Corrections were applied, however, 

to measurements obtained from them. The topographic map has been 

corrected to true dimensions. 

c. Method of Investigation 

The Photographic Lunar Atlas (Kuiper, 1960) and its two 

supplements were used for this study. Photographs included in the 

Atlas were taken at five observatories. Twelve photographs of 

Hare Humorum area were studied. The best resolution obtained 

in the photographs is 0.8 km. This matches the optical resolving 

power of an 11 inch visual telescope used under perfect conditions. 

Photographs are of non-stereoscopic type. This is a definite 

disadvantage because three-dimensional analysis of lunar terrain 

would permit much more critical analysis of the various 
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surface features. The scale of the photographs utilized is 1:1,370,000. 

The A.C.I.C. (Aeronautical Chart and Information Center, hereafter 

referred to as A. C. I. C.) topographic map of Mare Humorum was used in 

conjunction with the photographs. It has a scale of 1:1,000,000 and 

a contour interval of 300 meters. This served as the final base map. 

Horizontal and vertical measurements \'/ere made on the topographic map 

as well as the photographs to increase the accuracy of the results. 

This method was especially useful in shadow-length measurements to 

obtain relative elevations of certain points above the surrounding 

plain. This procedure is described below: 

A point of known relative elevation ont the topographic map 

was selected, located on the specific photograph and its shadow 

measured. This procedure was repeated with other points and a local 

relation established between the shadow length and the elevation of 

any elevated point on the photograph. The factor derived was then 

applied to other selected points on the photograph whose elevation 

was desired. These were needed for prominences whose relief was less 

than the contour interval. Results obtained by this method are accurate 

within the range of plus or minus 30 meters. 

Comparisons were also made between certain lunar and terrestrial 

features of like shape and origin. Differences that might exist 

between the Earth and the Moon, such as gravity and essential absence 

of atmospheric pressure, where considered in this analog study. 

Finally, a coq>uter program, originally developed by Mr. W. J. 

Karwoski (personal communi&ation, 1966) to dete~ne the volume of 

material ejected from nuclear explosive craters, was modified to 



determine the volume of material ejected in a meteoritic impact 

and explosion. Results obtained were compared with the geometric 

prc!>perties of the craters on the Moon to determine whether or not 

they could have formed by meteoritic impact. 

D. Previous Work 

Very little detailed work has been published on the structure 
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of Mare Humorum although it is mentioned occasionally in a number of 

publications. An abstract of a study was published by Proctor, ~ ~·, 

(1961) on work done on the structural features of the ~1oon with 

reference to Mare Humorurn. Linear elements on Mare Hurnorurn and their 

origin were analyzed by Salisbury (Salisbury, ~ al., 1965). 

Dr. Salisbury (personal communication, 1965) indicates that work is 

lDlderway at the present time on the structural geology of Mare Humorum. 

Earlier workers include Baldwin (1949), Spurr (1944) and others. 

A complete list of literature on the subject of the Moon used in 

this study is included in the bibliography. 

E. Acknowledgements 
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My deepest appreciation goes to Dr. George B. Clark for his illuminating 

discussions. I thank Dr. William J. Karwoski for his permission and 

help to use and modify the computer program related to crater size and 

ejecta volume. I also thank Mr. Hasan El-Etr for his helpful comments 

and technical assistance. 
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Chapter II 

MORPHOLOGY AND STRUCfURE OF MARE HUMORUM AREA 

A particular description of the features of Mare Humorum, the 

surrounding Terrae, the craters, the faults, the wrinkle ridges, the 

rilles, the rays and the domes is presented. A detailed analysis of 

crater dimensions, volume of ejecta, and their possible origin based 

on energy relationships, strength of material and gravity is also 

considered in this section. 

A. The Circular Plain 

The Mare Humorum can be considered as a circular plain with 

irregular boundaries whose surface is for the most part smooth and 

flat and has a dark photographic tone. 

Relief irregularities in the Mare include craters, wrinkle ridges, 

rilles and domes. Their combined area is less than 20% of the area of 

the Mare. In Figure 3, the 3,600 m contour line* roughly bounds the 

Mare and separates it from the surrounding Terrae. Note that some 

wrinkle areas actually extend above the plain in the eastern portion 

and the contour encompasses these. A low portion is present in the 

southwest part where the 3,600 m contour line ·4Ut\eS west and north and 

south and southeast respectively. From this contour line the surface 

slopes very gently towards the central portion of the Mare with minor 

modification by wrinkle ridges. The amount of slope does not exceed 

o.l% or one meter per thousand meters. The lowest point on the Mare's 

-------------------------------*Vertical datum is based on 
a lunar radius of 1,738 km. 
to 2.6 km below the surface 
the extent of lunar surface 

an assumed spherical fi gure of the 1•1oon and 
The datum plane was subsequently adjusted 

described by the 1,738 km radius to rn1n1m1ze 
of minus elevation value (A.c.r.c., 1962). 
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surface (excluding crater floors) lies close to the crater Doppelmayer 

K near the center of the Mare and about 100 meters below the 3,600 m 

contour line. The crater itself is 300 meters deep and its floor 

elevation is therefore 3,200 meters, making it one of the lowest points 

on the surface of the ~1are. The lowest point, however, is surprisingly 

the floor of the crater Gassendi o. It lies in the middle of a '~tinkle 

ridge and its floor has an elevation of only 2,600 m. The floor of 

Gassendi J is at 2, 700 m. Each of these deep craters is associated 

with wrinkle ridges. 

Over 80% of Mare Humorum' s surface can be considered as a level 

plain. The two topographic profiles across the Mare (Figure 4), with 

a vertical exaggeration of SO times, show the relative elevation of 

each feature on the Mare's surface. The 3,600 m contour line is used 

as a reference plane (vertical datum) for its convenience only. 

Tone and Texture - Photographic tones that characterize t he Mare 's 

surface are: very dark grey, dark grey and light grey. The li ght grey 

tone is associated with some of the small craters and will be discussed 

later. The dark grey tone covers most of the surface. The very dark 

grey tone exists over local separate areas distributed around the 

margins of the ~1are. Some of these tone areas have well defined 

boundaries (Figure 2) such as around the crater Leibi g G in the south­

western part, in the vicinity of the craters Doppelmayer and Puiseux 

in the south and northwest of the crater Loe'"Y in the east. Other tone 

areas do not have well defined boundaries but merge gradually into the 

dark grey tone area such as around the southern rim of the crater 

Gassendi (Figure 2). 
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At the photographic scale used the surface of the Hare has a 

smooth texture in both the dark and very dark grey tone areas. Some 

irregularities exist, however. These are low irregular ri dges in t he 

dark grey tone area, low hummocks and shallow depressions in t he ver~ 

dark grey tone areas, and small craters in both areas. 

The tone and texture of the surface of Mare Humorum are character­

istic of the formations described by the u.s.G.S. as t he Procellarum 

Group (Shoemaker, 1960) named because of its extensive exposures in 

the Oceanus Procell arum area (Figure 1). The latter is the largest 

exposure of this material on the lunar surface. Note that (Table I) 

the Procellarum Group is part of the Archimedean Epoch of the Imbrian 

Period. 

