
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2015

Common path pessimism removal in static timing analysis Common path pessimism removal in static timing analysis

Chunyu Wang

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Wang, Chunyu, "Common path pessimism removal in static timing analysis" (2015). Masters Theses.
7440.
https://scholarsmine.mst.edu/masters_theses/7440

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229053924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7440?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

 COMMON PATH PESSIMISM REMOVAL

IN

STATIC TIMING ANALYSIS

by

CHUNYU WANG

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER ENGINEERING

2015

Approved by

Yiyu Shi, Advisor

Minsu Choi

Jun Fan

 2015

Chunyu Wang

All Rights Reserved

iii

ABSTRACT

Static timing analysis is a key process to guarantee timing closure for modern IC

designs. However, additional pessimism can significantly increase the difficulty to

achieve timing closure. Common path pessimism removal (CPPR) is a prevalent step to

achieve accurate timing signoff. To speed up the existing exhaustive exploration on all

paths in a design, this thesis introduces a fast multi-threading timing analysis for

removing common path pessimism based on block-based static timing analysis.

Experimental results show that the proposed method has faster runtime in removing

excess pessimism from clock paths.

iv

ACKNOWLEDGMENTS

My deepest gratitude goes first and foremost to my advisor Dr. Shi. Thank you for

his constant encouragement and guidance.

Second, I would like to express my heartful gratitude to my committee members:

Dr. Choi and Dr. Fan, who helped and instructed me a lot.

I also owe my sincere appreciation to my friends and lab mates, who gave me

their help and time.

Finally, my thanks go to my beloved boyfriend Qifeng Chen and my family, who

gave me loving consideration and great confidence.

v

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... vi

LIST OF TABLES .. vii

SECTION

1. INTRODUCTION .. 1

2. PRELIMINARIES AND PROBLEM FORMULATION... 2

2.1. STATIC TIMING ANALYSIS (STA) .. 2

2.1.1. Timing Propagation... 3

2.1.2. Circuit Element Modeling... 5

2.2. COMMON PATH PESSIMISM REMOVAL (CPPR) ... 8

3. TIMING ANALYSIS FRAMEWORK FOR CPPR ... 12

3.1. OVERVIEW AND CONCEPTS ... 12

3.1.1. Design Threaded Program .. 13

3.1.2. The Pthreads APIs... 16

3.2. DATA STRUCTURES AND ALGORITHM TO IMPLEMENT CPPR 18

3.2.1. Data Structures. ... 18

3.2.2. Algorithm. ... 18

4. EXPERIMENTAL RESULTS.. 20

5. CONCLUSIONS... 23

BIBLIOGRAPHY ... 24

VITA ... 25

vi

LIST OF ILLUSTRATIONS

 Page

Figure 2.1. Delay Model Representation of A Circuit Element.. 4

Figure 2.2. Combinational OR Gate, Timing Model and Capacitances 6

Figure 2.3. Two FFs in Series and Their Timing Models ... 8

Figure 2.4. Clock Network Pessimism Incurs in the Common Path between the

Launching Clock Path and the Capturing Clock Path .. 9

Figure 3.1. Information Shared within the Process among All Threads 13

Figure 3.2. Threaded Program .. 14

Figure 3.3. Shared Memory Model ... 15

Figure 3.4. Thread Safeness Illustration ... 16

Figure 3.5. Pthreads APIs ... 17

vii

LIST OF TABLES

 Page

Table 4.1. Benchmarks Statistics .. 21

Table 4.2. Runtime Comparison ... 22

1. INTRODUCTION

Static timing analysis (STA) is a process that verifies the timing performance of a

design under worst-case conditions. In the modern IC design flow, STA is essential to

identify timing critical paths for subsequent optimization, to determine operable clock

frequencies, to prevent over-design, and to achieve design closure, while meeting

stringent timing constraints. Rapid growing design complexities and increasing on-chip

variations, however, complicate this analysis for nanometer design. These on-chip

variations, including manufacturing process, voltage and temperature (PVT) variations,

affect wire delays and gate delays in different portions of a chip. Although statistical

timing analysis and multi-corner timing analysis have been proposed to handle these

variations, not all sources of variability are accurately modeled.

To capture more accurate timing performance of a design, common path

pessimism removal (CPPR) is prevalent to eliminate inherent but artificial pessimism in

clock paths during timing analysis. For example, applying different conditions for the

common part of the launch and capture clock paths is over pessimistic. This pessimism

should be removed during timing analysis so that true critical paths can then be identified.

