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Il l

ABSTRACT

This research produces networks of graphical objects that respond to human 

manipulation in a fashion that would be deemed physically reasonable. That is, a 

graphical network is given a mechanics-like behavior in the presence of the human 

interaction. In this approach, nonlinear models replace commonly used linear models 
to mimic physical reality better. Software solutions are provided via a class library 

useful for such interactive visual modeling.
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1 INTRODUCTION

Constrained graphical user interfaces have been an active area of research for 

many years, with the primary focus being the human manipulation of window objects 

overlying each other on a restricted desktop [1] [2], Mathematical models of this win

dow manager problem take the form of constrained linear systems of equations open to 

analysis via linear programming methods [1], Most activity on this problem concerns 

the timely solution needed to provide comfortable computer-human interaction.

This research explores human manipulation of graphical objects subject to me

chanical constraints. Linear programming techniques are no longer applicable as the 

governing equations are nonlinear in nature. The goal of the added complexity is 

to produce networks of graphical objects that respond to human manipulation in a 

fashion that would be deemed physically reasonable. That is, the graphical network 

is given a mechanics-like behavior in the presence of human interaction.

To this end, a foundational theory is developed to provide a basis for analysis 

and implementation. Several theorems are proven, establishing the solvability of 

the interaction problem subject to a variety of constraints. Furthermore, software 

solutions are provided via a class library useful for such interactive visual modeling. 

Examples of the nature of the computer-human interactions are provided.

1.1 MOTIVATION

The motivation to consider interconnected networks of graphical objects subject 

to mechanical constraints arose from research into the feasibility of allowing people 

to participate in product design via the web. In a project [3] funded by Honda 

Motorcycles, a web-site was developed that supported the image of a motorcycle (see 

Figure 1.1). By using the mouse, a person viewing the site may move various parts 

of the motorcycle, thereby altering its design. For instance, by comparing Figure 1.2 

and Figure 1.3, it is seen that the front wheel has been moved and the front forked 
dialated and rotated.

As the graphical objects move, the state of the motorcycle is recorded. When 

satisfied with a design, the user clicks the submit button and the new motorcycle
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Figure 1.1 Product Design Web-Site Sponsored by Honda Motorcycles

design is sent to a cgi program that enters the design into the database. These 

numbers provide an indication of the design preferences of the viewing public.

In order for this to be a realistic measurement, it is of paramount importance 

that the virtual motorcycle responds to the mouse in a fashion that seemed reasonable. 

This meant that some parts had fixed path of translation, others could not change 

shape and some of the distances between the parts needed to be fixed. In short, the 

interconnected network of graphical objects needed to satisfy nonlinear constraints 

imposed by physical laws.

1.2 OVERVIEW

In the next section, the influence of the physical sciences on computer graphics 

and visualization is explored. While most prior works do not directly address physical 

constraints in graphical user interfaces, they do prove the point that the human eye 

is a very critical judge of computer-generated behavior.
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Figure 1.2 Motorcycle Image Composed of Interconnected Movable Graphical Ob
jects

Figure 1.3 Front Wheel has been moved

In Section 3, the foundation of the theory is established. In the model proposed, 

the graphical network is viewed as a net of vertices connected to each other by means 

of rigid connections. Also, some vertices are fixed to restrict the motion of the net. 

The model allows a user to move a vertex and it is the goal of the analysis to predict 

the changes in the shape of the net. From a certain perspective, this is a classic 

mechanics problem.

Section 4 focuses on the so-called elemental subnet consisting of four vertices 

arranged as a square and its potential manipulations with a mouse. In this simplest 

case, several scenarios are seen, with the behavior ranging from interlocked nets in

capable of motion to highly ambiguous configurations. Results from this analysis are
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extended to the case of a square network consisting of nine vertices. The summary 

of this analysis is given in Section 5. The case of a general N x N  net is examined in 

Section 6.

With the theory established, a software solution is proposed. In this research, 

the object-oriented methodology is used in designing the class library. Section 7 

contains Unified Modeling Language (UML) diagrams explaining the object-oriented 

model developed. While the design is not dependent on any particular language, a 

Java implementation is examined in Section 8. Several examples of computer-human 

interaction are studied. Conclusions and opportunities for future work are discussed 

in Section 9.
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2 P H Y S I C A L  R E A L IS M , C O M P U T E R  G R A P H I C S  A N D

G R A P H I C A L  I N T E R F A C E S

As the g raphical capabilities of com puter system s have m atu red , so has the 

sophistication  of the ir hum an users. No longer satisfied w ith m onochrom e displays 

or cartoon-like anim ations, com puter a rtis ts  find th a t the ir work m ust im ita te  their 

physical surroundings. Hence, the  world of com puter graphics increasingly involves 

m odels based upon m athem atica l or physical laws. In th is section, a survey is pre

sented of various exam ples of the  im pact of physical m odels on com puter graphics 

an d  graphical interfaces.

2.1 PH Y SICA L M ODELS AND C O M P U T E R  G R A PH IC S

T he need to incorporate  physical realism  in com puter graphics and  anim ation  

has been driven by the movie industry. W ith  Hollywood tu rn in g  to  th e  com puter 

in d u stry  to  supply  special effects, com puter scientists find them selves w riting  software 

to  m im ic everything from  a single explosion to  in tergalactic  war. W hile th e  survey in 

th is  section is far from com prehensive, it does provide exam ples from  recent lite ra tu re  

of the  im pact of m echanical m odels on graphics.

2.1.1 Physics based explosion m odeling Producing  real explosions is costly 

and  po ten tia lly  dangerous. Special effects technicians have tu rn ed  to  software to 

generate  explosion sequences. O lder software tools allowed a rtis ts  to  re-create the 

appearance o f an explosion ignoring the physical processes, which looked artificial. 

R ecent research [4] produces physically correct explosion incurring  cost. The au thors 

observe th a t  substan tia l com puta tional resources are spen t in providing realism  which 

pleases the hum an eye.

2.1.2 G raphical m odeling and an im ation  of b rittle  fractu re  M odeling explosions 

necessitates the  need to  sim ulate the  consequences. Hence, a  com puter graphics a rtis t 

m ust produce scenes w ith  breaking windows, collapsing walls and  debris flying in all 

directions. Again, physical laws m ust be used to  provide the  realism  th a t  the audience 

dem and.
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O ’ Brien and  Hodgins [5] suggested the use of m echanical stress tensors, pro

duced by finite elem ent m ethods, to  determ ine where cracks should in itia te  and in 

w hat directions they  should propagate. By varying the shape o f the objects, the 

m ateria l properties, and the initial conditions o f the sim ulations, strikingly different 

effects were created . These range from a wall th a t  shatters when it is h it by a wrecking 

ball to  a bowl th a t  breaks in to  two when it is d ropped on an edge.