The tone and texture of the rocks of the Procell arum Group 'l'li 11 

be used as the major criterion in identifying exposures of this 

material throughout the Mare Humorum area. 

Boundaries - The 3,600 m contour line "''"~hich has been used to 

separate ~1are Hu100rum from the surrounding Terrae is a rather logical 

boundary. The extent of the Procellarwn Group materi al exposed to 

the surface was determined using its photographic characteristics 7.or 

its identification. The results of this photogeologic study are shown 

in Figure 3, an index map for the area. The Mare llumormn surfac~ 

material extends above the 3,600 m contour line. The maximum he i ght 

at which this material is exposed is uniform and is about 250 meters 

above the 3,600 m contour. Its lateral extent beyond t he 3,600 m 

contour is dependent on the slope of the land, extending further on 

the more gentle slopes. 
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TABLE I 

L\Dlar Time Periods 

PERIOD* EPOCH EVENI'S 

Copernican Formation of ray craters. 

Eratosthenian Formation of craters whose rays 
are no ri.mtgex•. visible. 

Extensive deposition of Mare 
material of the Procellarum 
Group. Formation of Post-

Imbrian Archime dian Apenninian craters, older than 
at least part of the Procellarurn 
Group. 

Events related to the formation 
Apenninian of the Mare Imbrium basin. 

Pre-Imbrian Not yet formally divided. 

*Lunar time periods are sholm according to the system established 
by the u.s.G.s. The chart shows the periods chronologically, with 
the earliest at the bottom (p. 41, Shoemaker, 1964). 
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In the southwestern part of the Mare the 3,600 m contour line 

is not ,e}osed; , , · but expresses an outlet leading from the Mare to 

a lower lying area to the southwest, which is some parts has an 

elevation of only 3,000 meters. This area includes the crater 

Palmieri (Figure 3) and is covered by the darker toned material of 

the Procellarum Group. 

A profile of the probable original surface of Mare Humorum is 

shown in Figure 4, by the green line. The current surface is 

indicated by the black line. The suggested original surface has an 

elevation of 3,850 meters. 

B. The Terrae 

The Terrae are elevated areas of the lunar crust which surround 

the Maria on all sides. For the visible lunar surface these occupy 

65%. 

In the studied area, the Terrae surround:: Mare Humorum except 

for the local depressions on the north which connect this Mare with 

Oceanus Procellarum (Figure 1), and in the southwestern portion already 

noted. The Terrae are composed of isolated high areas with irregular 

shapes. The entire area is dotted with craters. Many of the hi gher 

areas are actually remnants of pre-existing crater rims. 

The Terrae are distinguished by color tone, morphological features 

and elevation. The tone varies from very light grey on the slopes 

facing the sun to light grey elsewhere. Craters, consisting of old 

appearing somewhat subdued craters, to sharply defined and even rayed 

craters, pock the surface of the Terrae. The maximum elevation is 

s,200 meters at a point in the northeastern part of the area west of 



• 

HUMOR.U.M\ • 
•• 

• 

0 

0 
0 

0 0 
0 0 

Fig. 3.. Map of Mare llumorum Showing the Area Covered By Material 
of the Procellarum Gmup. 

r I ~taterial of the LIST OF CRATERS 
Procellarum Group 

1. Gassendi 10. Puiseux 
3600 Meters 2. t.lersenius 0 11. Vitello 
Contour Une 3. Liebig 12. llippalus 

4. Liebig F 13. Loewy 

• Wrinkle Rid ReS s • Liebig G 14. Doppelmayer J . 
6. Palmieri 15. Doppe 1 mayer K _.......... 1tilles 7, Doppe1mayer 16. Doppe 1 mayer L 

oo 8, Lee 17. Gassendi J 
Craters 9, Lee M 18. Gassendi 0 

0 100 200 100 400 Km 

Sc a II 



1. 
2. 
3. 
s. 

2 3 

A 

~Sersenuis III Rille 
Liebig I Rille (Fault) 
Rille Inside Hare llumorum 
Crater Coppelmayer J 

c 
SOtrrll 

1. Crater Lee H 

t·IARE JIUMORlr.·f 

4 5 

4,6,7,8,9. 
10. 
11. 

HARE Hill-fORUM 

\~rink le Ridges 
llippalus I Rille 

10 11 

B 

Eastern Rir.1 of Crater llippalus 

6 

0 
NORTH 

2,3. Southern and Northern Rims of Crater Puiseus 
4. Southern Rim of Crater Gassendi 
s. Central Peak of Crater Gassendi 
6. Northern Rim of Crater Gassendi 

0 100 200 300 400 500 600 Km 

Scale 

Vertical exaggeration SO tioos. The red line is the level of the 3,GOO m~ters ~fcrence 
plane. The green line is the surface of the Hare before subsidence. 

Fig. 4. Topographic Section Across 'tare ·11u100rum alon!! Lines A-B and CO in Fig. 1. 

~fETERS 

4,400 
4,000 
3,600 
3,200 

~fETERS 

4,400 
4,000 
3,600 
3,200 



17 

the crater Agatharchides (Figure 2). 

c. The Craters 

1. Lunar Crater Study History 

No standard classification of lunar craters has been 

accepted to date. ,\·1ajor reasons for this are: a) difference in 

opinion as to the origin of the craters; b) difficulties of measurement 

of true crater depth and volume (Figure 5); c) uncertainty regarding 

the nature and characteristics of the lunar surface material and 

d) irregularities in the size and distribution of the craters. 

Crater nomenclature used throughout this study follo\oJS that 

of Hansen (1964) and is shown in Figure s. A crater cross section 

and the various crater parts are labelled and defined by him. 

Two major theories, the Volcanic Theory and the i'-leteoritic 

Impact Theory, have been suggested for lunar crater origin. One 

suggests an endogenous and the other an exogenous energy source. 

Supporting evidence for both schools of thoughts has been offered. 

In this study of lunar craters, without respect to genetic 

connotations, four netl10ds \.oJere consitlered in the analysis of the 

craters in the ~tare llumorum area: 1) i\nalo gy of lunar craters and 

terrestrial volcanoes in shape and size; 2) Correlation of de;Jtl1 

and radius of craters, and 3) Simulation of lunar craters bv 

laboratory experiments. 

2. Analogy of Lunar Craters and Terrestrial Calderas 

A caldera is defined as a large, approximately circular, 



.. 

Da . Maximum depth of apparent crater below presho! 
ground surface measured normal to the presho! 
ground surface. • 

Dal . Depth of apparent crater below average apparent 
crater lip crest elevation. 

Dob 1\ormal depth of burst I measured normal to presho! 
trround surface I. 

Dt Maximum depth of true crater below preshot ground 
s~rface. 

Ejecta . Material abo,·e ancl or bevond the true crater and 
includes: <I ' f•IIJack : d!1 breccia-ballastic tra­
jectory ; 13 I Ju;t- aerosol transport; etc. 

Fall back. Material fallen inside the true crater and includes: 
<II slide blocks: 12 I breccia and stratified fallback 
- ballastic trajectory ; 13 1 dust-aerosol transport ; 
( 41 talus; etc. 