The challenge of CPPR is that the amount of pessimism to be removed is path-

dependent. Existing solutions fall into two categories, critical-path-based approach and

exhaustive search approach. The critical-path-based approach first identifies critical paths

without CPPR consideration and then re-evaluates these identified paths with CPPR.

Because the criticality of paths may be altered after CPPR consideration, this approach

may miss true critical paths and generate optimistic results. In contrast, the exhaustive

search generates the accurate solution by exploring all paths. The total number of paths

has exponential growth with the circuit size. Thus, the exhaustive search approach is

time-consuming especially for modern large-scale designs. To speed up the path retrieval,

this thesis adopts a multi-threaded depth-first-search (DFS) method to achieve the

exhaustive search approach of Common Path Pessimism Removal (CPPR).

The remainder of this paper is organized as follows: Section II introduces the

problem formulation. Section III details timing analysis framework. Section IV shows

experimental results. Finally, Section V concludes this work.

2

2. PRELIMINARIES AND PROBLEM FORMULATION

This section is organized as followed, it will talk about the static timing analysis

(STA) in Subsection 2.1, in which will outline timing propagation in Subsection 2.1.1,

and it will describe delay modeling in Subsection 2.1.2. Subsection 2.2 will cover the

properties and the details of CPPR formulation.

2.1. STATIC TIMING ANALYSIS (STA)

A static timing analysis of a design typically provides a profile of the design‟s

performance by measuring the timing propagation from inputs to outputs. Timing

analysis computes the amount of time signals propagate in a circuit from its primary

inputs (PIs) to its primary outputs (POs) through various circuit elements and

interconnect. Signals arriving at an input of an element will be available at its output(s) at

some later time. Each element therefore introduces a delay during signal propagation.

A signal transition is characterized by its input slew and output slew, which is

defined as the amount of time required for a signal to transition from high-to-low or low-

to-high. To account for timing modeling limitations in considering design and electrical

complexities, as well as multiple sources of variability, such as manufacturing variations,

temperature fluctuation and voltage drops, timing analysis is typically done using an

early-late split, where each circuit node has an early (lower) bound and a late (upper)

bound on its time. By convention, if the mode is not explicitly specified, both modes

should be considered. Both slew and delay are computed separately on early and late

modes. For example, in early mode, an output slew
 is computed using the input slew

taken from the early mode
 , and similarly, in late mode, the output slew

 is computed

using
 .

3

2.1.1. Timing Propagation. Starting from the primary input(s), the instant that a

signal reaches an input or output of a circuit element is quantified as the Arrival Time (at).

Similarly, starting from the primary output(s), the limits imposed for each arrival time to

ensure proper circuit operation is quantified as the Required Arrival Time (rat). Given an

arrival time and a required arrival time, the Slack at a circuit node quantified how well

timing constraints are met. That is, a positive slack means the required time is satisfied,

and a negative slack means the required time is in violation.

Actual arrival time is defined as starting from the primary inputs, arrival times (at)

are computed by adding delays across a path, and performing the minimum (in early

mode) or maximum (in late mode) of such accumulated times at a convergence point. For

example, let () and () denote the early arrival times at pins A and B,

respectively, in Figure 2.1. The most pessimistic early mode arrival time at the output pin

Y is:

 () (() () () ()) (1)

Conversely, in late mode, the latest time that a signal transition can reach any

given circuit node is computed. Following the same example in Figure 2.1, the most

pessimistic late mode arrival time at Y is:

 () (() () () ()) (2)

4

Figure 2.1. Delay Model Representation of A Circuit Element

Required arrival time is defined as starting from the primary outputs, required

arrival times (rat) are computed by subtracting the delays across a path, and performing

the maximum (minimum) in early (late) mode of such accumulated times at a

convergence point. For example, a generic interconnect (input Y, output A, B), the most

pessimistic early mode required arrival time at the output pin Y is:

 () (() () () ()) (3)

 Conversely, in late mode, the earliest time that a signal transition must reach a

given circuit node is computed. Following the same example, the most pessimistic late

mode required arrival time at the input pin Y is:

 () (() () () ()) (4)

Slack, for proper circuit operation, must hold:

 (5)

 (6)

5

To quantify how well timing constraints are met at each circuit node, slacks can

be computed based on Equations 5 and 6. That is, slacks are positive when the required

times are met, and negative otherwise.