2.1.3 C om puter graphics techniques for m odeling cloth In com puter graphics 

or anim ation, appearance is generally more im p o rtan t th an  physical accuracy, so 

the em phasis has been m ore on visual realism  th an  on physical accuracy [6], th is 

distinction, though, has blurred as audience m ature .

G eom etrical models do not consider the physical properties of cloth. R ather, 

they  focus on appearance, particu larly  on folds and creases, which they  represent by 

geom etrical equations [6]. Geom etrical techniques require a considerable degree of 

user intervention. They can be regarded typically as little  more th an  a form of an 

advanced draw ing tool.

Weil [7] was probably first to apply geom etrical techniques to  cloth visualization 

in com puter graphics. He represented hanging clo th  as a grid of po in ts and sim ulated 

its shape by fitting  catenary  curves between th e  hanging or constra in t points. C ate

nary  curves were appropria te  because of inflexible fiber models which have origins 

w ith in  the m echanics com m unity traceable to Tchebychev [8] in 1878. Hence, physics 

influences even the  so-called geom etrical techniques.

Agui et al. [9] presented a geom etrical m ethod for m odeling a  sleeve on a bending 

arm . They represented the cloth as a hollow cylinder consisting of a series of circular 

rings and observed folds form as a consequence of the  differences in curvature between 

the  inner and ou ter p a rt of the bent sleeve. A gain th e  im portance of curvature in the 

m odel is explained by mechanics. Resistance to  changes of curvature in elastic sheets 

is called bending stiffness and is foundational to  fold m odeling [10].

2.2 PH Y SICA L M ODELS AND G RA PH ICA L INTERFACES

In the sub-section th a t  follows, it  is seen th a t  graphical user interfaces have 

always included some elem ents of physical m odeling. For instance the trad itio n a l 

window m anager problem  trea ts  window com ponents like pieces of paper overlying
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each o ther on a  desktop [1]. The problem , then  becomes finding w hat is observable. 

Besides layout m anaging, physics has appeared  in o ther in teractive applications and 

interfaces.

2.2.1 W indow layout m anager Badros et al. have a series of papers exploring 

the  window layout m anager problem  [1] [2]. T heir m odel reduces the desktop  to a 

series of overlying rectangles w ith  various sub portions visible, all constrained to  be 

w ith in  a  larger rectangle. Since a rectangle’s boundaries are lines, determ ining  visible 

regions forms a  constrained linear problem  [1],

H um an m an ipu la tion  of window objects creates the  need to  solve such problem s 

repeatedly. To achieve in teractive response tim es, B adros e t al. [1] have suggested 

fast increm ental algorithm s th a t  exploit prior com putations. T hey show th a t  the 

Cassowary a lgorithm  [1] is one such efficient constra in t solver for in teractive user 

interface applications.

2.2.2 G raceful in teraction w ith graphical constra in ts  A n early  effort to incor

p o ra te  non-linear graphical constrain ts into a graphical user interface was a project 

nam ed G R A C E [11], GRACE, the G raphical C onstra in t E d ito r, lets users define con

s tra in ts  am ong graphical objects. Inextensibility  was one such constra in t in GRACE, 

as it is in th is  thesis. However, G RACE offers no theore tical foundation  for the 

in teraction  o f the network.
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3 M A T H E M A T IC A L  M O D E L  O F N E T S  O F  G R A P H IC A L  O B JE C T S

This section is concerned with developing a  m athem atical model of nets of graph

ical objects th a t respond in a familiar mechanical way when interacting with a mouse. 

To this end, term s are defined th a t are needed to  build and analyze such an interface.

3.1 D e fin itio n . An undirected graph G consists of two sets: V(G) the set of vertices 

of G and E(G) the set of edges of G , together with with a function 7  : E(G ) —* 

{ (« ,« ) |« ,u  € ’F(G')}.

3.2 D e fin itio n . The picture of a graph is a diagram  consisting of P  points corre

sponding to the vertices of G and the lines corresponding to edges.

Both the graph and its picture will be referred with the name G unless the 

context requires further distinction. For visualization, the picture requires a co

ordinate system. Imposing a cartesian system yields a vertex u e  V(G) w ith the 

co-ordinates (X u, Yu) in the picture of G.

3.3 D e fin itio n . A graph N  is said to be a rectangular net if its picture satisfies the 

following characteristics:

1. The vertices are arranged in a rectangular m atrix consisting of n  rows and m  
columns.

2. For each row of m  vertices, there are m  — 1 edges arranged horizontally to 

connect adjacent vertices.

3. For each column of n vertices, there are n — 1 edges arranged vertically to 

connect adjacent vertices.

A square net of order N  is a rectangular net w ith N  rows and N  columns. A net is 

more general and relaxes the requirement of edges forming an orthogonal grid.

Though the concepts examined in this thesis could be applied to a wide variety of 

graphs, the graphs of particular interest are those whose picture looks like a net. The 

fundam ental problem of concern in this thesis supposes th a t an interactive medium,
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such as a Java A PPLET on a web page, displays a net and allows the user to click and 

drag a vertex on the net. The goal is for the transform ed picture to have a mechanics
like response. To this end, reasonable physical properties m ust be assigned to the 

net.

3 .4  D e fin itio n . A graphical transformation of the picture of a graph G is a mapping 

T  taking vertex u w ith the initial co-ordinates (X u, Yu) to vertex T(u) with location 

(xu,yu) for all vertices u in the graph.

The graphical transform ation of fundam ental interest in this thesis is associated 

w ith the so-called click and drag event.

3 .5  D e fin itio n . A click and drag event selects a vertex u initially a t (A*, Y^) in 

the picture and attem pts to assign it to the transform ed vertex T (u ) w ith location 

(*«>!/«)•

The problem at hand is to uniquely determine a  graphical transform ation T  
which satisfies the specified click and drag event and transform s the net in a manner 

th a t the eye would deem as mechanically reasonable. This will require mechanics-like 

properties on the edges themselves.

3 .6  D e fin itio n . An edge e in a graph G connecting vertices {u , u} is called a rigid- 
link if the corresponding line segment in the picture is inextensible. T h a t is, if the 

picture of the  graph G undergoes a graphical transform ation T, then

length e — length T(e)

or

y /(X u -  X vf  +  (Yu -  n ) 2 =  y /(xu -  x v)* +  (yu -  yv)*

In order to develop a reasonable mechanics for a net of graphical objects, a t

tention m ust be given to  the possibility of resistance to shearing. T hat is, suppose 

an edge e connects {u, u} and edge /  connects {u,u>}. Denote 9(e, f )  as the an

gle between e and /  in the picture of G. A graphical transform ation on T  gives 

T(9(e, / ) )  =  9(T(e),T (f)). Changes in the angle 9 are generically described with the 

term  shearing. A graph is said to resist shearing if there is a penalty associated with
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the angle change. In this thesis, there is no resistance to shearing so th a t the angle 

between edges can freely change.

