
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2002

Mechanical response of nets of graphical objects Mechanical response of nets of graphical objects

Rakesh Kumar Bajaj

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Bajaj, Rakesh Kumar, "Mechanical response of nets of graphical objects" (2002). Masters Theses. 2253.
https://scholarsmine.mst.edu/masters_theses/2253

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/2253?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MECHANICAL RESPONSE OF NETS OF GRAPHICAL OBJECTS

by

RAKESH KUMAR BAJAJ

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2002

Approved by

THESIS
T 8158

© Copyright 2002

by
Rakesh Kumar Bajaj

All Rights Reserved

Il l

ABSTRACT

This research produces networks of graphical objects that respond to human

manipulation in a fashion that would be deemed physically reasonable. That is, a

graphical network is given a mechanics-like behavior in the presence of the human

interaction. In this approach, nonlinear models replace commonly used linear models
to mimic physical reality better. Software solutions are provided via a class library

useful for such interactive visual modeling.

IV

ACKNOWLEDGMENT

I would like to thank Dr. Hilgers for all the help, encouragement and support

that he gave me as my advisor. This work would not have been possible without his
guidance and the support of the Computer Science department at the University of
Missouri - Rolla.

I would also like to thank Dr. Bruce M. McMillin and Dr. Raymond Kluczny

for serving on my thesis committee and for taking time to review and critique this
work.

I am most grateful to my parents and sister who gave me support and encour

agement in all aspects, helped me achieve my goals, and allowed me to pursue my
graduate study at UMR.

V

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENT.. iv

LIST OF ILLUSTRATIONS.. vii

1 INTRODUCTION.. 1
1.1 M OTIVATION.. 1
1.2 OVERVIEW.. 2

2 PHYSICAL REALISM, COMPUTER GRAPHICS AND GRAPHICAL
INTERFACES.. 5
2.1 PHYSICAL MODELS AND COMPUTER GRAPHICS................ 5

2.1.1 Physics based explosion modeling.. 5
2.1.2 Graphical modeling and animation of brittle fracture . . . 5
2.1.3 Computer graphics techniques for modeling c lo th 6

2.2 PHYSICAL MODELS AND GRAPHICAL INTERFACES 6
2.2.1 Window layout m anager... 7
2.2.2 Graceful interaction with graphical constraints 7

3 MATHEMATICAL MODEL OF NETS OF GRAPHICAL OBJECTS . 8

4 ELEMENTAL SUBNET... 12

5 SQUARE NETS OF ORDER 3 ... 22

6 SQUARE NETS OF ORDER N .. 26

7 OBJECT-ORIENTED MODEL... 28
7.1 CLASS DESIGN ... 28
7.2 CLASS DIAGRAM.. 30
7.3 SEQUENCE DIAGRAMS.. 31

7.3.1 Start-up operation .. 31
7.3.2 Mouse is clicked to select a vertex 31
7.3.3 Mouse is dragged after selecting a vertex............................ 32
7.3.4 Mouse is released after selecting and moving a vertex . . . 33

8 IMPLEMENTATION OF THE OBJECT M O D EL................................... 36
8.1 ELEMENTAL SU B N ET S... 36

8.1.1 Vertex vO fixed and vertex v3 m oved 37
8.1.2 Vertices vO and v2 fixed and vertex vl m oved 37

VI

8.1.3 Vertices vO and vl fixed and vertex v2 m oved........................ 37
8.2 SQUARE NETS OF ORDER N ... 39

8.2.1 All the vertices in square net of order N-l fixed and vertex
V(n2- i) moved... 40

8.2.2 All the vertices in N-l columns are fixed and a vertex in
Nth column is moved.. 42

8.2.3 All the vertices in N-l rows are fixed and a vertex in Nth
row is m oved... 44

9 CONCLUSIONS... 46
9.1 SUMMARY.. 46
9.2 FUTURE W ORK... 46

BIBLIOGRAPHY ... 47

VITA ... 49

LIST OF ILLUSTRATIONS

Figure Page

1.1 Product Design Web-Site Sponsored by Honda Motorcycles.................. 2

1.2 Motorcycle Image Composed of Interconnected Movable Graphical Objects 3

1.3 Front Wheel has been m oved.. 3

4.1 Elemental S u b n e t... 12

4.2 Elemental Subnet with vertex vO fixed.. 13

4.3 Elemental Subnet with vertex vO fixed and vertex v3 moved................... 13

4.4 Elemental Subnet with vertex vO fixed and vertex v3 moved in the l s<
q u a d ra n t.. 15

4.5 Elemental Subnet with vertex vO fixed and vertex v3 moved in the 2nd
q u a d ra n t.. 16

4.6 Elemental Subnet with vertex vO fixed and vertex vl moved................... 19

4.7 Elemental Subnet with vertices vO and v2 fixed and vertex vl moved . . 20

5.1 Square net of order 3 ... 22

5.2 Square net of order 3 having Elemental Subnet with vertices vO, vl, v3
and v4 fixed and vertex v8 m o v ed ... 23

5.3 Square net of order 3 with all the vertices of first two columns fixed . . 25

5.4 Square net of order 3 with all the vertices of first two rows fixed 25

6.1 Square net of order N Locked.. 26

7.1 Class diagram showing relationship of class GUI with the other Java classes 29

7.2 Class diagram showing various classes and their relationships............... 30

7.3 Sequence diagram showing start-up operation... 32

7.4 Sequence diagram showing mouse is clicked to select a v e r te x 32

7.5 Sequence diagram showing mouse is dragged after selecting a vertex . . 33

7.6 Sequence diagram showing mouse is released after selecting and moving
a vertex .. 34

8.1 Elemental Subnet with vertex vO fixed.. 36

vii

Vlll

8.2 Elemental subnet with vertex vO fixed and vertex v3 moved.................. 37

8.3 Elemental subnet with vertices vO and v2 fixed and vertex vl moved . . 38

8.4 Elemental subnet with vertices vO and vl fixed and vertex v2 moved . . 38

8.5 Square net of order N .. 39

8.6 Square net of order N before vertex v ^ - i) is moved.............................. 40

8.7 Square net of order N after vertex vw -i) is moved................................. 41

8.8 Square net of order N with all the vertices in N -1 columns fixed 42

8.9 Square net of order N after a vertex in Nth column is m o v e d 43

8.10 Square net of order N with all the vertices in N -1 rows f ix e d 44

8.11 Square net of order N after a vertex in Nth row is moved 45

1 INTRODUCTION

Constrained graphical user interfaces have been an active area of research for

many years, with the primary focus being the human manipulation of window objects

overlying each other on a restricted desktop [1] [2], Mathematical models of this win

dow manager problem take the form of constrained linear systems of equations open to

analysis via linear programming methods [1], Most activity on this problem concerns

the timely solution needed to provide comfortable computer-human interaction.

This research explores human manipulation of graphical objects subject to me

chanical constraints. Linear programming techniques are no longer applicable as the

governing equations are nonlinear in nature. The goal of the added complexity is

to produce networks of graphical objects that respond to human manipulation in a

fashion that would be deemed physically reasonable. That is, the graphical network

is given a mechanics-like behavior in the presence of human interaction.

To this end, a foundational theory is developed to provide a basis for analysis

and implementation. Several theorems are proven, establishing the solvability of

the interaction problem subject to a variety of constraints. Furthermore, software

solutions are provided via a class library useful for such interactive visual modeling.

Examples of the nature of the computer-human interactions are provided.

1.1 MOTIVATION

The motivation to consider interconnected networks of graphical objects subject

to mechanical constraints arose from research into the feasibility of allowing people

to participate in product design via the web. In a project [3] funded by Honda

Motorcycles, a web-site was developed that supported the image of a motorcycle (see

Figure 1.1). By using the mouse, a person viewing the site may move various parts

of the motorcycle, thereby altering its design. For instance, by comparing Figure 1.2

and Figure 1.3, it is seen that the front wheel has been moved and the front forked
dialated and rotated.

