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ABSTRACT 

 Nondestructive evaluation of stratified (layered) composite structures at 

microwave and millimeter wave frequencies is of great interest in many applications 

where simultaneous determination of the complex dielectric properties and thicknesses of 

multiple layers is desired. Open-ended rectangular waveguide probes are effective tools 

for this purpose. The technique requires a full-wave electromagnetic model that 

accurately calculates the complex reflection coefficient as a function of frequency and 

material properties. Subsequently, this information is used in conjunction with the 

measured complex reflection coefficient to evaluate the sought for material properties. 

This thesis presents simulated and measured data to investigate the influence that 

measurement system noise, which contaminates the measured complex reflection 

coefficient, has on estimating material properties. It will be shown however, that the 

foremost contributor to errors in estimating material properties is not due to system noise, 

but rather, is due to an inconsistency between the electromagnetic model and the 

measurement setup.  More specifically, the electromagnetic model assumes an infinite 

waveguide flange while measurements are conducted using a finite-size flange. 

Consequently, the results of the model and those from measurements may not be 

sufficiently alike for accurate dielectric property and thickness evaluation. The work 

presented here investigates the effect of using an open-ended waveguide with a standard 

finite-sized flange on the error in evaluating the complex dielectric properties of a 

composite structure. Additionally, the design of a novel flange that markedly reduces this 

undesired effect by producing very similar electric field properties, at the flange aperture, 

to those created by an infinite flange will be presented and verified in measurement. 
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1. INTRODUCTION 

 In the past two decades, complex composite structures have been increasingly 

utilized in a wide variety of applications involving civil structures, surface transportation, 

and space/aerospace vehicles, to name a few [1]-[6]. Consequently, the capability to 

accurately and non-invasively characterize and evaluate composite material properties 

(i.e. dielectric, magnetic and geometrical properties) has become essential to areas such 

as manufacturing quality control and life-cycle monitoring of composite structures.  

Microwave and millimeter-wave frequencies of the electromagnetic spectrum lend 

themselves well to making these material property measurements. This is due to their 

ability to penetrate into composite structures as well as their sensitivity to complex 

dielectric and magnetic materials properties [7].  

 Once the dielectric properties of a material are known, they may be directly 

related to its physical and chemical properties through the use of dielectric mixing 

models [8]-[10]. For example, [11] has shown that for polymer composites, the porosity 

level and the dielectric constant have a nearly linear relationship. Therefore, if the 

dielectric constant can be accurately obtained, an accurate estimation of the porosity of 

the composite material may also be made.   Next, it has been shown that due to the 

dielectric properties of rust/corrosion, it is possible to detect and evaluate the severity of 

corrosion under a layer(s) of a composite material(s) [12]-[13]. This ability is particularly 

important in the aerospace industry for the detection of corrosion underneath thin layers 

of paint. Another example is the detection of a disbonded layer in a composite structure 

such as an aircraft radome [1]. A disbond introduces an unintended layer of air (or 

pockets of air) into the composite structure which may risk the structural or operational 

integrity of the radome. This layer of air changes the dielectric properties of the 

structures, which may be detected via measurement techniques. Finally, the dielectric 

properties of concrete and mortar have been shown to be related to the free chloride 

content as well as water distribution and its temporal movement in the material [14]-[17]. 

The ability to detect chloride levels is important as chloride intrusion can initiate 

corrosion and depassivation of the steel reinforcements inside the material. In addition, 
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evaluation of the water distribution in cement-based materials is essential for evaluating 

the curing and long-term performance of the material. 

 The complex relative dielectric constant is defined as        
     

     where   
  

is the relative permittivity and   
   is the relative loss factor. The relative permittivity 

indicates the ability of a material to store energy in an electric field (relative to that of 

free-space), while the loss factor indicates the ability of the material to absorb 

electromagnetic energy. The term     
   must always be less than zero to satisfy the 

conservation of energy [18]. The loss in a material may also be expressed as the ratio 

between the loss factor and the relative permittivity, denoted as the loss tangent (     

 
  
  

  
 ). The magnetic property of a material, namely, the complex relative permeability may 

be defined in a similar manner        
     

     where   
  is the relative (to free-space) 

permeability, and   
   is the magnetic loss factor [18]. However, since the majority of 

dielectric materials are non-magnetic, it will be assumed in this thesis that   
   1 

and   
    0. It is important to note that both the dielectric constant and the relative 

permeability are functions of frequency. In addition, the dielectric constant is a 

macroscopic quantity that can be described as a weighted average of the individual 

constituents present in a material (assuming the wavelength is much larger than the size 

of the dielectric constituents). Therefore, if the ratio of the constituents in a material 

changes or a new constituent is introduced, the dielectric constant will also change [9].  

 A number of techniques have been developed to determine the complex dielectric 

constant of materials. These techniques vary in their implementation approaches (e.g., 

destructive vs. nondestructive), the accuracy by which various parameters may be 

determined, and their applicability to the geometry of a particular material (e.g., extended 

infinite half-space vs. sheet materials that may be cut to place inside of a waveguide) [8], 

[19]-[22]. For instance, the loaded transmission line technique involves cutting and 

shaping a sample to precisely fit inside either a coaxial line or a waveguide.  

Subsequently, a broadband measurement of the scattering parameters for the loaded 

transmission line is made via a vector network analyzer (VNA), and from the scattering 

parameters, the material properties may be retrieved [19], [21]. A major advantage to 

using a coaxial line is its ability to sustain transverse electromagnetic (TEM) waves from 
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DC to relatively high frequencies.  However, it is challenging to machine a sample to 

precisely fit the geometry of a coaxial line. Consequently, any small air gap between the 

dielectric and the coaxial line conductors creates a discontinuity in the radial electric field 

which introduces a significant measurement uncertainty [19], [21].  Using a loaded 

waveguide sacrifices some bandwidth for simplifying the shape of the sample under test 

(SUT) as well as decreasing the severity of the consequences of slight air gaps [23]. It is 

assumed that only the dominant waveguide mode propagates; however, any inclusion, 

machining error, or non-uniformity of the sample will couple energy to higher-order 

modes and introduce uncertainty in the measurement. Regardless, the loaded transmission 

line technique can achieve very good accuracies (assuming a good fit of the SUT) and 

evaluate the complex dielectric constant as function of frequency. However, this 

technique requires the SUT be machined to fit a specific geometry [19], [21]. 

 The most accurate measurement techniques for evaluating the complex dielectric 

constant of a material are resonance techniques [21], [23].  However, the materials being 

evaluated must be relatively low loss so as to promote resonant behavior inside the cavity 

or dielectric resonator. One of the most frequently used techniques employs a cylindrical 

cavity operating in the TE011 mode while the SUT is shaped to be a thin cylindrical disc. 

This technique conveniently places the SUT so that any air gaps between the dielectric 

and the cavity are parallel to the electric field. Due to the electric field continuity across 

the dielectric/air boundary, the errors introduced by the air gaps are minimized [21], [23]. 

An electromagnetic model is necessary to evaluate the material properties of the SUT. A 

common approach is the perturbation technique which assumes that the introduction of a 

small dielectric sample minimally affects the field setup inside the cavity. Consequently, 

the fractional change in the resonant frequency can then be related to the introduced 

material properties. The major drawback to cavity techniques comes from the 

requirement of specific, precise sample geometries, samples that are homogenous 

(typically cannot evaluate layered structures), and evaluation of the dielectric properties 

at a single frequency.  In addition to cavities, dielectric resonators have also shown utility 

in material characterization. Instead of using a conductive cavity to contain the 

electromagnetic energy, the dielectric sample itself contains the energy. An example is 

described by a cylindrical SUT with parallel conducting plates “capping” the two ends of 
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the cylinder. The TE011 mode is excited in the dielectric and, due to its tightly bound field 

structure, more than 90% of the energy is held in the dielectric [23]. It is important that 

the energy be held in the dielectric structure so that the interaction between the 

electromagnetic fields and the dielectric material is maximized. Other dielectric resonator 

structures are also used; however, they depend on numerical techniques for evaluation as 

there are not closed form solutions to Maxwell’s equations describing the fields within 

the dielectric resonators [23]. However, dielectric resonators suffer from the same 

drawbacks as do cavity resonators. 

 Another group of measurement techniques are free-space measurements. These 

measurements are performed in free space using two antennas. The transmission and/or 

reflection coefficients (scattering parameters) are measured with the two antennas facing 

one another and the sample placed between the antennas. It is required that the sample be 

planar with its size larger than the antenna beam widths. This size requirement is to 

minimize diffracted/scattered fields at the edges of the sample [24]. However, 

electromagnetic fields typically diverge from an aperture antenna (e.g. horn antenna), 

thus, the necessary sample size may be very large. To overcome this requirement, 

dielectric lenses or concave mirrors are commonly used to focus the radiated fields [23].  

An assumption is typically made that the fields incident on the sample are planar 

although they are more correctly defined with a spherical wave front. Due to this 

assumption along with disregarding the finite sample size and difficulty in calibration, the 

accuracy capabilities of this technique are severely limited [21]. 

 Lastly, there are open-ended transmission line techniques. First is the open-ended 

coaxial line. In this technique, a coaxial aperture is cut into an infinite ground plane and 

the aperture is pressed against a planar SUT [21], [25]. A VNA is used to measure the 

reflection coefficient (S11) which is a function of the complex dielectric constant, 

complex permeability, and thickness of each layer in a generally layered structure. The 

layered structure may be terminated into either an infinite half-space or a conductor. In 

order to evaluate the complex relative dielectric properties and thickness of one or more 

layers, a robust full-wave electromagnetic model describing the interaction between the 

electromagnetic waves and the composite structure is required. This electromagnetic 

model may be computationally intensive [25]. A drawback of this technique is the 
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inefficiency of the aperture radiation, making the measurement only sensitive to the 

material layers that are very near aperture. This is due to the tightly bound incident TEM 

waves which produce a strong wave impedance mismatch at the aperture. As a result, 

much of the incident energy is reflected as opposed to radiated into the material. 

Consequently, the illuminating field away from the aperture may be very weak which 

reduces the sensitivity of the measurement [25]. 

 Finally, the open-ended waveguide technique may be used for material 

characterization purposes [1]-[2], [7], [22], [26]-[27]. The waveguide generally has a 

rectangular or circular cross-section due to the closed form of their modal solutions. It is 

assumed that the waveguide aperture is cut into an infinite ground plane or flange and is 

radiating into a generally planar, stratified composite structure which is terminated in 

either a conductor or an infinite half-space. The complex reflection coefficient, which is a 

function of the properties (electric, magnetic, and geometrical) of each layer in the 

structure is measured [28]. Like the open-ended coaxial case, a robust full-wave 

electromagnetic model of the wave interaction with the structure is required to evaluate 

the material characteristics of a layer(s) in the composite structure. This method is more 

robust than an open-ended coaxial line as it more efficiently radiates energy into the 

structure, which allows for penetration into thicker and higher loss structures. The biggest 

advantage of using the open-ended waveguide technique is its non-invasive nature as the 

SUT need not be cut or shaped to fit inside a transmission line or cavity. In addition, it 

can be used to simultaneously evaluate the properties of multiple layers in a structure 

with an arbitrary number of layers and either a conductor or an infinite half-space 

backing [29]. Lastly, it provides an accuracy improvement over the free space method 

using two focused antennas and the open-ended coaxial method thanks to its superior 

radiation capabilities. 