3 .7  D e fin itio n . A simple mechanical net is a net with all the edges as rigid-links 

and offers no resistance to shearing. A graphical transform ation is said to  have simple 
mechanics-like behavior if it transforms the picture of the graph under the constraint 

of rigid-links w ith no shearing resistance.

Almost all m athem atical models of a mechanical system require a description 

of the initial s ta te  of the system, a specification of what is happening to the system 

along its boundary, and the inclusion of global body forces. In this research, the 

fundam ental boundary or body interaction is to  fix a vertex.

3.8 D e fin itio n . If the picture of the graph G undergoes a graphical transform ation 

T  taking vertex u with the initial co-ordinates (X U,YU) to vertex T (u ) with location 

(xu, Vu), then a vertex u in a graph G is said to  be fixed if

A u — x u and Yu — yu.

It should stand to reason th a t at least one vertex of a simple net m ust be 

fixed in order to  have any possibility of mechanically reasonable behavior under the 

influence of a click and drag event. W ith only one vertex location known, any shearing 

transform ation of the angles in a subnet would satisfy the click and drag event, yet 

would yield highly non-unique configurations w ith most lacking any mechanically 

realistic behavior. Hence, it is assumed th a t at least one vertex is fixed. For simplicity, 

also assume th a t all rigid-links have length l.

There are now two constraints on a graphical transform ation of simple m echan

ical nets: it m ust not change the length of an edge (inextensibility) and it cannot 

move fixed vertices.

3.9 D e fin itio n . Suppose N  is a simple mechanical net. Let F be a non empty subset 

of vertices of N  th a t are fixed. A graphical transform ation of N  is mechanically 
admissible if it satisfies the rigid-link and fixed vertices constraint.

Note th a t the set of mechanically admissible graphical transform ations is not 

empty. It always contains the identity mapping. O f special interest, however, is the
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situation when the identity mapping is the only mechanically admissible graphical 

transformation.

3.10 D e fin itio n . A simple mechanical net with fixed vertices F is said to be locked 
if the identity mapping is the only mechanically admissible graphical transformation.

In many graphical user interfaces, the mouse may a ttem pt to drag an object to 

a location (x^,yl) not perm itted by the mechanical constraints. Hence, a properly 

formulated theory should address several issues. The first is mechanical admissibility.

3.11 D efin itio n . A click and drag event of a vertex u is mechanically admissible if 

there exists a graphical transformation T  such th a t T(u) has the property

xa = xl

Vu = vl-

The existence of such a graphical transformation T  means tha t can

be connected to the remaining vertices while maintaining the rigid-link constraint. 

Conversely, mechanical inadmissibility implies tha t rigid-link constraint forbids the 

desired location from being visualized. W ith the notion of admissible solutions de

fined, a second concern is finding a priori conditions-determining whether a click and 

drag event is mechanically admissible. This is a challenging problem, some results 

will be provided in Sections 4, 5 and 6.

Finally a mechanics problem has the liberty to conclude th a t there is no physi

cally admissible solution due to the constraints in the problem. A computer-human 

interaction should result in some reasonable picture of the net displayed. Hence the 

click and drag event location (x£, y?) must be projected into the set of mechanically 

admissible events so th a t the corresponding graphical transformation T  can be used 

for the display. This is the final major issue of concern in the following sections.
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4 E L E M E N T A L  S U B N E T

In this section, the focus is on the simplest possible net consisting of only four 

vertices. However, its behavior provides a foundation for all th a t happens in the 

larger nets.

v2

vO

O v J

v1

Figure 4.1 Elemental Subnet

4.1 D efin itio n . An elemental subnet is a net consisting of 2 rows and 2 columns 

of vertices. All the edges are rigid-links and there is no resistance to  shearing (see 

Figure 4.1).

The properties needed for the picture of an elemental subnet to  behave in a 

mechanical fashion when interacting with a mouse are considered herein. If the co

ordinates of all the vertices remain the same after a graphical transformation, there 

is no change in the shape and position of the net. A priori conditions specifying 

whether an elemental subnet is locked can be readily offered.

4.1 L em m a. For an elemental subnet; if the diagonally opposite vertices are fixed, 
then the subnet is locked.

Proof. Let G be an elemental subnet as denoted in Figure 4.1. W ithout loss of 

generality suppose vertices vO and v3 are fixed (see Definition 3.8). I t is also known 

th a t all the edges in the subnet are rigid-links (see Definition 3.6). Due to the edges 

being rigid-links, the identity mapping is the only mechanically admissible graphical 

transformation (see Definition 3.10). This graphical transformation does not bring 

any change either to the shape or to the position of the subnet.
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4.2 L em m a. For an elemental subnet, if every row and every column contains a fixed 

vertex, then the subnet is locked.

Proof. Note: This has been proved for an elemental subnet (see Lemma 4.1).

v2 ©— ----© v3

Figure 4.2 Elemental Subnet w ith vertex vO fixed

A priori conditions determining whether a click and drag event is mechanically 

admissible are relatively straightforward in the case of an elem ental subnet. In Fig

ure 4.2, suppose vertex vO is fixed. Two cases exist. If the clicked vertex u € {vl, v2}, 

then mechanically admissible click and drag events m ust satisfy

«  ~  *o)2 +  (y* -  y0)2 = l2- (4.1)

Since the connecting links are inextensible, mechanical admissibility requires

Figure 4.3 Elemental Subnet with vertex vO fixed and vertex v3 moved
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V (® 3  -  ^o)2 +  (1/3 -  2/o)2 <  2/, (4.2)

if the selected vertex is v3 (see Figure 4.3). This is because the length of any side 

of a triangle is less than  the sum of the other two. T h a t these conditions yield 

mechanically admissible click and drag events is the subject of Lemma 4.3.

If the click and drag event of vertex u is not mechanically admissible, then 

{x uiVu) must be projected into the set of admissible solutions, for purpose of display. 

If u G {vl,v2}, then Equation 4.1 leaves with little  flexibility, in th a t (x*u,y *) must 

be projected onto the circle of radius l along the  ray with vO as the  center.

If u =  v3, then the condition in Equation 4.2 is more permissive. Projecting 

(#3, yl) to any point inside the circle of radius 21 along the ray w ith vO as the center 

would work. However, projecting (£3,2/3) to the  boundary of the  circle yields the 

most reasonable behavior from a visual perspective.

4 .3 L em m a. Let G be an elemental subnet as denoted in Figure Ĵ .2 with vertex vO 
fixed. Suppose vertex v3 undergoes a click and drag event from (£3,2/3) to (£3,2/3) as 
denoted in Figure f.3. I f the inequality in Equation 4.2 is satisfied, the click and drag 
event is mechanically admissible. I f  the inequality is not satisfied, the click and drag 
event is mechanically inadmissible.

