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ABSTRACT 

Structured overlay networks are primarily used in data storage and data lookup, 

but they are vulnerable against many kinds of attacks. Within the realm of security, 

overlay networks have demonstrated applicability in providing privacy, availability, 

integrity, along with scalability.   The thesis first analyses the Chord and the SALSA 

protocols which are organized in structured overlays to provide data with a certain degree 

of privacy, and then defines a new protocol called Spherical Chord which provides data 

lookup with privacy, while also being scalable, and addresses critical existing weaknesses 

in Chord and SALSA protocols. Spherical Chord is a variant of the Chord, and utilizes 

the concept of distributed hash table (DHT). Chord sends packets uni-directionally over a 

virtual id space in the overlay. While this feature provides lower latencies, it can be used 

by attackers to misroute and drop packets. Spherical Chord protocol introduces additional 

connections in the structured overlay and increases the path length and the number of 

paths for sending messages, hence making it more resilient to routing attacks. A new 

protocol focusing for constructing the Spherical Chord, followed by a new lookup 

protocol is defined in this thesis. The protocols are analyzed and it is demonstrated using 

both theoretical analysis and simulations that improved path availability helps in 

maintaining privacy, while also limiting the impact of routing attacks.  
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1. INTRODUCTION 

Structured overlay peer to peer networks have found wide applicability today in 

distributed content management
 [8]

. Numerous protocols have been designed for overlay 

networks in the realm of creation of nodes, organization of nodes and lookup of a 

particular node
 [4, 7, 11, 16]

. The structure of the network and protocol should be designed 

such that there are no single points of failures, and there is good load balance among all 

nodes during network operation. Beyond just content lookup, other critical requirements 

of structured overlays today include scalability, privacy and integrity. In this thesis, we 

define a new type of structured overlay peer to peer network called Spherical Chord 

which is a look up service that provides a high degree of availability, scalability, privacy 

and integrity, while being resilient to a number of malicious attacks. 

 

During communication over a network, unless security and privacy mechanisms 

are in place, the browser typically advertises the IP address, the domain, platform and the 

information which is requested. Such critical data could be out on the network and can be 

easily monitored and mishandled by attackers. Thus, privacy on the network can be 

compromised.  Overlay peer to peer networks provide elegant solutions to protect privacy 

on the network. The nature of peer to peer communication means that typically, it is 

harder for an adversary to identify which nodes are sources and destinations of messages, 

and which nodes are mere forwarders. 

 

Existing overlay networks like Tor
 [4]

 and Tarzan
 [3, 11]

 encrypt data across servers 

and create anonymous circuits. These systems rely on the communication of messages 

among a small set of randomly selected forwarders. However, when the number of nodes 

increases, the systems faces scalability issues from overhead and maintenance. 

Furthermore, these protocols are unstructured in nature, in the sense that there is a high 

degree of randomness in nodes choosing forwarders. This feature hence compromises 

availability. To circumvent this problem, structured overlays were introduced wherein the 

nodes in the overlay are arranged following a well-defined structure that is appropriately 

leveraged during routing. The presence of a well-defined structure improves availability, 



 

 

2 

while the presence of multiple intermediate forwarders to route messages improves 

privacy. Two of the well-known protocols in this realm are Chord
 [7]

 and SALSA 

(Structured Approach to Large Scale Anonymity)
 [16]

. In Chord, nodes are arranged in a 

circular space with virtual identities, and routing proceeds in the circle uni-directionally 

during look-ups. SALSA is another protocol wherein nodes are arranged in a binary tree 

structure and messages are routed along the tree in a well-defined manner in reaching the 

correct destination. Both systems typically route a message in log (N) hops, where N is 

the number of nodes in the network. Unfortunately though, both systems suffer from poor 

performance in the presence of attacks that severely degrade privacy and availability, as 

we discuss subsequently. 

