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ABSTRACT 

Because of the wide variety of differential equations, 

there seems to be no numerical method which will affect the 

solution best for all problems. Predictor-corrector methods 

have been developed Which utilize more ordinates in the pre

dictor and corrector equations in the search for a better 

method. 

These methods are compared for stability and convergence 

with the well known methods of Milne, Adams, and Hammingo 
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CHAPTER I 

INTRODUCTION 

In most areas of numerical analysis the first step 

in the solution of a particular problem is to find one 

technique which can be used to obtain the solution to the 

problema The numerical solution of ordinary differential 

equations is somewhat differento More often the first 

step is to choose that technique among the many available 

which will serve the purpose besto There seems to be no 

method which is "best" in all situationso For example, 

there is usually a different criterion on the error when 

a problem has a solution which tends toward a constant 

rather than an exponential type solutiono This phenomenon 

will be explained in more detail in the next chaptero 

A number of factors must be kept in mind when trying 

to choose the best method for a particular problem in the 

numerical solution of ordinary differential equationso 

They are: 

lo The degree of accuracy requiredo The error in 

the final result depends both on the error incurred 

at each step of the integration and on how the error 

in earlier steps propagate into latter stepso The 

first type of error is due to truncation and round

off, while the later is determined by the stability 

properties of the particular methodo 

2o The effort required to find an estimation of the 

error at each stepo Since the error in each step 

is a function of the integration step size, it is 
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essential to be able to estimate the error at each 

step to determine When to change the interval be

tween stepse If the error is smaller than required, 

it is advised to increase the step size to avoid 

unnecessary waste of machine time. On the other 

hand the error may be larger than desired and 

the step size should be decreasedo 

3o The speed of computation. Since some equations 

may require a large amount of machine time even 

on the fastest computer, this must be an important 

factor to considero 

4o The ease with which a method can be adapted to 

machine use, or programmedo This depends on such 

considerations as the ease in Which the method 

can be started and the difficulty involved in 

changing the interval between stepso (l) 

Predictor-corrector methods for integrating ordinary 

differential equations, which are to be analyzed in this 

study, are widely used because of the following advantages: 

lo One measure of the error being made at each step 

is provided by taking the difference between the 

predicted and corrected values. This provides a 

relatively simple means of controlling the step 

size employed in the integratione 

2o The derivative needs to be computed only two or 

three times, compared with four or more for the 

various Runge-Kutta methods. This can save con-

siderable computing time and effort on high order 

systemso 
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3e Various types of machine failures are easily caught. 

Of course, there are also disadvantages or sources of 

trouble associated with predictor-corrector methods. The 

main disadvantages are~ 

1. Finite approximations for the derivatives cause a 

certain amount of truncation error. 

2. Propagation errors may arise from solutions of the 

approximate difference equations Which do not 

correspond to solutions of the differential equationo 

3. Certain combinations of finite difference formula 

coefficients may cause amplification of roundoff 

errors. 

4. The computation must be started by another methodo (2 ) 

The type of problem being considered in this study is the 

first order initial value problem which appears in the form 

Y' = f(x,y), y(a) = n 

where n is a constant. It will be assumed that the function 

f(x,y) is defined for xe(a,b) and for all finite Yo 

Although textbooks on differential equations often give 

the impression that most differential equations can be solved 

in closed form, it should not be overlooked that even if the 

explicit solution exists it may be no easy task to find its 

numerical valuese To some extent, this is true even of the 

trivial initial value problem y' = y, y(O) = 1, where, in 

order to find numerical values, one has either to calculate 

or to look up in a table and possibly interpolate values of 
X e o 
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x2 rx 2 
Another example is the solution y(x) = e- Jo et dt of the 

equation y' = 1 - 2xy; in order to determine values of y(x) 

one has to calculate an integral that is not expressible in 

terms of elementary functions and is not adequately tabulatedo 

Predictor-corrector methods are probably used more 

universally than any other methodo In the case of the initial 

value problem~ the only requirement is the ability to calculate 

a good approximation to the value of f(x,y) for a given x and 

yo Although~ in order to keep the error sufficiently small, 

the function f may have to be evaluated a large number of 

timeso There is no reason to be concerned over this fact 

today~ since large numbers of exactly this type of repetitive 

calculations can be performed efficiently and reliably on 

automatic digital computerso 

The stability properties of the most commonly used 

predictor-corrector equations for the numerical solution of 

ordinary differential equations are fairly well known today, 

due to the advent of modern computers. In this study formulas 

are developed with error terms of orders (O)h5~ (O)h6 ~ and 

(O)h7, where the notation~ (0), signifies a constant times 

the indicated power of the integration step length~ The 

stability properties of these formulas are compared with the 

most commonly used formulas due to Milne, Hamming, and Adamso 
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Although there is a large amount of literature pertaining 

to the numerical solution of differential equations~ this 

subject seems to have been largely neglected by modern mathe-

maticians and numerical analysts. Recent publications~ 

introducing new methods~ have been contributed by Hamming<6 )~ 

Milne-Reynolds(l)~ Crane-Klopfenstein(3)~ and others. 

The difficulties of this topic and the need for more 

research is described by Fox< 12): 

nThere is no single numerical method which is 
applicable to every differential equation~ or 
even to ever¥ ordinary differential equation~ 
or which is best possible 0 for every member 
of even the much smaller class of ordinary 
linear equations. The field is very large~ 
and for the most economic use of our com
puting machine~ coupled with the necessity 
for producing accurate answers, we need a 
variety of methods, each appropriate to its 
particular and rather small class of problems." 

The general form of the numerical integration formulas 

used in this study are 

+ h(b y 1 + b y 0 + ··· + b y 1 
) + E -1 n+l o n p n-p n (2.1) 

where,in the predictor formulas,b_ 1 = 0. Some of the other 

coefficients may also be zero in the predictor or the corrector 

equation. 
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Also~ in this study~ the various stability analyses are 

performed under the assumption that the differential equation 

to be solved is of the form 

Y' = f(x_,y) o (2.2) 

In selecting a predictor-corrector algorithm, the sta

bility of the particular method is one of the key factors 

to be considered. This is very important when the differ

ential equations being solved correspond to a system with a 

forcing function whose time duration or period is relatively 

long compared to the transient time constants of the system(2 ). 

Some effort has been directed toward the development of 

algorithms having improved stability characteristics(ll, 6 )0 

Ralston-Wilf(lO) define stability as follows: "A 

numerical integration procedure is said to be stable if, when 

f y = of(x,y)/dy < o, the error, measured by the difference 

between the true solution and the numerical solution_, decreases 

in magnitude on the average with increasing n (ioe., as the 

integration proceeds step by step)." 