 (7)

 (8)

Slew propagation is defined as circuit element delays and interconnect delays are

functions of input slew (), subsequent output slew () must be propagated. This thesis

assumes worst-slew propagation, that is, this thesis propagate the smallest (largest) slew

in early (late) mode. Following the example in Figure 2.1, the early mode and late output

slew at output pin Y are, respectively:

 () (

 ()
 ()) (9)

 () (

 ()
 ()) (10)

2.1.2. Circuit Element Modeling. This Subsection will discuss combinational

and sequential circuit elements.

In a given combinational cell, for example, OR gate, let the delay d and output

slew , for a input/output pin-pair in Figure 2.2 be

 (11)

 (12)

Here, a, b, c, x, y and z are cell-dependent constants, is the output load at the

output pin. For simplicity, this thesis assumes to be sum of all capacitances in parasitic

RC tree including cell pin capacitances at the taps.

6

Figure 2.2. Combinational OR Gate, Timing Model and Capacitances

Sequential circuits consist of combinational blocks interleaved by registers,

usually implemented with flip-flops (FFs). Typically, sequential circuits are composed of

several stages, where a register captures data from the outputs of a combinational block

from a previous stage, and injects it into the inputs of the combinational block in the next

stage. Register operation is synchronized by clock signals generated by one or multiple

clock sources. Clock signals that reach distinct flip-flops, for example, sinks in the clock

tree, are delayed from the clock source by a clock latency l.

Set up and hold constraints. Proper operation of a flip-flop requires the logic value

of the input data pin to be stable for a specific period of time before the capturing clock

edge. This period of time is designated by the setup time . Additionally, the logic

value of the input data pin must also be stable for a specific period of time after the

capturing clock edge. This period of time is designated by the hold time . The flip-

flop timing models are depicted in Figure 2.3.

Setup and hold constraints are respectively modeled as functions of the input

slews at both the clock pin CK and the data input pin D as

 (13)

 (14)

7

Here, g, h, j, m, n and p are flop-specific parameters, is the input slew at CK,

and is the input slew at D.

Signal propagation. Consider the standard signal transition between two flip-flops

as illustrated in Figure 2.3. Assuming that the clock edge is generated at the source at

time 0, it will reach the injecting (launching) flip-flop at time , making the data

available at the input of the combinational block time later. If the propagation

delay in the combinational block is , then the data will be available at the input of

the capturing flip-flop at time . Let the clock period to be a

constant T. Then the next clock edge will reach at time . For correct operation,

the data must be available at the input pin D of time before the next clock edge.

Therefore, at the data input pin D of , the arrival time and required arrival time are:

 (15)

 (16)

A similar condition can be derived for ensuring that the hold time is respected.

The data input pin D of must remain stable for at least time after the clock edge

reaches the corresponding CK pin. Therefore, at the data input pin D of , the arrival

time and required arrival time are:

 (17)

 (18)

8

Figure 2.3. Two FFs in Series and Their Timing Models

2.2. COMMON PATH PESSIMISM REMOVAL (CPPR)

The early-late spilt-timing analysis inherently embeds unnecessary pessimism,

which can lead to an over-conservative design. Analyze the example in Figure 2.4. The

early (late) data‟s arrival time is compared with the late (early) clock‟s arrival time for

the hold (setup) test. However, along the physically-common portion of the data path and

clock path, the signal cannot simultaneously experience all the effects accounted for

during early and late mode operation, for example, the signal cannot be both at high

voltage and low voltage. Consequently, this unnecessary pessimism can lead to tests

having negative slack. But in fact, they could be having positive slack. This unnecessary

pessimism should thus be avoided when reporting final timing results.

9

Figure 2.4. Clock Network Pessimism Incurs in the Common Path between the

Launching Clock Path and the Capturing Clock Path

To the first order, the amount of pessimism for a given test can be approximated

by the difference in the early and late arrival times at the common point. However, the

common point is found by backwards tracking from the data and clock for the path with

the worst slack. In the general case, there can be multiple paths converging at the data

input of a flip-flop, and every path will have its own amount of undue pessimism.

Therefore, to find the correct slack, we need to take the minimum slack found across all

paths.

Hold tests. For tests that compare the data point against the clock point for the

same cycle, for example, where data must be stable after the clock signal arrives at the

capturing flip-flop, the total pessimism incurred is the difference between the early and

late arrival times at the common point. That is, any on-chip variation incurred is spatially

and temporally the same. For a hold test that has one data path that share common

elements and common edges, the amount of credit given back is

 (19)

10

Where CP is the last point before the data path and clock path diverge.