 The goal of the investigation presented here is to further develop an understanding 

of the sensitivity of the open-ended rectangular waveguide technique as it pertains to 

measurement noise. In Section 2, an overview of the technical aspects of using the open-

ended waveguide technique for material characterization is presented. In Section 3, an 

effort is made to quantify the advantage gained by using high end measurement 

equipment as opposed to cheaper, noisier alternatives. Simulated data is presented to 
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show the effect that complex Gaussian noise (at varying power levels), introduced into 

the reflection coefficient, has on the evaluated material properties. In addition, 

measurements made using an Agilent 8510C VNA and a VNA made in-house for a 

substantially lower cost are compared. 

 However, in Section 4 it will be shown that the foremost contributor to error in 

both the measured complex reflection coefficient and the evaluated material properties is 

not caused by measurement noise, but rather by the assumption of an infinite ground 

plane in the electromagnetic model, as presented in [28], [30]. This is contrasted by 

measurements which are made using a finite-sized, standard waveguide flange as the 

ground plane. The edges of the waveguide flange introduce a discontinuity thereby 

causing the radiated electromagnetic fields to be partially reflected, an effect that is not 

accounted for in the model [30]. The effect of different material types (i.e. low loss 

versus high loss) and different material backings (i.e. conductor-backed versus infinite air 

half-space) on the errors introduced by the finite-sized flange will be evaluated. 

 In Section 5 a modification to the geometry of a standard waveguide flange is 

presented that markedly improves the accuracy of the open ended waveguide technique 

[30]. This improvement is accomplished by more closely matching the surface current 

density on the probe and the electric field directly in front of the waveguide aperture to 

that of an infinite flange (as is assumed in the electromagnetic model). This improvement 

can be obtained by modifying the standard, 90 -edges on the flange with a more gradual 

function such as a linear, circular, or elliptical taper.  
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2. MATERIAL CHARACTERIZATION USING THE OPEN-ENDED 

WAVEGUIDE TECHNIQUE 

2.1. INTRODUCTION 

 The open-ended waveguide is a very attractive tool for NDT&E (nondestructive 

testing and evaluation) applications partially due to its ability to non-invasively evaluate 

the material characteristics (i.e., dielectric and geometrical properties) of a single layer or 

multiple layers in a composite structure [1]-[2], [7], [22], [27]-[28]. As mentioned earlier, 

the SUT does not need to be cut or shaped to fit inside a specific geometry. Moreover, 

only one side of the sample needs to be accessible since this technique involves only a 

reflection measurement. This is another attractive feature of this measurement technique 

which, for example, allows structures such as an aircraft fuselage and an aircraft radome 

to be evaluated in the field without being removed from its assembly. In addition, when 

evaluating the complex dielectric constant of a material, this technique is capable of 

providing it as a function of frequency [28]. However, this technique suffers from 

accuracy degradation when compared with completely-filled transmission line 

techniques. The susceptibility of the measurement accuracy to noise has not been 

rigorously investigated. Furthermore, it will be shown that an error is introduced by 

assuming the interrogating waveguide is terminated by an infinite flange in the 

electromagnetic model [28]. These topics will be discussed in more detail in following 

sections. 

 Measurements using the open-ended waveguide technique are typically easy to 

perform. The measurement setup is straightforward and simple although it should be 

tediously inspected because non-ideal effects such a waveguide aperture that is not 

exactly parallel to or flat against the sample can have significant effects on the 

measurements. The sample under test should be planar, or at least locally planar, and may 

be a generally stratified composite structure with an arbitrary number of layers. The 

structure may be terminated by either an infinite half-space or a conductor-backing. A 

schematic of an open-ended rectangular waveguide radiating into a generally layered 

composite structure can be seen in Figure 2.1 [28].  
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Figure 2.1.  Schematic of open-ended waveguide radiating into an arbitrary layered 

structure. 

 

 

2.2. ELECTROMAGNETIC MODEL 

 In order to evaluate the complex relative dielectric properties and thickness of one 

or more layers in a composite structure, a full-wave electromagnetic model that 

accurately describes the interaction between the open-ended rectangular waveguide and 

the structure is required. The results of the model must accurately match those measured, 

for example, by a VNA. This is commonly referred to as the forward model [30]. Such a 

comprehensive model was recently developed [28] by expanding a previous model [2] to 

account for higher-order modes that are generated at the waveguide aperture.  The 

technique to include higher-order modes is described in [22] but is extended include a 

generally layered structure as opposed to a dielectric infinite half-space. The 

electromagnetic model presented in [28] has been employed in this study. A brief 

discussion of the strategy to develop the analytical formulation will be presented here. 

For more detail or exact expressions the reader is directed to [28].   

 This model employs Fourier analysis [22], [31] to develop an exact solution for 

the reflection coefficient at a rectangular waveguide aperture that is cut into an infinite 

ground plane and radiates into a generally layered structure. In order to construct an 
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analytical solution, it was first assumed that the incident electric field is in the form of the 

dominant waveguide TE10 mode [28]. This is an accurate assumption as standard 

waveguide frequency bands and dimensions are chosen to allow propagation of only the 

TE10 mode (higher-order modes in the waveguide are evanescent) [32]. Next, a general 

solution for the reflected fields in the waveguide, as well as the transmitted and reflected 

fields inside the dielectric structure, is constructed in the form of electric and magnetic 

Herztian potentials. The reflected waves in the waveguide are in the form of an infinite 

summation, using higher-order waveguide modes as basis functions. The transmission 

and reflection coefficients between each dielectric layer are recursively evaluated, 

starting from the last layer which assumes either no reflection (infinite half-space) or total 

reflection (perfect electric conductor). By enforcing the continuity of the tangential 

electric and magnetic fields at the aperture of the waveguide, a system of linear equations 

is formed to determine the complex amplitude coefficients for each waveguide mode. 

 The system of linear equations resulting from the process described above and 

shown in [28] becomes very cumbersome and is not repeated here. It can be seen 

however, that the reflection coefficient is a function of the thickness and complex 

dielectric constant of each layer in the SUT, the operating frequency, and the size of the 

waveguide aperture [28]. In addition, the material properties are embedded multiple times 

inside non-invertible integrals and consequently cannot be directly evaluated through 

inversion algorithms. This means that although the exact reflection coefficient for a given 

composite structure may be calculated, the model cannot be used in the opposite (inverse) 

fashion. For a given reflection coefficient, the material parameters cannot be directly 

evaluated. 

 

2.3. EVALUATION OF MATERIAL PARAMETERS 

 In order to use this electromagnetic model to determine material properties from a 

measured reflection coefficient, an optimization algorithm may be incorporated to form a 

forward iterative solver that is used to retrieve the unknown layer(s) material properties 

or thicknesses [22], [28]-[29]. This process is accomplished by constructing a cost-

function that compares the measured reflection coefficient with that predicted by the full-

wave electromagnetic model. The parameters being sought for (as defined by the user) 
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are then varied from an initial guess value that is supplied by the user, according to the 

optimization algorithm (e.g. conjugate gradient descent [29]).  The choice of the initial 

guess value will be discussed later. As the parameters are changed, the reflection 

coefficient is recalculated for each parameter value until the cost-function reveals that the 

difference between the measured reflection coefficient and that calculated by the model is 

below a user defined tolerance level. A flow diagram of the optimization process can be 

seen in Figure 2.2. In this endeavor, the MATLAB
®
 function fminsearch [33] was used 

almost exclusively as the optimization algorithm.  

 

 

 

Figure 2.2.  Flow chart of the optimization process to evaluate material properties given a 

reflection coefficient. 
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be evaluated as functions of frequency [28]-[29]. Doing so means that at each discrete 

frequency, the optimization process is performed and the material properties are 

evaluated independent of the results at all other frequencies. This cost-function can be 

written: 

 

    
2

, , , , , ,m i r r c i r rF f d f d       (1) 

 

where, fi is the discrete frequency point, d is the layer(s) thickness(es), m  is the 

measured reflection coefficient and c  
is the calculated reflection coefficient. The 

second option is to assume that material properties (complex dielectric constant) are 

constant as a function of frequency [28]. This cost-function can be written: 

 

    
2

1

1
, , , , , ,

fN

m i r r c i r r

if

F f d f d
N

   


    (2) 

 

where, Nf  is the number of discrete frequency points in the reflection coefficient. Using 

this cost-function evaluates the fit of the calculated reflection coefficient to the measured 

reflection coefficient, while assuming material properties that are constant with respect to 

frequency. This is an advantageous approach when working with complex structures (i.e., 

multilayer composites). When many layers are present, the solution landscape (error 

values as the sought for parameters form an n-dimensional solution space where n is the 

number of parameters being evaluated) for a material property may contain many sharp 

local minima. By assuming constant parameters and leveraging the frequency diversity of 

the measurement, the solution landscape may be simplified by this approach (i.e., 

becomes more smooth) significantly [28].  

 The optimization process can have many other subtle complications. Since there 

is only one equation linking the reflection coefficient with the material parameters; when 

solving for more than one material property, the system becomes underdetermined. In 

cases such as these, taking advantage of the frequency diversity of the measurement has 
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proven to be very useful. Using the frequency diversity introduces Nf independent 

equations that can be used to yield a more accurate result [28]. 

 A question that must be considered when employing an optimization algorithm 

deals with how to select the initial guess of a parameter value. In general, the answer to 

this question is case dependent. Most importantly, it depends on what type of information 

can be known about the structure or material being tested. For instance, in a structural 

health monitoring scenario, it is assumed that the properties of the ideal, virgin structure 

are available. In this case, these values may be used as the initial guess values, and if the 

structure has begun to degrade in its physical or chemical properties, the evaluated 

parameters will reflect this change. If the parameters of the structure or material are 

unknown, an educated guess may be made via a dielectric mixing model [9]-[10] and it is 

recommended to first assume the material properties are constant functions of frequency. 

Subsequently, the result of the static optimization procedure may be used as the initial 

guess when assuming the properties are functions of frequency [28]. 

 Another property that can play a large role in the accuracy of the evaluated 

parameters is the number of modes that are assumed to be generated at the waveguide 

aperture. It was previously explained that the electromagnetic model produces an infinite 

summations of generated waveguide modes. The energy coupled into the higher-order 

modes at the aperture is highly dependent on the structure, as explained in [28]. In 

addition, it has also been shown that six modes is generally enough to produce negligible 

errors in the reflection coefficient [22], [28]. This assumption is used unless otherwise 

stated. The only exceptions are made for complex structures containing many thin, low 

loss layers that require extreme accuracy to provide meaningful results. 

 The optimization technique to evaluate material properties outlined here can be a 

very powerful tool, if used correctly. It is important to understand the electromagnetic 

model and what assumptions are made along with why a specific number of modes are 

necessary. The next step in this work will be to evaluate how noise in the measured 

reflection coefficient affects the accuracy with which parameters may be evaluated. 