In the case when f > 0, the solution itself and usually y 

the error are increasing exponentiallyo It is then desired 

to use the term "relatively stable", which implies that the 

rate of change of the error is less than the rate of change 

of the solution with respect to the number of integration 

steps(lo). In other words, if the integration step length 

is held fixed~ the asymptotic characteristics of the finite

difference solution are the same as that of the true solution 

of the differential equation, after a large number of stepso (l2 ) 
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Although some knowledge of the local truncation error 

is valuable for various purposes, it is insufficient for the 

analysis of the extended integration processo Since the 

value of one integration step forward requires a knowledge 

of previously calculated values, all future values will con-

tain the effects of truncation and rounding errors of pre-

vious steps. It is of utmost importance to know how these 

errors are propagated into the values calculated in later 

stepso They may have the undesirable tendency to accumulate 

rapidly, in which case, will give rise to an unstable in

tegration processo (l2 ) 

When an iterative formula is used to approximate the 

solution of an ordinary differential equation, it is im

portant to determine conditions under which this iteration 

converges and to investigate the rate of convergenceo By 

convergence it is meant that, as the interval of integration 

approaches zero, the numerical or finite-difference solution 

tends to the true solution of the differential equation at 

each particular point Xo (l2 ) 

When an iterative predictor-corrector process is used 

to find the numerical solution of an ordinary differential 

equation, Hildebrand(S) shows by induction the conditions 

to be met for the corrector equation to converge to a solutiono 

The error in the ith iteration of the corrector equation 

tends to zero, as i increases, if h is sufficiently small to 



insure that 

h < 1 

where h is the interval of integration and b_ 1 is the co

efficient of y~+l in the corrector equation. 
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(2.3) 

The ratio of the magnitude of errors between successive 

iterates~ or the rate of convergence~ is approximated by the 

absolute value of the convergence factor~ g~ such that 

of(x ~Y ) 
hb n n 

-1 ay (2.4) 

Because of the way stability has been defined~ it is 

important to know when a method is both stable and relatively 

stable~ A method with these desirable qualities has a more 

general application appeal.(lO) 

There are two distinct modes of application for predictor

corrector algorithms. In the first mode~ an estimate of the 

next value of the dependent variable is obtained by using the 

predictor formula once and the corrector formula is applied 

in an iterative fashion until convergence is obtained. The 

number of derivative evaluations may in fact exceed the number 

required by a Runge-Kutta algorithm since the number of evalu-

ations exceeds the number of corrector iterations by one. 

However in this case~ the stability properties of the algorithm 

are completely determined by the corrector formula and the 

predictor formula only determines the number of iterations 



required. With an accurate predictor~ usually only one or 

two iterations are required for convergence.<2 ) 

9 

In the second commonly used mode~ one application of the 

predictor and corrector equation is used and the values of 

the dependent variables are accepted as the final values. 

The predicted and corrected values are compared to obtain an 

estimation of the truncation error associated with the in-

tegration step. If the estimated error does not exceed a 

specified maximum value~ the corrected values are accepted. 

Starting from the last accepted point~ the interval of in

tegration may be reduced or increased depending on whether 

the estimation of the error is too large or too small relative 

to the specified limiting value. In this mode of applica-

tion~ only two derivative evaluations are required per 

integration step. However~ the stability properties of 

the predictor-corrector algorithm depend not only upon the 

corrector equation~ but also the predictor equation. 

The following terminology is used to avoid confusion 

in the description of the various predictor-corrector 

processes:(2 ) 

1. An iterative method refers to the use of the predictor 

equation once and then applying the corrector equation 

in an iterative manner until convergence is obtained. 

2. A predictor-corrector method refers to the use of the 

predictor and corrector equations only once. 

3. The incorporation of the error estimates~ as suggested 

in the paper by Hamming(6 ) ~ with one application of 
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the predictor and corrector equations is referred to 

as a modified~ or modified predictor-corrector method. 

All of the methods developed in this study will be used 

and analyzed as iterative methods~ in which the following 

steps are performed in obtaining the solution<14): 

1. Predict Yn+l~ using a selected predictor equation. 

2. Calculate y~+l by the differential equation 

y 1 = f(x_,y). 

3. Correct Yn+l by the selected corrector equation_, 

using the value y~+l just obtained for Y~+l. 

4. Correct Y~+l by the differential equation. 

5. Repeat steps 3 and 4, if necessary, until no further 

change occurs. 

The relative merits of the different methods of solution 

can be displayed by a comparison of the root loci of their 

various characteristic equations. They provide good informa

tion as to the behavior of the error in the solution when 

that method is used to solve an ordinary differential equation. 

This follows from the fact that the general solution of the 

difference equation for distinct roots different from unity is 

(2 -5) 

where i is the number of roots in the characteristic equation. 

The form of the solution is modified_, however, if the roots 

are not distinct .. For example~ when p1 = p2 = p, then 

n 
Klpl + n 

K2P2 in the general solution is replaced by (Kl + ~n)pn. 

In the case of one or more roots being equal to positive one_, 
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Ki+l may be a function of n rather than a constanto In any 

situation~ the root loci of the characteristic equation is 

important in the determination of the behavior of the erroro 

Where 

H = ()f h dy ~ 

the regions of positive and negative H have been studied 

separately~ since the stability requirements to be met are 

different in each caseo Where H is negative~ and the true 

solution tends toward a constant, the conditions to be met 

for stability are that the magnitude of the roots be less 

than one. In the interval of positive H~ the curve eH gives 

more information as to stabilityo In this case the solution 

is increasing exponentially and relative accuracy is main-

tained if the error does not grow more rapidly than the 

solution .. (2 ) 

There are two distinct methods for deriving the formulas 

used in this studyo The first technique is that used by Adams(S), 

Euler(S)~ Milne and Reynolds(!)~ and otherso In particular, use 

is made of the relation 
X +h 

+ J n 

xn 
y' (x)dx o 

The ordinates Yn' Yn-l' y1 ~ and y
0 

are known either from 

an appropriate starting method, or from the method itself. 

The corresponding y' (x) values can be calculated from the 
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The value of y' (x) is approximated by the polynomial of 

degree N which takes on the calculated values at the N+l 

12 

(2. 8) 

points xn, and x N-' by using the Newton backwardn-

difference formula 

where 

+s(s+l) 

s = 
x-x n 
h 

Nl 

The integration indicated in (2.7) is affected by using 

this polynomial to extrapolate yr(x) over the interval 

{x ,x +h) o n n 

where 

The result of this calculation is(lO) 

-J 1 s ( s + 1 ) • • • ( s +k -1 ) 
ak - k! ds .. 