Hal ... Apparent crater lip crest height above presho! ground 
surface. 

Lac . . . Apparent crater lip crest. 

Ra . . . Radius of apparent crater measured on the preshot 
ground surface. 

•• 

RaJ .. . Radius of apparent lip crest to center. 

Reb . . . Radius of outer boundary of continuous ejecta. 

Sa . Apparent crater surface, e.g. rock-air or rubble-air 
interlace. 

Sal . . - Apparent lip surface. 

SGZ . . Surface ground zero. 

Sp . . . Presho! ground surface. 

S. . . . . True crater surface, e.g. rock-air or rock rubble inter­
face. 

V a . . . Volume of apparent crater below presho! ground sur-
face. 

Val . . . Volume of apparent crater below apparent lip crest. 

V t . . . Volume of true crater below presho! ground surface. 

ZP . .. Zero Point-effective center of explosion energy. 

• All distances, unless specified otherwise, are measured paral­
lel or perpendicular to preshot ground surface. 

Fir,, 5, Crater Terminology (After Hansen, et.al,, 1964), 
...... 
00 
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volcanic depression, which may be more than 5 km in diameter and 

1,200 m in depth. Within the depression, considered to be a major 

collapse feature, one or more volcanic craters may occur, the largest 

of which is many times smaller than the caldera itself. 

Three examples of calderas that are similar to some lunar craters 

are shown in Figure 6. The first one is Niuafo'ou (Figure 6A) which 

is "a caldera on ••• a basalt dome the summit of which emerges from 

the ocean as the volcanic island Niuafo'ou, near Tonga, in the South 

Pacific" (p. 37, Cotton, 1944). It is similar in shape to the lunar 

crater Vitello (Figure 7) but is much smaller. The diameter and 

maximum depth of Niuafo'ou are 4.5 km and 1,200 rn respectively, while 

those of Vitello are 40 km and 1,400 rn. 

Another caldera which is similar to Vitello is Aniakchak in Alaska 

(Figure 6B). It ranges in depth from 360 to 900 rn and is 5 krn in 

diameter. 

The last example is the active volcano Fogo in the Cape Verde 

Islands which has a summit higher than the surrounding caldera wall 

(Figure 6C). It is similar to the lunar crater Doppelrnayer whose 

central peak is higher than its rim (Figure 7). 

The difference in size between lunar craters and terrestrial 

calderas can be explained partly by the lesser gravity of the Moon. 

It can be shown by the laws of motion of a projectile that particles 

leaving the surface of the Earth and the Moon with the same initial 

velocity and angle will travel a horizontal distance on the ~~oon equal 

to six times that on the Earth, neglecting the effect of the atmosn~ere. 

The absence of an at100sphere on the Moon's surface \vill allovJ the 

particles to travel farther than on Earth where they encounter air 
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resistance. Other factors which could account for the difference in 

size ;ari strength of the rock material and differences in available 

energy (i.e., vapor pressure and/or impact explosive energy). 

3. Correlation of Depth and Radius of Craters 

As a result of cratering experience a relation is knm-m to 

exist between the dimensions (R and D) of different explosion craters 

whether it be a chemical, nuclear or impact explosion (No rdyke, 1961). 

Terrestrial volcanic craters, on the other hand, have a poor correlation 

·of these dimensions (Baldwin, 1949). To determine \ihether lunar 

craters \iere formed by impact explosions or volcanism one must 

determine the radius to depth ratio of each crater. 

Thirty-four well developed craters in the Mare Humorum area Nere 

studied. The radii of these craters ,.,ere measured directly from the 

photographs and the topographic map. The depths of most of them '"ere 

compiled from former studies. The depths of those not studied 

previously \iere measured by the method described above. Data on the 

34 craters, arranged in order of decreasing radius, are listed in 

Table II. The ratio of radius to depth of the individual craters is 

also shown. It should he noted that the radius and depth measured for 

each crater are the radius froil apparent lip crest to center (Ral) and 

depth of apparent..: crater be low average lip crest elevation (Dal) 

(Figure 5). 

Three distinct groups of Ral/Dal ratios are ap-parent and are 

distributed as follows: 

(1) Ra1/Dal = 4.2 - s.s for 14 craters 

(2) Ra1/Dal = 9.0 - 13.3 for 14 craters 



23 

(3) Ral/Dal > 13.3 for 6 craters 

The last group incl udes the largest six craters in the area 

(Gassendi , ~1ersenius, Doppel mayer, Hippalus , Vitello and Palmieri) . 

Note t hat these l atter Ral /Dal ratios are widely scattered, actual l y 

ranging from 15 . 2 to 75. 

For visual representation, the depths and radii of t he three 

groups are plotted in Figure 8. Curves (a) and (b) are plots of 

groups (1) and (2) respectively. Curve (c) is a continuation of (b) 

but is pl otted on a different scale, 

The slope of each curve is the mean of the Ral/Dal ratios of the 

corresponding group. The slope of curve (a) is about 5 and that of 

(b) about 11, Curve (c) is dashed because of t he lack of enough 

points. It is possible tha t the continuation of (c) shoul d be a 

curve rather than a straight line relationship. 

4. Simulation of Lunar Craters by Laboratory Experiment s 

Laboratory experimentation by simulation studies of crater 

development is anot her approach which might prove helpful to our 

understanding of lunar craters. Suc~ssful · :. simulation of 

crater formation in t he laboratory can be achieved when there is a 

dynamic similarity* between the model and the original. 

Following the procedure of Hubbert (p. 1505 .tlubhert.., 1937) it 

was calculated that t o simulate a spherical meteorite with a diameter 

of 100 met ers, a velocity of 20 km/sec, impacting a surface having a 

shearing strength of 100 kg/emf, the following model is required: a 

-------------------------------*Dynamic similarity existsbetween a model and the original when 
all corresponding physical properties of, and the forces acting 
on the two bodies are propmetional. 
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TABLE II 

Depth and Radius of Craters 

in the Hare Huoorurn Area* 

RADIUS (Ral) DEPTH (Dal) Ral 
NAME (Kilometers) (Ki 1 orneters) oar 

Gassendi 55.0 2.0 27 . 5 
Mersenius 35.0 2.3 15.2 
Doppelmayer 30 . 0 0.4 75 . 0 
Hippalus 28.0 0. 9 31.1 
Vitello 22.0 1.4 15 . 7 
Palmi eri 20.0 1.2 16.7 
Lee 20.0 1.8 11.1 
Liebig 17.0 1.5 ll.3 
Mersenius D 16.0 1.2 13.3 
Liebig G 10.0 0. 9 11.1 
Mersenius s 8. 0 1.6 ; s.o 
Dun tho me 7.5 1.5 5.0 
Doppelmayer G 7.5 0. 7 10.7 
t·1ersenius C 7. 0 1. 5 4.7 
Palmieri E 6.5 1.3 5.0 
Gassendi 0 6.0 1.2 5.0 
Agatharchides c 6.0 1.1 5.4 
Agatharchides Ca 6.0 o.s 12. 0 
Vitello B 5.5 1.1 5.0 
Gassendi J 5.0 0.9 ,.. ,. 

