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I. ABSTRACT

The desired result of this paper is a method of de
termining temperature distribution and burn off rate in a 
semi-infinite rod or shield subjected to a large heat flux. 
The possible methods of determination were investigated, and 
it was felt that an analytical approach turned out to be the 
most feasible.

The analytical analysis employed involves the use of 
the Fourier's general equation for one dimensional heat 
flow. Transformations from stationary to moving coordinates 
reduces the problem from unsteady state to steady state 
boundary conditions. The resulting equations can be appli
cable to the extent for the heat flow problems involving the 
change of phase.
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XX. PREFACE

The stated purpose of this thesis is to investigate the 
temperature distribution in a semi-infinite rod with one 
dimensional heat flow and an application of large quanti
ties of heat applied to the end of the rod. In such an 
environment the end of the rod may be ablated, melted into 
the liquid phase, forming a liquid film through which the 
heat must flow. It might also be melted and evaporated or 
melted and/or evaporated or sublimed through a porous resi
due from the end. A situation such as this is of engineer
ing interest as a one dimensional heat shield with appli
cations to fire walls, nose cones, etc. In making investi
gations of this type the problem could be approached or 
solved by one of four general methods*(l): analytical, 
graphical, experimental, and numerical. Although each of 
these methods has its particular applications and advantages 
over the others, the problem under study is to be treated 
analytically. The reader who is familiar with the me
chanics of heat transfer will recognize that no claim to 
originality can be made on the general method. It is 
desired to find the most convenient and best way for the 
solution of a problem such as this and then to formulate a 
general procedure to follow in the solution.

*A11 typed numbers refer to bibliography.
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It should be pointed out that justification of the 
analytical analysis is not the stated purpose.

The author would like to express his sincere apprecia
tion to Dr. Aaron J. Miles for his suggestions and guidance 
on this problem, and he wishes also to thank Professor 
Gordon L. Scofield for his interest and assistance.
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LIST OF SYMBOLS 

,heat added, Btu/hr-ft^.
O.heat radiated, Btu/hr-ft .

.internal heat quantity consumed as in latent heat
or heat of ablation, Btu/lb .m

2heat conducted into rod, Btu/hr-ft .
•thermal conductivity, Btu/hr-ft-°F. 
density, lbm /ft^. 
specific heat, Btu/lbm -°F. 
temperature, °F. 
temperature at x=o°, °F.
coordinate normal to ablative surface.
x-v0, which has its origin on receding ablative
surface.
p-gp thermal diffusivity, ft /hr.

—80.174 x 10 Stefan-Boltzmann' s constant,
Btu/hr-ft2-°R4. 
emissivity.
ablative temperature, °F or °R. 
melting temperature, °F. 
time, hr.
rate of burn off, ft/hr. 
thickness of film, ft or in.
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The subject of ablative heat shielding is not new.
There are numerous references in the literature. NASA’s 
Mercury capsule represents a successful application in 
bringing back men, monkeys, and instruments from space. 
However neither NASA nor the maker of the capsule,
McDonnell Aircraft Corporation, has made public the details 
or the performance characteristics of this shield. There 
certainly must be numerous though less sophisticated appli
cations in the general engineering field involving melting 
rate, ablation rate, etc.

It is the purpose of this study to determine the pa
rameters associated with this phenomena, and their indi
vidual and collective effectiveness. The problem under 
investigation involves finding a method for determining the 
temperature distribution, rate of burn off and the effective
ness of material with various physical parameters as a heat 
shield. The heat is applied at a steady rate to a semi
infinite cylinder or rod which is subjected to a large heat 
flux. Some of the parameters to be considered are, thermal 
conductivity, heat of sublimation, ablation or melting, 
effect of a screening porous residue, etc. A semi
infinite cylinder or rod is one whose one end is bounded 
by one plane and the other end goes to infinity in the x- 
direction. Large heat flux means that the heat is trans

III. INTRODUCTION
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ferred to the cylinder is so great that ordinary cooling 
methods are insufficient to prevent destruction of the sur
face of application,, and may or may not be applied at a 
steady rate.
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The study of temperature variation in a semi-infinite 
cylinder as a function of time has been undertaken by many 
investigators during the past years. Much of this work is 
presented in the textbooks on heat transfer. The method of 
approach differs widely from one investigation to another, 
however the assumptions made and the results obtained are 
similar and compatible.