0 

Hildebrand(lO)gives the error term in the form 

E = hn+2 J 1 
s (s+l) o o o (s+N) y(N+2) (Tl )ds 

(N+l)! 
0 

(2. 11) 



where 

X 1 > ~ > X o n+ n-N 

For more general formulas, (2.9) is used in the 

relation 

Yn+l = Yn-p + h j 1 y~+s ds , 
-p 

where p is any positive integero The ordinate following 

the nth is expressed in terms of the ordinate calculated 

p steps previously and the N+l already calculated values 

of Y'o (10) 

13 

From these relationships the predictor equations using 

this method are developedo The corrector equation, which 

makes use of the unknown slope y~+l, is obtained by re

placing the right-hand member of (2o9) by the interpolation 

polynomial agreeing withY' (x) at xn+l, xn, oe•~ xn-N+lo 

That is~ 

' ( l)o v s(s-l)s o2yv 
~ Yn+l + x- vYn+l + 2J v n+l 

+ (s-l)s(s+l) 
n! 

where again s is defined as before(lO) 

s = 
x-x n 

h 

+ 0 0 0 

(s+N-2) (2 .14) 

Due to the length of the difference equations derived 

by this method~ they have been listed in Appendix II for the 

readers convenienceo 
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The second method for deriving formulas for the numerical 

solution of differential equations is used almost exclusively 

by Hamming(G,7). His approach has a more general philosophy 

than the previously discussed methoda Instead of examining 

many special formulas, a whole class of formulas can be 

investigated at onceo 

The theory is illustrated by developing a corrector Which 

has an error term of order (O)h5. The equation used is of 

the form 

where xn_2 < 8 < xn+lo This formula uses three old values 

of the integral together with one new and three old values of 

the integrando Formula (2al5) as written implies it is exact 

for polynomials through degree 4o 

The word exact has the meaning that if y(x) is a 

polynomial of degree 4 or less and the values on the right

hand side of (2al5) are true values of the solution then~ 

except for roundoff~ Yn+l will also be a true values (l3) 

Taking (2al5) for example, there are seven coefficients. 

If they are determined so that (2.15) is exact for polynomials 

of degree 4 or less~ then there will be two free parameters 

which may be used for one or more of the following purposes:(l3) 

lo Make the error term coefficient small. 
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2. Make the stability characteristics as desirable as 

possible. 

3. Force the formula to have certain other desirable 

computational properties such as zero coefficients. 

Formula (2.15) can be made exact through degree 4 by 

substituting Yn+l = xn+h~ Yn = x, Yn-l = x-h~ Yn_ 2 = x-2h~ 

and y 
3 

= x-3h~ or by expanding the y's in a Taylor Series. n-
By the former method the following expression results: 

(x+h) 4 = a
0

x 4 + a 1 (x-h) 4 + a 2 (x-2h) 4 

+ h[4b_ 1 (x+h)3 + 4b
0
x3 + 4b1 (x-h)3 

+ 4b2 (x-2h3) J . (2.16) 

Equating like powers of x and h results in the following 

equations: 

1 a + al + a2 0 

4 -4a1 - 8a2 + 4b_l + 4b + 4bl + 4b2 
0 

6 6a1 + 24a2 + 12b_l - 12bl - 24b2 (2 .17) 

4 -4a1 - 32a2 + l2b_l + 12bl + 48b2 

1 al + 16a2 + 4b_l 4bl - 32b2 

Using these five conditions and taking al and a 2 as parameters 

results in the coefficients 
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a 1-a -a b 1 13a1 8a2 ) = = ~(19 + + 0 1 2 0 

b1 
1 13a1 32a2 ) al = al = 24(-5 + + 

1 
(2 0 18) 

a2 = a2 b2 = 24(1 al + 8a2 ) 

b 1 
- al) 

1 
-1 = 21+(9 E5 = 6(-19 + lla1 - 8a2 ) 

where E
5 

is calculated by making equation (2.15) exact for 

degree 5o 

Next we must examine the error term of such a polynomial 

approximation for formulas of the type 

(2. 19) 

If the numerical integration method is of this form, then the 

true solution must satisfy the equation 

p p 
~ a.Y . + h 

• 1. n-1 
1.=0 

~ b. Y 1 • + Tn , 
i=-l 1 n-1 

where Tn denotes the truncation error in the step xn to xn+l. 

Since 

(2. 21) 

where r is the order of accuracy and C is a constant, is the 

general expression for the error of the previously discussed 

method, it is tempting to assume a similar error term in this 

caseo 

As is shown in the following derivation, there are certain 

conditions to be met for an error term of the form (2o2l)o (l3) 
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To determine the expression for T ~ each Y. andY! in 
n ~ ~ 

(2.20) is expanded in a Taylor Series about the point xn. 

This results in 

and 

y . 
n-~ 

Y' . 
n-~ 

.2h2 (-l)r;rhr ( ) 
Y - ihY 1 + ~ Y" + • · · + - - "'- y r 

n n 2! n r! n 

+ 1 J xn- i (x . - s)ry(r+1) (s) ds 
r! n-~ 

xn 

( _ 12 r-li r-lhr-1 y(r) 
y~- ihY~ + ... + (r-1)! n 

1 J 
X • 

n-J.. 

+ (r-1)! 
xn 

(x .-s)r- 1y(r+l)(s)ds 
n-~ 

(2.22) 

(2.23) 

where r is the order of accuracy of (2.20). Substituting 

these equations into (2.20) and remembering that it is exact 

when Y(x) is a polynomial of degree r or less~ Tn is given 

as 

T 
n 

t a. j xn-i(x .-s)ry(r+l) (s)ds 
. ~ n-1 
~=0 X n 

- rh e b. f. xn-i ( )r-1y(r+l)( )d l 
.~ 1 ~ xn-i-s s sj~ 
J..=- xn 

(2. 24) 
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which is rewritten as 

~ l--a.(x .-s)r + rhb.(x .-s)r-lJ3y(r+l)(s)ds 
• l L n-L L n-L 
L= 

= J:v J. xn+l G(s)Y(r+l) (s)ds 
r. (2.25) 

X n-p 

where,to avoid trouble at the upper lirnit,let(l3) 

- s i I -1 

[

X • 
n-L 

(x .-s) = 
[

xn-i < s ~ xn 
X < S n- i -1 (2. 26) 

n-L 0 otherwise 

The function G(s) is called the influence function. Where 

G(s) is of constant sign in the interval (x ~ x +l)~ the n-p n 

second law of the mean is applied to get the error in the 

form 

y(r+l) (n) J xn+l 
r* G(s)ds 

• X 
(2.27) 

n-p 

where xn-p < ~ < xn+l_(l3) The error term may not be of this 

form if G(s) is not of constant sign. 

In making the substitutions Yn+l = x+h~ ···~ Yn_ 3 
x-3h(l3), two things must be noted before writing the 

influence function for equation (2.15). 