 

In this thesis, we define a new kind of structured overlay network called Spherical 

Chord, which is a look up service. However, compared to the existing Chord and SALSA 

protocols, it provides multiple paths to route a message in the overlay, while still 

retaining the advantages of maintaining a structure during routing. As we demonstrate 

subsequently, Spherical Chord provides a high degree of availability, scalability, privacy 

and integrity, while being resilient to a number of malicious attacks. 
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2. RELATED CONCEPTS 

2.1. OVERLAY NETWORK 

An overlay network is defined as a separate “logical” network on top of the 

physical network. Overlay networks can be structured or unstructured. In structured 

overlay networks, the construction and maintenance of the network follows a well-

defined structure, while in unstructured networks, there is a high degree of randomness 

during construction and maintenance. Overlay networks can also be centralized with 

some nodes performing more duties that other nodes or they can also be decentralized 

and distributed, wherein there is a very high degree of load balance along all nodes. 

Overlay networks like Napster
 [19]

 and Gnutella
 [18] 

are unstructured and centralized, while 

networks like are CAN
 [14]

, SALSA
 [16]

 and Chord 
[7]

 are structured and decentralized. All 

of these protocols provide lookup services, and each has its own strengths and 

weaknesses from lookup perspectives. More recently though, the issue of security and 

privacy are assuming critical significance in overlay networks. In overlay networks, since 

there are typically a large number of nodes, controlling access to only honest nodes 

become impossible. How to provide routing services in the presence of malicious nodes, 

while still providing a high degree of availability and scalability is hence a major 

challenge today. With the large number of nodes in the overlay, and in the presence of 

heavy network traffic, recent studies are also exploring the applicability of overlay 

networks for providing privacy preserved communications as well 
[7, 16]

. 

  

2.2. DISTRIBUTED HASH TABLE (DHT) 

Distributed Hash Tables are a generalized concept, wherein keys are distributed to 

nodes in a manner that attempts to distribute the assignments of keys to nodes in a 

uniform manner
 [9]

. Any participating node in the DHT can now efficiently retrieve the 

value associated with any given key. DHTs also ensure load balancing in the sense that 

the responsibility for maintaining the mapping from keys to values is now purely 

distributed among the nodes. This also ensures that a change in the set of participants 

(when nodes join and leave) causes a minimal amount of disruption, hence enhancing 

http://en.wikipedia.org/wiki/Node_%28networking%29
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scalability. DHTs recently have been used in a number of applications including, 

cooperative Web caching, distributed file systems, domain name services, instant 

messaging, multicast, and also peer-to-peer file sharing and content distribution systems. 

While there are multiple techniques that can be used to generate DHTs, consistent 

hashing is one of the standard approaches, and is discussed next.  

2.3. CONSISTENT HASHING 

In consistent hashing both the node and the key are typically hashed using the 

same hash function, and is widely used for designing DHTs. In addition to balancing 

assignment of nodes to keys, consistent hashing provides significant benefits to 

maintenance of the network during the node join and node delete operations.  

Consistent hashing maps the nodes and keys to a randomly distributed, “identifier 

points” on the circle. After hashing the system needs to find where a key should be 

assigned. Each node is responsible for the key which precedes itself in the identifier 

space. The result is that each node contains all the keys located between its identifier 

point and the previous node’s identifier point. 

If a node leaves the network then the requests for the key associated with it would 

be mapped to the next highest point in the identifier space. Since each node is associated 

with many pseudo-randomly distributed identifier points, the keys that were held by that 

node will now be map to different nodes.  

A similar process occurs when a node is added. By adding a node, we assign keys 

to the new node which is succeeding the key in the identifier space. These keys will no 

longer be associated with the previous node, and any value previously stored there will 

not be found by the lookup method. The lookup request would now be directed to new 

node responsible for a particular key
 [9, 10]

.   

With this design, if a node joins or leaves the network then only O (K/N) nodes 

are responsible for making changes to their routing tables where K is the number of keys 

and N is the number of nodes in the network. Consequently in a network with N number 

of nodes and K keys, each node is responsible for at most (K/N) keys
 [8]

. 

http://en.wikipedia.org/wiki/Web_cache
http://en.wikipedia.org/wiki/Distributed_file_system
http://en.wikipedia.org/wiki/Domain_name_system
http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/File_sharing
http://en.wikipedia.org/wiki/Content_distribution
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3. THE CHORD LOOKUP PROTOCOL 

In this section, we first illustrate the Chord protocol for scalable lookup services 

in large scale networks, and a discussion of privacy features in Chord. 