;:~.o 

Mersenius E 5. 0 1.1 4.5 
Vitello P 4.0 0.4 10.0 
Hippalus A 4.0 0.8 5.0 
Gassendi G 3.8 0. 9 4.2 
Gassendi E 3.7 0. 8 4. 6 
Liebig F 3. 5 0.6 5.8 
Agatharchides B 3.4 0. 3 11.3 
Puiseux D 3. 3 0.7 4.7 
Vitello E 3.6 0.4 9.0 
Doppe1rnayer K 3.0 0.3 10. 0 
Gassendi L ** 2.9 0.27 10.7 
Gassendi Y ** 2.7 0.25 10.8 
Doppelmayer J ** 2.7 0.25 10.8 
Doppe lmaye r L * * 2.5 0.2 12.5 

*Data on depths \'lere obtained from former studies and data on radii 
were measured directly. 

** Measured by the author. 
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ball of lead 1 ern in diameter and a velocity of 0.5 krn/sec impacting 

a surface of clay having a shearing strength of 10 g/cmf. These 

models, however, do not account for the fact that high velocity 

meteors explode on impact. 

Results of experiments performed by Sabaneyev and others ( p. 423, 

Sabneyev, 1960) showed that the greatest similarity between models 

and lunar features was attained by dropping matter that possesses a 

spherical lh~• and negligible cohesion of its particles. For symmetrical 

craters the angle of incidence with respect to the horizon should be 

strictly perpendicular. Powders constituting perfectly loose material 

cannot be used as the growtd material. 

'~he models having a satisfactory similarity with lwtar objects 
can be obtained only in a ground endowed with properties of the 
solid" (p. 425, Sabaneyev, 1960). 

Several others: Benevolensky, Charters and Wegener (p. 416, 

Stanyukovich, !!_ .!!.•, 1960) performed similar experiments. These 

researchers confirm the results made by Sabaneyev and offer supporting 

evidence for a possible meteorite impact origin for some of the lunar 

craters. 

s. Quantitative Analysis of Lmar Craters 

A quantitative cratering approach is considered in an 

attempt to recognize lunar craters formed by meteoritic impact in 

the Mare Hurnorum area. This section utilizes recent developments and 

experience in cratering and applies them to two lunar craters represent-

ative of two classes in the Mare Hurnorum area. A similar procedure can 

be followed for other lunar craters. For this study the craters 

Hippalus A and Vitello P (Figure 2) were chosen for the following 

reasons: 
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a) each of them is representative of one of the two classes of 

craters shown in Figures 8 and 9. Thus the Ral/Dal ratio is 5 for 

Hippalus A ~d 10 for Vitello P; b) the two crate r s have equal radii 

which permits correlation between them and their respective classes ; 

c) their size is small compared with other lunar craters (Table II). 

This makes them much easier to correlate with terrestrial craters. 

The laws of cratering were developed by many researchers 

(Eichelberger, Nordyke , Cook and others) from experiments conducted on 

Earth (Cook, 1958). It is recognized that application of the data for 

lunar craters is very difficult because of t he differences between the 

Earth and the ~foon in surface gravity (9.8 m/sec2 vs. 1.62 m/sec2), 

atmosphere and the tmknown nature and characteristics of the sur face 

material. 

Certain basic assumptions are made to simplify the problem of 

crater analysis and make a reasonable approach possible. These 

assumptions are: 1) When a meteorite impacts a surface , an explosion 

will result which is simi! ar to a chemical or nuclear explosion that 

takes place at t he surface or at a shallow depth (Clark, personal 

communication, 1966) . After a meteorite impacts a target its velocity 

will be slO\~ed mtil, after penetrating a certain distance , it reaches 

the shock wave velocity of t he tal'!et. Then the rreteori te' s kinetic 

energy will be suddenly released and an explosion will occur 

(Baldwin, 1949); 2) TI1e true crater radius is equal to the ap!_"larent 

crater radius (Figure 5); 3) The true crater dimensions are independent 

of gravity and particle velocity. Apparent crater dimensions are dependent on 
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gravity and particle velocity (Clark. personal communication. 1966 

and Karwoski, 1966); 4) The true crater dimensions obey the Cube-Root 

Scaling Law (p. 6, Nordyke. 1961). This law relates t\'IO craters in 

the following manner: 

Rl wll/3 
= • • • • • • • • • • • • • • (1) 

and 

• • • • • • • • • • • • • • • (2) 

where R1, v1, and w1 are the radius, volume and charge weight (in 

tons* of TNT) of the first crater respectively, and R;z, v2 and w2 

are the corresponding values for the second crater• 5) The effect 

of or absence of an atmosphere is ignored• 6) The craters are axially 

symmetrical with respect to the Y-axis; 7) The apparent crater volume 

is equal to the volume of an inverted cone whose diameter and height 

are equal to the diameter and depth of the apparent crater respectively. 

Apparent Crater Volume: In the analysis of the apparent crater 

volume of the crater Hippalus A: Ra = 3.8 km and Da • 720 m. 

Va = l/377~h = 1/3 TT(Ra)2(Da) = 1.09 x 1o16cm3 

and that of Vitello P is: 5.45 x lo1Scm3. 

True Crater Volwne: Because of the fallback material that partly 

covers the true crater (Figure 5), the true crater volume cannot be 

measured directly from a photograph or a topographic map. It can he 

calculated, however, in the following manner: 

Equation (1) can be written in the form: 

R • RaAl/ 3 • • • • • • • • • • • • • • • • (3) 

-------------------------------*Only metric tons are used in this study. The weight of the 
explosive is in tons of TNT. 



where A is the energy of the explosion, R is the radius of the 

resulting crater, and R0 is the crater radius obtained with an 

explosive of unit maximum available energy (p. 263, Cook, 1958). 

For shallow depth of burst one gram of TNT produces 0.5 Kcal and 

R0 was computed to be 3.0 cm/Kcall/3 (p. 263, Cook, 1958). 
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Using this value of R0 in equation (3) and solving for A, the 

energy needed to form the crater Hippalus A can be found as: 

A= (3.8 X 105)3 = 2.03 X 10lS Kcal 
3 

The relation between the true crater volume and the energy of t he 

explosion can be expressed in the general form: 

Vt = KA • • • • • • • • • • • • • • • • • ( 4) 

where K is a constant. K can be found from the Arizona meteoritic 

crater* in the following manner: 

The energy used in producing the Arizona crater (R = 633m) 

is from equation (3). 

A = (~X 104) 3 
3 

= 9.4 X 1012 Kcal 

The apparent volume for the Arizona crater is: 

Va = 1/3 rr(633) 2 (213) = 8.9 x 1013 cm3 

The true crater volume is: 

Vt = 1/3 rr(633) 2 (403) = 16.9 x 1013 cm3 

Substituting the values of Vt and A in equation (4): 

K = Yt = 18 cm3/Kcal 
r 

Using the value of K and A for the crater Hippalus A in equation 

-------------------------------*Geometric data on depth and radius of apparent and true crater of 
the Arizona meteoritic crater were taken from p. 70, Baldwin, 1949. 



(4) we find: 

vt = (18)(2.35 x 1015) 

= 3,65 x 1016 cm3 

as the true crater volume of Hippalus A. 