1. Since h cancels out in the final result, there is no 

loss of generality in setting h = 1. 
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2. We set xn = 0 since the coefficients are independent 

of the origin of the coordinate. 

Now~ G(s) for equation (2.15) is found by using equation 

(2.25) and is also given by Harnming(7) as 

G(s) 1 \. 4 4 lf!" L(h-s) - a
0

(h-s) 

where r = 4. 

Since the coefficients (2.18) are dependent upon a 1 and 

a 2 , the remaining problem is to find those values of a 1 ~ a 2 

such that G(s) has a constant sign. Since it is impossible 

to find the zeros of G(s) for each pair (a1 , a 2 ), we set 

G(s) = 0 and find the region of the a 1 ~ a 2 plane where G(s) 

is of constant sign. This linear function in a 1 , a 2 is 

graphed for each interval of s, namely h > s > 0, 0 > s > -h, 

and -h > s > -2h in this example. From this graph~ a 1 and a 2 

are chosen such that G(s) is of constant sign~ giving the de-

sired error term. 

A great deal of later algebra can be saved at this point 

if the stability analysis is performed on the "generalized 

corrector", 

(2.29) 

where x 2 < g < x 1" n- n+ 
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Let z be the true solution of the differential equation~ 

then z satisfies 

dz 
dx z' f (x, z) . 

The numerically calculated solution y satisfies 

y' n 

(2.30) 

(2.31) 

where E1 (~) is the error in the nth value and is assumed to 

be small. The true solution z will approximate relation 

(2.29) and it therefore follows that 

(2.32) 

where E2 (~) is the truncation error at the point xn+l" 

Let the error between the true solution and the approximate 

solution be defined as 

E 
n 

- y 0 

n 

Subtracting the two corrector equations (2.32) and (2.29) 

results in the relation 

(2.33) 

(2.34) 



Assume that~ 

1. f(xn,y) is a continuous function of y for y con

tained in the closed interval whose end points are 

zn and Yn· 

21 

2o of(xn,y)/Oy exists for y in the open interval whose 

end points are z andy .<11) 
n n 

By applying the mean value theorem, there exists a Q contained 

in the open interval whose end points are zn and yn, for which 

zo 
n 

y 1 = f (x , z ) - f (x - y ) (J f (~" y) I 
n n n n n y 

(2.35) 

The fact that E1 (~), E2 (~), and o£jcy change slowly in 

practice, makes it reasonable to assume they are constants. 

Also, to simplify the equations, let 

It follows from equation (2.34) that 

where H = Kh. This linear difference equation with constant 

coefficients may be solved by setting En= CAn, resulting in 

the following characteristic equation 
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+ CH(b An+l +bAn + b n-l + h
2

A0 - 2 ) 
-1 o lA 

which may be rewritten as 

(Hb_ 1 
o. (2. 39) 

For any given H, there are three roots. 

Most of the assumptions made during this analysis will 

be carried over in subsequent analyses. 



CHAPTER III 

DISCUSSION OF WIDELY USED METHODS 
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This chapter presents a discussion of the stability 

properties of several well known predictor-corrector methods 

by Milne~ Adams~ and Hammingo It is felt that a discussion 

of these methods should be presented before the methods 

developed in this study are analyzedo Although this study 

is chiefly concerned with the use of predictor-corrector 

methods in an iterative fashion~ Hamming's modified version 

of this technique will also be analyzed( 6 )0 This method, 

which incorporates error estimates in the final result and 

uses the predictor and corrector equations only once~ is of 

interest because it is generally regarded as one of the better 

methods. A detailed analysis of these and other methods 

is given in a paper by Po Eo Chase(2 ). 

Milne's Method 

In spite of its well known stability problems, Milne's 

method is the classic predictor-corrector method for the 

numerical solution of ordinary differential equations. Since 

this is an iterative method, the stability properties are 

completely determined by the corrector equation and the 

predictor equation only influences the number of iterations 

requiredo The predictor and corrector equations for Milne's 

method are respectively: 

(3.1) 

(3· 2) 
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where 

Y' = f (x , y ) • n n n 

The characteristic equation for Milne's method as given 

by Hamming(B) and others is 

(H - 3)A2 + 4HA + H + 3 = Oo (3.3) 

Equation (3o3) was solved for -2 ~ H < 2 to obtain twenty

one values for Al and A2 , using the QUadratic Formula. Figure 

1 shows the magnitude of the roots as a function of H, Where 

(<))corresponds to a negative real root, (~)to a positive 

real root, and (~ signifies the magnitude of a complex root. 

The graphs of the dominant roots for each method are located 

in the appendixo 

Adam' s Method 

Adam's method, also known as the modified Adam's or 

Moulton method, is characterized by the equations 

h ) 
= Yn + ~ (55Y~ - 59Y~-l + 37Y~-2 - 9Y~-3 (3o4) 

where (3o4) is used to predict and (3o5) to correcto To find 

the characteristic equation for Adam's corrector we use the 

results of equation (2o39) in Chapter II where 
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a = 1 b_l = ~ 0 

al 0 b = ~ 0 

-5 
(3.6) 

a2 = 0 bl = 24 

which results in the characteristic equation 

(~ H - l)J\3 + (~ H + l)J\2 
- ~ HA + ~ H = o, (3o7) 

for Adam's method. The Fortran II subroutine ROTPOL, Which 

uses the Bairstow method along with a Newton-Raphson iteration 

for greater accuracy, was used to find the roots of this 

characteristic equation in the interval -2 < H < 2 with 

~H = 0.2o These roots are shown in Figure 2. The symbols 

showing the type and magnitude of each root as described 

earlier are used throughout this study. 

Hanrrning's Method 

The same type of analysis used in determining the 

characteristic equation associated with Adam's iterated method 

can be applied to Hamming's iterative method. The predictor 

and corrector for Hamming's iterative method are 

(3.9) 

Again we may use the stability analysis performed in 

Chapter II, substituting the coefficients into equation (2.39). 
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They are: 

a = ~ b - 3 
0 -1 - E 

al = 0 bo = 

* 1 
(3.10) 

a2 = - E bl = - ~ 

Performing this operation results in the characteristic equation 

(3.11) 

and again there are three roots for each H in the interval 

(-2~2). The roots of this third degree polynomial are plotted 

in Figure 3. 