As the graphical objects move, the state of the motorcycle is recorded. When

satisfied with a design, the user clicks the submit button and the new motorcycle

2

j le n d a r Rad io Peop le Ye llow Pages Dow nload Channe ls

^ B l LU[E P R IN T A B IK E
, Bln«|irinl .1 Mike | ,

| H H lru d W II' t

Figure 1.1 Product Design Web-Site Sponsored by Honda Motorcycles

design is sent to a cgi program that enters the design into the database. These

numbers provide an indication of the design preferences of the viewing public.

In order for this to be a realistic measurement, it is of paramount importance

that the virtual motorcycle responds to the mouse in a fashion that seemed reasonable.

This meant that some parts had fixed path of translation, others could not change

shape and some of the distances between the parts needed to be fixed. In short, the

interconnected network of graphical objects needed to satisfy nonlinear constraints

imposed by physical laws.

1.2 OVERVIEW

In the next section, the influence of the physical sciences on computer graphics

and visualization is explored. While most prior works do not directly address physical

constraints in graphical user interfaces, they do prove the point that the human eye

is a very critical judge of computer-generated behavior.

3

r

Figure 1.2 Motorcycle Image Composed of Interconnected Movable Graphical Ob
jects

Figure 1.3 Front Wheel has been moved

In Section 3, the foundation of the theory is established. In the model proposed,

the graphical network is viewed as a net of vertices connected to each other by means

of rigid connections. Also, some vertices are fixed to restrict the motion of the net.

The model allows a user to move a vertex and it is the goal of the analysis to predict

the changes in the shape of the net. From a certain perspective, this is a classic

mechanics problem.

Section 4 focuses on the so-called elemental subnet consisting of four vertices

arranged as a square and its potential manipulations with a mouse. In this simplest

case, several scenarios are seen, with the behavior ranging from interlocked nets in

capable of motion to highly ambiguous configurations. Results from this analysis are

4

extended to the case of a square network consisting of nine vertices. The summary

of this analysis is given in Section 5. The case of a general N x N net is examined in

Section 6.

With the theory established, a software solution is proposed. In this research,

the object-oriented methodology is used in designing the class library. Section 7

contains Unified Modeling Language (UML) diagrams explaining the object-oriented

model developed. While the design is not dependent on any particular language, a

Java implementation is examined in Section 8. Several examples of computer-human

interaction are studied. Conclusions and opportunities for future work are discussed

in Section 9.

5

2 P H Y S I C A L R E A L IS M , C O M P U T E R G R A P H I C S A N D

G R A P H I C A L I N T E R F A C E S

As the g raphical capabilities of com puter system s have m atu red , so has the

sophistication of the ir hum an users. No longer satisfied w ith m onochrom e displays

or cartoon-like anim ations, com puter a rtis ts find th a t the ir work m ust im ita te their

physical surroundings. Hence, the world of com puter graphics increasingly involves

m odels based upon m athem atica l or physical laws. In th is section, a survey is pre

sented of various exam ples of the im pact of physical m odels on com puter graphics

an d graphical interfaces.

2.1 PH Y SICA L M ODELS AND C O M P U T E R G R A PH IC S

T he need to incorporate physical realism in com puter graphics and anim ation

has been driven by the movie industry. W ith Hollywood tu rn in g to th e com puter

in d u stry to supply special effects, com puter scientists find them selves w riting software

to m im ic everything from a single explosion to in tergalactic war. W hile th e survey in

th is section is far from com prehensive, it does provide exam ples from recent lite ra tu re

of the im pact of m echanical m odels on graphics.

2.1.1 Physics based explosion m odeling Producing real explosions is costly

and po ten tia lly dangerous. Special effects technicians have tu rn ed to software to

generate explosion sequences. O lder software tools allowed a rtis ts to re-create the

appearance o f an explosion ignoring the physical processes, which looked artificial.

R ecent research [4] produces physically correct explosion incurring cost. The au thors

observe th a t substan tia l com puta tional resources are spen t in providing realism which

pleases the hum an eye.

2.1.2 G raphical m odeling and an im ation of b rittle fractu re M odeling explosions

necessitates the need to sim ulate the consequences. Hence, a com puter graphics a rtis t

m ust produce scenes w ith breaking windows, collapsing walls and debris flying in all

directions. Again, physical laws m ust be used to provide the realism th a t the audience

dem and.

6

O ’ Brien and Hodgins [5] suggested the use of m echanical stress tensors, pro

duced by finite elem ent m ethods, to determ ine where cracks should in itia te and in

w hat directions they should propagate. By varying the shape o f the objects, the

m ateria l properties, and the initial conditions o f the sim ulations, strikingly different

effects were created . These range from a wall th a t shatters when it is h it by a wrecking

ball to a bowl th a t breaks in to two when it is d ropped on an edge.

2.1.3 C om puter graphics techniques for m odeling cloth In com puter graphics

or anim ation, appearance is generally more im p o rtan t th an physical accuracy, so

the em phasis has been m ore on visual realism th an on physical accuracy [6], th is

distinction, though, has blurred as audience m ature .

G eom etrical models do not consider the physical properties of cloth. R ather,

they focus on appearance, particu larly on folds and creases, which they represent by

geom etrical equations [6]. Geom etrical techniques require a considerable degree of

user intervention. They can be regarded typically as little more th an a form of an

advanced draw ing tool.

Weil [7] was probably first to apply geom etrical techniques to cloth visualization

in com puter graphics. He represented hanging clo th as a grid of po in ts and sim ulated

its shape by fitting catenary curves between th e hanging or constra in t points. C ate

nary curves were appropria te because of inflexible fiber models which have origins

w ith in the m echanics com m unity traceable to Tchebychev [8] in 1878. Hence, physics

influences even the so-called geom etrical techniques.

Agui et al. [9] presented a geom etrical m ethod for m odeling a sleeve on a bending

arm . They represented the cloth as a hollow cylinder consisting of a series of circular

rings and observed folds form as a consequence of the differences in curvature between

the inner and ou ter p a rt of the bent sleeve. A gain th e im portance of curvature in the

m odel is explained by mechanics. Resistance to changes of curvature in elastic sheets

is called bending stiffness and is foundational to fold m odeling [10].

2.2 PH Y SICA L M ODELS AND G RA PH ICA L INTERFACES

In the sub-section th a t follows, it is seen th a t graphical user interfaces have

always included some elem ents of physical m odeling. For instance the trad itio n a l

window m anager problem trea ts window com ponents like pieces of paper overlying

7

each o ther on a desktop [1]. The problem , then becomes finding w hat is observable.

Besides layout m anaging, physics has appeared in o ther in teractive applications and

interfaces.

2.2.1 W indow layout m anager Badros et al. have a series of papers exploring

the window layout m anager problem [1] [2]. T heir m odel reduces the desktop to a

series of overlying rectangles w ith various sub portions visible, all constrained to be

w ith in a larger rectangle. Since a rectangle’s boundaries are lines, determ ining visible

regions forms a constrained linear problem [1],

H um an m an ipu la tion of window objects creates the need to solve such problem s

repeatedly. To achieve in teractive response tim es, B adros e t al. [1] have suggested

fast increm ental algorithm s th a t exploit prior com putations. T hey show th a t the

Cassowary a lgorithm [1] is one such efficient constra in t solver for in teractive user

interface applications.

2.2.2 G raceful in teraction w ith graphical constra in ts A n early effort to incor

p o ra te non-linear graphical constrain ts into a graphical user interface was a project

nam ed G R A C E [11], GRACE, the G raphical C onstra in t E d ito r, lets users define con

s tra in ts am ong graphical objects. Inextensibility was one such constra in t in GRACE,

as it is in th is thesis. However, G RACE offers no theore tical foundation for the

in teraction o f the network.

8

3 M A T H E M A T IC A L M O D E L O F N E T S O F G R A P H IC A L O B JE C T S

This section is concerned with developing a m athem atical model of nets of graph

ical objects th a t respond in a familiar mechanical way when interacting with a mouse.

To this end, term s are defined th a t are needed to build and analyze such an interface.

3.1 D e fin itio n . An undirected graph G consists of two sets: V(G) the set of vertices

of G and E(G) the set of edges of G , together with with a function 7 : E(G) —*

{ (« ,«) |« ,u € ’F(G')}.

3.2 D e fin itio n . The picture of a graph is a diagram consisting of P points corre

sponding to the vertices of G and the lines corresponding to edges.