Simulated data will be shown in which the forward electromagnetic model is used to 

generate the exact reflection coefficient, for a given structure. Next, complex Gaussian 

noise at varying power levels is injected into the reflection coefficient to simulate 
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measurement noise. Finally, material characteristics will be evaluated from the noisy 

reflection coefficient, providing insight into the extent to which noise degrades the 

property estimates. Furthermore, measured data will be shown comparing a high quality 

Agilent 8510C VNA with a more cost effective, in-house built VNA that has inferior 

noise performance. 
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3. OPEN-ENDED WAVEGUIDE TECHNIQUE AND SYSTEM NOISE 

3.1. INTRODUCTION 

 In the previous sections, the open-ended waveguide technique for material 

characterization was introduced. Due to the nondestructive nature of this technique, it is 

versatile and applicable to many NDT problems. However, the effect of system noise, 

which contaminates the measured reflection coefficient, on the evaluated material 

properties has not been thoroughly evaluated. Consequently, the effect of system noise 

will be investigated here. In order to accomplish this, simulations will be presented in 

which the calculated reflection coefficient, generated by the forward electromagnetic 

model, is contaminated with varying noise power levels. The noise is assumed to follow a 

zero mean complex Gaussian (normal) distribution. Finally, the iterative optimization 

technique, which was outlined in Section 2, is employed to evaluate the material 

characteristics. Due to the stochastic nature of the injected noise, this process was 

repeated until the change in the mean value and standard deviation of the evaluated 

material properties converged to a specified tolerance level. 

 Subsequently, measurements will be presented to compare with these simulations. 

First, an Agilent 8510C VNA was used to measure the complex reflection coefficient of a 

sample. By cascading a rotary-vane waveguide attenuator between the VNA port and the 

open-ended waveguide, the dynamic range capabilities of the VNA could be controlled. 

In addition, an in-house built, non-coherent VNA will be compared with an Agilent 

8510C VNA, comparing their accuracies in evaluating material properties. Finally, it will 

be shown that the dominating factor in material evaluation errors is not due to random 

system noise, but rather the effect of using a finite-sized waveguide flange when making 

reflection coefficient measurements. 

 

3.2. SIMULATION OVERVIEW 

3.2.1. Assumption of Gaussian Noise Distribution.  The complex reflection 

coefficient, measured at the aperture of the waveguide, is a function of the operating 
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frequency as well as the material properties of the sample being evaluated. The measured 

reflection coefficient may be written as: 

 

    , , , ,m i r c i r if d f d       (3) 

 

where    is the measured reflection coefficient,    is the actual value of the reflection 

coefficient (i.e. calculated using the forward electromagnetic model where the waveguide 

flange is assumed to have infinite spatial extent), fi represents the discrete operating 

frequencies, d is the dielectric thickness,    is the complex dielectric constant, and    is 

the noise/uncertainty contaminating the reflection coefficient measurement for the ith 

frequency. These uncertainties include discrepancies in the nominal values of the 

dielectric constants and material thicknesses along with system noise and calibration 

errors [5], [28]. Since these uncertainties are typically independent of one another and the 

system noise is generated from a collection of small events [34], their joint probability 

distribution may be modeled by a complex Gaussian distribution. This assumption is 

supported by the central limit theorem [5], [35].  

3.2.2. Simulation Procedure. Simulations were constructed to investigate the 

effects of system noise, which contaminates the measured complex reflection coefficient, 

on the uncertainty associated with evaluated material properties. First, given the 

geometrical and electrical properties of a dielectric structure, the electromagnetic model 

[28] was used to calculate the actual complex reflection coefficient vector,   , for N 

discrete frequency.  Next, a complex noise vector defined by: 

 

 i i iz x jy   (4) 

 

with: 

 

  1,2, ,i N   (5) 
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is generated with          where   denotes the set of real numbers. In addition, it is 

assumed that x and y are independent variables and each follow a zero mean Gaussian 

(normal) distribution. Finally, the variance of x and y are assumed to be equal. This 

creates a circularly symmetric complex normal distribution whose relation matrix is zero 

and the covariance matrix is simply: 

 

   2Σ z  I    (6) 

 

Where I is the identity matrix and    is the variance. Consequently, the variance was 

chosen to be: 

 2  
2

pN
   (7) 

 

for each dimension, so that the total power in the complex noise vector is Np. The noise 

power (Np) that was added to the reflection coefficient was calculated with respect to the 

maximum reflection coefficient (magnitude of 1). By adding the noise with respect to the 

maximum refection coefficient, it simulates the effect of a measurement system’s noise 

floor or the finite sensitivity of the receiver. It is also possible to select the noise power 

level for a specific signal-to-noise ratio. However, the former is more conducive to the 

simulations shown here as it more closely emulates the effect of different measurement 

systems having varying levels of dynamic range. In addition, it can be used to evaluate 

the effects of different measurement settings. For instance a typical VNA allows trade-

offs to be made between measurement time and the noise floor level by optimizing 

settings such as the intermediate frequency (IF) bandwidth or the number of individual 

measurements that are averaged. An example that will be investigated here is a 

comparison between an Agilent 8510C VNA and a less expensive and simpler one-port 

reflectometer [36]. The reflectometer has a significant cost advantage; however, due to its 

simplified non-coherent detection architecture, it sacrifices system dynamic range and 

exhibits a higher noise floor. 

 Once the noise vector has been constructed, it is added to the calculated reflection 

coefficient to create the (simulated) measured reflection coefficient,   . Finally, the 
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forward-iterative optimization technique is invoked to evaluate material properties. Due 

to the stochastic nature of the noise vector, this process should be repeated in order 

provide a better estimate of the uncertainty introduced by the pseudo-system noise. Each 

repetition of this process is referred to as a trial, T. A block diagram depicting this 

process can be seen in Figure 3.1. In addition, a simulated example for    can be seen in 

Figure 3.2. The green dot in the center of the figure corresponds to the actual value of the 

reflection coefficient for the given structure and operating frequency. The “simulated” 

measurements for 1000 trials and three different noise power levels have also been 

plotted and are distributed around the actual value with circular contours of equal 

probability with a probability density function represented by: 

 

  
2

Γ Γ1
Γ ; ,Σ  m

cm

p p

f exp
N N




 
  

  

 (8) 

 

3.2.3. Simulation Results.  In order to test the efficacy of this method, a thick, 

conductor-backed structure was evaluated. The noise power was assumed to be -60 dB 

which can be achieved using a VNA such as the Agilent 8510C. In literature, it has been 

previously shown through extensive measurements that low-loss and conductor-backed 

materials create the most significant measurement errors [28]. Consequently, the first 

simulation was performed for a conductor-backed dielectric sheet being interrogated by a 

WR-90 waveguide (22.86 mm x 10.16 mm) at 101 discrete frequency points evenly 

spaced between 8.2 GHz and 12.4GHz (X-band). The dielectric sheet was assumed to 

have a complex dielectric constant of     2 – j0.002 and an electrical thickness of 4  

(82.4 mm), where   is the wavelength of the mid-band frequency (10.3 GHz) in the 

dielectric material. In addition, 250 trials were performed to ensure convergence of the 

mean and standard deviation of the evaluated material properties.  

 In general, 101 discrete frequency points is beyond sufficient to find the envelope 

of the uncertainty associated with a given dielectric structure and noise power. Figure 3.3 

shows the evaluated material properties. The error bars are placed at 3 standard 

deviations, which correspond to a 99% confidence interval. 
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Figure 3.1.  Block diagram of simulation to investigate the effect of system noise on the 

evaluation of material properties. 

 

 

 

Figure 3.2.  Calculated reflection coefficient (green dot) along with m  for T = 1000 

trials and three different noise power levels.  
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 It can be seen that the uncertainties for both the permittivity (Figure 3.3a) and the 

loss factor (Figure 3.3b) are frequency dependent, as expected. The maximum uncertainty 

for this case occurs at  
      ; however, the permittivity only deviates by 

approximately 1.75%. The loss factor, on the other hand, shows extreme deviations that 

are greater than 100%. However, this result was expected, as it is known that this 

technique does not provide accurate loss factor measurements [28]. The pattern in which 

minimum uncertainty occurs at     intervals is specific for this example and is generally 

not recurring. The reflection coefficient is a non-linear function of multiple properties 

(e.g. dielectric constant, thickness, and frequency) and consequently the uncertainty 

generally displays unpredictable behavior. In additional simulations for different material 

thicknesses, no general trend for the uncertainty envelops were recognized (results not 

shown here). 

 Next, a 0.238 -thick (3.175 mm) conductor-backed sample with     4.8 – j0.17 

was simulated. The material characteristics of this sample correspond to those of a 

sample available in the laboratory for measurement. Once again, this sample was chosen 

to inspect a material setup that has proven difficult to measure in literature (thin and 

conductor-backed). In this simulation, 250 trials were performed for 3 different noise 

power levels at 21 discrete frequencies across the X-band frequency range. The 

uncertainty bounds can be seen in Figure 3.4 for (a) the permittivity and (b) the loss 

factor. As was seen in the previous case, the loss factor errors are much more significant 

than the errors in the permittivity. For this simulation setup, it can be seen that the 

uncertainty decreases as the frequency increases. Since the sample is much thinner than 

the previous scenario, the electrical thickness does not vary as significantly and thus there 

is not an undulating effect in the uncertainty bounds. Since the phase variation in the 

interrogating signal is significantly smaller (dielectric is much thinner) than the previous 

case, the errors are much higher. However, for a quality VNA, these simulations predict 

very accurate measurement results as the uncertainty bounds are quite small. In the next 

section, this measurement will be performed by a VNA with comparable noise power 

levels and the results will be compared. Additional uncertainty simulations for materials 

with varying thicknesses and dielectric constants (results not shown here) were 

performed. The uncertainty envelope for all these simulations was seen to be quite small 
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for noise power levels on the order of -50 dB. The uncertainty magnitudes shown in 

Figures 3.3 and 3.4 were typical for all the simulations that were performed. 

 

 

 

Figure 3.3.  Uncertainty simulation for a WR-90 waveguide interrogating a 4 -thick 

dielectric sheet with r =2 – j0.002, (a) permittivity and (b) loss factor. 
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Figure 3.4.  Uncertainty simulation for a WR-90 waveguide interrogating a 0.238 -thick 

dielectric sheet with r = 4.8 – j0.17 for: (a) permittivity and (b) loss factor. 
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3.3. MEASUREMENT VERIFICATION 

 In order to verify the simulated data, measurements were performed using an 

Agilent 8510C VNA and an in-house built X-band VNA that employs a non-coherent 

detection scheme. Due to the different detection architectures, the two systems have quite 

different noise characteristics. This measurement section will be split into two 

subsections. First, measurements made in which the noise floor of the 8510C VNA is 

manipulated by introducing a variable attenuation will be presented, and second, a 

comparison between the 8510 VNA and the in-house built VNA will be shown. The in-

house built VNA will be referred to as the XVNA as it was built specifically for the X-

band frequency range. 

3.3.1. Agilent 8510C with Rotary-Vane Attenuator. In order to be able to 

manipulate the noise floor of the 8510C VNA, an X-band rotary-vane attenuator was 

cascaded between the VNA port and the open-ended waveguide. Consequently, by 

increasing the attenuation that is introduced into the reflection measurement path, the 

dynamic range of the system could be decreased, and its effect on recalculating material 

properties could be investigated. The open-ended waveguide was calibrated using the 

standard three waveguide loads (short, short-shim, matched load). The waveguide 

employed was a standard WR-90 waveguide and was terminated into a large custom 

flange with dimensions 152 mm x 152 mm. The large flange was used because it has 

been shown that a standard waveguide flange has the potential to introduce frequency 

dependent errors into the measured complex reflection coefficient [28].  