The modified method suggested by Hamming( 6 ) is specified 

by the following relations~ 

= y + 4h (2y' - y r + 2y' ) n-3 3 n n-1 n-2 

(3.12) 

Using the definitions 

V P - w m ~n = w.n - en, En = wn -yn, 
n = wn - Pn, n - n - n' 
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where wn is the true solution, and following a similar pro

cedure as in the analysis presented in Chapter II, the following 

difference equations are obtained(2 ): 

Vn+l = E + 4H (2E - € 1 + 2€ 2) n-3 3 n n- n-

Pn+l 

0 n+l 
€ 

n 

• 

The solution to this set of simultaneous difference 

equations is found by assuming 

n 
vn = A7\ , 

n 
cr = C'A , n 

e = D'An 
n 

Substituting these relations into the difference equations 

(3ol4) results in a system of four simultaneous linear 

homogeneous equations in the constants A, B, C, and Do In 

order to obtain a nonzero solution, it is necessary and 

sufficient that the determinant of the coefficient matrix 

vanisho The characteristic equation, as given by Chase(2 ), 

for Hamming's modified predictor-corrector method is 

+ (14 - 24H - 168H2 )'A 2 + ( -9 - 42H + 112H2 )'A + 42H = 0 ~,(3o 16) 

The magnitude of its roots as a function of H are shown in 

Figure 4o 
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CHAPTER IV 

FIFTH-ORDER METHODS 
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This chapter presents a discussion of the commonly 

called four-point methods for the numerical solution of 

ordinary differential equations. All error terms for these 

four-point formulas are written in terms of the fifth power 

of the integration step length having the general form 

where C denotes a constant and 9 is somewhere between xn+l 

and the smallest x value used in the particular formula. 

The first stability analysis in this chapter is per-

formed on the correctors derived from the difference equations 

in Appendix II. Differences higher than the third are 

truncated to obtain four-point formulas. The second analysis 

is performed on the corrector derived by making the formula 

exact for polynomials through degree four. The coefficients 

of this fifth order corrector are derived by Hamming(7) and 

are written as functions of two parameters a 1 and a 2 . In 

choosing the values to assign these parameters~ a compromise 

is made between excellent stability properties and a very 

small error term. 

Writing the difference equations in terms of ordinates, 

results in the following predictor-corrector equations: 
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Predictors 

(4.1) 

(4.2) 

(4.3) 

Yn+1 
4h(2 v 

Yn-3 + 3 Yn - yu 1 + 2y' 2) n- n-

+ ~h5y(5)(Q) (4.4) 

Correctors 

Yn+1 = Yn + ~4( 9Y~+1 + 19y' - Sy' + Y0 
) n n-1 n-2 

- 19 h5y (5) (Q) 
720 

(4.5) 

Yn+1 
h( (l 

= Yn-1 + 3 Yn+1 + 4y' + y' ) n n-1 

- kh5y(5)(Q) (4.6) 
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(4.7) 

There is no fourth corrector since the coefficient of 

Yri+l is zeroo Also 3 since corrector (4o5) is used in Adam's 

method and corrector (4o6) is used by Milne, only corrector 

(4o7) was not analyzed in Chapter IIIo 

The stability analysis performed on the generalized 

corrector in Chapter II can again be utilized to find the 

characteristic equation of corrector (4.7). Substituting 

the coefficients of corrector (4.7) into equation (2o39) 

results in the equation 

In Figure 5, the magnitude of the roots of this 

(4.8) 

characteristic equation are shown as a function of H. The 

figure shows that corrector (4.7) has stability properties 

very similar to Milne's corrector 3 and is therefore unstableo 

The generalized corrector of Chapter II is rewritten 

for the readers convenience. 

Y = a y + a y + a y n+l o n 1 n-1 2 n-2 

Making this corrector exact for polynomials through degree 

four, results in the coefficients given by Hamming(7): 
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a 1 - a1 b 1 + 13a1 + 8a2 ) - a2 = 24(19 
0 0 

al al bl 
1 

= 24(-5 + 13a1 + 32a2 ) 

a2 a2 b2 
1 

= 2lj:(l - al + 8a2 ) 

b_l 
1 

al) 
1 

= 21+(9 - E5 = b(-19 + lla1 - 8a2). 

A suitable predictor to go with this corrector is also 

given by Hamming(7). 

where 

17 + A2 
A -8 - A2 B 

0 0 3 

14 + 4A2 
Al 9 Bl 3 

-1 + A2 
A2 A2 B2 3 

40 - 4A2 
E5 3 

36 

(4.10) 

(4.11) 

(4.12) 

The coefficients for the predictor are derived by the same 

method as for the coefficients of the corrector equation. 

No attempt is made in this study to find the best predictor 

to go with any of the particular correctors developed in 

this paper. 
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The values chosen for the parameters a 1 and a 2 in 

equations (4.10) are a 1 = .7 and a 2 = .53. Other selections 

give slightly better accuracy but for stability H must be 

less than 0.2. The values of the coefficients for this 

equation are: 

a 23 b 539 
0 -TOO 0 1IT)Q 

al - 7 b1 
- 351 -w - 400 

a2 - 53 b2 
227 

- too = 1200 

b_1 
83 259 

= 21+0 E5 = - lOO • 

The characteristic equation for this method is found 

by substituting these coefficients into equation (2.39)~ 

and is given by equation (4.14). 

(~~0 H- l)A-3 + (~66 H- iao)A-2 
+ (~66 H + h)A. 

217 53 
+ 1200 H + 100 0 • 

The roots of this equation are shown in Figure 6 as 

a function of H. 

(4.13) 

(4.14) 
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CHAPTER V 

SIXTH-ORDER METHODS 

The sixth-order methods, or the commonly called five

point formulas, have a generalized corrector of the form 

+ h(b_ly~+l + boy~ + bly~-1 + b2y~-2 + b3y~-3) 

39 

+ 
E6h6y (6) (9) 

(5.1) 6! e 

All of the predictor and corrector equations developed in 

this chapter have error terms of the same general form as 

equation (S.l)o 

Theoretically, the methods developed in this chapter 

should be more accurate than the four-point methods of 

Chapter IVo However, roundoff error becomes more of a problem 

as more points are utilized in the corrector equationo It 

also becomes increasingly more difficult to obtain stable 

formulas, since the characteristic polynomial is of a higher 

degree a 

The following sixth-order predictors and correctors 

are derived from the difference equations in Appendix II~ 

Predictors 

(5.2) 
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(5-3) 

(5.4) 

Yn+l = Y 3 + 2h(67y' - 58y' + 102y 1 

2 - 28yrr 3 n- 45 n n- 1 n- n-

(5.5) 

Correctors 

(5.6) 

- u ) - _!._h6 (6) (('\) 
Yn-3 90 y ~ (5-7) 

(5.8) 

2h( I 32 I I I 
Yn+l = Yn-3 + 45 7Yn+l + Yn + 12Yn-l + 32 Yn-2 

(5.9) 



41 

Equation (5.9) is a seventh-order equation~ but will be 

analyzed in this chapter since the characteristic equation is 

of degree four. 