As a result of experiments performed on the impact of a 
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projectile on a target • the value of K was found to be related to the 

density of the projectile and to the density and compressive strength 

of the target material (p. 256, Cook, 1958). Equation 4 is then: 

t> l/2p 1/2 
vt = ~P t 

--~----
(P 1/2 + p 1/2)2 

p t 
-· • • • • • (5) 

2<T 

where Vt is the hole volume produced in the target material which is 

equal to the true crater volume, Pp, mp and V are the density, mass 

and velocity of the projectile respectively, Pt and cr are the density 

and compressive strength of the target material. 

The explosive energy A is equal to the kinetic energy of the 

projectile (1/2 mV2); substituting this in equation (5) gives the 

value of K as: 

K = p 1/2 p 1/2 p t 1 

(P 1/2 + p 1/2)2 
p t 

• • • • • • • • (6) 

The value of K is inversely proportional to rr and since the term 

ppl/2ptl/2 

(ppi/2 + ptl/2)2 
does not vary greatly \'lith variations in Pp and P t 

it follows that K is primarily dependent on a- • 

In the solution for the true crater volume the value of (J" was 

that of the material in which the Arizona Meteorite Crater was formed 
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which is sandstone. The compressive strength of this sandstone 

can be found as follows: 

p l/2p 1/2 
. p t 1 (T = 

(P 1/2 + p 1/2)2 K 
p t 

. . . . . . . . . . . . . . . (7) 

K = 18 cm3/Kca1 = 4.3 x lo- 10 cm3/erg.for extreme values of 

P and P , the value of a- varies from 4 to 5 x 1 o8 dynes/ cm2 or 
p t 

400 to 500 Kg/cm2. 

Now, for the crater Hippalus A: 

Actual Vt c:JHA 

Calculated Vt = • • • • • • • • • • • • ( 8) 

where: 

Actual Vt = correct value for the true crater volume of Hippalus A. 

Calculated vt = 3.65 X 1016 cm3 

() HA = the compressive strength in Kg/ cm2 of the material in 

which the crater llippalus A was fomed. 

<J = 400 to 500 Kg/cm2 • 

The ratio of the true to apparent volume of the A~izona crater is: 

= 1.90 

TI1e ratio for Hippalus A is: 

vt 3.65 x 1o16 

= 
1.09 X 10!6 

= 3. 35 

A smaller percentage of the ejecta will be able to cross the 

rim of Hippalus A than the Arizona crater because the radius of the 

first is 6 times that of the second. On the other hand, a larger 

percentage will cross the rim of Hippalus A because the gravity is 
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6 times smaller. These factors tend to cancel each other. The 

ratios (~) of the t\olo craters should apuroach each other. llow v ~ 
a 

much depends on the velocity of the ejecta, the difference in the 

nature and characteristics of the surface material, the difference 

in atmospheric pressure and other minor factors. 

Vt llo'"ever, it is reasonable to say that the ratio of - for 
va 

luppalus should be less than 3.35. The correct value of Vt is, 

therefore, less than 3.65 x 1016 cm3• From equation (8) we find, 

then, that the compressive strength of the material in the vicinity 

of Hippalus A on the Hoon is less than 400 Kg/cm2 but not much less 

than 200 Kg/cm2 because then the ratio of ~ of I-lippalus A would be 
a 

less than that of the Arizona crater. The average compressive strength 

of basalt is 2,750 Kg/cm2 and pumice is 142 Kg/cm2 (p. 8, Strom, 1963). 

The Computer Program: A computer program was set up to determine 

the volume of material (ejecta) thrown out of a crater following 

impact and explosion of a meteorite as well as the range of deposition 

of this ejecta around the crater. 

Input data: a) the energy of the explosion in terms of equivalent 

tons of TNT: for surface or shallow depth of burst: 

w = A(Kcal) 9 
Kcal/ton = 4.7 x 10 tons 

b) the depth of burst was varied from 0 to 100 meters; c) the velocity 

range of the ejecta \'lith assumed values from 80 m/sec up to the 

escape velocity of the Moon (2.38 Km/sec). 

Results of various trials showed that the largest possible volume 

of ejecta (5.5 x 1015 cm3) was obtained for a surface explosion with 
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as assumed constant velocity field of 90 to 100 m/sec. As the 

velocity of the eject a increased (from 90 m/sec), t he volume 

decreased and the material was thrown a larger distance from the 

crater. Inspection of t he area around Hippalus A on one of t he 

photographs revealed that t he maximum distance of ejecta deposition 

measured f rom the rim of the crater is approximately equal to one 

crater radius . This corresponds t o a velocity f ield of 110 to 

120 m/sec and to an ejecta volume of 3.3 x 109 cm3. 

The percentage of the calculated to the measured apparent 

crater volume i s for Hippalus A: 

3.3 X 1015 
16 (1 00%) = 30% 

1. 09 X 10 

for Vitello P: 

3.3 X 1015 
(100%) = 60% 

5. 45 X 1015 

The volume of the ejecta from the crater Ilippalus A can be 

found by using the rim height and the range of deposition of ejecta 

measured from the photographs: 

Rim Volume, Vr = 2.36 x 1015 cm3 

Difference in the volume of the ejecta before and after deoosition 

is equal to tlie volume of t he ejecta , Ve as calculated by the computer 

minus the volume of the rim. 

Volume l ost = Ve- Vr = (3. 3-2 . 36) x 1015 

= 0. 94 x 1015 cm3 

Ei1lJ>ressed as a percentage of Ve: 

0. 94 X 1015 

3. 3 X 101S 
(100%) • 28.5\ 



If the effect of erosion and isostasy is neglected, then this 

represents the difference in porosity between the ejecta hefore 

impact and after deposition or 

Ne = Nr + 28.5% ••••••••••••• (9) 
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where Ne is the porosity of the ejecta before impact and Nr is its 

porosity after impact and deposition. 

Equation (9) also applies to the fallback material. It states 

that the volume of the fallback material will be 28.5% less than the 

original volume before impact. The apparent crater volume \'lill 

increase by an equal amount. 

D. The Faults 

A fault is here defined as a fracture in the Moon's surface 

which shows visible displacement in photographs and/or on lunar 

topographic maps. The most pronotmced fault in the Mare Humorum 

area lies along the western margin of the Mare (PLATE I). The 

northern end of the fault is just inside the crater Gassendi. It 

crosses the western wall of this crater and its vertical displacement 

decreases tmtil it disappears 50 Km southwest of Gassendi tmder a 

later cover of the Mare's surface material. A rille appears on strike 

a short distance southward in this covering material. This separates 

into two branches, tmites again and merges into the fault which 

reappears at a point east of the crater ~1ersenius E (PLATE I). The 

vertical displacement appears to increase gradually southward. The 

fault extends to 260 rn above the surface of the Mare south of the 

crater Leibig G. The southern end of the fault disappears .again 

under a .cover of the Mare's surface material. 
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The fault is a nonnal fault \'lith mainly db sli:' novement :1nd 

the downthrO\m side on the eastern block. 