 To gain insight into the expected noise floor levels, 100 measurements with the 

waveguide terminated in the matched load were recorded with the attenuator set to 

introduce 0 dB, 10 dB, and 20 dB of total attenuation. It is important to remember that 

since this is a reflection measurement, the attenuation introduced is increased by a factor 

of 2 to account for the round trip propagation. Figure 3.5 shows the average magnitude of 

the 100 independent measurements, taken at 201 frequency points, for each of the three 

attenuation levels. It quickly becomes apparent that although the system was re-calibrated 

each time the attenuation was changed, the noise floor followed the same undulating 

trend and was shifted in the anticipated 10 dB steps. The apparent undulating trend in the 

noise floor, which is seen to be a function of frequency, is due to the finite directivity of 
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the VNA system as well as the imperfect matched load calibration standard. 

Consequently, the noise does not follow a Gaussian distribution that is completely 

independent of frequency. However, this does not render the simulations meaningless as 

they still provide a good estimate of the uncertainties that can be expected from a 

specified noise floor level. 

 

 

 

Figure 3.5.  Noise floor of 8510C VNA with varying levels of attenuation introduced. 
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where, N is the total number of independent measurements, and n is the measurement 

index, where            . It can be seen in Figure 3.6 that that distribution of the 

noise has radial extensions where the noise is concentrated. These concentrated spurs are 

due to the frequency dependence of the noise. 

 

 

 

Figure 3.6.  Noise in the measurement of a conductor-backed dielectric sheet. 
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generated by the edges of the finite-sized flange. Since less power is radiated into the 

dielectric when the attenuation is high, the strength of the unaccounted for reflection from 

the edges of the flange are decreased and these deviations are not quite as severe. 

 Next, the material properties from what would be assumed to be the best case 

measurement (i.e. no additional attenuation was introduced and Np   -60 dB) was used to 

evaluate the complex dielectric constant of the rubber sheet. These results, along with the 

uncertainty bounds seen before are shown in Figure 3.8. It can be seen that the evaluated 

material properties from the measurements (Np   -60 dB) deviate well outside the 3 

standard deviation bounds for the -40 dB noise level uncertainty bounds. Consequently, it 

is quite clear that the most significant errors in this measurement are not due to system 

noise, but rather are introduced by the finite-sized flange. In sections 4 and 5, the errors 

introduced by the finite-sized flange will be investigated and a correction method will be 

introduced. 

 

 

 

Figure 3.7.  Measured reflection coefficient for 3.175 mm-thick conductor-backed 

dielectric with r  = 4.8 – j0.17.  
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Figure 3.8.  Evaluated material properties from measurement along with 99% confidence 

interval from uncertainty simulations for: (a) permittivity and (b) loss factor. 
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3.3.2. Comparison Between Agilent 8510C and Non-Coherent 1-Port VNA.  

In the previous subsection, the noise characteristics of the 8510C VNA were manipulated 

using a variable attenuator. It was shown that the finite-sized flange introduced errors in 

the measured reflection coefficient that were significantly larger than the noise floor of 

the Agilent VNA. Consequently, for comparing the 8510C VNA with the XVNA, the 

measurements were restricted to lossy, air-backed materials that have been documented 

to be much less sensitive to the effect of the finite-sized flange [28], [30]. 

 The measurements presented here were all made at X-Band using a WR-90 

waveguide terminated into the same large custom flange. The measurement setup for a 

single dielectric sheet and a stacked two layer structure can be seen in Figure 3.9. The 

first measurement was of a 4.42 mm-thick air-backed rubber sheet with r = 7.28 – 

j0.275. The actual value of the dielectric constant (and all dielectric constants reported as 

the actual value in this section) was acquired by using the completely-filled waveguide 

technique [8], [19] and was assumed to be a constant over the X-band frequency range 

[28]. The complex reflection coefficient was measured for 201 frequency points using the 

8510C and the XVNA. The measured complex reflection coefficient, plotted on the 

complex plane can be seen in Figure 3.10. 

 

 

 
Figure 3.9.  Measurement setup for material property evaluation for: (a) Tables 1,2 and 

(b) Tables 3,4. 
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Figure 3.10.  Simulated and measured complex reflection coefficient for a 4.42 mm-thick 

air-backed dielectric with r = 7.28 – j0.275. 
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noisy reflection coefficient with a noise power of approximately -40 dB. It can be seen 

that the noisy reflection coefficient is generally centered about that measured by the 

8510C. This relatively high noise level was expected since the XVNA employs a diode 

detector which allows broadband noise to be sampled along with the intended sinusoidal 

signal (as opposed to a coherent heterodyning system). 

 The evaluated material properties for both measured signals can be seen in Figure 

3.11. The forward iterative optimization process was performed for 100 discrete 

frequency points and the material properties were assumed to be functions of frequency. 

As is expected, the 8510C material properties are accurate and have a low standard 

deviation. The properties evaluated from the reflection coefficient measured with the 
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overestimated as reported in [28]. However, in general the XVNA provides results that 

give a good estimate of the permittivity even though it is a much noisier system. The 

mean value and standard deviation of the complex dielectric constant from each system 

can be found in Table 1. 

 This measurement process was repeated for an additional air-backed rubber sheet 

whose results can be seen in Table 2. Two additional measurements were made of a 

rubber sheet stacked on top of an acrylic sheet, as was shown previously in Figure 3.9b. 

Tables 3 and 4, provide the evaluated material properties for the rubber and acrylic 

sheets. In Tables 1-4 it can be seen that the mean values of the 8510C and XVNA are 

always quite similar. However, the standard deviation for the XVNA is always worse, 

with the exception of the loss factor values. The loss factor values present substantial 

errors and are in general void of useful information. 

 

 

 

Figure 3.11.  Evaluated material characteristics for rubber sheet backed by air. 
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Table 3.1 Evaluated material characteristics for rubber sheet backed by air with

7.28 –  0.275.r j   

VNA 
Actual 

d (mm) 
Actual    

Estimated   
  Estimated   

   

Avg. Stan. Dev Avg. Stan. Dev 

8510C 4.42 7.28 - j0.275 7.4887 0.2545 0.6989 0.1076 

XVNA 4.42 7.28 - j0.275 7.6248 0.4355 0.748 0.4334 

 

 

Table 3.2 Evaluated material characteristics for rubber sheet backed by air with 

4.8 –  0.17.r j   

VNA 
Actual 

d (mm) 
Actual    

Estimated   
  Estimated   

   

Avg. Stan. Dev Avg. Stan. Dev 

8510C 3.175 4.80- j0.17 4.5662 0.1078 0.1101 0.0704 

XVNA 3.175 4.80- j0.17 4.4366 0.3114 0.2343 0.2109 

 

 

 

Table 3.3 Evaluated material characteristics for rubber sheet ( 7.28 –  0.275r j  ) 

stacked on an acrylic sheet and backed by air. 

VNA 
Actual 

d (mm) 
Actual    

Estimated   
  Estimated   

   

Avg. Stan. Dev Avg. Stan. Dev 

8510C 3.175 4.80- j0.17 4.3727 0.138 0.0192 0.0263 

8510C 11 2.61 - j0.012 2.2636 0.2708 0.1297 0.184 

       

XVNA 3.175 4.80- j0.17 4.5663 0.3201 0.0637 0.1026 

XVNA 11 2.61 - j0.012 2.3199 0.2943 0.0721 0.1171 

 

 

Table 3.4 Evaluated material characteristics for rubber sheet ( 4.8 –  0.17r j  ) stacked 

on an acrylic sheet and backed by air. 

VNA 
Actual 

d (mm) 
Actual    

Estimated   
  Estimated   

   

Avg. Stan. Dev Avg. Stan. Dev 

8510C 4.42 7.28 - j0.275 7.4201 0.3431 0.5054 0.4531 

8510C 11 2.61 - j0.012 2.8203 0.2798 0.0705 0.1308 

       

XVNA 4.42 7.28 - j0.275 7.4099 0.5344 0.4273 0.4354 

XVNA 11 2.61 - j0.012 2.758 0.3062 0.086 0.1929 
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3.4. CONCLUSION 

 It was shown that when evaluating thin and low loss materials which have been 

reported to be difficult to measure, the deterministic errors introduced by the finite-sized 

flange dominate the errors. However, for lossy and thick air-backed materials, the 

advantage of expensive, high quality test equipment is relatively small. By comparing an 

Agilent 8510C VNA with an in-house VNA with a significantly higher noise level, it was 

shown that their average material estimations were in very good agreement. However, the 

8510C has a much smaller standard deviation in the material property estimations. Due to 

the current restriction on the materials that may be evaluated (i.e. lossy and thick) the 

following sections of this thesis will investigate the errors introduced by the finite-sized 

flange as well as propose a modification to the standard waveguide flange that markedly 

reduces these errors. 
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4. ERRORS INTRODUCED BY THE FINITE-SIZED GROUND PLANE 

4.1. INTRODUCTION 

 The accuracy by which material properties are evaluated is directly dependent 

upon the degree by which the measured complex reflection coefficient matches the 

results predicted by the electromagnetic (forward) model. In general, thin and low-loss 

conductor-backed structures have proven to be the most difficult to accurately 

characterize using an open-ended waveguide [28], [30], [37]. In Section 3, it was shown 

that these types of structures are more sensitive to measurement system noise than thick 

and higher loss structures. However, there are other more critical factors that contribute 

to recalculation inaccuracy when evaluating material properties.  

 The dominating error in estimating material properties has to do with the fact that 

the forward model assumes the rectangular waveguide aperture to be terminated into an 

infinitely-extended ground plane or flange [28], [30]. However, in practice the 

measurements are commonly conducted using a standard, finite-sized flange that is 

designed to primarily attach waveguide sections together.  Consequently, the edges of the 

standard flange introduce an unwanted discontinuity thereby causing the radiated 

electromagnetic fields to partially reflect back, into the probing waveguide. Given that 

the full-wave, forward electromagnetic model assumes an infinite flange, this reflected 

field is not accounted for in the model [30].  

 In addition, a finite-sized sample may also create a similar reflected wave. It will 

be shown that the reflection caused by the finite-sized flange plays a more significant role 

in measuring the complex reflection coefficient and masks the reflections from a finite-

sized sample. A schematic showing the reflections accounted for in the electromagnetic 

model along with those not accounted for can be seen in Figure 4.1. 
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Figure 4.1.  Reflections accounted for (black) and not accounted for (red) in the full-wave 

forward electromagnetic model. 