To include all of the correctors developed in this 

chapter the equation~ 

is used in the stability analysis. 

The differential equation to be solved is assumed to 

be of the form 

y 1 = f (x, y). 

(5.10) 

(5 .11) 

If z is the true solution of the differential equation, then 

z satisfies the relation 

dz 
ox f (x ~ z) • 

The calculated solution y satisfies 

y' n 

where E1 {D) is the error in the nth value and is assumed 

{5ol2) 

(5.13) 



to be small. The true solution z approximates equation 

(5.10) and it follows that 

+ h(b 1zu+l + b z' + b 1z• 1 + b2z' 2 + b
3

z• 
3

) 
- n on ~ ~ ~ 

where E2 (~) is the truncation error at the point xn+l. 
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(5.14) 

The error between the true solution and the approximate 

solution is defined as 

z - y n n 

Subtracting equation (5.10) from (5.14) results in the 

relation 

a E + a 1 e 1 + a 2 e 2 + a 3e 3 o n n- n- n-

• 

By making the assumptions as in Chapter II~ applying the 

mean value theorem~ and letting 

(5.15) 

(5.16) 
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results in the equation 

where H = Kh. Solving this linear difference equation with 

constant coefficients by setting En = CAn, results in the 

characteristic equation 

• (5.19) 

By substituting the coefficients of correctors 

(5.6- 5.9) into equation (5.19), the characteristic equation 

of each can be found. The roots of each characteristic 

equation for twenty-one values of H, -2 < H ~ 2, are shown 

in Figure 7-10. The Bairstow method, subroutine ROTPOL, 

was again used to find each root. 

Taking a 1 and a 2 as parameters and making equation (5.1) 

exact for polynomials through degree five, results in the 

coefficients: 

~1 

b 
0 

1 
720 (646 + 346a 1 - 1024a2 ) 

1 
720 (-264 + 456a1 + 912a2 ) 

1 
720 (106 - 74a1 + 272a2 ) (5.20) 
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A suggested sixth-order predictor to use with this 

corrector is 

where 

A 1 lla2 ) 1 
0 n<-232 - Bl = n<ts2 + 19a2 ) 

Al 
1 

19(251 - 8a2 ) B2 
1 

= n<-23 + 8a2 ) 

A2 = A2 
1 

B3 = 57(10 - a2) 

Bo 
1 + 10a2 ) E6 

1 lla2
) - -(413 = 570(281 - Q 

- 57 

These coefficients are found by making equation (5.21) 

exact for polynomials through degree five. 
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(5.21) 

(5.22) 

The values chosen for the parameters a 1 and a 2 for this 

sixth-order method are a 1 = .7 and a 2 = 0. The resulting 

coefficients of equation (5.1) are: 

ao =T6 
al =i6 
a2 = 0 

b_l = ~~bb 

E6 = - ~ 

4441 
bo = 360'0 

bl = 35~ 

b2 -~ - 3 

b3 = - 7~6~ 

• 

(5.23) 



The characteristic equation for this method~ as given 

by equation (5.10), is 

(_g_3_7_7H _ l)A. 4 + (4441H + 3)A. 3 + (23 H + _7):A 2 
~ 3600 ~ ~ ~ 
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+ --~'IlEA _ 113 = O 
3000 ~H • (5.24) 

The roots of this equation were found by the usual 

method and are shown for the twenty-one values of H in 

Figure 11. 
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CHAPTER VI 

SEVENT~ORDER METHODS 
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Stability becomes a definite problem in the derivation 

of the seventh-order methods. The correctors derived from 

the difference equations in Appendix II have fifth degree 

characteristic equations~ while those derived by the method 

of undetermined coefficients have fourth degree characteristic 

equations. 

The closed-type formulas of Appendix II which yield 

stable correctors are equations 1 and 3. The predictors 

listed are derived from open-type formulas 2 and 6~ and were 

chosen because they have smaller error terms. 

Predictors 

(6.1) 

(6.2) 

Correctors 

(6.3) 



• 

The generalized corrector 

+ h(b_ly~+l + boy~ + bly~-1 + b2y~-2 

E h7y(7)(9) 

+ b3y~-3 + b4y~-4) + 
7 7! 
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(6.4) 

(6.5) 

is used for the stability analysis of correctors (6.3) and 

(6.4). By a similar analysis, as presented in Chapter II 

and v~ the characteristic equation of (6.5) is found to be 

The magnitude of the roots for the characteristic 

equations of correctors (6.3) and (6.4) are shown in 

Figures 12 and 13. 

(6.6) 

The generalized seventh-order corrector is of the form 
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Making this equation exact for polynomials through degree 

six~ results in the coefficients 

1 lla2 + 16a
3

) 1 a = n<-16 - bo = m<l028 + l87a2 - 324a
3

) 
0 

1 
bl 

1 
al = n(27 - 27a3) = 1:05(196 + 209a2 - 108a

3
) 

a2 a2 b2 
1 

= m<-52 + 187a2 + 756a
3

) 

1 
a3 - a b 3 = go(l - a 2 + 27a

3
) - 3 

(6. 8) 

1 lla2 + 27a
3

) E7 
4 11a2 - 25653a3) • b_1 = 990(281 - = m<-4o8 -

Equation (6.7) has a fourth degree characteristic polynomial 

and it can be found by using equation (5.19). 

The suggested predictor to use with corrector (6.7) is 

+ 7~ 

with coefficients 

A
0 

= Tf(-297 - 11A3) 

A1 = tf(27 - 27A3) 

A2 = Tf(281 + 27A3) 

A3 = A3 

1 B0 
= TI(129 + 3A3) 

B1 = Tf(369 + 27A3) 

B2 = Tf(l05 + 27A3) 

1 
B3 = TI(- 3 + 3A3) 

(6. 9) 

(6 .10) 



For the coefficients (6.8), no values were found for 

the parameters a2 and a3 which make corrector (6.7) stable. 

Although stability was not achieved, for most differential 

equations tried, a2 = a 3 
= 1 worked very well. 

The two extreme cases are shown in the examples given 

below. In the first example, the differential equation is 

y 1 = -y, y(O) = 1 

which has the closed form solution 

-X y = e 

In the second example, the differential equation is 

yn = -2xy, y(O) = 1 

with closed form solution 

1 
y = -r:t? . 

Table I shows the error growth in the solution of each 

example. Predictor (6.9) with A3 = 0, and corrector (6.7) 

with a
2 

= a
3 

= 1, is used to obtain the solution. A partial 

list of the results are shown. 



TABLE I : ERROR GROWTH IN THE SOLUTION 

OF yn = -y AND y' = -2xy, y(O) = 1, AND h = .1 . 