3.1. CHORD IDENTIFIER CIRCLE 

The Chord protocol uses the concept of DHT and consistent hashing for efficient 

lookup operation. In the Chord protocol, the keys are assigned to the node in the 

following way. An identifier circle is created and the identifiers are placed in a    

modulo structure circle. Key k is assigned to a node whose identifier is equal to or 

succeeds k in the identifier space. This is done using the function successor (k), also 

called as the successor node. In totality the nodes are arranged in a circular fashion from 

0 to   -1. The successor node of key k is the first node that is followed by k in a 

clockwise direction
 [7]

. If a node n joins the network, then all the keys assigned to its 

successor would be now assigned to node n. If a node n leaves the network, then the 

successor of node n would be responsible for all the keys. Thus, using consistent hashing 

only a fraction of nodes would have the responsibility of updating the routing tables 

during subsequent node join and delete operations. Figure 3.1 shows an example of an 

identifier circle used in the Chord protocol. 

 

 

 

 

Figure 3.1. An identifier circle with m=6, k=5 and n=10 
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Figure 3.1 signifies an identifier circle with m=6. It therefore has total of    

identifiers. The identifiers are from 0 to a maximum of 63 (  -1). The number of nodes 

that are currently active in the overlay are shown in dots, and they are ten in number. The 

number of keys are 5. 

3.2. SCALABLE NODE LOOKUP 

3.2.1. Finger Table. To increase the efficiency of simple node lookup, the Chord 

protocol creates additional information for efficient lookup of a node. This information is 

stored in the finger table.  If m is the number of bits in the identifier, then each node n 

maintains at least m entries in the finger table
 [7]

. The     entry in the table at node n 

contains the identity of the first node, s, that succeeds n by at least      on the identifier 

circle, i.e., s=successor (n +    )), where 1 ≤i ≤m (and all arithmetic is modulo   ). The 

node s is called the     finger of node n and denotes it by n.finger[i].node. The definition 

of the finger table is given as follows, 

 

Table 3.1. Definition of the finger table 

Notation Definition 

finger[k].start (n + 2
k-1

) mod 2
m 

.interval (finger[k].start, finger[k+1].start) 

.node First node >= n.finger[k].start 

Successor The next node on the identifier circle; 

finger[1].node 

Predecessor The previous node on the identifier 

circle 
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3.2.2. Lookup Protocol. We now present the Chord protocol for looking up a 

key. 

 

 

Figure 3.2. Finger Table for node 8. 

 

The above figure shows the finger table for the propagation of a request 

originating from node N8. The     entry of the finger table is given as finger[i] = 

successor (n +    ). In the scalable node localization, each node stores information of 

only a maximum for log (N) nodes. For a particular lookup operation the entry of the 

finger table is checked and propagated on basis of the pointers to the successor nodes. 

When a key is looked up, the Chord protocol will route the message to that node in its 

finger table, which is closest to the destination node in the virtual id space. Each node 

that receives the message will repeat the process until the destination node that stores the 

key is reached. The algorithm is as follows, 
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//ask node n to find the key (k) 

n.find_successor(k) 

 if (k in (n,successor]) 

  return successor; 

 else  

  n‘ = closest_preceding_node(k); 

  return n‘.find_successor(k);  

//search the local table for the highest predecessor of k 

n.closest_preceding_node(k); 

  for i=m downto 1 do 

    if (finger[i] in (n,k)) 

      return finger[i]; 

   return n; 

 

With this algorithm, a lookup in Chord will take O (log N) messages to find a 

destination, where N is the number of nodes in the system. 

 

 

 

Figure 3.3. Lookup operations for Key (54). 
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Figure 3.3 shows an example of a lookup operation where K54 is looked up by 

node N8. N56 stores the key K54 and thus is the target node. The figure demonstrates that 

using the finger table for node N8, a long hop will be taken to node N42 as it is the node 

which is closest to the target node N56. Consequently smaller hops are taken and the 

destination N56 is reached.  