 

 

4.2. FIELD STRUCTURES 

 The magnitude of the reflected waves which are generated at the edges of the 

finite-sized waveguide flange and the finite-sized sample depend on the magnitude and 

distribution of the incident electromagnetic fields. For example, large errors in the 

measured reflection coefficient can be expected in thin, low-loss and conductor-backed 

materials. This is because the boundary conditions of the two parallel conductors (the 

flange and the conductor backing) confine the electromagnetic energy to within the 

dielectric region between them. This resulting parallel plate wave guiding structure 

causes strong fields to be incident on the flange and sample edges. Although samples 

backed by an infinite half-space of air or another dielectric material do not have this 

parallel plate wave guiding structure, the dielectric material operates as a grounded 

dielectric sheet/slab [32], sustaining surface waves where the flange acts as the ground 

structure.  The term grounded dielectric sheet/slab was coined in [32] and simply 

describes a dielectric material with a conductor on one side and air on the other. Like the 

parallel plate waveguide for conductor-backed structures, the grounded dielectric sheet 

can cause strong fields to be guided to the flange edges. When the electrical thickness 

(function of actual thickness and permittivity) of the dielectric becomes thick with respect 

to wavelength, the electromagnetic energy is allowed to disperse into a larger area and 

therefore the flange edges do not play as significant of a role. 

 To provide a graphical example of the wave guiding nature of these structures, a 

WR-90 waveguide with an 80 mm square flange was simulated using CST [38]. The 
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open-ended waveguide was evaluated radiating into both an air-backed and a conductor-

backed dielectric sheet with a thickness of 5 mm and a complex dielectric constant of 

    5 - j0.05. The material was specifically chosen to be low loss so that the electric 

field components would undergo little attenuation and therefore can be easily seen. In 

addition, the dielectric sample and the conductor backing were assumed to have infinite 

spatial extent in their lateral directions. This assumption was made because these 

simulations are intended to shown the field structures set up in the air-/conductor-backed 

dielectric structure and are not intended to evaluate the effects of a finite-sized sample. 

 Figure 4.2 shows a two dimensional plot of the vector electric field distribution in 

the dielectric sheet when backed by (a) a half-space of air and (b) a perfect electrical 

conducting (PEC) plane. The two dimensional plot was made by cutting through the 

center of the waveguide in the direction that is perpendicular to its broad dimension. 

Figure 4.2a illustrates that when the dielectric sheet is backed by an air half-space, the 

electric field propagates away from the aperture with a field structure that would be 

expected from a horn or open-ended waveguide operating as an antenna. More 

importantly, the dielectric material is shown to operate as a grounded dielectric sheet 

[38], guiding fields with substantial energy parallel to and along the surface of the flange, 

as highlighted in Figure 4.2a. At the edge of the flange a discontinuity is present in the 

fields guided by the dielectric sheet. The electric field is shown to fringe around the edge 

of the flange where a wave impedance mismatch is introduced as the ground structure is 

no longer present. In order to satisfy the wave impedance boundary condition, a reflected 

field is generated, which propagates back toward the probing waveguide aperture. 

 In Figure 4.2b, the electric field radiated from an open-ended rectangular 

waveguide into a conductor-backed dielectric sheet can be seen. In order to satisfy the 

PEC boundary conditions, the electric field inside the dielectric must rotate so that it is 

normal to the PEC planes. The electric field is then guided between the two conductors 

which operate as a parallel plate waveguide. This structure confines the energy radiated 

by the waveguide and guides it to the edges of the flange. Consequently, strong fields are 

incident at the discontinuity introduced by the flange edges. Once again this can be 

viewed as a wave impedance mismatch between the incident electric field which is 

guided between the parallel plates, and the wave impedance of the fields radiated out, 
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away from the flange. Consequently, this causes a reflected field that is guided back 

toward the probing waveguide aperture in the parallel plate structure. For very thin 

dielectric sheets, the fields in the parallel plate structure are tightly bound and therefore a 

significant portion of the energy incident on the flange edges is reflected.   

  

 

 

Figure 4.2. Electric field in a 5 mm thick dielectric with r  = 5 – j0.05 and backed by (a) 

an air infinite half-space and (b) a PEC conductor plane. 
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Consequently, the dielectric region may be viewed as a cavity with perfect magnetic 

conductor (PMC) walls that are approximated by the strong impedance mismatch at the 

edges of the flange. Therefore, it is expected that measurements of thin conductor-backed 
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sheets will have significant reflections from the flange edges. This will translate to 

relatively large errors in the reflection coefficient at the waveguide aperture, when 

compared to that which is calculated by the forward model. Finally, these errors will 

cause inaccuracies in the estimated material properties. 

 

4.3. FINITE-SIZED FLANGE VS. FINITE-SIZED SAMPLE 

 It was previously stated that a finite-sized sample causes reflected waves from its 

edges that are not accounted for by the forward electromagnetic model [30]. 

Consequently, to maximize the accuracy of this technique it is important to understand 

whether the reflection from the finite-sized flange or the finite-sized SUT has a greater 

influence on the measured complex reflection coefficient. With this understanding, the 

appropriate steps may be taken to correct for and/or minimize the most critical sources of 

errors.  

 To this end, CST Microwave Studio [38] was employed to simulate an open-

ended rectangular waveguide with both a finite and infinite flange radiating into a 

dielectric sample with finite and infinite lateral (parallel to the waveguide flange) 

dimensions. The simulations were performed with WR-90 waveguides (22.86 mm x 

10.16 mm) which operate in the X-band frequency range (8.2 – 12.4 GHz). The 5 mm-

thick dielectric sample had a complex dielectric constant of (    5 – j0.05). The 

simulations were conducted for both an air infinite half-space and a conductor-backing.  

4.3.1. Dielectric with Infinite Half-Space Backing. First, the dielectric sheet 

backed by an infinite half-space of air will be discussed. The following simulations were 

performed at 10.3 GHz, corresponding to the center of the operating frequency for WR-

90 waveguides. For all four cases, the electric field distributions shown were evaluated at 

a depth of 0.25 mm into the material (referenced from the plane of the waveguide flange). 

4.3.1.1  Infinite Flange/Infinite Sample. Figure 4.3a shows the magnitude of the 

electric field distribution inside the dielectric sample. The sample was assumed to have 

infinite spatial extent in the lateral dimensions and was illuminated by a waveguide probe 

with an infinite flange. It can be seen that the electric field smoothly transitions away 

from the aperture. In addition, the electric field distribution is symmetrical across the 

broad dimension of the waveguide. The strong electric field concentration in the vertical 
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direction corresponds to the dominant waveguide TE10 mode electric field polarization. 

The electric field distribution has been truncated for graphical purposes; however, due to 

the infinite flange/sample size, the fields can be assumed to continue to smoothly diverge 

from the aperture. 

4.3.1.2 Finite Flange/Infinite Sample. Figure 4.3b shows the electric field 

distribution for a sample with infinite lateral dimensions and an interrogating waveguide 

with a finite-sized flange. The flange was 40 mm x 40 mm, designed to approximate the 

standard UG 135/U waveguide flange. A square with a dashed line has been inserted into 

the plot to indicate the footprint of the waveguide flange. It can be seen that there is a 

strong discontinuity in the electric field at all four edges of the waveguide flange. This is 

due to a wave impedance mismatch between the fields directly in front of the flange and 

those in the surrounding space which generates a reflected wave in order to match the 

impedance boundary conditions. The fields that are reflected back to the aperture are 

sampled along with the expected reflection from the material, and thus introduce an error 

in the measured reflection coefficient. The strongest electric field discontinuities, which 

are along the horizontal edges of the waveguide flange, are due to the fact that the electric 

field polarization causes stronger fields to be radiated in these directions (as seen in 

Figure 4.3a for an infinite flange). 

4.3.1.3 Infinite Flange/Finite Sample. Figure 4.3c shows the electric field 

distribution for a finite-sized sample with lateral dimensions of 60 mm x 60 mm and an 

infinite waveguide flange. This simulation represents the scenario where the flange size 

extends beyond the sample size. This scenario depicts the effect that a finite-sized sample 

has on the electric field distribution, assuming there is no discontinuity introduced by the 

waveguide flange. As is expected, the dielectric-air interface creates a wave impedance 

mismatch, generating a reflected wave. This is because the dielectric sample is operating 

as a grounded sheet, guiding surface waves to the edges of the sample where the sheet is 

abruptly truncated. The reflected fields from the material interface create a standing wave 

pattern that can be seen in the dielectric material. 

4.3.1.4 Finite Flange/Finite Sample. Finally, Figure 4.3d shows the electric field 

distribution in the dielectric sheet with finite lateral dimensions (60 mm x 60 mm) and a 

finite waveguide flange (40 mm x 40 mm). This represents a worst case measurement 
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scenario where the sample extends only 10 mm past the edges of the flange in all 

directions. In this case, the finite-sized flange creates a strong wave impedance mismatch 

which, again, generates a reflected wave. Due to this field perturbation, the fields incident 

at the edges of the finite-sized SUT have much lower amplitudes than for the infinite 

flange case (Figure 4.3c). Consequently, the reflected fields from the dielectric-air 

interface have a lesser impact on the overall reflection coefficient. Although there is a 

discontinuity at the edges of both the flange and the SUT, it can be seen that the 

discontinuity introduced by the flange edges effectively masks that of the finite-sized 

SUT.  

4.3.2. Dielectric with Conductor Backing. To fully evaluate the effects of a 

finite-sized flange and sample it is important to inspect their impact on a conductor-

backed dielectric as well.  This is because it was previously shown the field structures of 

an air- and conductor-backed dielectric are quite different and therefore it cannot be 

assumed that the flange and sample will have the same effect on the electric field 

distributions. Consequently, four more CST simulations were performed to inspect the 

four previous flange/sample configurations for a conductor-backed sample. The open-

ended waveguide was a standard WR-90, terminated into both an infinite flange and a 

standard (40 mm x 40 mm) flange. The dielectric sheet was identical to that used in the 

air-backed simulations with the only adjustment being the introduction of a PEC plane 

behind it (as opposed to an infinite half-space). The conductor backing was assumed to 

have infinite spatial extent for all four cases. The electric fields that will be shown for the 

conductor-backed cases were sampled at a depth of 0.25 mm into the dielectric material 

(referenced to the plane of the flange). As was the case in the previous simulations, the 

frequency was 10.3 GHz. 

4.3.2.1 Infinite Flange/Infinite Sample. The electric field for the infinite flange 

and infinite conductor-backed sample can be seen in Figure 4.4a. The electric field is 

seen to smoothly transition away from the waveguide aperture. As was shown in Figure 

4.2, the parallel plate structure guides the fields away from the aperture. Since the both 

the flange and the sample are assumed to have infinite lateral dimensions, the fields 

indefinitely propagate radially away from the aperture. 
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Figure 4.3. Magnitude of the electric field distribution in a 5 mm-thick dielectric with 

5 0.05r j   and backed by an infinite air half-space for: (a) infinite flange/infinite 

sample, (b) finite flange/infinite sample, (c) infinite flange/finite sample, and (d) finite 

flange/finite sample. 
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4.3.2.2 Finite Flange/Infinite Sample. Figure 4.4b shows the electric field for a 

finite flange and infinite sample. It can be seen that there is a discontinuity in the electric 

field along all four edges of the finite-sized flange. The maximum discontinuity is across 

the horizontal edges of the flange, which is due to the electric field polarization. The 

fields that radiate out away from the flange are of no concern as there is no mechanism to 

cause them to be re-directed back toward the aperture (the sample and conductor backing 

are infinite and will not introduce a reflected wave). 