X 

o.s 
1.0 

1.5 

2.0 

2.5 

3.0 

3-5 

4.0 

4.5 

s.o 

y' = -y 

(x 10-10) 

1.33 

7-76 

0.75 

s.64 

2.72 

10.61 

11.59 

16.69 

19.14 

27.04 

y' -2xy 

(x 10- 1) 

0.17 

1.37 

1.95 

1.98 

0.73 

3.94 

16.39 

126.04 

1138.29 

12658.81 
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CHAPTER VII 

CONCLUSIONS 

Several stable methods have been derived for the 

numerical solution of ordinary differential equations. For 

the readers convenience, they have been listed below with a 

brief description of each method. 

METHOD I 

The predictor and corrector for this method are derived 

from equations (4.11) and (4.9), respectively. They are 

derived by making the equations exact for polynomials through 

degree fouro This method of derivation is usually referred 

to as the method of undetermined coefficients. This fifth

order method is stable for -2 ~ H ~ 0. For H > 0 the 

characteristic equation has points for which the magnitude of 

H A is greater than e , as do all the methods developed in this 

study and most other iterative methods. The dominant roots, 

in the negative H interval, for this method are shown in the 

Appendix, Figure 6A. This method is characterized by the 

following predictor and corrector: 

(7 .1) 

Yn+l = Tfi[- ~Yn + 7Yn-1 + ~Yn-2 

+ 1~0 (415p~+1 + 1617y~ + 1053y~_ 1 + 227y~_ 2> J 

(7 .2) 
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METHOD II 

This sixth-order iterative predictor-corrector method 

is developed from the difference equations located in 

Appendix II. The predictor is derived from open-type 

formula 4 and the corrector from closed-type formula 1. 

The dominant roots~ in the negative H interval, for this method 

are shown in the Appendix,Figure 7A. As shown in this figure~ 

H > -1.9 is required for stability. The predictor and corrector 

for this method are 

(7 -3) 

(7 .4) 

respectively. 

METHOD III 

This is the sixth-order iterative procedure developed 

by the method of undetermined coefficients. The predictor 

is developed by determining the coefficients of equation 

(5.21) and the corrector by detenmining the coefficients of 

equation (5.1). They are exact for polynomials through 

degree five. H >-.66 is required for the stability of this 

method~ as is shown in Figure 11. The predictor and corrector 

equations are~ respectively~ 
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(7 -5) 

-

Yn+l ~l3Y0 + 7Yn-1 + 7~0 (2377P~+l + 8882y~ 

(7 .6) 

METHOD IV 

This seventh-order method uses equation (6.2) to predict 

and (6.3) to correct. The predictor and corrector are derived 

from the difference equations in Appendix II. The dominant 

roots for this method are shown in Figure 12A, showing that 

this method is stable for H > 1.36. The predictor and 

corrector are 

METHOD V 

This method is very similar to method IV. The same 

predictor is used with corrector (6.4). This method is 

(7 -7) 

(7 .8) 
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stable for H < -1.68 as is shown in Figure l3A. The corrector 

for this method is 

- 7Yu + y' 4) - ~h7y(7)(9) n-3 n- 22Ltv • (7. 9) 

To illustrate the theory discussed in this study, each 

of the various new predictor-corrector methods were tried on 

several first order differential equations. All computations 

were performed on the IBM 1620 Model II computer. An excellent 

correlation between the expected and actual rates of error 

growth is obtained. The differential equations solved are 

summarized in Table II. 

TABLE II~ NUMERICAL EXAMPLES 

Differential Initial Closed 
Example Equation Condition Form Solution 

1 y' = y Y(O) 1 y ex 

2 y' = -y y(O) = 1 y e -x 

3 yD = X 
2 y y(O) 1 y = 2 - 2x + x2 + e 

4 yD 1/(1 tan2 y) y(O) 0 
-1 

= + y tan x 

For all problems solved, the interval of integration is 

h = .1. Iteration is continued until the difference between 

the predicted and corrected value is less than Sxlo-
6 • The 

error growth for each method is measured by the difference 

between the closed form solution and the calculated values. 

To save valuable computer time the closed form values are 

used for the required starting values of each method. Each 

-x 
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problem is also solved using the modified Hamming, Adams, 

M1lne, and Runge-Kutta methods to provide a comparison with 

other well known and accurate methods. The computer results 

are summarized in Tables III through VI. 

All of the new, stable methods are quite effective 

in providing an efficient and accurate solution to the first 

order differential equations tried. Methods I, II, and III 

are probably the best methods developed. Methods IV and V 

have the disadvantage of requiring extra starting values. 

Method II needs five starting values as written, but the 

number required can be reduced to four by using the predictor 

of Method III. 

It is felt that either a fifth or sixth-order method is 

the optimum order, for both stability and convergence, in 

the numerical solution of ordinary differential equations. 