Proof. Certain aspects of the geometry of the elemental subnet are labeled as follows:

1. Length of line joining the fixed vertex uO and the moved vertex v3 is d (see 

Figure 4.3).

2. Length of the edge (rigid-link) is l (see Figure 4.3).

3. Co-ordinates of vertex vO are (£o,2/o)-

4. Co-ordinates of vertices v l and v2 after the transform ation are (x*,y*) and

(x2> vV)-

5. The m id-point of fixed vertex vO and moved vertex v3 is (x m,ym).

6. Angle m ade by the line passing through fixed vertex vO and moved vertex v3 
with the X-axis is 9 (see Figure 4.4).
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7. Angle made by the line passing through fixed vertex uO and moved vertex i>3 

with the edge joining fixed vertex uO and vertex v l  is a  (see Figure 4.4).

8. Angle m ade by the edge joining fixed vertex uO and vertex v l with the X-axis 

is /3 (see Figure 4.4).

Case 1: W ithout loss of generality, d < 21 and the elem ental subnet is in the I s* 

quadrant (see Figure 4.4).

Figure 4.4 Elemental Subnet with vertex vO fixed and vertex v3 moved in the 1st 
quadrant

Here £3 and yl are displacements on the respective axes provided the distance 

between fixed vertex uO and moved vertex v3 is less than  21, i.e.

\ / ( ^ 3  ~  ^ o ) 2 +  (2/3 -  V o ) 2 <  2 1

Trigonometry yields

9 =  a rc ta n (^ --- — ),
X3 — x0

a = arccos(d/2/)

since d <21, and

(3 = 9 — a.
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Co-ordinates of vertex v \ are given by

x\ =  x0 +  l cos j3 

V* =  Vo +  l s in  0.

Co-ordinates of the m id-point of fixed vertex vO and moved vertex v3 are

Xm — (^3 T %0)/2

Vm =  (2/3 +  2/o) / 2.

As the subnet is in the form of a rhombus (see Figure 4.4), the edges joining the 

opposite vertices have the same mid-point. Therefore the co-ordinates of the vertex 

v2 are

x \ — 2 * xm — x\ 

y* = 2 * y m -  y{.

Case 2: W ithout loss of generality, d < 21 and the elemental subnet is in the 2nd 
quadrant (see Figure 4.5).

Figure 4.5 Elem ental Subnet with vertex vO fixed and vertex v3 moved in the 2nd 
quadrant

9 =  a r c ta n ( ^ — — ),
Xq — £3

As seen in case 1:
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a = arccos(d/2/)

since d < 21. B u t in this case angle ft is sum of the angles 9 and a  (see Figure 4.5).

ft =  9 +  a.

Co-ordinates of vertex v l  are given by

x\ =  x0 — l cos ft 

y*i =  Vo +  l sin ft.

Co-ordinates of the mid-point of fixed vertex uO and moved vertex v3 are

+ X0)/2

ym = (yl + yo)/2-

As the subnet is in the form of a rhombus (see Figure 4.5), the edges joining the 

opposite vertices have the  same mid-point. Therefore the co-ordinates of the vertex 

t>2 are

£ 2 = 2 *  xm — x\ 

y* = 2 * y m -  y*.

Case 3: W ithout loss of generality, d <21 and the elem ental subnet is in the 3rd 

quadrant.

This case is same as case 1 (rotation by 180 deg).

Case 4: W ithout loss of generality, d <21 and the elem ental subnet is in the 4th 

quadrant.

This case is same as case 2 (rotation by 180 deg).

Case 5: W ithout loss of generality, d =  21.

T h a t is, d/2l =  1 means angle a = 0 which is possible only if the  vertices vl and v2 
overlap. Hence, the subnet collapses to a line segment.

Case 6: W ithout loss of generality, d > 21

Equation 4.2 shows th a t the edges have stretched. This is not admissible.
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Crucial to  the the success of the previous theorem is the fact th a t the vertex 

selected for the click and drag event is diagonally opposite to  the  fixed vertex. If 

either vertex v l  or v2 is chosen, the result is less satisfying.

4 .4  L e m m a . Let G be an elemental subnet with vertices {uO, v l, v2, w3} starting in 
the lower left-hand corner (see Figure f.2). Suppose vertex wO is fixed and vertex vl 
undergoes a click and drag event from (xj, y\) in the picture and to the transformed co

ordinates (x\,y*). There are infinitely many mechanics-like graphical transformations 

T  determined on the basis of (x\,y \).

Proof Certain aspects of the geometry of the elem ental subnet are labeled as follows:

1. Length of line joining fixed vertex wO and moved vertex v3 is d (see Figure 4.3).

2. Length of the edge (rigid-link) is l (see Figure 4.3).

3. Transformed co-ordinates of vertex n3 are (£3,2/3).

4. Angle m ade by the line passing through fixed vertex vO and vertex v3 w ith the 

X-axis is 9 (see Figure 4.6).

5. Angle m ade by the line passing through fixed vertex uO and vertex v3 w ith the 

edge joining fixed vertex nO and moved vertex vl is a  (see Figure 4.6).

6. Angle m ade by the edge joining fixed vertex uO and moved vertex vl w ith the 

X-axis is /3 (see Figure 4.6).

W ithout loss of generality, trigonom etry yields (see Figure 4.6)

/3 — a rc tan (—----— ),
x* -  £0

a  =  arccos(d/2/)

since d < 21, and

9 =  /3 +  a.
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(a) Scenario 1 (b) Scenario 2

Figure 4.6 Elemental Subnet w ith vertex vO fixed and vertex v l moved

Co-ordinates of vertex v3 are given by

= x 0 + l cos 6 = x 0 + l cos(fi +  a)

Vs = Vo +  l sin 6 =  ?/o +  l sin (fi +  a).

To get the co-ordinates of vertex v3, the value of d is required. Different values of d or 

a  give different co-ordinates for vertex v3. Hence, the configuration is ambiguous. □

The non-uniqueness witnessed in Lemma 4.4 is not unusual in mechanical mod

els. The first concern th a t m ust be addressed is w hether the boundary conditions 

and initial s ta te  are sufficiently strong to yield unique behavior. If non-uniqueness is 

dem onstrated, then the usual approach is to  add a selection criterion to  the model 

(this is a s tandard  situation in hyperbolic conservation laws) [12]. This is a future 

direction for this research. Lemma 4.4 shows th a t selecting a vertex th a t is rigidly 

linked to a fixed vertex for a click and drag event causes the captured vertex to  ro tate 

about the fixed vertex. Meanwhile the remaining vertices can freely shear about the 

ro ta ting  base. One form of remedy is to fix one of the rem aining vertices.