4.3.2.3 Infinite Flange/Finite Sample. Figure 4.4c shows the electric field for an 

infinite flange and finite-size sample. The practical analogy of this setup is for a sample 

whose dimensions are smaller than the waveguide flange. Although it would not be 

recommended to use the open-ended waveguide technique in this scenario it has been 

included here for completeness. The dielectric-air interface generates a strong reflected 

field that creates a standing wave pattern inside the dielectric sample. This reflection is 

due to a wave impedance mismatch. This is because the parallel plate wave guiding 

structure abruptly changes from being completely filled by a dielectric to being filled 

only by free-space. 

4.3.2.4 Finite Flange/Finite Sample. Finally, Figure 4.4d presents the case where 

both the flange and the sample have finite lateral dimensions. The electric field can be 

seen to be perturbed at both the edges of the sample as well as the dielectric-air interface. 

However, the discontinuity at the edges of the finite-sized sample is shown to have a 

smaller effect on the electric field. This is because the discontinuity at the edges of the 

finite-sized flange creates a reflected wave and strongly perturbs the electric field. 

Consequently, the fields that are radiated to the edges of the finite-sized SUT are at a 

much lower amplitude. 
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Figure 4.4. Magnitude of the electric field distribution in a 5 mm-thick conductor-backed 

dielectric with 5 0.05r j    for: (a) infinite flange/infinite sample, (b) finite 

flange/infinite sample, (c) infinite flange/finite sample, and (d) finite flange/finite sample. 
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4.3.3.  Effect of Finite-Sized Flange/SUT on Reflection Coefficient. In order to 

make a more quantitative evaluation of the effects of a finite-sized flange and finite-size 

sample on the complex reflection coefficient, additional CST simulations were performed 

for an open-ended rectangular waveguide radiating into a thin dielectric sheet that is 

backed by an infinite air half-space. The dielectric sheet was assumed to have a thickness 

of 0.48 mm, permittivity of    = 3.3, and loss-tangents of tan = 0.01 and 0.1. These 

values were chosen to represent a fiberglass sheet like those, for example, used in an 

aircraft radome structure. These simulations were performed with a WR-90 waveguide 

terminated into both an infinite flange and a standard (40 mm x 40 mm) flange. In 

addition, the sample size was varied to have small (75 mm x 75 mm), large (150 mm x 

150 mm), and infinite lateral dimensions. 

 Figure 4.5 shows the reflection coefficients simulated for both the infinite and 

finite-sized flanges radiating into the three dielectric sample sizes. The reflection 

coefficients are referenced to the aperture of the open-ended rectangular waveguide and 

have been plotted on the complex plane. In Figure 4.5a, the results can be seen for the 

low loss case in which the material had a loss tangent of (tan = 0.01). The two finite 

flange cases, for both a large and a small sample size, produce reflection coefficients that 

significantly deviate from the infinite flange/infinite sample case. The infinite 

flange/finite-sized sample cases can also be seen to deviate from the infinite flange, 

infinite sample case, but not nearly as strongly as the results for the finite-sized flanges. 

In addition, it can be seen that for a finite-sized flange, the size of the sample plays a 

small role in the complex reflection coefficient. As was shown in Figure 4.3d, the 

discontinuity due to the finite-sized flange perturbs the electric field and masks the 

effects of the finite-sized sample.  

 In Figure 4.5b, similar results for the more lossy case (tan = 0.1) can be seen. 

Once again, the reflection coefficients for a finite-sized flange are shown to deviate 

significantly from the actual reflection coefficient (infinite flange/infinite sample case). 

Due to the increased loss in the material, the finite-sized samples cause less of an adverse 

effect in the reflection coefficients (compared to Figure 4.5a). This is because the loss in 

the material helps to attenuate any signal that reaches and is reflected from the dielectric-

air interface.  
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Figure 4.5. Reflection coefficient, plotted on the complex plane for a waveguide with a 

finite and infinite flange radiating into a dielectric sheet for loss tangent: (a) tan  = 0.01 

and (b) tan  = 0.1. 
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 It has been shown that a finite-sized sample, as well as a finite-sized flange, 

introduce errors in a reflection coefficient measurement that are unaccounted for in the 

full-wave forward electromagnetic model. These reflections will be shown to have a 

negative effect on the estimated material properties due to the deviations they cause from 

the theoretical calculated reflection coefficient. The finite-sized flange has been shown to 

introduce the largest error in simulated reflection coefficients. Therefore, the effects of 

the waveguide flange will be the focus of the work in this thesis. Consequently, from this 

point on, the SUT will be assumed to have infinite spatial extent in its lateral dimensions, 

or be large enough that it does not affect the reflection coefficient. 

 

4.4. INFLUENCE OF FINITE FLANGE DIMENSIONS 

 Since it has been shown that the finite-sized flange has the most significant 

contribution to the error introduced by reflections that are unaccounted for in the forward 

electromagnetic model, it is important to understand how the SUT material properties 

affect these reflected fields. Consequently, CST simulations were performed for a wide 

range of materials with varying permittivity and loss factor values as well as for multiple 

thicknesses. In addition, the effect of both an infinite air half-space and a conductor-

backing for the dielectric material were evaluated. The dielectric samples were all 

assumed to have infinite spatial extents in their lateral dimensions. This subsection is 

divided into three major parts, the first part investigates air-backed dielectric structures, 

the second part investigates conductor-backed dielectric structures, and the third part 

presents measured data to verify the conclusions drawn from the simulations. 

 To perform these simulations, MATLAB
®
 was used to control CST so that the 

simulation process could be automated. This was done by using the built in ActiveX 

commands in MATLAB
®
. These commands are able to build a component object model 

(COM) server which is capable of communicating between the two programs. This was 

coupled with a library built into CST which contains the required object commands to 

configure and control simulations. Using MATLAB
®
, the parameters that were desired to 

be varied were loaded one-by-one to CST, and then a simulation was performed. Upon 

finishing the simulation, a Touchstone (.s1p) file was exported containing the reflection 
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coefficient data and the process was repeated. A copy of the MATLAB code required to 

perform this routine is provided in Appendix A. 

 The following simulations were performed using the CST Frequency Domain 

(FD) solver. It was seen that the FD solver offered more accurate results than that of the 

Time-Domain (TD) solver. This decision was made by simulating and comparing results 

for the same material structures between the FD and TD solver along with the 

electromagnetic model employed here. The FD solver and the electromagnetic model 

provided results that were consistently in good agreement. 

4.4.1. Air-Backed Structure Simulations.  The first type of structure 

investigated was single layered dielectric sheets/slabs backed an infinite air half-space. 

To investigate the effect of a finite-sized flange, WR-90 waveguides, terminated by 

flanges with square dimensions of 40 mm, 80 mm, and 120 mm were considered. These 

flange configurations were simulated radiating into an air-backed dielectric sheet with 

thicknesses varying from 5 mm to 20 mm in 5 mm increments. The relative permittivity 

was varied to be 2, 5, and 10 while the loss tangent was evaluated at 0.01, 0.1 and 1 

resulting in a total of 36 configurations. However, only three cases are presented here as 

the results from all 36 configurations are very similar. 

 The reflection coefficient for each of these configurations was calculated, 

referenced to the aperture of the open-ended waveguide via CST simulations. Then, using 

the electromagnetic forward model and the forward-iterative optimization procedure 

outlined in Section 2, the complex dielectric constant was recalculated. In doing so, it 

was assumed that the exact thickness of the dielectric sheet is known. The recalculated 

complex dielectric constant was assumed to be a function of frequency and was evaluated 

at 51 evenly spaced frequencies across the operating band (8.2 -12.4 GHz).  In addition, 

the actual values of dielectric constants were used as the initial guess values,, which helps 

to ensure convergence to a close solution. Using the actual material values as the initial 

guess is acceptable because these simulations were not meant to test the capability of the 

optimization process, but rather to investigate how the finite-sized flange affects the 

reflection coefficient and estimated material properties. In addition, in practice these 

values are commonly known a priori and their use in this way helps to not only speed up 

the recalculation process but also the accuracy of recalculation. 
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 The simulated reflection coefficient along with the estimated complex dielectric 

constant for a permittivity of   
  = 2, a thickness of 5 mm and a loss factor of   

   = 0.02, 

0.2, and 2 can be seen in Figure 4.6(a-c), respectively. The calculated reflection 

coefficient for an infinite flange has been included for comparison purposes. In Figure 

4.6a (  
   = 0.02), it can be seen that the finite-sized flanges cause the reflection 

coefficients to deviate from that of an infinite flange. The 40 mm-flange results deviate 

the most form those with infinite flange. This was expected since this flange has the 

smallest dimensions and therefore the reflected waves from the flange edges undergo the 

least attenuation in the material.  

 As the flange size increases, the phase variation of the reflected signal, due to the 

increased distance between the flange edges and the waveguide aperture, is apparent as 

the resonant arcs or loops that encircle the reflection coefficient for an infinite flange on 

the complex plane. The repetition rate of these arcs is due to the material properties along 

with the flange size. This effect can be explained with simple vector addition as is 

illustrated in Figure 4.7. The reflection coefficient measured or simulated at the aperture 

of the waveguide,   , is the coherent addition of the reflection coefficient measured by 

an infinite flange,   , and the unaccounted for reflections generated at the edges of the 

finite-sized flange,   . All three of these quantities are functions of frequency and 

material properties (complex dielectric constant, thickness, and backing) while the edge 

reflections are also a function of the flange geometry. In general, it is correct to assume 

that the reflection from the edges of the flange has a smaller amplitude than the 

actual/calculated reflection coefficient from the material structure (  ). In addition, as 

frequency changes, the electrical length between the aperture and the flange edges also 

changes, causing a phase difference in the fields reflected from the flange edges. Due to 

the lower amplitude and the phase variation as frequency changes, the reflections from 

the edges of the flange are expressed as the circular arcs that loop around the reflection 

coefficient of an infinite flange.  

 From the recalculated permittivity and loss factor values, shown in right hand 

column of Figure 4.6, it can be seen that as the flange size increases, the estimated 

material properties typically become more accurate. The actual values of the material 

properties have been included in the figures as solid black lines for reference. The 
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undulating pattern the estimated material properties is related to the phase variation of the 

fields that are reflected from flange edges. Consequently, as the flange size becomes 

larger, the reflected signals play a smaller role in the evaluated material properties. 

However, this process is not monotonic with respect to flange size. Although the reflected 

fields from the edges experience more attenuation as the flange size increases, this does 

not mean that their interference effects at the waveguide aperture reduces the effect on 

the reflection coefficient. This can be seen in Figure 4.6a,b as the 80 mm flange provides 

a better permittivity and loss factor estimate than the 120 mm flange. 

 In addition, as the loss in the material increases the errors in the reflection 

coefficient and the recalculated permittivity and loss factor values are seen to decrease. 