Both the graph and its picture will be referred with the name G unless the

context requires further distinction. For visualization, the picture requires a co

ordinate system. Imposing a cartesian system yields a vertex u e V(G) w ith the

co-ordinates (X u, Yu) in the picture of G.

3.3 D e fin itio n . A graph N is said to be a rectangular net if its picture satisfies the

following characteristics:

1. The vertices are arranged in a rectangular m atrix consisting of n rows and m
columns.

2. For each row of m vertices, there are m — 1 edges arranged horizontally to

connect adjacent vertices.

3. For each column of n vertices, there are n — 1 edges arranged vertically to

connect adjacent vertices.

A square net of order N is a rectangular net w ith N rows and N columns. A net is

more general and relaxes the requirement of edges forming an orthogonal grid.

Though the concepts examined in this thesis could be applied to a wide variety of

graphs, the graphs of particular interest are those whose picture looks like a net. The

fundam ental problem of concern in this thesis supposes th a t an interactive medium,

9

such as a Java A PPLET on a web page, displays a net and allows the user to click and

drag a vertex on the net. The goal is for the transform ed picture to have a mechanics
like response. To this end, reasonable physical properties m ust be assigned to the

net.

3 .4 D e fin itio n . A graphical transformation of the picture of a graph G is a mapping

T taking vertex u w ith the initial co-ordinates (X u, Yu) to vertex T(u) with location

(xu,yu) for all vertices u in the graph.

The graphical transform ation of fundam ental interest in this thesis is associated

w ith the so-called click and drag event.

3 .5 D e fin itio n . A click and drag event selects a vertex u initially a t (A*, Y^) in

the picture and attem pts to assign it to the transform ed vertex T (u) w ith location

(*«>!/«)•

The problem at hand is to uniquely determine a graphical transform ation T
which satisfies the specified click and drag event and transform s the net in a manner

th a t the eye would deem as mechanically reasonable. This will require mechanics-like

properties on the edges themselves.

3 .6 D e fin itio n . An edge e in a graph G connecting vertices {u , u} is called a rigid-
link if the corresponding line segment in the picture is inextensible. T h a t is, if the

picture of the graph G undergoes a graphical transform ation T, then

length e — length T(e)

or

y /(X u - X vf + (Yu - n) 2 = y /(xu - x v)* + (yu - yv)*

In order to develop a reasonable mechanics for a net of graphical objects, a t

tention m ust be given to the possibility of resistance to shearing. T hat is, suppose

an edge e connects {u, u} and edge / connects {u,u>}. Denote 9(e, f) as the an

gle between e and / in the picture of G. A graphical transform ation on T gives

T(9(e, /)) = 9(T(e),T (f)). Changes in the angle 9 are generically described with the

term shearing. A graph is said to resist shearing if there is a penalty associated with

10

the angle change. In this thesis, there is no resistance to shearing so th a t the angle

between edges can freely change.

3 .7 D e fin itio n . A simple mechanical net is a net with all the edges as rigid-links

and offers no resistance to shearing. A graphical transform ation is said to have simple
mechanics-like behavior if it transforms the picture of the graph under the constraint

of rigid-links w ith no shearing resistance.

Almost all m athem atical models of a mechanical system require a description

of the initial s ta te of the system, a specification of what is happening to the system

along its boundary, and the inclusion of global body forces. In this research, the

fundam ental boundary or body interaction is to fix a vertex.

3.8 D e fin itio n . If the picture of the graph G undergoes a graphical transform ation

T taking vertex u with the initial co-ordinates (X U,YU) to vertex T (u) with location

(xu, Vu), then a vertex u in a graph G is said to be fixed if

A u — x u and Yu — yu.

It should stand to reason th a t at least one vertex of a simple net m ust be

fixed in order to have any possibility of mechanically reasonable behavior under the

influence of a click and drag event. W ith only one vertex location known, any shearing

transform ation of the angles in a subnet would satisfy the click and drag event, yet

would yield highly non-unique configurations w ith most lacking any mechanically

realistic behavior. Hence, it is assumed th a t at least one vertex is fixed. For simplicity,

also assume th a t all rigid-links have length l.

There are now two constraints on a graphical transform ation of simple m echan

ical nets: it m ust not change the length of an edge (inextensibility) and it cannot

move fixed vertices.

3.9 D e fin itio n . Suppose N is a simple mechanical net. Let F be a non empty subset

of vertices of N th a t are fixed. A graphical transform ation of N is mechanically
admissible if it satisfies the rigid-link and fixed vertices constraint.

Note th a t the set of mechanically admissible graphical transform ations is not

empty. It always contains the identity mapping. O f special interest, however, is the

11

situation when the identity mapping is the only mechanically admissible graphical

transformation.

3.10 D e fin itio n . A simple mechanical net with fixed vertices F is said to be locked
if the identity mapping is the only mechanically admissible graphical transformation.

In many graphical user interfaces, the mouse may a ttem pt to drag an object to

a location (x^,yl) not perm itted by the mechanical constraints. Hence, a properly

formulated theory should address several issues. The first is mechanical admissibility.

3.11 D efin itio n . A click and drag event of a vertex u is mechanically admissible if

there exists a graphical transformation T such th a t T(u) has the property

xa = xl

Vu = vl-

The existence of such a graphical transformation T means tha t can

be connected to the remaining vertices while maintaining the rigid-link constraint.

Conversely, mechanical inadmissibility implies tha t rigid-link constraint forbids the

desired location from being visualized. W ith the notion of admissible solutions de

fined, a second concern is finding a priori conditions-determining whether a click and

drag event is mechanically admissible. This is a challenging problem, some results

will be provided in Sections 4, 5 and 6.

Finally a mechanics problem has the liberty to conclude th a t there is no physi

cally admissible solution due to the constraints in the problem. A computer-human

interaction should result in some reasonable picture of the net displayed. Hence the

click and drag event location (x£, y?) must be projected into the set of mechanically

admissible events so th a t the corresponding graphical transformation T can be used

for the display. This is the final major issue of concern in the following sections.

12

4 E L E M E N T A L S U B N E T

In this section, the focus is on the simplest possible net consisting of only four

vertices. However, its behavior provides a foundation for all th a t happens in the

larger nets.

v2

vO

O v J

v1

Figure 4.1 Elemental Subnet

4.1 D efin itio n . An elemental subnet is a net consisting of 2 rows and 2 columns

of vertices. All the edges are rigid-links and there is no resistance to shearing (see

Figure 4.1).

The properties needed for the picture of an elemental subnet to behave in a

mechanical fashion when interacting with a mouse are considered herein. If the co

ordinates of all the vertices remain the same after a graphical transformation, there

is no change in the shape and position of the net. A priori conditions specifying

whether an elemental subnet is locked can be readily offered.

4.1 L em m a. For an elemental subnet; if the diagonally opposite vertices are fixed,
then the subnet is locked.

Proof. Let G be an elemental subnet as denoted in Figure 4.1. W ithout loss of

generality suppose vertices vO and v3 are fixed (see Definition 3.8). I t is also known

th a t all the edges in the subnet are rigid-links (see Definition 3.6). Due to the edges

being rigid-links, the identity mapping is the only mechanically admissible graphical

transformation (see Definition 3.10). This graphical transformation does not bring

any change either to the shape or to the position of the subnet.

13

4.2 L em m a. For an elemental subnet, if every row and every column contains a fixed

vertex, then the subnet is locked.

Proof. Note: This has been proved for an elemental subnet (see Lemma 4.1).

v2 ©— ----© v3

Figure 4.2 Elemental Subnet w ith vertex vO fixed

A priori conditions determining whether a click and drag event is mechanically

admissible are relatively straightforward in the case of an elem ental subnet. In Fig

ure 4.2, suppose vertex vO is fixed. Two cases exist. If the clicked vertex u € {vl, v2},

then mechanically admissible click and drag events m ust satisfy

« ~ *o)2 + (y* - y0)2 = l2- (4.1)

Since the connecting links are inextensible, mechanical admissibility requires

Figure 4.3 Elemental Subnet with vertex vO fixed and vertex v3 moved

14

V (® 3 - ^o)2 + (1/3 - 2/o)2 < 2/, (4.2)

if the selected vertex is v3 (see Figure 4.3). This is because the length of any side

of a triangle is less than the sum of the other two. T h a t these conditions yield

mechanically admissible click and drag events is the subject of Lemma 4.3.