   

3.3. PRIVACY IN CHORD 

Although not intended, Chord does provide a certain degree of privacy due to its 

inherent nature of using forwarder nodes to route messages. Privacy in Chord protocol is 

closely related to the method in which a particular request is routed. In the Chord 

protocol, the lookup requests are forwarded among the nodes. On account of this request 

propagation the identity of the requestor node or the target node is not revealed as they 

will appear to be no different from the initiator or target of a message in the virtual 

identifier space during routing
 [1]

. 

The Chord structure however exposes a weakness when the presence of malicious 

nodes increases in the network. In the Chord protocol the requests from any particular 

initiator to a particular target go through the same set of nodes, which are then in a 

position to modify more than one request if they are malicious
 [12]

. Furthermore requests 

from multiple initiators are likely to converge on nodes closer to the target in the virtual 

identifier space, and if some of these are malicious, then any request to that particular 

target will all be dropped, hence severely limiting Chord’s ability to provide availability 

to the nodes 
[2, 13]

. As mentioned earlier, the problem is exacerbated due to uni-directional 

routing in Chord. 

 



 

 

10 

4. THE SALSA PROTOCOL 

The SALSA (Structured Approach to Large Scale Anonymity) network 

architecture also uses the distributed hash table (DHT) and consistent hashing The 

SALSA architecture organizes the node in a "Chord" like identifier space, but employs a 

binary tree like structure to organize nodes into groups. The node is said to belong in a 

group if it is in that group's identifier space
 [16]

.  On basis of this concept the SALSA 

protocol divides the network into local and global contacts. Each node has a local contact 

table where it stores the ID of itself and other nodes in the same group. Similarly each 

node has a global contact table where it stores a single contact for each level of the binary 

tree
 [24]

. 

4.1. LOOKUP PROCEDURE 

Let us consider an initiator node, Q, which looks for a target key. The query node 

Q selects R neighboring local contacts which fall under the same group. Node Q requests 

each of the nodes in that particular group to find the owner of the target key.  Each node 

in the neighboring group of R nodes independently finds the owner of the key in the 

SALSA virtual binary tree.  The R neighboring nodes send the location of the target node 

back to the query node Q. Now query node Q calculates the distance from itself to the 

target and chooses one with the minimum distance (in the event of malicious lookup 

returns).  If the target node is within predefined distance bounds, it forms an anonymous 

circuit to the target node. Figure 4.1 shows a typical binary tree structure of SALSA. 
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Figure 4.1. Binary tree structure of SALSA, where G0 to G7 are groups 

 

SALSA lookups the message and performs better than Chord on account of 

sending redundant messages across the groups. Thus even if some nodes are malicious 

and drop requests, there are alternate good nodes to route the message successfully. The 

analytical model of SALSA shows that the probability to find the lookup initiator can be 

calculated as follows 

 

        .                           (1) 

 

In the above expression, f is the fraction of malicious nodes in the network and l is 

given as the number of redundant lookups.  This expression suggests when the number of 

nodes in the system increases, then the redundant messages also increases thereby 

increasing the probability of locating the initiator
 [2]

. Furthermore the redundant lookup 

requests also travel through mostly same set of paths to reach the target node. If there are 

malicious nodes along that path then probability of locating the initiator also increases.   
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5. SPHERICAL CHORD 

In this section, we present a new protocol that extends the Chord protocol, while 

providing a much higher degree of privacy and availability compared to Chord and 

SALSA. This protocol consists of many Chord rings to form a spherical structure and 

thus, denoted as Spherical Chord. 

5.1. ATTACK MODEL 

To evaluate the privacy and availability of the Spherical Chord protocol, we have 

defined an attack model to analyze the system and demonstrate its properties. The attacks 

that are considered are as follows, 

 Dropping Lookup Requests: This is a denial of service attack. In this type of 

attack, when a malicious node receives a packet for a particular request, it will 

drop that particular packet
 [5]

.   

 Randomly Misrouting Packets: In this type of attack the malicious node does not 

drop the packet but simply routes the lookup requests to a different node 

randomly. By doing this, the malicious node makes the lookup query to take a 

different path so that it never actually reaches the destination, or reaches it quite 

late after too many hops. This kind of attack is difficult to detect, since the 

requests per se are not dropped, but rather re-routed, which may happen under 

node dynamics like joins and leaves
 [6]

. 