For a specific flange and material geometry, increasing the material loss does provide a 

monotonically decreasing error in the evaluated material characteristics. This is because 

the general interference pattern is not changed, but the amplitudes of the reflected waves 

have decreased. For the case where the loss factor,   
   = 2 (Figure 4.6c), there is a clear 

offset that can be seen in the recalculated material characteristics. This shift is due to 

compounding the numerical inaccuracy of the CST model as well as the inaccuracies 

associated with the numerical integration performed in the electromagnetic forward 

model and the number of higher-order modes that were evaluated at the waveguide 

aperture (6 modes in this case). 
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Figure 4.6. Complex reflection coefficient and evaluated material properties for a 5 mm- 

thick air-backed dielectric sheet with permittivity '

r  = 2 and loss factors of: (a) ''

r = 0.02 

(b) ''

r = 0.2 and (c) ''

r = 2. 
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Figure 4.7. Example showing vector addition of reflection coefficient from an infinite 

flange and the reflected fields from the flange edges. 

 

 

4.4.2. Conductor-Backed Structure Simulations. Next, single layer dielectric 

sheets were evaluated when backed by a PEC. The simulations were performed in the 

same fashion as those in the previous section that were backed by an infinite air half-

space. Once again, the interrogating probe was a WR-90 waveguide terminated into a 40 

mm, 80 mm, and 120 mm square flange. The material properties were varied with the 

same values as in the previous section. Once again, the sample, as well as the conductor 

backing, was assumed to have infinite lateral dimensions. 

 Figure 4.8 presents the simulated reflection coefficient, referenced to the aperture 

of the open-ended waveguide for a dielectric with a permittivity of 2, thickness of 5 mm, 

and loss factors of 0.02, 0.2, and 2 (corresponding to a-c, respectively). The calculated 

reflection coefficient for an infinite flange has also been included. It can be seen in Figure 

4.8, that adding a conductor backing has introduced errors in both the reflection 

coefficient and the estimated material properties that are larger than when backed by air. 
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produces the largest amplitude errors in both the reflection coefficient and the evaluated 

material properties, except for case (c) where the relatively high material loss makes the 

flange size effect negligible. Once again, increasing the flange size is shown to produce 

better estimates of the material properties but as was previously mentioned, this is not 

monotonic. The phase variation introduced by the longer distance the reflected signals 

must travel for the 80mm and 120 mm flanges is again apparent as the resonant arcs that 

appear in the reflection coefficient. 

As the loss in the material is increased, the standing waves formed in the wave 

guiding structure become damped and thus have a reduced effect on the reflection 

coefficient. Consequently, the estimation accuracy of the permittivity and loss factor 

increase while their standard deviations as functions of frequency decrease. Once again 

for the highest loss case (Figure 4.8c), there is a constant shift in the estimated loss factor. 

As was the case for the air-backed structure, this can be attributed to numerical 

inaccuracies in the CST simulation as well as the electromagnetic model. As was the case 

for the air-backed configurations, the results from the additional 33 simulated 

configurations are not included here as they provide very similar results to those shown in 

Figure 4.8. 
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Figure 4.8. Complex reflection coefficient and evaluated material properties for a 5 mm-

thick conductor-backed dielectric sheet with permittivity '

r = 2 and loss factors of:       

(a) '' 0.02r  , (b) ''

r  = 0.2 and (c) ''

r = 2. 
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4.4.3. Open-ended Waveguide Measurements. In order to verify the 

conclusions drawn from the previous sets of simulation, two measurements were 

performed. The measurements were performed with standard WR-90 waveguides 

terminated by a standard UG 135/U flange (41.4 mm x 41.4 mm) and a custom-made 

square flange with dimensions (152 mm x 152 mm) [28]. The custom-made flange was 

constructed with a standard UG 135/U flange in which a copper clad dielectric material 

was cut to form flange extensions. Conductive epoxy was used to attach the flange 

extensions to the standard waveguide flange.  Finally, the conductive epoxy was also 

used to fill any cracks between the waveguide flange and the extensions, making the 

transition between the conductors as smooth as possible [28]. A picture of the custom 

flange can be seen in Figure 4.9. 

 

 

 

Figure 4.9. Custom-made large flange (152 mm  x 152 mm). 
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 The first sample measured was a 4.42 mm-thick rubber composite sheet with 

   7.28 – j0.275 and backed by an infinite half-space of air. The given complex 

dielectric constant value was measured via the completely-filled waveguide technique 

and was reported in [28]. The dielectric constant retrieved using the filled waveguide 

technique showed little variation across the X-band frequency range and thus, was 

assumed to be constant [28]. To create an infinite half-space of air, the rubber sheet was 

placed on top of a stiff, low density foam block to add support and rigidity. This stack-up 

was then suspended over a small anechoic chamber to simulate an infinite half-space of 

air. A picture of this measurement setup is shown in Figure 4.10. The wooden slats used 

to hold the measurement setup above the anechoic chamber have been positioned to 

extend in the direction parallel to the dominant mode electric field to reduce any effect its 

presence may have on the measurement. For calculating the theoretical reflection 

coefficient as well as evaluating the complex dielectric constant, the foam block was 

assumed to have     1.2 – j1E-4.  The measured complex reflection coefficient along 

with the evaluated material parameters can be seen in Figure 4.11. 

 From the results in Figure 4.11, it can be seen that the measured complex 

reflection coefficient using the large, custom flange better tracks that of an infinite flange. 

This can be attributed to the loss in the rubber material. Since the fields reflected from the 

large flange edges have to travel approximately 56 mm or 5  (at the mid-band frequency 

of 10.3GHz and in the dielectric material) longer than the standard flange, their effects on 

the measured reflection coefficient are much reduced. Consequently, the large custom 

flange provides a better estimate of the material properties that has a lower standard 

deviation than the standard flange. The evaluated loss factor for both flanges has large 

errors. It was previously shown in [28] that this technique is not nearly as accurate at 

evaluating the loss factor of a material, when compared to permittivity. In addition, it has 

been shown [28] that the loss factor is typically over-estimated. Part of the over 

estimation of the loss factor in these measurements may be due to the loss factor that was 

estimated for and assigned to the foam block. 
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Figure 4.10. Measurement setup to emulate an infinite half-space of air. 

 

 

 

 

Figure 4.11. Measurement of dielectric sheet backed by an infinite half-space of air. 

 

 

 Next, a 3.175 mm-thick rubber sheet with a complex dielectric constant    4.8 – 

j0.17 and backed by a conductor was measured. The measurement setup was identical to 

that shown in Figure 4.10, with the exception of a metal plate being inserted on top of the 

foam block. The measured complex reflection coefficient along with the evaluated 

complex dielectric constant can be seen in Figure 4.12. 
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Figure 4.12. Measurement of dielectric sheet backed by a conductor. 

 

 

 The results shown in Figure 4.12 also agree with the simulated data shown 

previously. The conductor-backed measurement proved to be much more tedious to 

perform and is shown to have large errors in the measured refection coefficient along 
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significant deviations from the actual reflection coefficient, as is expected due to its 

smaller size. The reflection coefficient from the large flange shows arcs encircling the 

calculated reflection coefficient that are due to the electrical length between the flange 

edges and the waveguide aperture (phase variation of the reflected wave). It can be seen 

that these fast phase variations in the measured reflection coefficient translate to an 

undulating estimation of material properties. 
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4.5. PREVIOUS SOLUTIONS TO FINITE-SIZE FLANGE 

 The problems introduced by a finite-sized flange have been addressed in literature 

and numerous solutions have been offered. To date, relatively accurate open-ended 

waveguide measurements have been obtained by either using a very large flange (i.e. > 

15, where  is the wavelength at the mid-band frequency) [28]-[29], [39], or by limiting 

the measurements to lossy materials [37]. However, these solutions limit the capabilities 

of the open-ended waveguide technique. For instance, many composite materials that are 

prevalent today are low loss in the microwave and millimeter wave frequency range. For 

example, any polytetrafluoroethylene (PTFE or Teflon) based material such as 

microwave printed circuit board materials or glass-fiber reinforced polymers (GFRP) are 

considered to be low-loss materials [40]. In addition, a sample being tested is required to 

be locally planar, meaning it must be planar in the region of the flange. By employing a 

large flange, the region required to be planar becomes significantly larger which has the 

potential to limit some applications and can be difficult to work with. Complications may 

arise if the sample size is not larger than the flange where the reflections generated at the 

dielectric-air interface of the SUT will dominate. Finally, if the large flange is not 

perfectly flat and in constant contact with the SUT, it has the potential to perturb the 

electric field distribution and negatively impact the measurement.  

 Another technique, suggested in [7], utilizes polynomial fitting to model the 

reflection coefficient of the waveguide. Polynomial fitting has been successful for a 

waveguide radiating into an air half-space. However, this method is dependent on the 

dielectric structure being tested. Therefore, for limited applications such as a known 

dielectric sheet, the polynomial fit may be implemented.  

 It has also been proposed to use a lossy dielectric sheet as a coupling medium to 

reduce the flange effect by attenuating the reflected signals immediately in front of the 

aperture [39]. However, this has the potential consequence of reducing the measurement 

sensitivity due to the extra attenuation introduced by this additional lossy layer. Reducing 

the sensitivity of the measurement will increase the uncertainty associated with the 

evaluated material properties, as will be shown in the following subsection.   
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4.5.1. Lossy Coupling Medium.  In order to investigate the potential of using a 

lossy coupling medium to reduce the effect of a finite-sized flange, simulations very 

similar to those shown in Section 3 were performed. Using the forward electromagnetic 

model, the actual reflection coefficient was generated for both a composite structure and 

the composite structure with an additional lossy coupling layer between it and the 

waveguide. Next, zero-mean complex Gaussian noise was injected into the two complex 

reflection coefficients to emulate the noise floor of a calibrated VNA [12], [28]. By 

adding noise to the reflection coefficient, it introduces a fictitious measurement dynamic 

range limit (as opposed to simply the numerical precision of the calculations). Next, the 

material properties of the structure were evaluated at 10 discrete frequencies. The process 

of adding random noise and recalculating the permittivity was repeated T times (where T 

is the number of trials). In general, when working with random noise, the greater the 

number of trials, the more confidence that can be placed in the results. Since the injected 

noise followed a Gaussian distribution (zero-mean noise), the mean value of the 

permittivity was expected to converge to the actual permittivity of the material. The 

standard deviation values represent the uncertainty associated with recalculating the 

material properties of the structure. More importantly it provides a direct comparison of 

how the addition of a lossy layer affects the uncertainty of the evaluated material 

properties. 

 The results presented here are for a 5-layer structure, designed to mimic an 

aircraft radome. The structure consisted of three GFRP layers with two low density paper 

honeycomb layers separating them. The dimensions of each layer along with their 

complex dielectric constants can be seen in Table 4.1. It was assumed that the structure 

was backed by an infinite air half-space. The lossy coupling medium that was added to 

the structure was 5 mm thick with a complex dielectric constant of (    5 – j0.25). The 

material values chosen for the lossy coupling medium were chosen to represent a rubber 

sheet. The zero-mean complex Gaussian noise was added to the reflection coefficient at -

50 dB and -60 dB with respect to a total reflection (magnitude of 1). The noise was added 

with respect to the maximum reflection coefficient to simulate the noise floor of a VNA. 

A different approach would be to add noise set a specific signal-to-noise ratio. However, 
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the former of the two options better represents the noise associated with a reflection 

coefficient measurement. 

 

 

Table 4.1 Stack-up of radome structure for coupling medium simulation. 