If the click and drag event of vertex u is not mechanically admissible, then

{x uiVu) must be projected into the set of admissible solutions, for purpose of display.

If u G {vl,v2}, then Equation 4.1 leaves with little flexibility, in th a t (x*u,y *) must

be projected onto the circle of radius l along the ray with vO as the center.

If u = v3, then the condition in Equation 4.2 is more permissive. Projecting

(#3, yl) to any point inside the circle of radius 21 along the ray w ith vO as the center

would work. However, projecting (£3,2/3) to the boundary of the circle yields the

most reasonable behavior from a visual perspective.

4 .3 L em m a. Let G be an elemental subnet as denoted in Figure Ĵ .2 with vertex vO
fixed. Suppose vertex v3 undergoes a click and drag event from (£3,2/3) to (£3,2/3) as
denoted in Figure f.3. I f the inequality in Equation 4.2 is satisfied, the click and drag
event is mechanically admissible. I f the inequality is not satisfied, the click and drag
event is mechanically inadmissible.

Proof. Certain aspects of the geometry of the elemental subnet are labeled as follows:

1. Length of line joining the fixed vertex uO and the moved vertex v3 is d (see

Figure 4.3).

2. Length of the edge (rigid-link) is l (see Figure 4.3).

3. Co-ordinates of vertex vO are (£o,2/o)-

4. Co-ordinates of vertices v l and v2 after the transform ation are (x*,y*) and

(x2> vV)-

5. The m id-point of fixed vertex vO and moved vertex v3 is (x m,ym).

6. Angle m ade by the line passing through fixed vertex vO and moved vertex v3
with the X-axis is 9 (see Figure 4.4).

15

7. Angle made by the line passing through fixed vertex uO and moved vertex i>3

with the edge joining fixed vertex uO and vertex v l is a (see Figure 4.4).

8. Angle m ade by the edge joining fixed vertex uO and vertex v l with the X-axis

is /3 (see Figure 4.4).

Case 1: W ithout loss of generality, d < 21 and the elem ental subnet is in the I s*

quadrant (see Figure 4.4).

Figure 4.4 Elemental Subnet with vertex vO fixed and vertex v3 moved in the 1st
quadrant

Here £3 and yl are displacements on the respective axes provided the distance

between fixed vertex uO and moved vertex v3 is less than 21, i.e.

\ / (^ 3 ~ ^ o) 2 + (2/3 - V o) 2 < 2 1

Trigonometry yields

9 = a rc ta n (^ --- —),
X3 — x0

a = arccos(d/2/)

since d <21, and

(3 = 9 — a.

16

Co-ordinates of vertex v \ are given by

x\ = x0 + l cos j3

V* = Vo + l s in 0.

Co-ordinates of the m id-point of fixed vertex vO and moved vertex v3 are

Xm — (^3 T %0)/2

Vm = (2/3 + 2/o) / 2.

As the subnet is in the form of a rhombus (see Figure 4.4), the edges joining the

opposite vertices have the same mid-point. Therefore the co-ordinates of the vertex

v2 are

x \ — 2 * xm — x\

y* = 2 * y m - y{.

Case 2: W ithout loss of generality, d < 21 and the elemental subnet is in the 2nd
quadrant (see Figure 4.5).

Figure 4.5 Elem ental Subnet with vertex vO fixed and vertex v3 moved in the 2nd
quadrant

9 = a r c ta n (^ — —),
Xq — £3

As seen in case 1:

17

a = arccos(d/2/)

since d < 21. B u t in this case angle ft is sum of the angles 9 and a (see Figure 4.5).

ft = 9 + a.

Co-ordinates of vertex v l are given by

x\ = x0 — l cos ft

y*i = Vo + l sin ft.

Co-ordinates of the mid-point of fixed vertex uO and moved vertex v3 are

+ X0)/2

ym = (yl + yo)/2-

As the subnet is in the form of a rhombus (see Figure 4.5), the edges joining the

opposite vertices have the same mid-point. Therefore the co-ordinates of the vertex

t>2 are

£ 2 = 2 * xm — x\

y* = 2 * y m - y*.

Case 3: W ithout loss of generality, d <21 and the elem ental subnet is in the 3rd

quadrant.

This case is same as case 1 (rotation by 180 deg).

Case 4: W ithout loss of generality, d <21 and the elem ental subnet is in the 4th

quadrant.

This case is same as case 2 (rotation by 180 deg).

Case 5: W ithout loss of generality, d = 21.

T h a t is, d/2l = 1 means angle a = 0 which is possible only if the vertices vl and v2
overlap. Hence, the subnet collapses to a line segment.

Case 6: W ithout loss of generality, d > 21

Equation 4.2 shows th a t the edges have stretched. This is not admissible.

18

Crucial to the the success of the previous theorem is the fact th a t the vertex

selected for the click and drag event is diagonally opposite to the fixed vertex. If

either vertex v l or v2 is chosen, the result is less satisfying.

4 .4 L e m m a . Let G be an elemental subnet with vertices {uO, v l, v2, w3} starting in
the lower left-hand corner (see Figure f.2). Suppose vertex wO is fixed and vertex vl
undergoes a click and drag event from (xj, y\) in the picture and to the transformed co

ordinates (x\,y*). There are infinitely many mechanics-like graphical transformations

T determined on the basis of (x\,y \).

Proof Certain aspects of the geometry of the elem ental subnet are labeled as follows:

1. Length of line joining fixed vertex wO and moved vertex v3 is d (see Figure 4.3).

2. Length of the edge (rigid-link) is l (see Figure 4.3).

3. Transformed co-ordinates of vertex n3 are (£3,2/3).

4. Angle m ade by the line passing through fixed vertex vO and vertex v3 w ith the

X-axis is 9 (see Figure 4.6).

5. Angle m ade by the line passing through fixed vertex uO and vertex v3 w ith the

edge joining fixed vertex nO and moved vertex vl is a (see Figure 4.6).

6. Angle m ade by the edge joining fixed vertex uO and moved vertex vl w ith the

X-axis is /3 (see Figure 4.6).

W ithout loss of generality, trigonom etry yields (see Figure 4.6)

/3 — a rc tan (—----—),
x* - £0

a = arccos(d/2/)

since d < 21, and

9 = /3 + a.

19

(a) Scenario 1 (b) Scenario 2

Figure 4.6 Elemental Subnet w ith vertex vO fixed and vertex v l moved

Co-ordinates of vertex v3 are given by

= x 0 + l cos 6 = x 0 + l cos(fi + a)

Vs = Vo + l sin 6 = ?/o + l sin (fi + a).

To get the co-ordinates of vertex v3, the value of d is required. Different values of d or

a give different co-ordinates for vertex v3. Hence, the configuration is ambiguous. □

The non-uniqueness witnessed in Lemma 4.4 is not unusual in mechanical mod

els. The first concern th a t m ust be addressed is w hether the boundary conditions

and initial s ta te are sufficiently strong to yield unique behavior. If non-uniqueness is

dem onstrated, then the usual approach is to add a selection criterion to the model

(this is a s tandard situation in hyperbolic conservation laws) [12]. This is a future

direction for this research. Lemma 4.4 shows th a t selecting a vertex th a t is rigidly

linked to a fixed vertex for a click and drag event causes the captured vertex to ro tate

about the fixed vertex. Meanwhile the remaining vertices can freely shear about the

ro ta ting base. One form of remedy is to fix one of the rem aining vertices.

4 .5 L e m m a . Let G be an elemental subnet with vertices (uO, v l, v2, u3} starting in

the lower left-hand corner (see Figure f .l) . Suppose vertices vO and v2 are fixed and
vertex v\ undergoes a click and drag event from (x\,y \) in the picture and to the

20

transformed co-ordinates (x*,y*). There is a unique mechanics-like graphical trans

formation T determined by (x*,y*) (see Figure f . l) .