4 .5  L e m m a . Let G be an elemental subnet with vertices (uO, v l, v2, u3} starting in 

the lower left-hand corner (see Figure f .l) .  Suppose vertices vO and v2 are fixed and 
vertex v\ undergoes a click and drag event from (x\,y \) in the picture and to the
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transformed co-ordinates (x*,y*). There is a unique mechanics-like graphical trans

formation T  determined by (x*,y*) (see Figure f . l ) .

Figure 4.7 Elemental Subnet with vertices vO and v2 fixed and vertex vl moved

Proof Certain aspects of the geometry of the elemental subnet are labeled as follows:

1. The mid-point of fixed vertex v2 and moved vertex v l  is (xm,ym).

2. Co-ordinates of vertices uO and v2 are (x0,yo) and (x2,y 2)-

3. Transformed co-ordinates of vertex v3 are (£3,2/3).

W ithout loss of generality, co-ordinates of the m id-point of fixed vertex v2 and moved 

vertex vl are

xm =  (a^ T  £ 2)/2  

Vm =  (y* +  J/2)/2.

As the subnet is in the form of a rhombus (see Figure 4.7), the edges joining the 

opposite vertices have the same mid-point. Therefore the co-ordinates of the  vertex 

v3 are

£3 =  2 * xm -  x0 

2/3 —  2 * ym yo-

This determines the graphical transformation.
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Even in the  elemental subnet, there is a fundam ental difficulty in allowing the 

mouse to  in teract w ith a picture of a graph and hope for it to  respond in mechanics

like fashion. There is a potential for non-uniqueness depending on vertex selected 

by the user. However, these lemmas provide conditions th a t yield more acceptable 

behavior. The next step is to consider the  situation of nets composed of several 

elem entary subnets.
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5 S Q U A R E  N E T S  O F  O R D E R  3

This section is concerned with the square net of order 3, composed of 4 elemen

tary  subnets. The question a t hand is determ ining the num ber of vertices th a t must 

be fixed to yield a mechanics-like response when the user selects a  vertex and drags 

it to a new location.

5.1 L e m m a . For a simple mechanical net of order N, if a vertex is between two fixed 
vertices, then it is immovable.

v6 

v3 

vO

Figure 5.1 Square net of order 3

Proof. W ithout loss of generality, suppose vertices wO and v2 are fixed (see Figure 5.1). 

It is known th a t all the edges in are rigid-links. Due to  the edges being rigid-links 

vertex v\ can only move along the circumference of two circles, one w ith center vO 
and other w ith center v2. These two circles have single point in common, vertex v l, 
this leaves vertex vl immovable. This extends easily to  arbitrary  situation.

5.2 T h e o re m . For a square net of order 3, if  every row and every column contains 
a fixed vertex, then the square net is locked.

Proof. Let G be a square net of order 3 as denoted in Figure 5.1. W ithout loss of 

generality, suppose vertices nO, v4 and v8 are fixed. Apply Lemma 4.1 to  the elemental
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subnet w ith vertices v0 ,v l,v3  and v4 having vertices vO and v4 fixed. Vertices vl 
and v3 cannot have a graphical transform ation th a t can bring any change to either 

the shape or th e  position of the elemental subnet. Similarly, apply Lemma 4.1 to 

the elemental subnet with vertices v4, v5,v7  and v8, having vertices v4 and v8 fixed. 

Vertices u5 and v7 cannot move. Finally, as all the o ther vertices in the square net 

are fixed, vertices v2 and v6 cannot move. This m ethod can be readily applied to  any 

other com bination of fixed vertices satisfying the hypothesis.

5 .3  T h e o re m . For a square net of order 3, if all the vertices of an elemental subnet 
are fixed and a vertex diagonally opposite to the fixed elemental subnet undergoes click 

and drag event, then there is a unique mechanics-like graphical transformation.

Proof. Let G be a square net of order 3 as shown in Figure 5.1. W ithout the loss 

of generality, fix all the vertices of the elemental subnet wO, v l, v3, v4, then click and 

drag diagonally opposite vertex w8 (see Figure 5.2).

Figure 5.2 Square net of order 3 having Elem ental Subnet w ith vertices vO, v l, v3 
and  v4 fixed and vertex v8 moved

Apply Lem m a 4.3 to  the elemental subnet w ith vertices v4, u5, v7 and t>8 to get 

the  transform ed co-ordinates of vertices u5 and v7. Then apply Lem m a 4.5 to the 

elem ental subnet w ith vertices v l,v2 ,v4  and v5 to  get the transform ed co-ordinates 

of vertex v2. Similarly, applying Lemma 4.5 to  the elem ental subnet w ith vertices 

v3, v4, v6 and v7 results in the transform ed co-ordinates of vertex u6.
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Crucial to the  the success of the  previous theorem  is the fact th a t  the vertex 

selected for the click and drag event is diagonally opposite to the  fixed elemental 

subnet. Consider a case where vertex selected for the  click and drag event is not 

diagonally opposite to the fixed elemental subnet.

5 .4  T h e o re m . For a square net of order 3, if all the vertices of an elemental subnet 

are fixed and a vertex not diagonally opposite to the fixed elemental subnet undergoes 
click and drag event, then there are infinitely many mechanics-like graphical transfor

mations.

Proof. Let G be a  square net of order 3 as shown in Figure 5.1. W ithout loss of 

generality fix all the vertices of the elemental subnet i>0, v l, v3, v4, then  click and 

drag vertex v7. Apply Lemma 4.5 to  the elem ental subnet w ith vertices v3, v4, v6 

and v7 to get the  co-ordinates of vertex v6. Now move to  the elem ental subnet 

w ith vertices v4, v5, v7 and u8, it has a fixed vertex v4 and a moved vertex v7, there 

are infinitely m any transform ations possible th a t can be determ ined on the basis of 

the transform ed co-ordinates of vertex v7 (this case has been already discussed see 

Lem m a 4.4).

5 .5  T h e o re m . For a square net of order 3, if all the vertices in two consecutive rows 

or two consecutive columns are fixed and a free vertex undergoes click and drag event, 

then there is a unique mechanics-like graphical transformation.

Proof. Let G be a  square net of order 3 as denoted in Figure 5.1. Here there are two 

different cases th a t  need to be proved;

Case 1: W ithout loss of generality, all the vertices of the first two columns of the 

square net of order 3 are fixed (see Figure 5.3).

This leaves three vertices th a t can be moved around, nam ely v2, u5 and v8. If  vertex 

v2 is moved, apply Lemma 4.5 to the elem ental subnet w ith vertices v l,v2 ,v4  and 

i>5, to  get the transform ed co-ordinates of vertex u5. Similarly, applying Lemma 4.5 

to the  elem ental subnet w ith vertices v4, i;5, v7 and v8, results in the transform ed 

co-ordinates of vertex v8.