The analytical approach to this type of problem may be 
found in the more advanced texts, among those of note are 
the works of H. S. Carslaw (2), H. S. Carslaw and J. C.
Jaeger (3) Ingersoll and Zobel (4) have also presented 
similar material.

A somewhat simplified form but a completely logical 
and valid methods of treating the problem may be found in 
the works by Schneider (5), Kern (6) and Jakob (7). The 
material presented by these authors also belongs to the 
analytical approach but is less rigorous with many of their 
results conveyed in the form of charts and graphs.

Dusinberre (8) presents material dealing with the 
numerical analysis of heat flow involving transient and steady 
flow. This material involves similarities to the subject of 
this investigation with finite and definite surface boundary 
conditions.

In all the literature investigated, the approach to the 
solution of the problem has been developed in an expression

IV. REVIEW OF LITERATURE
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for temperature distribution in a semi-infinite cylinder from 
the standpoint of a given or assumed surface temperature 
argument. The author of this thesis could find no work 
employing the approach of an expression to determine the 
temperature history in a semi-infinite cylinder as a func
tion of time and a large heat flux. Because of this, the 
following thesis was undertaken.
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V. DISCUSSION

In determining the temperature at any point within a 
semi-infinite cylinder insulated laterally at any time as 
a function of the applied heat flux and parameters of the 
solid cylinder, a knowledge of the temperature behavior of 
a solid undergoing transient thermal conduction from this 
applied heat flux is required. It is assumed that the 
cylinder under discussion in this paper is homogeneous and 
that at any given time the applied heat flux is distributed 
equally over the bounding plane. Under these conditions 
the heat flow will be considered to be in one direction 
and normal to this bounding plane.

The heat flow in a solid takes place by conduction and 
is a function of time, temperature gradient, and the physi
cal properties of the solid. A general conduction equation 
based on these parameters is then necessary in order to 
determine the effect of the applied heat flux.

Since conduction in this case takes place in one 
direction only, this must satisfy Fourier's conduction 
equation (9)

- f t A - J T T

dQ is the amount of heat flowing in differential time d©.
A is the area normal to the flow through which this heat is 
being conducted, k is a proportionality factor called the 
thermal conductivity, and is the temperature gradient.

dQ
T W
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Temperature decreases with position in the direction of heat
jflow and therefore, if the heat flow is taken as positive

the temperature gradient must be negative as shown in E- 
quation (I).

A more general equation is desired, however. Consider 
the differential volume in Figure 1. Its faces are parallel

Figure 1. General heat conduction through a differential 
element

to the x, y, and z coordinate planes. If this differential 
parallelepiped is from a semi-infinite rod, the bounding face 
of which is parallel to the y-z plane, then the conduction in 
either the y- or z-direction is eliminated and hence conduction 
can take place only in the x-direction.

Let the amount of heat entering the parallelepiped in 
differential time d© be dC^ and the amount of heat leaving the 
parallelepiped be dQx+dx. In order for the total energy to 
be conserved, the heat entering the parallelepiped must be 
equal to the heat leaving it plus whatever energy Qg is stored 
within it to raise its internal energy level.
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Expressed mathematically:

cl &x " d @xtdx *  4  Q$

From equation (1)
d a x = - d f  <>£ a  ( £ f )  d e .

The heat leaving the parallelepiped will be

da„dx =• - **•*■ rx ft  + f f  dx) Je

or 4
clQx+d* = -dydi-k ̂ dff- dy r f a dx 48.