Figure 4.7 Elemental Subnet with vertices vO and v2 fixed and vertex vl moved

Proof Certain aspects of the geometry of the elemental subnet are labeled as follows:

1. The mid-point of fixed vertex v2 and moved vertex v l is (xm,ym).

2. Co-ordinates of vertices uO and v2 are (x0,yo) and (x2,y 2)-

3. Transformed co-ordinates of vertex v3 are (£3,2/3).

W ithout loss of generality, co-ordinates of the m id-point of fixed vertex v2 and moved

vertex vl are

xm = (a^ T £ 2)/2

Vm = (y* + J/2)/2.

As the subnet is in the form of a rhombus (see Figure 4.7), the edges joining the

opposite vertices have the same mid-point. Therefore the co-ordinates of the vertex

v3 are

£3 = 2 * xm - x0

2/3 — 2 * ym yo-

This determines the graphical transformation.

21

Even in the elemental subnet, there is a fundam ental difficulty in allowing the

mouse to in teract w ith a picture of a graph and hope for it to respond in mechanics

like fashion. There is a potential for non-uniqueness depending on vertex selected

by the user. However, these lemmas provide conditions th a t yield more acceptable

behavior. The next step is to consider the situation of nets composed of several

elem entary subnets.

22

5 S Q U A R E N E T S O F O R D E R 3

This section is concerned with the square net of order 3, composed of 4 elemen

tary subnets. The question a t hand is determ ining the num ber of vertices th a t must

be fixed to yield a mechanics-like response when the user selects a vertex and drags

it to a new location.

5.1 L e m m a . For a simple mechanical net of order N, if a vertex is between two fixed
vertices, then it is immovable.

v6

v3

vO

Figure 5.1 Square net of order 3

Proof. W ithout loss of generality, suppose vertices wO and v2 are fixed (see Figure 5.1).

It is known th a t all the edges in are rigid-links. Due to the edges being rigid-links

vertex v\ can only move along the circumference of two circles, one w ith center vO
and other w ith center v2. These two circles have single point in common, vertex v l,
this leaves vertex vl immovable. This extends easily to arbitrary situation.

5.2 T h e o re m . For a square net of order 3, if every row and every column contains
a fixed vertex, then the square net is locked.

Proof. Let G be a square net of order 3 as denoted in Figure 5.1. W ithout loss of

generality, suppose vertices nO, v4 and v8 are fixed. Apply Lemma 4.1 to the elemental

23

subnet w ith vertices v0 ,v l,v3 and v4 having vertices vO and v4 fixed. Vertices vl
and v3 cannot have a graphical transform ation th a t can bring any change to either

the shape or th e position of the elemental subnet. Similarly, apply Lemma 4.1 to

the elemental subnet with vertices v4, v5,v7 and v8, having vertices v4 and v8 fixed.

Vertices u5 and v7 cannot move. Finally, as all the o ther vertices in the square net

are fixed, vertices v2 and v6 cannot move. This m ethod can be readily applied to any

other com bination of fixed vertices satisfying the hypothesis.

5 .3 T h e o re m . For a square net of order 3, if all the vertices of an elemental subnet
are fixed and a vertex diagonally opposite to the fixed elemental subnet undergoes click

and drag event, then there is a unique mechanics-like graphical transformation.

Proof. Let G be a square net of order 3 as shown in Figure 5.1. W ithout the loss

of generality, fix all the vertices of the elemental subnet wO, v l, v3, v4, then click and

drag diagonally opposite vertex w8 (see Figure 5.2).

Figure 5.2 Square net of order 3 having Elem ental Subnet w ith vertices vO, v l, v3
and v4 fixed and vertex v8 moved

Apply Lem m a 4.3 to the elemental subnet w ith vertices v4, u5, v7 and t>8 to get

the transform ed co-ordinates of vertices u5 and v7. Then apply Lem m a 4.5 to the

elem ental subnet w ith vertices v l,v2 ,v4 and v5 to get the transform ed co-ordinates

of vertex v2. Similarly, applying Lemma 4.5 to the elem ental subnet w ith vertices

v3, v4, v6 and v7 results in the transform ed co-ordinates of vertex u6.

24

Crucial to the the success of the previous theorem is the fact th a t the vertex

selected for the click and drag event is diagonally opposite to the fixed elemental

subnet. Consider a case where vertex selected for the click and drag event is not

diagonally opposite to the fixed elemental subnet.

5 .4 T h e o re m . For a square net of order 3, if all the vertices of an elemental subnet

are fixed and a vertex not diagonally opposite to the fixed elemental subnet undergoes
click and drag event, then there are infinitely many mechanics-like graphical transfor

mations.

Proof. Let G be a square net of order 3 as shown in Figure 5.1. W ithout loss of

generality fix all the vertices of the elemental subnet i>0, v l, v3, v4, then click and

drag vertex v7. Apply Lemma 4.5 to the elem ental subnet w ith vertices v3, v4, v6

and v7 to get the co-ordinates of vertex v6. Now move to the elem ental subnet

w ith vertices v4, v5, v7 and u8, it has a fixed vertex v4 and a moved vertex v7, there

are infinitely m any transform ations possible th a t can be determ ined on the basis of

the transform ed co-ordinates of vertex v7 (this case has been already discussed see

Lem m a 4.4).

5 .5 T h e o re m . For a square net of order 3, if all the vertices in two consecutive rows

or two consecutive columns are fixed and a free vertex undergoes click and drag event,

then there is a unique mechanics-like graphical transformation.

Proof. Let G be a square net of order 3 as denoted in Figure 5.1. Here there are two

different cases th a t need to be proved;

Case 1: W ithout loss of generality, all the vertices of the first two columns of the

square net of order 3 are fixed (see Figure 5.3).

This leaves three vertices th a t can be moved around, nam ely v2, u5 and v8. If vertex

v2 is moved, apply Lemma 4.5 to the elem ental subnet w ith vertices v l,v2 ,v4 and

i>5, to get the transform ed co-ordinates of vertex u5. Similarly, applying Lemma 4.5

to the elem ental subnet w ith vertices v4, i;5, v7 and v8, results in the transform ed

co-ordinates of vertex v8.

Case 2: W ithout loss of generality, all the vertices of the first two rows of the square

net of order 3 are fixed (see Figure 5.4).

25

Figure 5.3 Square net of order 3 w ith all the vertices of first two columns fixed

Figure 5.4 Square net of order 3 with all the vertices of first two rows fixed

This leaves three vertices th a t can be moved around, namely u6, v7 and v8. If vertex

v6 is moved, apply Lemma 4.5 to the elemental subnet w ith vertices w3, v4, v6 and

v7 to get the transform ed co-ordinates of vertex v7. Similarly, applying Lemma 4.5

to the elem ental subnet with vertices n4, u5, v7 and u8, results in the transform ed

co-ordinates of vertex v8.

26

6 S Q U A R E N E T S O F O R D E R N

This section addresses the question on the nets of a rb itrary order. Analysis

of this situation is difficult and some questions remain open. However, a priori
conditions yielding locked nets are established. These are discussed in th is section.

6.1 T h e o re m . Let 71 be a square net of order N , if every row and every column
contains a fixed vertex, then the square net is locked.

Figure 6.1 Square net of order N Locked

Proof This has been proved for the square nets of order 2 and 3 (see Lemma 4.2 and

Theorem 5.2). Assume th a t this is true for a square net of order N — 1; it will be

proved true for a square net of order N. Addition of a row and a column of vertices

to a square net of order N — 1 gives a square net of order N (see Figure 6.1).

27

Fix vertex common to the N th column and the N th row and call it vertex Nf
and also fix vertex common to the (N — \)th column and the (N — l) t,! row and call

it vertex (N — 1)/ (see Figure 6.1). The elemental subnet having diagonally opposite

vertices Nf and (N — 1)/ is now locked. Hence, its other two vertices cannot move

(see Lemma 4.2).

The elemental subnet (denoted by letter B in Figure 6.1) exactly below the fixed

elemental subnet is locked as three of its vertices are fixed. Similarly, the elemental

subnet (denoted by letter L in Figure 6.1) left to the fixed elem ental subnet is also

locked as three of its vertices are fixed. This can be extended to all the remaining

elemental subnets of the square net of order N.