Setup tests. For tests that compare the data point against the clock point in

subsequent cycles, for example, where the data must be stable before the clock signal

arrives at the capturing flip-flop, the total pessimism incurred is the summation of the

difference of early and late delays up through the common point. While the data and

clock path share the same physical components, they are launched at different clock

cycles. Therefore, if some on-chip variation, for example, temperature fluctuation occurs

when the data is launched, but does not occur when the data is captured, the pessimism

was now necessary, and cannot be removed. For a setup test that has one data path

sharing common elements and common edges, the amount of credit given back is

 ∑

 () (20)

Where P(V,E) is the physically-common path between the data and clock paths.

Here, V is the set of all common circuit elements, and E is the set of all common

interconnect. Following the example in Figure 2.4, the amount of credit for the setup test

is

 (

) (

) (

) (

)

(

) (21)

Test credit or slack. As removing pessimism could require analyzing many paths,

the post-CPPR test slack is the minimum slack of all paths that converge at the data point

of the test.

Total test credit. As removing pessimism for each test could require investigating

multiple paths, the amount of credit per test will be defined as the difference between the

post-CPPR and pre-CPPR test slack. This thesis only considers hold and setup tests.

 (22)

 (23)

11

As mentioned above, common path pessimism removal is prevalent to eliminate

artificially induced pessimism in clock paths during timing analysis. The common path

pessimism removal problem can be formulated as: given a circuit with delay information,

timing constraints, type of test, the required number of critical tests and the required

number of critical paths, this thesis is to calculate the post-CPPR test slack.

12

3. TIMING ANALYSIS FRAMEWORK FOR CPPR

Section 3 is organized as followed, Subsection 3.1 will cover the concepts,

motivations and Pthreads programming, Subsection 3.2 will cover the algorithm of

accomplishing CPPR problem.

3.1. OVERVIEW AND CONCEPTS

Parallel computing is the simultaneous use of multiple compute resources to solve

a computational problem. For example, a problem is broken into discrete parts that can be

solved concurrently. The main reasons to use parallel computing are as follows: (1) save

time. In theory, throwing more resources at a task will shorten its time to completion,

with potential cost savings. (2) solve larger/more complex problem. Many problems are

so large and/or complex that it is impractical or impossible to solve them on a single

computer, especially given limited computer memory.

In shared memory multiprocessor architectures, threads can be used to implement

parallel. A thread is defined as an independent stream of instructions that can be

scheduled to run. That is, a procedure that runs independently from its main program. In

Figure 3.1, it conceptually shows that threads are within the same process address space,

thus, much of the information present in the memory description of the process can be

shared across threads. Some information cannot be replicated, such as the stack (stack

pointer to a different memory area per thread), registers and thread-specific data. These

allow threads to be scheduled independently of the program‟s main thread and possibly

one or more other threads within the program. Explicit operating system support is

required to run multithreaded programs. Fortunately, most modern operating systems

support threads such as Linux and Windows. Operating systems may use different

mechanisms to implement multithreading support. One particular threading

implementation is POSIX threads (Pthreads). Pthreads are defined as a set of C language

programming types and procedure calls, implemented with a pthread.h header/include file

and a thread library.

13

Figure 3.1. Information Shared within the Process among All Threads

3.1.1. Design Threaded Program. In general, in order for a program to take

advantage of Pthreads, it must be organized into discrete, independent tasks which can

execute concurrently.

For example, in Figure 3.2, if routine1 and routine2 can be interchanged,

interleaved and/or overlapped in real time, they are candidate for threading. There are

different ways to use threads in a program. Three common thread design patterns are

presented:

Manager/worker: One thread dispatches other threads to do useful work which are

usually part of a worker thread pool. This thread pool is usually pre-allocated before the

manager begins dispatching threads to work. Although threads are lightweight, they still

incur overhead when they are created.

Pipeline: Similar to how pipelining works in a processor, each thread is a part of a

long chain in a processing factory. Each thread works on data processed by the previous

thread and hands it off to the next thread.

14

Peer: The peer model is similar to the manager/worker model except once the

worker pool has been created, the boss becomes another thread in the thread pool, and it

thus, a peer to the other threads.