Case 2: W ithout loss of generality, all the vertices of the first two rows of the square 

net of order 3 are fixed (see Figure 5.4).
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Figure 5.3 Square net of order 3 w ith all the vertices of first two columns fixed

Figure 5.4 Square net of order 3 with all the vertices of first two rows fixed

This leaves three vertices th a t can be moved around, namely u6, v7 and v8. If vertex 

v6 is moved, apply Lemma 4.5 to the elemental subnet w ith vertices w3, v4, v6 and 

v7 to  get the transform ed co-ordinates of vertex v7. Similarly, applying Lemma 4.5 

to  the elem ental subnet with vertices n4, u5, v7 and u8, results in the transform ed 

co-ordinates of vertex v8.
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6 S Q U A R E  N E T S  O F  O R D E R  N

This section addresses the question on the nets of a rb itrary  order. Analysis 

of this situation is difficult and some questions remain open. However, a priori 
conditions yielding locked nets are established. These are discussed in th is section.

6.1 T h e o re m . Let 71 be a square net of order N , if every row and every column 
contains a fixed vertex, then the square net is locked.

Figure 6.1 Square net of order N Locked

Proof This has been proved for the square nets of order 2 and 3 (see Lemma 4.2 and 

Theorem 5.2). Assume th a t this is true for a square net of order N  — 1; it will be 

proved true  for a square net of order N. Addition of a row and a column of vertices 

to a square net of order N  — 1 gives a square net of order N  (see Figure 6.1).
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Fix vertex common to  the N th column and the N th row and call it vertex Nf  
and also fix vertex common to the (N — \)th column and the (N  — l ) t,! row and call 

it vertex (N — 1)/ (see Figure 6.1). The elemental subnet having diagonally opposite 

vertices Nf  and (N — 1)/ is now locked. Hence, its other two vertices cannot move 

(see Lemma 4.2).

The elemental subnet (denoted by letter B in Figure 6.1) exactly below the fixed 

elemental subnet is locked as three of its vertices are fixed. Similarly, the elemental 

subnet (denoted by letter L in Figure 6.1) left to the fixed elem ental subnet is also 

locked as three of its vertices are fixed. This can be extended to all the remaining 

elemental subnets of the square net of order N.
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7 O B J E C T - O R I E N T E D  M O D E L

The m ajor m otivation for an object-oriented model is software reuse [13]. Fur

therm ore, object-oriented modeling is well-suited to  graphics problem s for the follow

ing reasons:

1. The need to  organize and describe basic graphic objects and representing 

relationships such as part-whole by inter-object references [14].

2. Communication among the parts of a graphic representation is needed to 

perform graphic operations. Message passing among the objects representing the 

graphic components is a very direct way to carry out graphical operations [14].

Object-oriented modeling not only reduces development tim e but also cost of 

m aintenance [13]. Jacobson [15] says object-oriented program m ing has changed the 

nature of software design from being an art or a craftsm anship to being an industrial 

process.

7.1 CLASS DESIGN

The Unified Modeling Language (UML) [16] was used extensively in providing 

an object-oriented model of the graphical nets. Classes were designed in such a way 

th a t they could be implemented in any object-oriented language. Various classes and 

their details are discussed here. Class names have been capitalized.

Class GUI is the user interface class (see Figure 7.1). Events related to  the user 

interface like mousePressed, mouseDragged, mouseReleased and paint are handled 

here. The purpose of this class is to pass on the user interactions to the other classes, 

it has no role to play in the implementation of the theorems. The user interface and 

the theorem logic have been kept independent of each other. The GUI class extends 

the A PPLET class and overrides paint method. It also uses M OUSEADAPTER 

and M OUSEM OTIONADAPTER classes to trap  the mouse movements. It has a 

dependency relationship with the GRAPHICS class as it uses drawOval and drawLine 
functions in the paint method.

Class PO IN T is the basic building block of the net classes. It encapsulates 

the functionality of a vertex. It has a ttributes for the co-ordinates, type (fixed or
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Figure 7.1 Class diagram  showing relationship of class GUI w ith the other Java 
classes

movable) and sta tu s  (moved or not moved). A part from the accessor functions, it 

has specific functions to set its location, check w hether it has been selected, get the 

distance between the two vertices, and find the quadrant.

Class GRID is the m ost im portan t class as it models the interconnections of 

the points. It has the capability needed to build the net using the class PO IN T and 

transform  the net depending on the  user interaction. It has a ttrib u tes  like an array 

of points and vertex selected. It has specific functions to get length of the link, build 

the net, find the selected vertex, and transform  the net.

Class GLOBAL holds the param eters th a t specify the initial s ta te  of the net. 

All the  s ta te  param eters have been kept here to  avoid modifying other classes when 

the configuration of the net is to be changed. Any changes m ade to  the param eter 

values in the GLOBAL class are autom atically reflected in all o ther classes. I t  models 

the s ta te  param eters like the order of the net, the size (the to ta l num ber of vertices 

in the net), the co-ordinates of the left most vertex from the bo ttom  and the distance 

between the two vertices (length of rigid-link).
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Grid
-Points : Point
-bCursorStatus bool
-iPointSelected int

grid()
getPointX(in i : int) : int 
getPointV(in i : int) : int 
getLength(in i : int, in j : int) : double 

+getCursorStatus() : bool 
+setCursorStatus(in status : bool) : void 
+setCoordinates() : void 

changeCursor(in X : int, in Y : int) : void 
+findPointSelected(in X : int, in Y : in t) : void 
+transformGrid(in X : int, in Y : int) : void
+calc_1 (in p1 : Point, in p2 : Point, in newP : Point, in p3 : Point) : void 
+calc_2(in p1 : Point, in newP : Point, in p2 : Point, in p3 : Point) : void 

getFourthPoint(in p1 : Point, in p2 : Point, in p3 : Point): Point 
+withinMedRange(in p1 : Point, in p2 : Point) : bool 
+withinMinMaxRange(in p1 : Point, in p2 : Point) : bool 
+getAngle(in P1 : Point, in P2 : Point): double 
+getPointSelected(): int

-------------- ---------------------------------- 1-----------

0 -

1

T

Gui
-Grid : Grid 
-bMouseMoved : bool 
+ in it(): void 
+paint() : void

Global

+MINLENGTH : double
+MAXLENGTH : double
+MEDLENGTH_U : double
+MEDLENGTH_L: double
+LENGTH : int
+ORDER : int
+SIZE : int
+XC : int
+YC : int
+RADIUS : int
+DIAMETER : int

Class
Diagram

P oin t

-iX : int
-iY : int
-cType : char
-bStatus : bool
+getX(): int
+getY(): int
+getType(): char
+getStatus(): bool
+setStatus(in Moved : boo l): void
+setType(in Type : char) : void
+setLocation(in X : int, in Y : int) : void
+setLocation(in P : P o in t): void
+point()
+point(in X : int, in Y : int, in Type : char) 
+point(in Moved : bool)
+point(in X : int, in Y : int)
+isSelected(in X : int, in Y : int) : bool 
+getDistance(in P : P o in t): double 
+getQuadrant(in P : Point): bool 
+getNewX(in P : Point, in D : double): int 
+getNewY(in P : Point, in D : double): int 
+getDiffX(in P : Point) : int 
+getDiffY(in P : Point) : int 
+point(in P : Point)

Figure 7.2 Class diagram  showing various classes and their relationships

7.2 CLASS DIAGRAM

Class diagram s [16] are the most common diagram s found in modeling object- 

oriented systems. A class diagram  shows a set of classes, interfaces, collaborations 

and their relationships. Class diagrams are used to  model the static design view of a 

system.