2 8

7 O B J E C T - O R I E N T E D M O D E L

The m ajor m otivation for an object-oriented model is software reuse [13]. Fur

therm ore, object-oriented modeling is well-suited to graphics problem s for the follow

ing reasons:

1. The need to organize and describe basic graphic objects and representing

relationships such as part-whole by inter-object references [14].

2. Communication among the parts of a graphic representation is needed to

perform graphic operations. Message passing among the objects representing the

graphic components is a very direct way to carry out graphical operations [14].

Object-oriented modeling not only reduces development tim e but also cost of

m aintenance [13]. Jacobson [15] says object-oriented program m ing has changed the

nature of software design from being an art or a craftsm anship to being an industrial

process.

7.1 CLASS DESIGN

The Unified Modeling Language (UML) [16] was used extensively in providing

an object-oriented model of the graphical nets. Classes were designed in such a way

th a t they could be implemented in any object-oriented language. Various classes and

their details are discussed here. Class names have been capitalized.

Class GUI is the user interface class (see Figure 7.1). Events related to the user

interface like mousePressed, mouseDragged, mouseReleased and paint are handled

here. The purpose of this class is to pass on the user interactions to the other classes,

it has no role to play in the implementation of the theorems. The user interface and

the theorem logic have been kept independent of each other. The GUI class extends

the A PPLET class and overrides paint method. It also uses M OUSEADAPTER

and M OUSEM OTIONADAPTER classes to trap the mouse movements. It has a

dependency relationship with the GRAPHICS class as it uses drawOval and drawLine
functions in the paint method.

Class PO IN T is the basic building block of the net classes. It encapsulates

the functionality of a vertex. It has a ttributes for the co-ordinates, type (fixed or

29

Figure 7.1 Class diagram showing relationship of class GUI w ith the other Java
classes

movable) and sta tu s (moved or not moved). A part from the accessor functions, it

has specific functions to set its location, check w hether it has been selected, get the

distance between the two vertices, and find the quadrant.

Class GRID is the m ost im portan t class as it models the interconnections of

the points. It has the capability needed to build the net using the class PO IN T and

transform the net depending on the user interaction. It has a ttrib u tes like an array

of points and vertex selected. It has specific functions to get length of the link, build

the net, find the selected vertex, and transform the net.

Class GLOBAL holds the param eters th a t specify the initial s ta te of the net.

All the s ta te param eters have been kept here to avoid modifying other classes when

the configuration of the net is to be changed. Any changes m ade to the param eter

values in the GLOBAL class are autom atically reflected in all o ther classes. I t models

the s ta te param eters like the order of the net, the size (the to ta l num ber of vertices

in the net), the co-ordinates of the left most vertex from the bo ttom and the distance

between the two vertices (length of rigid-link).

30

Grid
-Points : Point
-bCursorStatus bool
-iPointSelected int

grid()
getPointX(in i : int) : int
getPointV(in i : int) : int
getLength(in i : int, in j : int) : double

+getCursorStatus() : bool
+setCursorStatus(in status : bool) : void
+setCoordinates() : void

changeCursor(in X : int, in Y : int) : void
+findPointSelected(in X : int, in Y : in t) : void
+transformGrid(in X : int, in Y : int) : void
+calc_1 (in p1 : Point, in p2 : Point, in newP : Point, in p3 : Point) : void
+calc_2(in p1 : Point, in newP : Point, in p2 : Point, in p3 : Point) : void

getFourthPoint(in p1 : Point, in p2 : Point, in p3 : Point): Point
+withinMedRange(in p1 : Point, in p2 : Point) : bool
+withinMinMaxRange(in p1 : Point, in p2 : Point) : bool
+getAngle(in P1 : Point, in P2 : Point): double
+getPointSelected(): int

-------------- ---------------------------------- 1-----------

0 -

1

T

Gui
-Grid : Grid
-bMouseMoved : bool
+ in it(): void
+paint() : void

Global

+MINLENGTH : double
+MAXLENGTH : double
+MEDLENGTH_U : double
+MEDLENGTH_L: double
+LENGTH : int
+ORDER : int
+SIZE : int
+XC : int
+YC : int
+RADIUS : int
+DIAMETER : int

Class
Diagram

P oin t

-iX : int
-iY : int
-cType : char
-bStatus : bool
+getX(): int
+getY(): int
+getType(): char
+getStatus(): bool
+setStatus(in Moved : boo l): void
+setType(in Type : char) : void
+setLocation(in X : int, in Y : int) : void
+setLocation(in P : P o in t): void
+point()
+point(in X : int, in Y : int, in Type : char)
+point(in Moved : bool)
+point(in X : int, in Y : int)
+isSelected(in X : int, in Y : int) : bool
+getDistance(in P : P o in t): double
+getQuadrant(in P : Point): bool
+getNewX(in P : Point, in D : double): int
+getNewY(in P : Point, in D : double): int
+getDiffX(in P : Point) : int
+getDiffY(in P : Point) : int
+point(in P : Point)

Figure 7.2 Class diagram showing various classes and their relationships

7.2 CLASS DIAGRAM

Class diagram s [16] are the most common diagram s found in modeling object-

oriented systems. A class diagram shows a set of classes, interfaces, collaborations

and their relationships. Class diagrams are used to model the static design view of a

system.

Various classes and their relationships are shown in Figure 7.2. Class GLOBAL

has a relationship of type dependency with all the o ther classes, since all the other

31

classes are dependent on it and it is independent of them . Class GRID and class

PO IN T are related as aggregation, since a ne t consists of more than one (aggrega

tion) vertex. M ultiplicity of the relationship is one to many, i.e one GRID object is

composed of m any PO IN T objects. Class GUI and class GRID are associated as the

navigation is from class GUI to class GRID and vice versa. Also m ultiplicity of the

relationship is one to one, i.e one GRID object is related to one GUI object.

7.3 SEQUENCE DIAGRAMS

An interaction diagram [16] shows an interaction, consists of a set of objects

and their communication, models the messages th a t may be dispatched among the

objects. A sequence diagram [16] is an interaction diagram th a t emphasizes the tim e

ordering of messages. The sequence diagrams are used to model the dynamic aspects

of a system.

The following scenarios were selected as they form a complete sequence, starting

from clicking on a vertex to selecting it, then dragging it around, and finally, releasing

the mouse to transform the net. The GLOBAL object has not been shown in the

sequence diagram s as there is no message passing after the construction of the net.

The com m unication between the GRID object and the PO IN T object is iterated, in

the sequence diagram a single PO IN T object will be shown. O bject names have been

capitalized and their operations are italicized.

7.3.1 S tart-up operation The sequence th a t takes place when the A PPL E T

starts is shown in Figure 7.3. GUI starts the sequence by calling init. GUI passes a

message to GRID to call its constructor. GRID calls setCoordinates to build the net.

GRID passes a message to PO IN T to call its constructor. GRID passes a message to

PO IN T to call setLocation to set its location. GUI calls the paint to print the net

on the screen. GUI passes messages to GRID to call getPointX and getPointY for

getting the x and the y co-ordinates of a point. GRID passes messages to PO IN T to

call getX and get Y to get the x and the y co-ordinates. The sequence ends w ith the

display of the net on the screen.

7.3.2 Mouse is clicked to select a vertex The sequence th a t takes place when

the user clicks on a vertex to select it is shown in Figure 7.4. GUI s ta rts the sequence

by passing a message to GRID to call findPointSelected to find the point selected.

32

Figure 7.3 Sequence diagram showing start-u p operation

Figure 7.4 Sequence diagram showing mouse is clicked to select a vertex

GRID passes a message to PO IN T to call isSelected to check whether the point is

selected. GRID passes a message to PO IN T to call setStatus to set the status to

selected.

7.3.3 Mouse is dragged after selecting a vertex The sequence th a t takes place

when the user moves the selected vertex is shown in Figure 7.5. GUI starts the

33

sequence by passing a message to GRID to call changeCursor to change the cursor.

GRID calls withinMinMaxRange to check the boundary conditions. GRID passes a

message to PO IN T to call getDistance to get the distance between the two points.