The amount of heat stored within the parallelpiped in time 
d© is known to be the product of the specific heat, volume, 
and density of the particular material and its temperature 
rise, or

4 Q S - P cp d *  1 /  ( 3 1

From equation (2)

- 4y 4 *  dd =* ~4y  4z-k^~ 4 9  - 4y 4 jpr] 4x 46 + f> cF 4 * 4 y  4 *  ~  4 9

which reduces to

e cr
c>~6 (4->

For a material with physical properties unaffected by temper 
ature, k, C/» and Pare constant. When grouped as — ^  they 
form a new constant oCcalled the thermal diffusivity. Equa
tion (4) can then be written

3ft _ J_  dt_
3 X* “ cL. Zd ( 5 ̂
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This is Fourier’s general conduction heat transfer equa
tion for one-dimensional flow ( 1 0 ) and all one-dimensional 
conduction problems must satisfy this equation regardless of 
initial and boundary conditions.
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Consider a semi-infinite rod of ablative material.
That is a rod with one end only and extending to infinity 
in the x - direction. Take the origin of the x-coordinate 
at one end and let the temperature at x = go be a convenient 
constant t^ . Heat is applied to the end of the rod in any 
chosen manner such as by radiation, convection, by a steady 
blast of plasma, or a combination of these. If the surface 
of the rod is insulated, the applied heat can be radiated 
from the end of the rod, consumed in ablation, conducted in
to the rod or transferred by a combination of these.

It is beyond the scope of this thesis to deal with the 
factors that determine the rate of heat application to the 
end of the rod or to an ablation surface. This is the 
problem discussed in most publications. It is the perform
ance of the rod under the application of a known quantity of 
heat per unit time and per unit area that is of interest here.

VI. STATEMENT OF THE PROBLEM

Figure 2. Ablative Rod or Shield
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The applied heat Q in Btu/hr-ft flows through the face 
of the rod at x = 0. The melting and burn off begins when 
the face x = 0 reaches the ablative temperature ta. The 
ablative liquid is removed immediately on formation except 
for a liquid film with a constant thickness s which is always 
attached to the face moving with the same rate as the burn 
off velocity v.

2

The heat balance after application of heat is

«  = hy + V  +

where qr represents heat radiated in, q'* 1 is the heat of 
ablation and q is the heat conducted into the rod.

Since heat is added continuously to the end of the rod 
along the x - direction and since the liquid film moves at 
the same rate as the burn off takes place, hence, this phe
nomena can be considered as a moving heat source (12). That 
means that the heat source is on the x* -axis of a rectangular 
coordinate system which is moving with a velocity v with re
spect to a stationary one. v is directed parallel to x. With 
this scheme a stationary observer on the x-axis would notice a 
change in temperature of his surroundings as the source moved
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along, while if the observer were stationed at a point on 
the moving x 1 -axis he would notice no such change in temper
ature. This condition of "apparent" steady-state temperature 
has been verified experimentally, and has come to be known as 
the quasi-steady state. This state is represented mathematical-
ly by —— = 0 in the moving coordinate system. 

d 9

Figure 4. Dual Coordinate System For Moving Heat 
Sources (x1 = x -v0)

Now consider the suggested transformation from station
ary to moving coordinates. In the stationary system the

a"t /temperature must satisfy the equation (5) .
Two new variables are defined (only one being chosen arbi
trarily),

X/ = X - 1/9 4^4

Now — 
a x 1, a x '

m “ V.

T h e re fo re a t  
a x

_ a t
a x '

a x '  ,

6 - & .