Another fault of less conspicuous appearance and N 40 E strike 

extends along the southeastern marp,in of the lllare (PLATE I). The 

length excluding the concealed part is 80 Km. 

A small fault cuts across the western rim of the crater Hir>nalus. 

A number of faults cut the rim of Gassendi at various locations, 

especially the southern portion whcih adjoins the Mare (PLATE I). 

These do not 5how the continuity of the faults described above. 

E. The Wrinkle Ridges 

.The wrinkle ridges occur within ~1are Humorum (PLATE I). A 

-~rgernumber occur in the eastern portion than in the western part. 

Few are present near the center. The general form is an elongate, 

relatively narrow rise above the Mare surface. In cross view they 

appear as anticlinal folds with plunge often shown on the terminal 

portions. i'-1any of the wrinkle ridges show an en echelon pattern 

along the eastern part of the Mare. All of the ridges are less than 

200m in height and their slopes are less than 5°. The color tone 

suggest a rock composition the same as that which covers the ~1are. 

Most of the individual ridges are less than 20 Km long hut t\'IO 

of them north of Doppelmayer are more than 60 Km and one ridge 

southwest of Gassendi is more than 100 Km long (PLATE I). 

"By telescopic examination Kuiper has found protrusions and 
fissure-like depressions on their crests" (p. 295, Shoemaker, 
:E_ al. , 1960). 

Similarities have been suggested between I mar Mare ridges and 

terrestrial oceanic ridges (p. 473, Fielder, 1963). 
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F. 'The Rilles 

Rilles in the l\lare 1-lurnorum area are continuous gently curved 

to straight line segments. They vary in length from 10 Krn to more 

than 250 Km. Generally the longer rilles are the vlidest. Based on 

topographic and photographic evidence they appear to maintain the 

same width through their entire length. Small rilles are generally 

less than half a kilometer in width while the longer rilles are 

3-4 km in width. Depths are unknown. 

Rilles may branch, merge, cross each other or other surface 

features as well. Some craters (Mersenius D, Palmieri, Hippalus 

and others) are crossed by the rilles and are thought to be older 

(PLATE I). Some craters such as Mersenius C and Gassendi G, cover 

the rilles and are younger. 

The preferred directions for the rilles are NE-SW, N-S and 

NW-SE. In this they resemble the wrinkle ridges. 

Tite rilles are present both inside and outside of l\iare Hurnorum. 

They are also visible within some of the large craters (PLATE I). 

They are concentrated northwest, east and southeast of the Mare and 

inside Gassendi. 

Gi~ :' The:: Rays 

The rays are generally narrow bright areas on the lunar surface. 

They may be locally concentrated as relatively small irregular 

elongate covering of the Maria. Wrinkle ridges may affect the local 

distribution of the ray forms. Rays cast no shadow suggesting absence 

of relief. They are usually associated with some of the large young 

appearing craters. 



37 

Rays in the Mare Humorum area occur within the r· lare. They 

appear to be associated with craters younger than ~1are material 

(PLATE I). No general trend or pattern is noticeable for the Mare 

Ilumorum rays. They do not appear to radiate from any ryarticular 

crater area. 

H. The Domes 

Domes are rounded structures rising above the lunar surface 

which resemble terrestrial domes and shield volcanoes in form. These 

structures occur both within and without Mare Humorum. 

A typical dome occurs in the southwestern part of the Mare 

(PLATE I). The dome is circular in shape, about SO Krn across and 

rises to 150 m above the Mare surface. 

"An obvious feature of the lunar Maria is the presence of 
domes - some with summit pits. Moreover in the basal tic 
provinces on Earth, basal tic domes are common and often 
have a sununit pit". (p. 182, Green, 1960). 

Domes resemble also terrestrial shield volcanoes. However, "the 

surfaces of many domes are, unlike most shield volcanoes distinctly 

convex" upward (p. 295, Shoemaker, 1960). 

Eight domes are visible inside Mare Humorurn with a concentration 

of six in the east and southeast (PLATE I). Domes are difficult to 

recognize in the Terrae and are not readily distinguishable from 

individual hills. No definite pattern of distribution is recognized 

for the domes. 
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DEVELOPHENf OF MARE IIU\10RUH AREA 
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TI1e observations and measurements made in this study wi 11 be 

interpreted here. On the basis of this interpretation, the p,eolo gic::t1 

history of i'.tare Humorum area will be constructed and discussed. The 

events will be presented in the order in which they occurred. 

A. The ~1are Humortun Basin 

The position of Hare Humorum in the central part of the investi~ated 

area. its circular to subcircular botmdary, its lower elevation relative 

to the surrol.Blding Terrae, the concentric pattern of the linears of 

probable tensional origin around the Mare, and the centripetal tilting 

of the craters on its margin indicate that the formation of Mare Humorum 

basin was preceeded only by the formation of the Terrae and the oldest 

craters (Figure 11). 

Meteorite impact has been suggested as a process resnonsible 

for the Mare formation. Proposed principally by Urey and Baldwin, thev 

noted "the generally circular outline, dark color, and smooth appearance 

of the Maria" (p. 45, Weil, 1965). They suggested that the size of 

the impacting body must have been very large, possibly of the order 

of small planets called planetesimals. The resulting era ter was then 

filled by molten rock. 

The explosion energy required to form r-1are Humorum was calculated 

using equation (1) to be 1.35 x 103° ergs. This is the minimtun kinetic 

energy that the meteorite should have (1 /2 mv2). The mass of the 

meteorite for various assumed velocities is sho\m in Table II I. 

The difference in color tone between the Mare and Terrae suggest 

a difference in density, based on the Earth analog that the heavier 
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TABLE III 

Velocity and Mass of the Meteorite that might 

have formed Mare Hurnorum 

Velocity Mass* 
Krn/sec grams Remarks 

1 2.7 X 1020 Low velocity for meteorites. 

2.4 4.7 X 1019 Escape velocity of the Moon is 
2.38 Krn/sec. 

10 2.7 X 1018 Low velocity range for terrestrial 
meteorites (p. 48, Weil, 1965). 
Escape velocity of Earth is 11.2 
Krn/sec. 

15 1.2 x 1o18 Average velocity for terrestrial 
meteorites, close to escape velocity 
of Earth-Moon system. 

20 6. 75 X 1017 High velocity range for terrestrial 
meteorites (p. 48, Weil, 1965). 

72 5.2 X 1016 Escape velocity from the solar system, 
close to highest observed velocity for 
rneteori tes 

*Mass of Moon = 7.35 x 1025 , 
Mass of Earth= 5.98 x 1027 'g 
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iron oxides are darker than the lighter silicates in igneous rocks. 

The lighter toned rocks of the Terrae stand higher than the darker 

toned more dense rocks of the ~1are. This is analogous to the 

continents of the Earth which rise above the darker and more dense 

rocks of the ocean basins. 