The sequence ends when GUI passes a message to GRID to call get Curs or Status and

depending on the status, cursor is changed on the screen.

GUI GRID

changeCursor:=changeCursor(X, V) |

------------------------------------ 1
I

I
getCursorStatus:=getCursorStatus() ,

------------------------------------ 1

Sequence
occurs when
mouse is
dragged

POINT

withinMinMaxRange:=withinMinMaxRange(p1, p2)

getDistance:=getDistance(P)

+1
I

Figure 7.5 Sequence diagram showing mouse is dragged after selecting a vertex

7.3.4 Mouse is released after selecting and moving a vertex The sequence

th a t takes place when the user releases the mouse after selecting and moving a vertex

is shown in Figure 7.6. GUI starts this sequence by passing a message to GRID

to call transformGrid to transform the net. GRID passes a message to PO IN T to

call getStatus to get the sta tus of the point. GRID calls calcJl to calculate the

transform ed co-ordinates of the points. GRID checks the boundary conditions by

calling withinMinMaxRange and passes a message to PO IN T to call getDistance to

get the distance between two points. GRID calls getAngle to calculate the angle and

passes messages to PO IN T to call getDiffX and getDiffY to get the difference between

the x and the y co-ordinates of two points. GRID passes a message to PO IN T to

call getDistance to get the distance between two points. GRID passes a message to

PO IN T to call getQuadrant to get the quadrant of the point. GRID passes a message

to PO IN T to call getNewX and getNewY to get the new co-ordinates of the point.

GRID passes a message to PO IN T to call setLocation to set its location.

34

Figure 7.6 Sequence diagram showing mouse is released after selecting and moving
a vertex

35

GRID checks the boundary conditions by calling withinMedRange. GRID passes

a message to PO IN T to call getDistance. GRID calls getFourthPoint to get the co

ordinates of the fourth point by using the m id-point rule. GRID passes a message

to PO IN T to call getX and getY to get the co-ordinates of three points. GRID

passes a message to PO IN T to call setLocation to set its location. GRID checks the

boundary conditions by calling withinMedRange. GRID passes a message to PO IN T

to call getDistance to get the distance between two points. GRID passes a message

to PO IN T to call setLocation to set its location. GRID passes a message to PO IN T

to set its status using setStatus.

GUI calls the paint to print the net on the screen. GUI passes messages to

GRID to call getPointX and getPointY for getting the x and the y co-ordinates of a

point. GRID passes messages to PO IN T to call getX and getY to get the x and the

y co-ordinates. The sequence ends w ith the display of transform ed net on the screen.

36

8 IM P L E M E N T A T IO N O F T H E O B J E C T M O D E L

An im plem entation of the object model described in Section 7 was done using

Java. In this section, the nature of the graphical interactions is dem onstrated in

a variety of settings. Beginning with the elem ental subnets, the dem onstration is

expanded through the various sizes.

8.1 ELEM ENTAL SUBNETS

Figure 8.1 displays the elemental subnet in the initial state. An elem ental subnet

consists of four vertices uO, v l, v2 and v3 w ith vertex uO fixed in th is case. The smaller

circle in the figure represents the path on which vertices v l and v2 can move and

the larger circle represents the area in which vertex v3 can move while remaining

mechanically admissible. By clicking and dragging a vertex, there are various cases

as discussed below. Note th a t the cursor changes in order to indicate th a t a vertex

can be moved to a new location.

Figure 8.1 Elemental Subnet with vertex vO fixed

37

8.1.1 Vertex vO fixed and vertex v3 moved Figure 8.2 displays the elem ental

subnet w ith vertex uO fixed and vertex v3 moved. The change in the location of

vertex v3 transform s the subnet, m aking vertices v l and v2 change the ir locations

from th e ir initial positions (see Figure 8.1). Vertex v3 can only be moved w ithin the

larger circle. Here Lem m a 4.3 is applicable and shows th a t the user can drag vertex

v3 to any point w ith in the larger circle and rem ain m echanically realistic.

F igure 8.2 E lem ental subnet w ith vertex vO fixed and vertex v3 moved

8.1.2 Vertices vO and v2 fixed and vertex v l moved Figure 8.3 displays the

elem ental subnet w ith vertices uO and v2 fixed and vertex v l moved. The change in

the location of vertex v l transform s the subnet, m aking vertex v3 change its location

from initial position. Vertex vl can only be moved along the circum ference of the

sm aller circle. Here Lem m a 4.5 is applicable and shows th a t the user can drag vertex

v l to any po in t on the sm aller circle and rem ain m echanically realistic.

8.1.3 Vertices vO and v l fixed and vertex v2 moved Figure 8.4 displays the

elem ental subnet w ith vertices wO and v l fixed and vertex v2 moved. The change in

the location of vertex v2 transform s the subnet, m aking vertex u3 change its location

from initial position. Vertex v2 can only be moved along the circum ference of the

38

Figure 8.3 E lem ental subnet w ith vertices vO and v2 fixed and vertex v l moved

Figure 8.4 E lem ental subnet w ith vertices vO and v l fixed and vertex v2 moved

sm aller circle. Here Lem m a 4.5 is applicable and shows th a t th e user can d rag vertex

v2 to any po in t on the sm aller circle and rem ain m echanically realistic.

39

8.2 SQUARE N ETS O F O RD ER N

Figure 8.5 displays the square net of order N = 10 in the in itia l state. The fol

lowing cases were selected for the dem onstration of click and drag event interactions.

i f T f Applet Viewer: gui

A pplet

a ---------------- <

y < y

j -----------------i

. . . y

j -----------------<

V /

j -----------------(

><. >

\ -----------------« p — «

v /

p -----------------<j

V y

5-----------------<;

>

) -----------------©

^ y \
V / V

y ^ y

7 V

^ y

7 V * V 17 \

\ y

7 V 7 V 7 V

\ y

7 V 7

t ~
v

y v y

P V

*. y

7 V 7 V

s. y ’. /

7 V

V y

7 V 7 V 7 \ 7

V > V

y < y

7 V

^ y

7 V

< y

7 V

' i y

7 V

^ y

7 V

% y

7 V

V y

7 V 7 V 7

V # ---------------- i 7 V

y

7 ---------------- V 7 V

x /

7 V 7 V

V t

7 V

y y

7 V

^ i -------:*y

7 1 7

c > -------------v 7 ------------V

v y

7 " V

t y

7 V

y

7 V

v y

7 V 7 V

\ y

7 V 7 > 7

V ... < 3
V 7 V 7 -----------------i

y

7 v

v y

7 V

^ y

7 \

y

7 V

Y y

7 V 7 > 7 V 7

v y S
v > 7-----------------€ 7 — T

s. y

7 V

v y

7 S

y

7 V

\ y

7 V

\ V

7 >

\ — y

7 V 7

O — ■— i

A-- - - (

j -----------------^

>--------«■

j ---------------- 1

> ---------------- c

?--------

>--------(

J V

f--------- (

7 S

>--------- €

7 S

?----------*

7 V

> ---------------- (

7 V J

>- - - - -A

A pplet started .

Figure 8.5 Square net of order N

40

8.2.1 All the vertices in square net of order N -l fixed and vertex v<n 2- 11 moved

Figure 8.6 displays the square net of order N w ith all the vertices in the square net

of order N — 1 fixed in the in itia l s ta te . Sm all circles in the figure represen t the p a th

th a t a vertex on th e N th colum n or the N th row has to follow and th e larger circle

represents the area in which vertex V(n 2- i) can move while rem ain ing m echanically

adm issible.

Applet Viewer: gui

Figure 8.6 Square net of order N before vertex is moved

41

W hen vertex V(n2- i) is moved, it transform s the square net, m aking all the

vertices in N th colum n and N th row change th e ir locations from th e ir initial positions

(see F igure 8.7). Here Theorem 5.3 is applicable and shows th a t the user can drag

vertex V(n 2- i) to any point w ith in the larger circle and rem ain m echanically realistic.

f ill
A pplet

Applet Viewer: gu i

A pplet started .