Various classes and their relationships are shown in Figure 7.2. Class GLOBAL 

has a relationship of type dependency with all the o ther classes, since all the other
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classes are dependent on it and it is independent of them . Class GRID and class 

PO IN T are related as aggregation, since a ne t consists of more than  one (aggrega

tion) vertex. M ultiplicity of the relationship is one to many, i.e one GRID object is 

composed of m any PO IN T objects. Class GUI and class GRID are associated as the 

navigation is from class GUI to class GRID and vice versa. Also m ultiplicity of the 

relationship is one to one, i.e one GRID object is related to  one GUI object.

7.3 SEQUENCE DIAGRAMS

An interaction diagram  [16] shows an interaction, consists of a set of objects 

and their communication, models the messages th a t may be dispatched among the 

objects. A sequence diagram  [16] is an interaction diagram  th a t emphasizes the tim e 

ordering of messages. The sequence diagrams are used to model the dynamic aspects 

of a system.

The following scenarios were selected as they form a complete sequence, starting  

from clicking on a  vertex to selecting it, then dragging it around, and finally, releasing 

the mouse to transform  the net. The GLOBAL object has not been shown in the 

sequence diagram s as there is no message passing after the construction of the net. 

The com m unication between the GRID object and the PO IN T object is iterated, in 

the sequence diagram  a single PO IN T object will be shown. O bject names have been 

capitalized and their operations are italicized.

7.3.1 S tart-up  operation The sequence th a t takes place when the A PPL E T  

starts  is shown in Figure 7.3. GUI starts  the sequence by calling init. GUI passes a 

message to GRID to call its constructor. GRID calls setCoordinates to  build the net. 

GRID passes a message to PO IN T to  call its constructor. GRID passes a message to 

PO IN T to call setLocation to set its location. GUI calls the paint to  print the net 

on the screen. GUI passes messages to GRID to  call getPointX  and getPointY for 

getting the x  and the y co-ordinates of a point. GRID passes messages to PO IN T to 

call getX  and get Y  to get the x  and the y co-ordinates. The sequence ends w ith the 

display of the net on the screen.

7.3.2 Mouse is clicked to  select a vertex The sequence th a t takes place when 

the user clicks on a  vertex to select it is shown in Figure 7.4. GUI s ta rts  the sequence 

by passing a message to  GRID to call findPointSelected to  find the point selected.
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Figure 7.3 Sequence diagram  showing start-u p  operation

Figure 7.4 Sequence diagram  showing mouse is clicked to  select a vertex

GRID passes a message to PO IN T to call isSelected to check whether the point is 

selected. GRID passes a message to PO IN T to call setStatus to set the status to  

selected.

7.3.3 Mouse is dragged after selecting a vertex The sequence th a t takes place 

when the user moves the selected vertex is shown in Figure 7.5. GUI starts  the
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sequence by passing a message to GRID to call changeCursor to  change the cursor. 

GRID calls withinMinMaxRange to  check the boundary conditions. GRID passes a 

message to  PO IN T to call getDistance to  get the distance between the two points. 

The sequence ends when GUI passes a message to GRID to  call get Curs or Status and 

depending on the  status, cursor is changed on the screen.

GUI GRID

changeCursor:=changeCursor(X, V) |

------------------------------------ 1
I

I
getCursorStatus:=getCursorStatus() , 

------------------------------------ 1

Sequence 
occurs when 
mouse is 
dragged

POINT

withinMinMaxRange:=withinMinMaxRange(p1, p2)

getDistance:=getDistance(P)

+1
I

Figure 7.5 Sequence diagram  showing mouse is dragged after selecting a vertex

7.3.4 Mouse is released after selecting and moving a vertex The sequence 

th a t takes place when the user releases the mouse after selecting and moving a vertex 

is shown in Figure 7.6. GUI starts  this sequence by passing a message to GRID 

to  call transformGrid to transform  the net. GRID passes a  message to  PO IN T to 

call getStatus to get the sta tus of the point. GRID calls calcJl to calculate the 

transform ed co-ordinates of the  points. GRID checks the boundary conditions by 

calling withinMinMaxRange and passes a message to PO IN T to call getDistance to 

get the distance between two points. GRID calls getAngle to  calculate the angle and 

passes messages to PO IN T to call getDiffX and getDiffY  to get the difference between 

the  x and the y co-ordinates of two points. GRID passes a  message to  PO IN T to 

call getDistance to get the distance between two points. GRID passes a message to 

PO IN T to  call getQuadrant to get the quadrant of the point. GRID passes a message 

to PO IN T to call getNewX and getNewY to  get the new co-ordinates of the point. 

GRID passes a message to  PO IN T to call setLocation to  set its location.
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Figure 7.6 Sequence diagram  showing mouse is released after selecting and moving 
a vertex
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GRID checks the boundary conditions by calling withinMedRange. GRID passes 

a message to PO IN T to  call getDistance. GRID calls getFourthPoint to  get the co

ordinates of the fourth point by using the m id-point rule. GRID passes a message 

to  PO IN T to call getX and getY  to get the co-ordinates of three points. GRID 

passes a message to  PO IN T to  call setLocation to set its location. GRID checks the 

boundary conditions by calling withinMedRange. GRID passes a message to PO IN T 

to  call getDistance to get the distance between two points. GRID passes a message 

to  PO IN T to  call setLocation to  set its location. GRID passes a message to PO IN T 

to  set its  status using setStatus.

GUI calls the paint to print the  net on the screen. GUI passes messages to 

GRID to  call getPointX and getPointY for getting the x  and the y co-ordinates of a 

point. GRID passes messages to  PO IN T to call getX and getY  to get the x and the 

y co-ordinates. The sequence ends w ith the display of transform ed net on the screen.



36

8 IM P L E M E N T A T IO N  O F T H E  O B J E C T  M O D E L

An im plem entation of the object model described in Section 7 was done using 

Java. In this section, the nature of the graphical interactions is dem onstrated in 

a variety of settings. Beginning with the  elem ental subnets, the dem onstration is 

expanded through the various sizes.