X 

0.5 

leO 

1.5 

2.0 

2.5 

3·0 

3.5 

4.0 

4.5 

s.o 

TABLE III: ERROR GROWTH (X10- 6 ) IN THE SOLUTION OF Y1 

BY USING VARIOUS METHODS 

RUNGE- MOD. METHOD 
KUTTA MILNE* ADAMS HAMMING I 

o.s 4980. Oe6 o.o Oe2 

2.9 29230. 3.8 0.2 le1 

6.8 78120. 11.4 0.4 3.2 

14.6 180900. 27.3 0.5 7.5 

30.0 381500. 59.0 o.o 17.0 

61.0 766600· 119.0 4.0 32.0 

116.0 1488000. 233.0 12.0 63.0 

217.0 2822000. 446.0 19.0 121·0 

398.0 5254000· 838.0 32.0 228.0 

730.0 9648000. 1540.0 50.0 420.0 

* ROUNDED TO FOUR SIGNIFICANT FIGURES 
** STARTING VALUE 

METHOD 
I I 

o.1 

o.4 

o.8 

1.4 

2.0 

6.0 

11.1 

18.0 

27.0 

50.0 

= y, Y<Ol = 1 

METHOD METHOD 
I I I IV 

o.1 ** 
0.7 o.2 

1.6 0.6 

2,8 1.0 

6.0 2.0 

14.0 6.0 

28.0 12.0 

52.0 21.0 

90.0 36.0 

170.0 ao.o 

METHOD 
v 

** 
o.3 

o.s 

1.5 

3.0 

6.0 

14.0 

24.0 

43.0 

80.0 

0'\ 
VJ 



X 

o.s 

leO 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4e5 

5.0 

TABLE IV: ERROR GROWTH (X107} IN THE SOLUTION OF 

BY USING VARIOUS METHODS 

RUNGE- MOD. METHOD 
KUTTA MILNE* ADAMS HAMMING I 

3e100 21550. 4.40 0·500 o.aoo 

3eBOO 65730. 10.70 Oe200 2.100 

3.600 38650. 11.30 Oe600 2e000 

2.900 67840. 9.80 0·300 le900 

2.230 5807. 7.72 Oe040 1.380 

1.610 67490. 5.78 OellO 1.ooo 

1.140 37690. 4.17 0.120 0.730 

o.aoo 90720. 2.92 Oe090 o.soo 

0.550 97690. 2.oo 0·060 0.350 

0.369 152600. 1.36 o.047 0.236 

* ROUNDED TO FOUR SIGNIFICANT FIGURES 
** STARTING VALUE 

METHOD 
I I 

Oe300 

1e100 

1e600 

1.500 

1.290 

0·910 

0.650 

0.460 

Oe330 

0.218 

y' = -Y, Y(Q) = 1 

METHOD METHOD 
I I I IV 

Oe400 ** 
Oe300 o.oo 

Oe4()0 o.ao 

o.zoo 0.90 

Oe260 Oe83 

o.2no Oe60 

Oe140 0.42 

o.1oo 0.29 

0.060 0.21 

0.044 0.14 

METHOD 
v 

** 
o.soo 

o.aoo 

0.500 

1.120 

0.950 

0.150 

1.280 

1.020 

0.275 

0\ 
.,J::-



X 

0.5 

leO 

1.5 

2.0 

2·5 

3.0 

3.5 

4e0 

4·5 

s.o 

TABLE V: ERROR GROWTH CXl0-
6 ) IN THE SOLUTION OF Y1 

BY USING VARIOUS METHODS 

RUNGE- MOD. METHOD 
KUTTA MILNE* ADAMS HAMMING I 

0.61 3464. 0.41 o.o2 o.os 

1.06 13790. 1.08 0.08 0.18 

1.30 16630. 1.10 0.10 0.10 

1.30 25780. o.8o 0.30 OelO 

1.40 22760. 0.40 o.so 0.30 

1e50 33680. Oe20 1.oo Oe30 

le60 23370. o.oo 1.oo 0.20 

1.20 40740. o.ao 1.20 o.ao 

o.oo 19030. 2.00 4.oo 2.oo 

2.00 50290. 4.oo 1.oo 2.00 

* ROUNDED TO FOUR SIGNIFICANT FIGURES 
** STARTING VALUE 

METHOD 
I I 

o.o2 

0·08 

0.20 

o. 40 

o.so 

o.1o 

0·10 

lelO 

3.oo 

s.oo 

2 = X - y, YfO)= 1 

METHOD METHOD 
I I T IV 

Oe07 ** 
o.1o o.o2 

o.2o 0.10 

Oe5() Oe40 

1.oo 0.60 

leOO o.ao 

o.9o 0.70 

1.3o 0.90 

3.oo 2.90 

5.00 4.oo 

METHOD 
v 

** 
0.02 

0.20 

0.20 

0.30 

0.40 

0.20 

0.20 

2.90 

2.00 

0'\ 
\]1 



X 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4e0 

4.5 

5.0 

TABLE VI: ERROR GROWTH (X 1 o-6 ) IN THE SOLUTION OF Y1 = 

BY USING VARIOUS METHODS 

RUNGE- MOD. METHOD 
KUTTA MILNE* ADAMS HAMMING I 

0.36 1348. 0.37 2.95 0.92 

0.55 5357. 7.81 2.13 2.53 

0.46 5778. 6.26 0.21 1.72 

0.50 6099. 3.80 o.oo 1.oo 

0.60 4351. 2.40 o.oo 0.70 

Oe60 4839. 1.80 0.20 0.70 

0.70 2723. 1.50 0.60 0.50 

o.ao 3984. le30 1.oo 0.60 

0.90 1504. 1.20 1.20 0.60 

1.00 3542. 1.20 1.70 0.60 

* ROUNDED TO FOUR SIGNIFICANT FIGURES 
** STARTING VALUE 

METHOD 
I I 

1.50 

0.85 

0.36 

o.1o 

0.10 

0.30 

0.40 

o.5o 

o.1o 

0.90 

1/(l+TAN YJ, Y(0) = 0 

METHOD METHOD METHOD 
I I I IV v 

le31 ** ** 
0.67 0.46 0.36 

0.07 0.73 0.23 

o.3o 0.30 0.20 

Oe60 o.oo o.oo 

o.6n Oe20 0.20 

o.7n 0.40 0.30 

o.ao o.so 0.20 

0.8() 0.70 0.10 

1.01"' 0.90 o.oo 

0'\ 
0\ 
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APPENDIX I 
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.FIGURE 1A· DOMINANT ROOTS IN THE NEGATIVE H INTERVAL 
fOR .FIGURE 1· 
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FOR FIGURE 2· 
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fOR FIGURE Lf. 
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IA.I 1· 
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fOR FIGURE 5-
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FOR FIGURE 7. 
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.FIGURE lOA. DOMINANT ROOTS IN THE NEGATIVE H INTERVAL 

fOR fiGURE 10. 
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o.o . 2 . . Lt -5 .a. 1.0. 1.2. l·Lf. 1.5. 1.s. 2.0 2.2 

-H 
FIGURE 12A· DOMINANT ROOTS IN THE NEGATIVE H INTERVAL 

FOR FIGURE 12· 
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o.o. -2 .. y. .5 .. e. 1.0. 1.2. t.Lt. 1.6. 1.s. 2.0. 2.2 

-H 
.FIGURE 13A- DOMINANT ROOTS IN THE NEGATIVE H INTERVAL 

FOR FIGURE 13· 
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APPENDIX II 

Predictors - Open Type Formulas 

1o Yn+l = y 0 + h(l + ~ = ~2 + ~4 + ~~6v4 + ~5 

7181 6 11 

+ 30240V + ···)yn 

2. Yn+l = Yn-1 + h(2 + ~2 + ~3 + ~v4 + ~v5 

+ 13499n6 + ) 1 
6o48ov • • • Yn 

5· Yn+l = Yn-4 + h(5 - ~ + ~2 - ~3 + ~4 

6. Yn+l = Yn-5 + h(6 - 12V + l5V2 - gv3 + ~4 

481 6 + ~ + ···)yll 2240 n 
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Correctors - Closed Type Formulas 

2. Yn+l = Yn-1 + h(2 - 2'V + ~2 - 90~4 - 90~5 

5· Yn+1 = Yn-4 + h(5 - ~ + 11~2 - ~3 + ffiv4 

6. Yn+1 = y
0

_
5 

+ h(6 - 18~ + 27~2 - 24~3 + ~4 

3~5 41 6 ) i. - rov + Tl+Uv - " •• Yn+l 
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