 Performing a Sub-ring Attack: This type of attack is salient to Spherical Chord, 

and itself is a novel contribution. In this attack, groups of malicious nodes 

collaborate so that the lookup request does not reach the destination. Here the 

attackers have two types of finger tables - one which is correct, and the other 

which contains the successor node entries of the malicious nodes. When the 

lookup request is received, the malicious node will use its finger table and make 

the lookup request propagate across the malicious nodes and it will finally reach a 

malicious destination. Here the malicious nodes collaborate and give an 

impression that they are propagating the request, but ultimately it will give us an 

incorrect target destination
 [6, 15]

.  
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5.2. CONSTRUCTION OF SPHERICAL CHORD 

In Spherical Chord, multiple rings are constructed to place virtual identifiers in 

the overlay space, and rings are connected via carefully chosen interlocking nodes. 

Messages can traverse in the Spherical Chord within the ring and across rings by 

traversing through interlocking nodes. With this arrangement, nodes have multiple routes 

to send messages, hence improving availability, while the nature of using intermediate 

forwarders provides a high degree of privacy. 

 

 

 

Figure 5.1. Spherical Chord Structure. (N=512). Interlocking nodes are from 0 to 9. 

 

If there are N nodes in the network then the r rings which will be formed for 

communication in Spherical Chord, is defined as  

 

r = ((log N)/2) +1                                                    (2) 
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The identities of the interlocking nodes in each ring are as follows, 

 

0 and ((log N)/2) + 1 (Ring 0) 

1 and ((log N)/2) + 2 (Ring 1)    

                                        

((log N)/2) and log N (Ring r)                            

  

Figure 5.1 shows the left hand side cross section of the spherical structure. Here 

each ring is highlighted with a different color.  

 

The rings and the interlocking nodes in Figure 5.1 are as follows 

 Ring 0 has interlocking nodes 0 and 5. 

 Ring 1 has interlocking nodes 1 and 6. 

 Ring 2 has interlocking nodes 2 and 7. 

 Ring 3 has interlocking nodes 3 and 8. 

 Ring 4 has interlocking nodes 4 and 9. 

 

This configuration is based on equation 2. Since the number of rings increases 

with increase in the number of nodes, the path for a particular lookup also increases and 

privacy and availability will be maintained. This is further explained in the following 

sections.  

5.3. LOOKUP IN  SPHERICAL CHORD 

When a lookup is initiated, the number of hops required to communicate with a 

node is related to the interlocking nodes and also the non-interlocking nodes. If a node in 

one ring wants to communicate with other ring's interlocking node, it takes a maximum 

of 2*O (log N) hops. If node in one ring wants to communicate with another ring's node, 

the number of hops required would be 3*O (log N), where N is the number of nodes in 

the network.   
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As demonstrated in Figure 5.2, if a node marked in red wants to communicate 

with an interlocking node, it has to communicate to the outer ring and there are two paths 

of communication available corresponding to the number of rings. Thus, for this 

particular lookup operation the path length is given as 2*O (log N). Figure 5.2 illustrates 

that if a node in ring 1 wants to communicate with the interlocking node of ring 3, then it 

has to first communicate to the outer ring. There are two paths available for the lookup. 

The first being, the node can look up to node 1 for the outer ring and then communicate 

to node 3. The other path will be, the node looks up to node 6 and then to node 3. Thus 

the path length for a lookup to an interlocking node is 2*O (log N). 

 

 

 

 

Figure 5.2. Spherical Chord Structure. (N=512). Interlocking nodes are from 0 to 9. 

Lookup is for interlocking nodes 
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The most frequent case is when nodes in one ring would communicate with nodes 

in another ring. If the other node is not an interlocking node then the path length 

increases. As presented in Figure 5.3 If a node in ring 1 wants to communicate with a 

node in the ring 2 which is a non-interlocking node, then the number of paths required 

would be 3*O (log N) hops. The node would first communicate to ring 0 through the 

interlocking node 1. Through this ring 0, it would find the interlocking node through 

which it can communicate to the other ring, which in our case is node 2. For that 

interlocking node the lookup request is initiated to the target node. Thus for this lookup 

operation the path availability increases, and the path length for communication along 

non - interlocking nodes is 3*O (log N). 