8.1 ELEM ENTAL SUBNETS

Figure 8.1 displays the elemental subnet in the initial state. An elem ental subnet 

consists of four vertices uO, v l, v2 and v3 w ith vertex uO fixed in th is case. The smaller 

circle in the  figure represents the path  on which vertices v l  and v2 can move and 

the larger circle represents the area in which vertex v3 can move while remaining 

mechanically admissible. By clicking and dragging a vertex, there are various cases 

as discussed below. Note th a t the cursor changes in order to  indicate th a t a vertex 

can be moved to a new location.

Figure 8.1 Elemental Subnet with vertex vO fixed
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8.1.1 Vertex vO fixed and vertex v3 moved Figure 8.2 displays the elem ental 

subnet w ith vertex  uO fixed and vertex v3 moved. The change in the  location of 

vertex v3 transform s the  subnet, m aking vertices v l  and v2 change the ir locations 

from th e ir initial positions (see Figure 8.1). Vertex v3 can only be moved w ithin the 

larger circle. Here Lem m a 4.3 is applicable and shows th a t the  user can drag vertex 

v3 to any point w ith in  the  larger circle and rem ain m echanically realistic.

F igure 8.2 E lem ental subnet w ith  vertex vO fixed and vertex v3 moved

8.1.2 Vertices vO and v2 fixed and vertex v l moved Figure 8.3 displays the 

elem ental subnet w ith vertices uO and v2 fixed and vertex v l  moved. The change in 

the location of vertex v l  transform s the subnet, m aking vertex v3 change its location 

from initial position. Vertex vl can only be moved along the circum ference of the 

sm aller circle. Here Lem m a 4.5 is applicable and shows th a t  the user can drag  vertex 

v l  to any po in t on the sm aller circle and rem ain m echanically realistic.

8.1.3 Vertices vO and v l fixed and vertex v2 moved Figure 8.4 displays the 

elem ental subnet w ith vertices wO and v l  fixed and vertex v2 moved. The change in 

the  location of vertex v2 transform s the subnet, m aking vertex u3 change its location 

from initial position. Vertex v2 can only be moved along the  circum ference of the
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Figure 8.3 E lem ental subnet w ith vertices vO and  v2 fixed and  vertex  v l moved

Figure 8.4 E lem ental subnet w ith vertices vO and v l fixed and  vertex v2 moved

sm aller circle. Here Lem m a 4.5 is applicable and shows th a t  th e  user can d rag  vertex 

v2 to  any po in t on the  sm aller circle and rem ain m echanically  realistic.
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8.2 SQUARE N ETS O F O RD ER N

Figure 8.5 displays the square net of order N  = 10 in the  in itia l state. The fol

lowing cases were selected for the dem onstration of click and drag  event interactions.
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Figure 8.5 Square net of order N
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8.2.1 All the  vertices in square net of order N -l fixed and vertex  v<n 2-  11 moved 

Figure 8.6 displays the  square net of order N  w ith  all the  vertices in the square net 

of order N  — 1 fixed in the in itia l s ta te . Sm all circles in the  figure represen t the p a th  

th a t a  vertex on th e  N th colum n or the  N th row has to  follow and th e  larger circle 

represents the area  in which vertex V(n 2- i) can move while rem ain ing  m echanically 

adm issible.

Applet Viewer: gui

Figure 8.6 Square net of order N before vertex is moved
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W hen vertex V(n2- i) is moved, it transform s the square net, m aking all the 

vertices in N th colum n and N th row change th e ir locations from th e ir  initial positions 

(see F igure 8.7). Here Theorem  5.3 is applicable and  shows th a t  the  user can drag 

vertex V(n 2- i) to  any point w ith in  the  larger circle and  rem ain m echanically realistic.

f ill
A pplet

Applet Viewer: gu i

A pplet started .

Figure 8.7 Square net of order N after vertex upv^-i) is moved
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8.2.2 All the  vertices in N -l columns are fixed and a vertex in N th colum n is 

moved Figure 8.8 displays the square net of order N  w ith  all the  vertices in N  — 1 

colum ns fixed in the in itia l s ta te . Circles in the figure represent the  p a th  th a t  a vertex 

on the  N th column can follow while rem aining m echanically adm issible.
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Figure 8.8 Square net of order N with all the vertices in N -1 columns fixed
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W hen a  vertex in the  N th column is moved, it  transform s the square net, m aking 

all the vertices in the  N th column change their locations from  th e ir in itia l positions 

(see Figure 8.9). Here Theorem  5.5 is applicable and shows th a t th e  user can drag a 

vertex in the N th colum n to any point on the  circle and rem ain  m echanically realistic.

Ap p let Viewer: gui

A pplet started .

Figure 8.9 Square net of order N after a vertex in N th colum n is moved
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8.2.3 All the vertices in N -l rows are fixed and  a vertex in N th row is moved 

Figure 8.10 displays the  square net of order N  w ith all the  vertices in N  — 1 rows 

fixed in the  initial s ta te . Circles in the figure represent the  p a th  th a t a  vertex on the  

N tfl row can follow while rem aining mechanically adm issible

Figure 8.10 Square net of order N w ith  all the vertices in N -1 rows fixed

W hen a vertex in N th row is moved, i t  transform s the square net, m aking all the 

vertices in N th row change their location from their in itia l position  (see Figure 8.11).
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Here Theorem  5.5 is applicable and shows th a t the  user can drag a  vertex in the  N th 

row to any point on the circle and rem ain m echanically realistic.

Figure 8.11 Square net of order N after a vertex in N th row is moved
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9 C O N C L U S IO N S

9.1 SUMMARY

This research was started  w ith defining various term s th a t were needed to  build 

and analyze the m athem atical model. Then the  behavior of a square n e t of order 2 

was studied  which provided the foundation for w hat is observed in the  larger nets. 

This behavior was successfully extended to  square nets of order 3 and also to  square 

nets of order N.

An object-oriented model was developed using UML. This model is capable of 

handling various cases related to  the square nets of different orders including the 

square net of order N . The model was designed in such a way th a t  it can be imple

m ented in any object-oriented language. An object-oriented model was im plem ented 

in Java and was tested  on square nets of different orders.

9.2 FU T U R E  W ORK

The present work is based on the behavior of square nets. The term s defined 

and theorem s proved can very well be used to extend the  m athem atical model to  

incorporate rectangular nets. Providing N  x N  solutions for all the cases of square 

nets would be a logical direction to extend this work.

An object-oriented model has been provided for handling  nets of graphical ob

jects. It would be in teresting if th is model is extended to  incorporate the  needs of 

web-sites th a t  allow image m odification and record the  changes made.
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