Figure 3.2. Threaded Program

All threads have access to the same global and shared memory. Besides, threads

have their own private data. Figure 3.3 illustrate the shared memory model.

15

Figure 3.3. Shared Memory Model

Thread safeness refers to an application‟s ability to execute multiple threads

simultaneously without “clobbering” shared data or creating “race” conditions. Threads

may operate on disparate data, but often threads may have to touch the same data. It is

unsafe to allow concurrent access to such data or resources without some mechanism that

defines a protocol for safe access. Threads must be explicitly instructed to block when

other threads may be potentially accessing the same resources. For example, suppose that

an application creates several threads, each of which makes a call to the same library

routine. This library routine accesses a global structure or location in memory. As each

thread calls this routine, it is possible that they may try to modify this global

structure/memory locations at the same time. If the routine does not employ some sort of

synchronization constructs to prevent data corruption, then it is not thread-safe. See

Figure 3.4.

16

Figure 3.4. Thread Safeness Illustration

3.1.2. The Pthreads APIs. The subroutines which comprise the Pthreads API

can be informally grouped into four major groups: Thread management, mutexes,

condition variables and synchronization.

Figure 3.5 shows the Pthreads APIs:

Thread management: Routines that work directly on threads, for example,

creating, detaching and joining. They also include functions to set/query thread attributes.

Mutexes: Routines that deal with synchronization, called a “mutex,” which is an

abbreviation for “mutual exclusion.” Mutex functions provide for creating, destroying,

locking and unlocking mutexes. One of the primary means of implementing thread

synchronization and for protecting shared data when multiple writes occur. Mutex acts

like a lock protecting access to a shared data resource. Only one thread can lock a mutex

variable at any given time. A typical sequence in the use of a mutex is as follows:

 Create and initialize a mutex variable.

 Several threads attempt to lock the mutex.

 Only one succeeds and that thread owns the mutex.

 The owner thread performs some set of actions.

 The owner unlocks the mutex.

17

 Another thread acquires the mutex and repeats the process.

 Finally the mutex is destroyed.

Condition variables: Routines that address communications between threads that

share a mutex. While mutexes implement synchronization by controlling thread access to

data, condition variables allow threads to synchronize based upon the actual value of data.

A condition variable is always used in conjunction with a mutex lock. This group

includes functions to create, destroy, wait and signal based upon specified variable values.

Functions to set/query condition variable attributes are also included. Condition variables

must be declared with type pthread_cond_t and must be initialized before they can be

used. When it is no longer needed, pthread_cond_destroy() should be used to free a

condition variable.

Synchronization: Routines that manage read/write locks and barriers.

Synchronization is an enforcing mechanism used to impose constraints on the order of

execution of threads, in order to coordinate thread execution and manage shared data.

Synchronization mechanism has three types: mutexes, condition variable and joins.

Figure 3.5. Pthreads APIs

18

3.2. DATA STRUCTURES AND ALGORITHM TO IMPLEMENT CPPR

3.2.1. Data Structures. In this thesis, the major three data structures created are

Pin, Wire and Path.

Pin data structure will store timing information in the netlist such as the early

mode arrival time, early mode required arrival time, early mode slack, late mode arrival

time, late mode required arrival time, late mode slack. As the D pins and the CLK pins in

a latch or in a flip-flop are especially important in the project, therefore the base Pin data

structure will have two derived data structures: DPin, CKPin, which will store further

timing information in the netlist such as the set up time and the hold time.

The Wire data structure functions as edge in a graph data structure, it defines the

connectivity info in the netlist, and it also stores delay information for Pin to Pin such as

each gate and each wire in the netlist, as in the STA process, not only the early mode

delay but also the late mode delay is necessary.

The Path data structure will be used for the set up test and hold test in the CPPR

process and it will store the early mode pre-CPPR slack as well as the late mode pre-

CPPR slack.

3.2.2. Algorithm. As it mentioned in the previous section, this project mainly

consist of three major steps. First of all, after parsing the inputs to a directed acyclic

graph using the data structure mentioned above, it should perform Static Timing Analysis

to get the pre-CPPR slack, and then it will use Depth First Search to enumerate all the

data path and clock path between primary input (s) and a latch/FF or latch/FF and

latch/FF or latch/FF and primary output (s). The final step will be perform set up test or

hold test and generate corresponding test report according to user‟s input according to the

path information got from the second step. Furthermore, the project will use parallel

computing technique in the input parsing, the path enumeration step and the report

generation step.