<><?'
ax

a t  ae
<>x

- o

ax'

el &e' - /.as
_ a2t 

a x 2 ~ a X'2

and - 3^1 ~  ■+ —  = - V  ~  H- —  —a e  ~ ax' as ae ax' ee' .
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Substituting these partial derivatives in equation (5)
= JL (-vS*©c. ax' £6'

Since this is in the moving coordinate system, 
= 0, and30'

v- at 
ax-1 ~ " <*- ax'

or d l l  - J t  M t.
~ “ *- *x'

The general solution 
~C~5L)X 't - C, e. -t- c2 C<s>

must, in this case, satisfy the following boundary condi
tions stated in terms of transformation variable x 1:

M X *, «  0 . <? s *'• 00 > *£

« *  + ^ 4S XT

Then W t
M X ' -C, -

- f s  >x'
oc

To satisfy the first boundary condition

= C, Co 3 + Ca
hence r  =s +L oo «

For the second boundary condition
a  * %  + l "'P V - A f- c, e'C~*)x'l

'  k '
whereby

C  = ret -  -  V"r vo ^
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Substituting G-̂  and back into equation (8)

In equation (9) the applied heat Q is given as stated in 
the problem but heat radiated ^  and the velocity of burn off 
V1 need to be determined.

First consider qr, then according to Stefan-Boltzmann1s 
law of total radiation (13) the total energy emitted by a 
black body is proportional to the fourth power of the absolute 
temperature of the body and its formula is:

6 is the emissivity of the material, is the Stefan-Boltz
mann1 s constant and ta is the ablative temperature (absolute).
The values of 6 and t can be found in most material handbooks.a

Since q’ 1 1 and f  may be found from the International 
Critical Tables the only unknown left to be determined is v 
the velocity of burn off. In reality q11' represents the 
following: The heat required to change the phase of the 
material, the heat of fusion, evaporation, sublimation, or 
oxidation, or perhaps a combination of these. The heat flow 
rate in the rod can also be represented by the following heat 
conduction equation: (14)

tm is the melting temperature of the material which can also 
be found from the International Critical Tables or other

%  *  * <r t i  * ( To)

?■ = - H  f p  =• V -P  cr  > o o

sources.
with respect to x ’
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. /
C a - h -  r r

/. -  J "'r v4X'

From equation (11)

V* -
£lldX'

f  CP ( t M -  )

Q ~ tr " Y"ev*
P £p C~t hri — to» )

After transposing and rearranging, this yields

V  = &  ~  5>
P [ cr (tv, - + yj

Finally with x 1 = x - v9 equation (9) becomes

OZ)

'  ... *» cc ~Cir)CX ~ V & )  +
t = t a - h- %'P » ) ^  e ~ + t

where qr and v are represented by equations (10) and (12) 
respectively.

f/3 ;
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VII. CONCLUSIONS

The temperature distribution and the burn off rate 
in a semi-infinite cylinder or shield subjected to a large 
heat flux can be determined by equations (13) and (12) 
respectively.

The method derived in this thesis is concerned with 
the expression for heat flux and various physical parameters 
and is not dependent upon a knowledge of the surface or 
given temperature behavior as is most of the published 
material on the subject. The use of coordinate transfor
mations changes the problem to be treated from unsteady 
state to steady (quasi-steady) state boundary conditions 
and reduces the non-linear differential equation which was 
not shown in this thesis to a linear differential equation. 
This, therefore, gave a much simpler approach to the solutions 
to the problem.

It is felt that this method of approach could be applied 
to the solution of other problems involving the change of 
phase, and that a family of solution equations could be 
derived to include the most commonly encountered heat flow 
expressions.

From equations (12) and (13), it is noted that both 
temperature distribution and burn off rate depend on the 
heat flux applied and the time, since the rest of the physi
cal parameters are constant.
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Equation (13) gives an exact solution to the problem in 
question, since it involves finding the temperature at any 
point desired or at any chosen time along the semi-infinite 
rod.
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VIII. SUMMARY

In the preceding work the writer has made use of 
Fourier1s general expression for one dimensional heat flow 
with transformation of coordinates and applied initial and 
boundary conditions to arrive at the solution to the prob
lem of temperature distribution and burn off rate in semi
infinite rod as a function of large heat flux and physical 
parameters of the material.

The resulting equation is relatively simple in appli
cation, and it is the hope of the author that this method 
of approach can be extended to include those various bounda
ry conditions as applied to similar types of problems of a 
more complex system.
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