 

 

 

Figure 5.3. Spherical Chord Structure (N=512). Interlocking nodes are from 0 to 9. 

Lookup is for non-interlocking nodes 
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5.4. FINGER TABLE MODIFICATION IN  SPHERICAL CHORD 

The new protocol has significant modifications to the traditional Chord finger 

table. We have included the flags for the interlocking nodes, as they are the medium of 

communication with the other rings. Table 5.1 shows the definition of the new Spherical 

Chord finger table. In this table the interlockingFlag will be updated if the node acts as 

an interlocking node. The protocol also has a ringNumber associated with the nodes, 

which acts as a reference to the interlocking definition table. 

 

Table 5.1. Definition of the Spherical Chord finger table 

Notation Definition 

finger[k].start ( n + 2
k-1

) mod 2
m 

.interval (finger[k].start, finger[k+1].start) 

.node First node >= n.finger[k].start 

Successor The next node on the identifier circle; 

finger[1].node 

Predecessor The previous node on the identifier 

circle 

interlockingFlag true or false(Boolean) 

ringNumber Ring number of the node 
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The table 5.2 is the interlocking definition table developed for Spherical Chord. It 

consists of ringNumber, which signifies the number of the ring to which the node 

belongs. The nodesList mentioned in the table is the list of all the nodes which act as the 

interlocking nodes associated with that particular ringNumber. This table will be 

primarily used when running the stabilization algorithm for node join and delete 

operations. 

 

Table 5.2. Interlocking Definition table. 

Notation Definition 

ringNumber The number of the ring 

to which the node 

belongs 

nodesList List containing the nodes 

as the interlocking 

nodes. 

 

5.5. STABILIZATION ALGORITHM 

Nodes can join and leave the system. Our stabilization algorithm for Spherical 

Chord focuses on the interlocking nodes as they are basis of communication among 

Chord rings. For example, if an interlocking node joins the system, then the node sets its 

interlockingFlag as true in Spherical Chord finger table. This new node should also be 

added to the list containing the interlocking nodes in the interlocking definition table. 

 

We develop the stabilization algorithm which keeps the pointers for the successor 

nodes and predecessor nodes updated, along with proper configuration of the interlocking 

nodes. The pointers to the nodes and the interlocking nodes should be kept updated in the 

Spherical Chord finger table as well as the interlocking definition table. 
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The stabilization algorithm which specifically works during node join and delete 

operations is as follows, 

 

n.join (n') 

    predecessor=nill; 

   successor=n'.find_successor (n); 

//obtain the node's successor 

n.stabilize(); 

    x=successor.predecessor; 

   if (x ε (n, successor)) 

      successor=x; 

successor.notify(n); 

//if n is the interlocking node 

    x=successor.predecessor; 

   if (x ε (n, nodeList)) 

      successor=x; 

    successor.interlockingFlag=true; 

successor.notify(n); 

successor.fixInterlockingTable(); 

//calculate the ring number 

n.calculateRingNumber(); 

//n' thinks it might be a predecessor 

n.notify(n'); 

  if( predecessor is nill or n' ε(predecessor,n)) 

       predecessor=n'; 

//periodically fix fingers in finger table 

//periodically fix the interlocking definition table 

n.fix_fingers(); 

n.fixInterlockingTable(); 



 

 

20 

When the stabilization algorithm successfully executes, a node will successfully 

resolve a lookup request even during node join and delete operations as the pointers to 

the nodes would be updated appropriately. Additionally, the interlocking definition table 

would contain the correct list of interlocking nodes, which form the basis of 

communication among different rings. 

5.6. OVERHEAD IN SPHERICAL CHORD 

The Spherical Chord runs a stabilization protocol and notifies both the finger table 

and interlocking definition table of any update during node join and delete operations. 

The additional computation required to notify the interlocking definition table increases 

the overhead of the Spherical Chord protocol. This overhead is further increased with an 

increase in the number of failed nodes in the network.  