B. Subsidence 

The tilting of the larger craters on the margins of Mare Humorum 

toward the Mare is strong evidence for subsidence of the basin. The 

tilt is sufficient that the rim facing the Mare is covered by its 

surface material. This indicates that subsidence was initiated 

before the surface material reached the craters or was somewhat 

contemporaneous with it. By projecting a line from the top of the 

northern rim to the top of the southern rim of Gassendi and another 

line of similar construction from the southern to the northern rim 

of Doppelmayer, these two lines intersect in the vicinity of the 

crater Doppelmayer K within the Mare. Assuming the craters rims 

were once horizontal, this intersection suggests that the amount of 

subsidence approximated 1,100 - 1,200 m. The effect of the curvature 

of the Moon's surface tends to decrease this value but only by a 

small amount because the total distance involved is less than 4 30 km. 

It has already been noted that the Mare's surface material 

reached a level on the Mare's margin higher than its surface. This, 

and the gravity faults along west margin with the east block down 

are evidences for continuation of subsidence after the deposition 

of the surface material. The amount of this subsidence was found 

from Figure 4 to be more than 400 m in the vicinity of the crater 

Doppelmayer K. The total amount of subsidence near the center of 

Mare Humorum basin, therefore approximates 1,600 m. 
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Subsidence of the basin resulted in radial forces acting on 

the margins of the Mare tO\!fards its center. These forces acted in 

tension and could well have produced the rilles strongl)' developed 

in the east and southeast and to the northwest. The tensional 

stresses appear to have been greater from the west, where faulting 

occurs, towards the Mare. In the RQa1b and south directions the rocks 

behaved plastically by downwarping rather than fracturing. The 

warping is exemplified inside the crater Hippalus where a monocline 

resulted from centripetal subsidence. This and other examples 

suggest that the amotmt and rate of subsidence was not uniform 

throughout the basin. 

From a stress-strain relationship the forces that formed the 

Mare llumorum basin are shown in Figure 9. The absence of the typical 

upturned rim, the lack of radial fractures demonstrating former 

tensional stresses, all suggest an endogenous force for the origin 

of the Mare. If this be so the material filling the f\1are must have 

been internally generated in the Moon and hen'Q(e a heat source is 

needed. This in turn leads to a heat source somewhat late in the 

Moon's history and suggests a continuous radioactive source. 

An experiment on subsidence and fault patterns was performed 

by Proctor (personal commtmication, 1966) to attempt to duplicate 

the conditions of withdrawal of large amotmts of magma from a 

chamber. His description follows: 

"A frozen pond of 27.4 x 19.8 m size and up to 240 em deep 
(Figure 10) was drained of its still fluid water. Collapse 
of the overlying rock (ice) cover into the developing cavity 
was recorded by the centripetal tilting of the ice sheet, 
the development of tension fractures and gravity faults. 
Some f~lds were formed, but the significance of these is 
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Fig. 9. Possible stress patterns of ~fare Humorum. 
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Fig. 10. Tension fractures and rilles developed in a frozen pond 
after withdr•tling the wate·r from below. (After Proctor, 1966). 
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unkno\m since the underlying topography of the pond's 
bottom may have influenced the fold form. 

In actuality a series of accurate tension cracks and 
faults developed concave to the central part of the pond. 
Rille-like features developed along the edges where the 
ice slid away from the walls of the pond. 

From an analog viewpoint, the tension cracks, gravity 
faults, and rille-like forms at the margin bear striking 
resemblance to the patterns of Mare Humorum (PLATE I). 
Going one step further, if water \'lere to have issued 
forth along the fractures and filled over the ice, a 
'lava' cover resembling the Mare Humorum would have 
developed. The channelways, if finally frozen, could 
have shown the characteristics of wrinkle ridges." 
(Proctor, personal communication, 1966). 

c. Mare Cover Material 

The general smoothness of the surface of Mare Humorurn and 

its dark tone, the covering of the marginal inward tilted craters 

and adjacent low lying areas by a dark rock cover, the endogenous 
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force that formed the Mare and consequently the internal generation 

of the Mare's cover material, and the resemblance of the patterns in 

the frozen pond experiment to the patterns of Mare Humorum, all 

suggest an original surface material of considerable mobility and 

post-Mare depression age. These characteristics are best met by 

a fluid lava flow of basic composition. 

Another indirect proof for the existence of lava on the lunar 

surface came from the Russian unmanned space-craft Luna 9 \'lhich 

landed in Oceanus Procellarum (Figure 1) on the lunar surface, 

about 900krn NW of Mare Humorum, in February 1966. This is covered 

by material similar in color tone and texture to the material 

covering Mare Humorum. 



"The Russians confirmed that Luna 9 ••• hit a surface that 
consisted of hard porous, volcanic soil formed from lava 
that had crumbled during billions of years of drastic 
temperature changes and bombardrrent by meteors and solar 
particles". (p. 52, Time, 1966). 

The presence of wrinkle ridges of subparalle 1 pattern and 

somewhat arcuate form inside the Mare, the fissures along their 

crests and the similarity in tone between these and the Mare's 

cover material suggests underlying fractures up along which lava 
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welled and flowed outward at right angles to the feeding channels. 

The lava rising forth along these zones built up the wrinkle ridges 

by successive stages of eruption and solidification. 

Concurrent with these eruptions, the fluid and very mobile 

lava gradually filled the basin of Mare Humorum to a certain 

horizontal level just as a liquid would fill the container in 

which it is placed. The areal extent of the dark tone and smooth 

texture of the Mare's surface rocks to a level of 3,800-3,900 m 

suggests that this was the maximum level the lava reached. The 

volume of the lava based on the estimated depression of the basin 

and the height of the floor assuming the basin to resemble an 

inverted cone was calculated and compared to the volume of lava in 

the Columbia Plateau on Earth. The results are shown in Table IV. 

TABLE IV 

Amount of Lava in the Mare Humorum Basin on the 

Moon and the Columbia Plateau on Earth 

Are~ Depth Volume 
Km Km Km3 

Mare Htunorum 125,000 1.2 50,000 

Columbia Plateau 500,000 1.0 soo,ooo 
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Lava filled the older craters that formerly pocked the \1are 

Humorum basin, and except along the inward tilted margins, conr,)letely 

covered most of them. Some craters along the rnarp.ins of the basin 

were partially covered. Good examples include: Gassendi, Doppel­

mayer, Hippalus, Loewy, Puieseux and many others. These craters 

are older than the Mare basin, because they are tilted into the 

Mare. One of them (Puiseux) lies completely inside the basin but 

is surrounded by the lava cover material. 

The mobile lava moved out of the basin through the outlet on 

the southwest where it filled low lying areas to a level reached 

prior to the lava solidification. The amount of lava discharged 

through the outlet depended on the level of the lava inside the Mare, 

its viscosity, the time it took to solidify, and the cross section 

of the outlet. At least three of these variables can be measured 

or approximated and the others can be calculate d. 

The very dark grey tone in certain areas within the Mare suggests 

lava flows of different composition. The western marginal fault cuts 

across this darker lava cover while the lava cover of li ghter tone 

covers the fault. There seems to be, therefore, at least three series 

of lava eruptions: (a) the lava of the dark grey tone which is older 

than the fault, (b) the lava of the very dark grey tone which is also 

older than the fault but younger than (a), and (c) medium dark gr ey 

lava which is younger than, and covers the fault ( Fi gure 11). 