To be more specific, the whole process is as followed:

 Input parsing: parse the netlist and corresponding timing information into a

directed acyclic graph (DAG).

19

 Forward propagation: perform forward propagation in DAG from primary

inputs to primary outputs to store the early mode and late mode arrival time.

 Backward propagation: perform backward propagation in the DAG from

primary outputs to primary inputs to store the early mode and late mode

required arrival time.

 Clock path enumeration: use depth first search (DFS) algorithm to find all the

paths starting from the clock source to each latch/FF‟s CLK pins.

 Data path enumeration: use depth first search (DFS) algorithm to find all the

paths starting from the primary inputs to each latch/FF‟s D pins.

 CPPR tests: find the late clock path and early clock path for a CLK pin of a

latch/FF, then go through all paths to its corresponding data input pins.

Calculate the setup test and hold test post-slack result and keep it.

 Test report generation: output the most critical paths of latch/FF from the

number of tests according to user‟s input. The report will cover the post-

CPPR slack after the setup test or the hold test and the specific critical path

information.

This thesis uses parallel computing to fasten the exhaustive method, follows are

the specific information on where to use the multi-threaded programming:

 After the DAG was built, during the forward propagation step, backward

propagation, clock path enumeration and the D path enumeration, parallel

computing could be used to run simultaneously because they are independent

of each other.

 The CPPR tests for each latch/FF are independent, therefore, parallel

computing will also be used in this step.

 After CPPR was performed, the path information of each latch/FF are fixed

and because the path of different latch/FF are independent of each other, the

test report generation could be run in parallel.

20

4. EXPERIMENTAL RESULTS

This section shows experimental results of presented algorithm which was

implemented in the C++ programming language and complied with g++. The program

was executed on a platform with 2.5GHz dual-core I5 CPU and with 8GB memory under

MacOS 10.9.5.

This experiment are conducted on thirteen benchmarks circuits from 2014 Tau

Contest, the statistics of each benchmark are shown in Table 4.1, ranging from small to

large scale design. „#PIs‟ means the number of primary inputs, „#POs‟ means the number

of primary outputs, „#FFs‟ means the number of flip-flops, „#Gates‟ means the number of

combinational gates, and „#Paths‟ means the number of paths in a benchmark circuit. The

number of paths for each benchmark varies from single digit to millions in ascending

order. The experiment performs a comparison between the efficiency of the multi-

threaded method and traditional single-threaded method.

The experiment takes in two files: a delay file and a timing input file. The delay

file will describe the timing behavior of the circuit. The timing input file will describe the

initial timing conditions which will be used during timing propagation.

The delay file contains the description of the circuit cells and the delays for direct

connection. The circuit topology is implicitly derived from this file. Each line will

represent a delay for each pin-pair in the design. Each line will contain two numbers: one

for early and one for late mode. All numerical results should be given in seconds and

printed in scientific notation. All keywords and variable fields should be separated by a

white space.

Timing input file will contain the relevant timing information needed to propagate

timing.

The output file should contain the paths for each type of test specified in

accordance with the input commands.

As a comparison, this experiment has recorded runtime of the single-threaded

solution and the multi-threaded solution on both set up test and hold test on benchmarks

from Table 4.1. Note that the experiment sets the number of test to 10 and number of path

to 10. The results from both the single-threaded solution and multi-threaded solution have

21

been verified and turn out to be correct. For the runtime of this two solutions, from Table

4.2, it can be seen that for the same case and same solution, the runtime of hold test is

usually a little less than the runtime of set up test, that is because the set up test has to go

through every element in the path while the hold test only needs to find the merge point

on the path. After comparison of the runtime of these two solutions, it can be seen that

after applying multi-threaded computing technique, the runtimes of code are much faster

than the single-threaded solutions, the saved time can be very large when the case is

significantly large, especially when the path number of the case is very large.

To sum it up: the hold test is usually faster than the set up test.

The parallel computing technique can significantly fasten the runtime in this project and

will save a lot of time on the significant large cases.