Figure 8.7 Square net of order N after vertex upv^-i) is moved

42

8.2.2 All the vertices in N -l columns are fixed and a vertex in N th colum n is

moved Figure 8.8 displays the square net of order N w ith all the vertices in N — 1

colum ns fixed in the in itia l s ta te . Circles in the figure represent the p a th th a t a vertex

on the N th column can follow while rem aining m echanically adm issible.

j jrJ Applet Viewer: gui

A pplet

(

<

<

(

<

<

<

c

i

_̂_____ / V A A A ____ A ___A Ai __________ A ____________ y >

J

)

>

)

)

)

>

>

1

?-------- V

y

3T-------- ^

v y v ' . >

'

\ y

IT--------5

t .. / \ ____________ y

*--------

\ y

r.

x ' ^ S ^ y ' y
F V

^ y

y >

y

' V

1 y

y »i

^ y

y V

• c y

v

S .___ _____ y \ y

y Vy ; *■

yT------- i

< y

y V

* y

/ V

y

y V

< / ^ y

y V

% y

y V

\ y

y

V - > * ^ . y

< V . : V

>
y V

y

/ V

■*. y

y V y V

v y

y V

\ y

y V

* y

r. v

v y \

*

y i

* y

f V

s . y

y ^

i y

y V

\ y * y

<■ V

* y

/ V

\ y

y V y . V

(
) c

^ y

J V

i y

? ------------------1

< y

y >

^ y

y V

\ y

y >

^ y

y V

\ y

< V

/ V

t y

J V

hl y

y V

< y

/ V

t y

y V

t y

y V y V

V y

y V . v

y

i y

} V

v y

y V

1 y

y V

t y

y V

y

y V

& y

y V

\ y

y y X ^ *•

%

!■ V

) V } V y V y V i< v

i _____ y

y V

i ____ _ y

y V

1_____ 2 *■

y ^ v u . '

Ky-------------------—xy--------------------------------------- c ? ^ ^ ^

A pplet s tarted .

Figure 8.8 Square net of order N with all the vertices in N -1 columns fixed

43

W hen a vertex in the N th column is moved, it transform s the square net, m aking

all the vertices in the N th column change their locations from th e ir in itia l positions

(see Figure 8.9). Here Theorem 5.5 is applicable and shows th a t th e user can drag a

vertex in the N th colum n to any point on the circle and rem ain m echanically realistic.

Ap p let Viewer: gui

A pplet started .

Figure 8.9 Square net of order N after a vertex in N th colum n is moved

44

8.2.3 All the vertices in N -l rows are fixed and a vertex in N th row is moved

Figure 8.10 displays the square net of order N w ith all the vertices in N — 1 rows

fixed in the initial s ta te . Circles in the figure represent the p a th th a t a vertex on the

N tfl row can follow while rem aining mechanically adm issible

Figure 8.10 Square net of order N w ith all the vertices in N -1 rows fixed

W hen a vertex in N th row is moved, i t transform s the square net, m aking all the

vertices in N th row change their location from their in itia l position (see Figure 8.11).

45

Here Theorem 5.5 is applicable and shows th a t the user can drag a vertex in the N th

row to any point on the circle and rem ain m echanically realistic.

Figure 8.11 Square net of order N after a vertex in N th row is moved

46

9 C O N C L U S IO N S

9.1 SUMMARY

This research was started w ith defining various term s th a t were needed to build

and analyze the m athem atical model. Then the behavior of a square n e t of order 2

was studied which provided the foundation for w hat is observed in the larger nets.

This behavior was successfully extended to square nets of order 3 and also to square

nets of order N.

An object-oriented model was developed using UML. This model is capable of

handling various cases related to the square nets of different orders including the

square net of order N . The model was designed in such a way th a t it can be imple

m ented in any object-oriented language. An object-oriented model was im plem ented

in Java and was tested on square nets of different orders.

9.2 FU T U R E W ORK

The present work is based on the behavior of square nets. The term s defined

and theorem s proved can very well be used to extend the m athem atical model to

incorporate rectangular nets. Providing N x N solutions for all the cases of square

nets would be a logical direction to extend this work.

An object-oriented model has been provided for handling nets of graphical ob

jects. It would be in teresting if th is model is extended to incorporate the needs of

web-sites th a t allow image m odification and record the changes made.

47

B I B L I O G R A P H Y

[1] Greg J. Badros, Alan Borning and Peter J. Stuckey. The Cassowary Linear Arith
metic Constraint Solving Algorithm. ACM transactions on com puter-hum an in
teraction, volume 8, num ber 4, December 2001, 267-306.

[2] Greg J. Badros, J. Nichols and Alan Borning. SCWM-The Scheme Constraints
Window Manager. Proceedings of the AAAI spring sym posium on sm art graph
ics, M arch 2000.

[3] Michael G. Hilgers. Results of Honda Initiation Grant BLUEPRINT A BIKE.
Technical R eport CSC-02-02, D epartm ent of C om puter Science, University of
Missouri - Rolla, Septem ber 2002.

[4] Bashforth Byron and Yee-Hong Yang. Physics-Based Explosion Modeling. G raph
ical models and image processing, volume 63, num ber 1, February 2001, 21-44.

[5] J. F. O ’ Brien and J. K. Hodgins. Graphical Modeling and Animation of Brittle
Fracture. C om puter Graphics (proceedings Siggraph ’99), A ugust 1999, 137-146.

[6] H. N. Ng and R. L. Grimsdale. Computer Graphics Techniques for Modeling
Cloth. IEEE com puter graphics and applications, 16, num ber 5, Septem ber 1996,
28-41.

[7] J. Weil. The Synthesis of Cloth Objects. C om puter Graphics (proceedings Sig
graph ’86), volume 20, num ber 4, August 1986, 49-54.

[8] P. L. Tchebychev. Sur la coupe des vetements. Assoc, franc, p o u rl’ avancement
des sci., congres de paris, 1878, 154-155.

[9] T. Agui, Y. Nagao and M. Nakajm a. An Expression Method of Cylindrical Cloth
Objects - An Expression of Folds of a Sleeve using Computer Graphics. Trans.
Soc. of Electronics, Inform ation and Com m unications, volume J73-D -II, num ber
7, 1990, 1095-1097.

[10] Michael G. Hilgers and A.C. Pipkin. Elastic Sheets with Bending Stiffness. Q. JI
Mechanics applied M athem atics, volume 45 , 1992, 59-75.

[11] Sherman R. A lpert. Graceful Interaction with Graphical Constraints. IEEE com
puter graphics and applications, March 1993, 82-91.

[12] Peter D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical
Theory of Shock Waves. Society for industrial and applied m athem atics, 1973.

[13] Ralph E. Johnson and Brian Foote. Designing Reusable Classes. Journal of
object-oriented program m ing, volume 1, num ber 2, Ju n e /Ju ly 1988, 22-35.

48

[14] R obert L. Young. An Object-Oriented Framework for Interactive Data Graphics.
O OPSLA Proceedings, O ctober 1987, 78-90.

[15] Ivar Jacobson. Object Oriented Development in an Industrial Environment.
O OPSLA Proceedings, O ctober 1987, 183-191.

[16] G rady Booch, Jam es Rum baugh and Ivar Jacobson. The Unified Modeling Lan
guage User Guide. Addison Wesley Longman, Inc., 1999.

49

V IT A

Rakesh K um ar B ajaj was born on A ugust 17, 1977 a t H yderabad, A ndhra

Pradesh, India. Rakesh received his p rim ary and secondary education a t H yderabad.

He did his B.E. in C om puter Science and Engineering a t Vasavi College of Engineer

ing under the O sm ania University, H yderabad and g radua ted in June of 1998. A fter

g raduation he jo ined C om puter M aintenance C orporation (CM C) L im ited, H yder

abad as System s In teg ra tion Engineer. D uring his two year s tay a t CM C he worked

on various projects ranging from software developm ent to IT consultancy.

In Jan u ary of 2001 he left CMC to begin his g radua te studies in the departm en t

of C om puter Science a t the U niversity of M issouri - Rolla, where he was supported

by two sem ester long quarter-tim e teaching assistan tsh ip for assisting studen ts in

P rogram m ing M ethodology L aborato ry (C + +), an in troducto ry course.

	Mechanical response of nets of graphical objects
	Recommended Citation

	tmp.1621267404.pdf.lGWQ2