D. Crater Considerations 

Much distorted craters of subdued character, larger craters 

tilted toward the Mare, and craters of distinct rim-depression 
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morphology imposed upon the other two and on t he ~tare comprise t he 

three maj or groups of craters in t he l'-lare area. 

The crater s with rims greatly disto~d by smaller and younger 

craters and with subdued rims and escarpments are exenr;:>lified by 

Agatharchi des and Me r senius (PLATE I). These are cons idered to be 

the oldest cr at e r s in the Mare ~rurnorum area. 

A much l arger gToup of craters marginal to the Mare with 

distinct rims, some rilles and t hei r floors partly lava covered 

include Gassendi, Doppelmayer and Hippalus. These are not as much 

disturbed by younger craters, even though they are much larger than 

the first group. They are, therefore, younger than the fi rst group 

but they are older than the lava eruptions of Mare Humorum • 
. . 

A gToup of craters formed on or over the rims of other craters 

or in their floors and also on the cover of Mare Humorum. These are 

considered to be the yotmges~ craters in the area. Hippalus A and 

Vitello P belong to this group. All the craters of this group have 

a radius of less than 8 Km while all the craters of the first two 

groups have a radius of more than 6 Km. 

The craters Hippalus A and Vitello P have the same radius but 

the depth of the first is twice that of the second. This is true 

for other craters in Classes 1 and 2 (Figure 8). Bot h classes 

could have been formed as a result of impact only i f one of the 

following conditions is satisfied: 

(1) The meteorites that formed the Class 1 craters i mpacted 

the surface in a pre-existing topographic depression (G.B. Clark, 

personal communication, 1966) . 



(2) The two crater classes are formed in two different types 

of surface material. 

(3) Floors of Class 2 craters are covered by later material 

such as the Mare's surface material. 
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It is possible that meteorites may have impacted in preexisting 

depressions. These depressions, however, should have had nearly 

equal depths in order to account for the linear relationship between 

the Class 1 craters (Figure 8). The visible depressions on the 

lunar surface do not have equal depths, and there is no reason to 

believe that in the lunar past they did. This suggests that condition 

(1) is highly unlikely. 

For condition (2) to be true one would expect all the craters of 

one class to exist only in Mare material and those of the other class 

to be in Terra material. This is not the case because we find craters 

of both classes present in the same material. For example; the 

craters Gassendi J of Class 1 and Doppelmayer K of Class 2 occur 

in Mare material while Dunthorne of Class 1 and Vitello of Class 2 

are present in Terra material (Figure 2). 

Some of the Class 2 craters have their floors covered with the 

Mare material. The depth of this material is greater in craters 

near the Mare. Only the crater Leihig G has its floor completely 

covered. The other craters are only partially covered and their 

measured depths are very close to their real values. Condition (3) 

therefore, does not explain the difference between the tv.ro classes. 

In conclusion, meteoritic impacts based on the facts above 

cannot account for all craters in the Mare Hurnorum area. From the 



evidence presented in this study, crater Hippalus A and other 

craters in Class 1 formed as a result of meteoritic impact. This 

explains the close relationship between these craters (Figure 8). 

Some craters of Class 2 may also have the same origin, es ~')ecially 

the very small craters since the two curves in Figure 8 will 

intersect each other if extended. 
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If one may interpolate from this it appears that the very 

small craters which are beyond the resolving po1~er of the telescope 

will have similar radius to depth ratios irrespective of their 

origin. 

For most of the craters of Class 2, however, another crater 

forming mechanism is needed. This is discussed in the following 

section. 

E. Lunar Volcanism 

Indirect evidence presented for volcanism on the lunar surface 

includes: 

(a) the lava eruptions which covered Mare Hurnorurn and adjacent 

areas, (b) the fissure-like fractures on the crests of the wrinkle 

ridges from which lava erupted, (c) the relationship bet,~een the 

radius to depth ratios of the craters in Class 2, especially the 

larger craters (Figure 8), (d) the domes with small craters on their 

summits which resemble terrestrial shield volcanoes, and (e) the 

fact that the ejecta that surround some of the smaller craters, 

such as Doppelmayer K (PLATE I), extend a distance which may be 

many times greater than the crater radius and finally, the volume 

of this ejecta appears to be greater than the apparent crater 

volume although direct measurement of the ejecta volume is extremely 
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difficult because the size of the craters is so small. 

According to the radius to depth ratio of curve (c) in Figure 8, 

the depth of Gassendi, for example, should be 5,000 meters or two 

and a half times its present depth of 2,000 meters. 

The probable eruption in 1958 of the crater Alphonsus which 

lies northeast of Mare Nubium (Figure 1) is another indirect evidence 

in support of volcanic origin of the large craters in Mare Humorum 

area. The size of Alphonsus is about the same as that of Gassendi. 

Spectrograms of the central peak of Alphonsus taken by Kozyrev in 

3 November 1958 indicated that gases of high temperature were being 

emitted (p. 267, Kozyrev, 1960). Several observations of this 

phenomenon were confirmed by other astronomers. 

The central peaks of ltmar craters may be similar to terrestrial 

volcanoes and the "outer craters themselves may be similar to calderas 

of terrestrial volcanoes formed by subsidence due to the depletion of 
~C;c)({._(/ 

the magmatic source(p. 267, Kozyrev, 1960). -..... -·-
In conclusion, while the only direct evidence for some type of 

thermal activity on the lunar surface is that of the crater Alphonsus, 

yet the other indirect eiltdences presented do lend strong support to 

a volcanic origin for many of the Class 2 craters in the Mare Humorum 

area. 
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Chapter IV 

CONCLUSIONS 

The first event in geological history of the Mare Humorum 
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area was the formation of the original Terrae. This was followed by 

the formation of the first craters such as Agatharchides and Mersenius. 

They are probably of volcanic origin. Their rims are distorted and 

they appear to have a subdued fonn. This group of craters was 

followed by a second group of volcanic origin. This includes the 

largest craters in the area such as Gassendi and Doppelmayer. The 

floors of many of these craters are covered by the Mare's rocks, 

probably volcanic. 

The central portion of the area started to subside forming the 

Mare Humorum basin and causing prominent and extensive tension 

fractures (rilles), gravity faults, monoclines, and inward centripetal 

tilting of the craters on the basin's margins. 

A series of extensive lava eruptions covered the Mare. At least 

three such eruptions are recognized by their color tone and age 

relationship with the gravity faults on the western margin of Mare 

Humorum. Wrinkle ridges formed along the fissures where 1 ava. welled 

upward and solidi fie d. The mobile lava issuing from the feeding 

channelways flowed over large areas and covered portions of the 

marginal craters and adjacent low lying areas. 

After, and possibly concomitant with the lava eruptions, craters 

of volcanic and meteoritic origin formed. These were distributed over 

the surface of the Mare and the Terrae. They are smaller than the 

previous craters and their rims are distinctly defined. 
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The latest events appear to be continued impact of small 

meteorites, and development of some ray structures. Subsidence of 

the basin appears to have stopped sometime in the past. The lack of 

continued subsidence features suggests that the former energy source 

responsible for the basin origin and lava eruptions has completely 

disappeared and current features are only indicative of past events. 

The Moon in this area is essentially dead. 
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