Table 4.1. Benchmarks Statistics

Benchmarks #PIs #POs #FFs #Gates #Paths

s27v2 6 1 3 39 23

s386v2 9 7 6 192 129

s510v2 21 7 6 306 277

s344v2 11 11 15 191 315

s349v2 11 11 15 203 322

s526v2 5 6 21 324 409

s1494v2 10 19 6 819 508

s400v2 5 6 21 241 539

s1196v2 16 14 18 660 676

wb_dmav2 217 215 523 4433 19775

aes_corev2 260 129 530 23726 1039968

systemcdesv 132 65 190 3713 1108437

22

Table 4.2. Runtime Comparison

Benchmarks Type Single-threaded Multi-threaded
Effectiveness in

Reduction Time

s27v2
setup 0.0080721 0.005964 26.2%

hold 0.009847 0.006199 37.1%

s386v2
setup 0.038079 0.025469 33.3%

hold 0.047396 0.024136 49.1%

s510v2
setup 0.076158 0.035799 53%

hold 0.074274 0.03348 54.9%

s344v2
setup 0.081743 0.039056 52.1%

hold 0.086128 0.038732 55.1%

s349v2
setup 0.07668 0.042288 44.9%

hold 0.075227 0.0368 50.9%

s526v2
setup 0.11473 0.055571 51.6%

hold 0.117818 0.050463 57.2%

s1494v2
setup 0.160954 0.076508 52.5%

hold 0.14659 0.066055 54.9%

s400v2
setup 0.133062 0.066127 50.4%

hold 0.132101 0.055824 57.8%

s1196v2
setup 0.16938 0.096221 43.2%

hold 0.169076 0.081487 51.8%

wb_dmav2
setup 6.147627 2.281624 62.9%

hold 5.553806 2.146346 61.4%

aes_corev2
setup 258.963142 157.224541 39.9%

hold 253.931346 148.43621 41.6%

systemcdesv
setup 243.6763 148.418269 40%

hold 231.7322 133.178243 42.5%

23

5. CONCLUSIONS

This thesis has presented a static timing analysis timer that can deal with common

path pessimism removal problem. To speed up the existing approached which are

predominated by exhaustive path search, this thesis applies an efficient search routine

using a quick and efficient multi-threaded depth first search (DFS) algorithm to obtain an

exact solution. Comparatively, experimental results have demonstrated the superior

performance of the timer in terms of accuracy and runtime over the traditional method.

The proposed method is highly scalable, very promising for large-scale designs.

Future works shall focus on the development of even more efficient algorithm for

path-based CPPR. Studies in fast CPPR algorithms are still eagerly in demand especially

when moves to multi-core or many-core area.

24

BIBLIOGRAPHY

[1] C. Visweswariah, et al., “First-order increment block-based statistical timing

analysis,” in DAC, July 2004, pp. 331-336.

[2] J. Bhasker and R. Chadha, “Static Timing Analysis for Nanometer Design: A

Practical Approach,” Springer, 2009.

[3] S. Cristian, N. H. Rachid, and R.Khalid, “Efficient exhaustive path-based static

timing analysis using a fast estimation technique,” US patent 8079004, 2009.

[4] J. Hu, et al., “TAU 2014 contest on removing Common path pessimism during

timing analysis,” in Proc. TAU Workshop, Mar. 2014, pp. 56-63.

[5] J. Zejda and P. Frain, “General framework for removal of clock network

pessimism,” in ICCAD, Nov. 2002, pp. 632-639.

[6] C. M. Darsow and T. D. Helvey, “Implementing forward tracing to reduce

pessimism in static timing of logic blocks laid out in parallel structures on an

integrated circuit chip,” US patent 0023466, 2012.

[7] S. Singh, et al., “Common path pessimism removal for hierarchical timing

analysis,” US patent 8572532, 2013.

[8] D. J. Hathaway, et al., “Network timing analysis method which eliminates timing

variations between signals traversing a common circuit path,” US patent 5636372,

1997.

[9] K. Kalafala, et al., “System and method for correlated process pessimism removal

for static timing analysis,” US patent 7117466, 2006.

[10] S. Sirichotiakul, V. Zolotov, R. Levy and D. Blaauw. “Driver modeling and

alignment for worst-case delay noise,” in DAC, pp. 720-725, 2001.

[11] C. Visweswariah, K. Ravindran, K. Kalafala, S. Narayan and S. G. Walker.

“First-order incremental block-based statistical timing analysis,” in DAC, pp. 331-

336, 2004.

25

VITA

Chunyu Wang was born in Tianjin, China. She received her Bachelor‟s Degree in

Electrical Engineering at Beijing University of Chemical Technology in 2012. In August

2015, she received her Master‟s Degree in Computer Engineering from Missouri

University of Science and Technology.

	Common path pessimism removal in static timing analysis
	Recommended Citation

	II