 

Let us consider a system of N nodes. The average path length for Chord is logN 

and for Spherical Chord it is a maximum of 3*logN. Let k be the number of failed nodes 

in the system, then the probability of the failed nodes on the path length is given as 

follows, 

 

 Failed Node on a Path = 
                               

               
                            (3) 

 

In our analysis, we have considered 1000 nodes in the system. Therefore, the 

number of failed nodes on the path length in Spherical Chord is greater than the number 

of failed nodes in the traditional Chord protocol. The graphical representation is shown in 

Figure 5.4. 
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Figure 5.4. Overhead in Spherical Chord 

 

The above analysis shows that the overhead for the computation of stabilization 

protocol will increase, as the probability of failed nodes on the lookup path increases. 

However, we can overcome this overhead by an increase in the number of lookup paths 

which subsequently increases the privacy of the network. 
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6. ANALYSIS OF SPHERICAL CHORD 

6.1. PATH LENGTH ANALYSIS OF SPHERICAL CHORD 

The Spherical Chord protocol is analyzed with the traditional Chord and SALSA 

protocols. The concluding results related to path length are shown. The initial conclusion 

is that the path length of the Spherical Chord is greater than the traditional system. Our 

system has a greater path length when a lookup is initiated. However, latency resulting 

out of greater path length is balanced out by the increase in the number of paths. In Chord 

protocol there is only a single direction in which lookup requests are routed and the 

requests converge towards the target node. Malicious nodes take advantage of this 

situation and drop the packets. However, in Spherical Chord when a lookup is initiated 

multiple paths can be chosen and that would make our system more resilient against 

routing attacks. Figure 6.1 shows the path length analysis of Spherical Chord. 

 

 

Figure 6.1. Path Length Analysis  

 

6.2. PATH AVAILABILITY METRIC OF SPHERICAL CHORD 

Path availability is defined as the number of paths available by Spherical Chord at 

any time during a lookup operation. The following steps are taken in order to calculate 
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the path availability metric of the Spherical Chord. Let the probability of a node failure 

during a lookup operation be q. Timeout is defined as the total failure in the lookup 

operation which is a function of the number of available paths
 [17]

. Let c be the number of 

nodes contacted during the lookup operation. Thus, the number of timeouts for one 

lookup operation is c*q. 

 

Path Availability metric = 
              

                     
    (4) 

 

The failure to find a node is thus reduced because of the increase in the number of 

available paths in Spherical Chord. The graphical representation is given in figure 6.2. 

 

 

Figure 6.2. Path Availability Metric 

 

The result shows the failure recovery of Spherical Chord in comparison with 

Chord. The reason for such an improvement is because at every lookup the protocol has 

extra paths available. Thus, when a node fails in the lookup operation it has another path 

available. The probability of failure for a particular lookup operation reduces as a result 

of the extra paths that can be taken in the protocol. 
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6.3. LOOKUP FAILURE ANALYSIS OF SPHERICAL CHORD  

In Chord the requests follow only a single uni – directional route which makes it 

susceptible to routing attacks. In SALSA redundant lookups are initiated to fight against 

these attacks, however, these lookups follow the same set of predefined paths.  In 

Spherical Chord, multiple paths are present which reduces the effect of such attacks. 

Thus, the probability of a lookup being captured by a malicious node is given as,   

 

1 −                                                            (5) 

 

In the formula, f is fraction of malicious nodes in the system. Here p is said to be 

path length for the lookup operation. For the Chord protocol it is log N, and for the 

Spherical Chord the path length is a maximum of 3*log N. The analysis is given as 

follows, 

 

 

Figure 6.3. Lookup Failure Analysis of Spherical Chord 

 

From Figure 6.3, it can be concluded that SALSA performs better than Chord. 

However, Spherical Chord performs better when the malicious nodes in the system 

increases because more paths are available the system becomes resilient against routing 

attacks.  
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7. CONCLUSIONS 

Today privacy is becoming increasingly important in peer to peer based systems. 

This thesis discusses the Chord and SALSA protocols which are used to lookup a data 

item in a structured overlay network, while also providing a certain degree of privacy.  A 

new protocol is subsequently presented called the Spherical Chord which incorporates 

more nodes and provides more paths to communicate, thereby enhancing privacy in data 

lookup requests. Furthermore, the protocol is analyzed against numerous other routing 

attacks and it is shown that an increase in the number of lookup paths also significantly 

improves the availability of the system as well. 
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