 

 

 

 Figure  4.13 shows the recalculated average permittivity values for the bottom 

GFRP skin (Layer 5) along with error bars at  3 standard deviations (99% confidence 

interval) for the structure with and without a lossy coupling medium. There were 50 trials 

performed for the reflection coefficient with -50 dB noise (Figure 4.13a) and 100 trials 

performed for the -60 dB case (Figure 4.13b). It can be seen that for both the -50 dB and -

60 dB noise powers the mean value of the permittivity is evaluated to be approximately 3, 

as expected. More importantly, the structure without a lossy coupling medium produces 

permittivity estimates with smaller uncertainty values across the entire frequency band. 

These results match expectations and provide a reason to look for an alternative method 

to reduce the effects of the finite-sized flange without introducing unnecessary loss. In 

addition, it can be seen that the general shape of the uncertainty envelopes formed by the 

standard deviations is generally the same between the -60 dB and -50 dB noise. This 

provides additional confidence in the results.  

 

Layer Material Type Thickness    

Layer 1 GFRP 0.762 3 – j0.050 

Layer 2 Honeycomb 3.023 1.2 – j0.001 

Layer 3 GFRP 1.295 3 – j0.050 

Layer 4 Honeycomb 3.023 1.2 – j0.001 

Layer 5 GFRP 0.762 3 – j0.050 
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Figure 4.13. Effect of a lossy coupling medium on the uncertainty in the recalculated 

permittivity of a five layer low-loss composite structure for: (a) noise power of -50 dB 

and (b) noise power of -60 dB. 
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4.6. CONCLUSION 

 It has been shown that the finite-sized waveguide flange is responsible for errors 

in the estimate of the complex dielectric constant of a material. This is because the 

electromagnetic model employed here [28] is assumed to produce the same complex 

reflection coefficient, referenced to the aperture of the waveguide, as is acquired in 

measurement. However, it has been shown that a finite-sized waveguide flange and 

sample introduce reflected fields that are not accounted for in the model. Consequently, 

when using the forward iterative technique outlined in Section 2 to determine the 

complex dielectric constant of a dielectric material, these reflections introduce errors. The 

finite-sized flange causes the most significant errors and tends to mask the effects of a 

finite-sized SUT. 

 The flange edges introduce the strongest reflected fields because it plays a role in 

guiding energy as either surface waves (air-backed cases) or in parallel plate waveguide 

modes radially away from the aperture. Consequently, when the flange is abruptly 

terminated a wave impedance mismatch is introduced between the guided waves and the 

fields radiating out, away from the flange. It is this wave impedance mismatch that 

generates a reflected wave, propagating back toward the waveguide aperture. These 

reflected fields are sampled at the aperture along with the expected reflection coefficient 

and thus introduce differences that are not accounted for in the model. 

 The solutions to these reflected fields that have been presented in literature limit 

the capabilities of this technique by making it impractical, less sensitive, or completely 

avoiding measurements of specific materials. Consequently, an additional solution is 

needed that takes advantage of the capabilities of this measurement technique without 

reducing significantly reducing its performance. In the subsequent Sections a novel 

flange configuration will be presented and shown to markedly reduce the effects of the 

reflections from the edges of the flange. In addition a comparison of the different variants 

of the modified flange geometry will be presented. 
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5. NOVEL WAVEGUIDE FLANGE GEOMETRY 

5.1. INTRODUCTION 

 When using the open-ended waveguide technique for material characterization 

purposes, it was shown in the previous section that the largest contributor to errors in the 

estimated material properties is due to the finite-sized waveguide flange [28], [30]. The 

forward electromagnetic model that is used to evaluate the material properties, given a 

measured reflection coefficient, assumes the waveguide flange to be infinite in spatial 

extent. Consequently, the reflected fields generated at the edges of the waveguide flange 

(as shown in Section 4) introduce deviations from the calculated infinite flange reflection 

coefficient that may lead to non-negligible errors. 

 It is possible to account for the geometry of the finite-sized waveguide flange in 

the electromagnetic model; however, this cannot be accomplished with an analytical 

solution. Consequently, numerical techniques (e.g., finite-difference time domain or finite 

element method) would be required to solve for the pertinent equations. The increase in 

accuracy offered by these methods comes with a significant increase in the required 

computational resources as well as the computation time. Therefore, a different solution 

is sought which will not increase the system requirements or the time required for 

material dielectric and geometrical (thickness) evaluation. 

 In Section 4, previous solutions to the errors introduced by the finite-sized flange 

were presented. The first solution given was to avoid measuring low-loss materials [37]. 

Next, it was proposed to use a waveguide with a relatively large flange so that the fields 

incident on the discontinuity at the edge of the flange will have a negligible amplitude 

[7], [28]-[29]. Finally, it was suggested that the utilization of a lossy coupling medium in 

front of the flange could be help in attenuating the fields near the discontinuities. 

Nevertheless, implementation of these three solutions still limits or degrades the accuracy 

of this technique. Using a flange with relatively large dimensions becomes impractical 

and difficult to work with. In addition, it requires large sample sizes with dimensions as 

large, or larger, than the flange. Using a lossy coupling medium degrades the sensitivity 

of the method and increases the uncertainty associated with evaluated material properties. 
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 Consequently, a solution to this problem that does not have severe repercussions 

on the measurement sensitivity and/or computational requirements was sought. The 

following section presents the alternative and robust solution of modifying the 

geometrical configuration of the standard waveguide flange used for these measurements. 

This technique will be shown to improve the accuracy and capabilities of the open-ended 

waveguide technique [30]. In Section 4 it was shown that low-loss and thin materials 

(both air and conductor-backed) have a wave guiding effect on the electromagnetic 

energy. Consequently, the novel waveguide probe presented here helps to allow the 

guided fields to efficiently transition away from the guiding structure and into the 

surrounding environment. 

 

5.2. MODIFIED FLANGE GOALS  

 Since the electromagnetic model assumes the waveguide to be terminated into an 

infinite flange, the goal of the novel probe presented here is to emulate the fields of an 

infinite flange, specifically in the region of the waveguide aperture [30]. In order to 

accomplish this, the reflected fields from the edges of the waveguide flange must be 

considerably reduced. This requirement is due to the fact that when the waveguide is 

terminated in an infinite flange, the fields that are radiated in the lateral directions are 

assumed to propagate indefinitely as there is no discontinuity or mechanism to generate a 

reflected field. By emulating an infinite flange, the electromagnetic model will more 

accurately describe the physical interaction of the electromagnetic fields in the 

measurement setup. Consequently, the measured reflection coefficient will more closely 

match that predicted by the forward model and more importantly the material properties 

will be evaluated with much increased accuracy. 

 

5.3. MODIFIED FLANGE GEOMETRY (2 EDGES) 

 The largest discontinuity in the electric field is caused by the flange edges that are 

parallel to the broad dimension of the waveguide aperture. This is true for both air and 

conductor-backed samples and can be explained by the polarization direction of the 

dominant mode electric field inside the waveguide. Consequently, these edges are the 
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foremost concern in designing a probe to achieve the previously mentioned goals [30]. It 

was shown in Section 4 that the reflections generated at the edges of the flange are due to 

the wave impedance mismatch between the guided fields (guided by a dielectric 

waveguide or between the parallel conducting plates) and those radiating into the 

surrounding medium. Therefore, to achieve an electric field distribution in front of the 

waveguide flange that mimics that of an infinite flange, a matching technique should be 

employed to allow these fields to efficiently radiate away from the flange (as opposed to 

being reflected).  

 Consequently, a transition section is needed that will gradually transform the 

wave impedances. This is similar to using a tapered transmission line to match the 

characteristic impedance of a transmission line with an arbitrary load. In order to achieve 

this transition, the standard 90 -flange edges have been modified by adding circular 

cylindrical extensions to the two edges that are parallel to the broad dimension of the 

waveguide as shown in Figure 5.1. By introducing a round flange edge, the abrupt 

discontinuity is distributed along the arc of the cylinder which allows for gradual 

transformation of the wave impedance. As the radius of the cylinder on the edge of the 

flange increases, the wave impedance transformation becomes more efficient, allowing 

more energy to radiate away from the flange and not return back to the probing 

waveguide aperture. 

5.3.1.  Evaluation of Modified Flange with Two Rounded Edges.  To 

investigate the effectiveness of this technique, CST simulations were performed for WR-

90 waveguides operating at 10.3 GHz (mid frequency at X-band, 8.2-12.4 GHz). The 

waveguides were simulated radiating into a 3 mm-thick dielectric sheet that was backed 

by both a conductor and an infinite half-space of air. The complex dielectric constant of 

the sample was chosen to be    = 5 – j0.005, representing a typical low loss polymer. The 

fact that the material is low in loss presents a worst case scenario where the reflected 

fields from the flange edges undergo little attenuation. In addition, the lateral dimensions 

of both the material and the conductor backing were assumed to be infinite.  
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 These simulation were performed for a waveguide with a standard 40 mm x 40 

mm flange along with two rounded flanges with base dimensions of Fx = Fy = 40 mm 

and  radii of r = 2.5 mm and 10 mm. A waveguide with an infinite flange was also 

simulated in CST to provide a comparison between the finite flanges and the fields that 

are expected in the electromagnetic model. The electric field distribution was also 

calculated using the electromagnetic model and was seen to be in good agreement with 

the CST results (not shown here). The results from the CST simulation were presented 

here so that the four flange configurations could be plotted with the same color scale, 

providing a one-to-one comparison between the figures. 

 

 

 

Figure 5.1. Geometry of modified flange with two rounded edges. 

 

 

 Figure 5.2 shows the electric field distribution at a depth of 0.25 mm into the 

conductor-backed dielectric sheet for the four flange configurations. The electric field 

distributions have all been plotted on the same scale, allowing for a one-to-one 

comparison. In Figure 5.2a the electric field for the standard 40 mm x 40 mm flange is 

shown.  As was seen in Section 4, very strong reflections are present at the edges of the 

flange. These reflections cause strong standing waves in front of the flange that can be 

approximated as cavity modes. When compared with the electric field distribution of an 

infinite flange (Figure 5.2d) it can be seen that there is no real resemblance between the 

two field distributions. Moreover, the electric field around the waveguide aperture, which 

r 
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is the foremost contributor to the reflection coefficient, is strongly perturbed (as 

compared to the infinite flange). In Table 1, the complex reflection coefficient for each 

flange configuration is provided, along with the error associated with it.  The error is 

defined as the Euclidian distance on the complex plane between the reflection coefficient 

for the waveguide terminated in a finite-sized flange and an infinite flange. This is 

expressed as, 

 

      i c i f ierror f f f     (10) 

 

where    is the reflection coefficient for an infinite flange,   is the reflection coefficient 

for the finite-sized flanges, and fi is the frequency index (in this example the quantities 

are scalars as only one frequency was evaluated). In addition, the percent error associated 

with these values is defined as: 
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
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where Nf  is the total number of frequency points. For this specific structure, the standard 

flange is shown to introduce an error of 46% in the simulated reflection coefficient. 

 Figures 5.2b,c show the electric field distribution for the rounded flanges with 

radii r = 2.5 and 10 mm, respectively. In Figure 5.2b, the small radius of 2.5 mm can be 

seen to have a large impact on the electric field distribution. The amplitude of the 

standing waves, which is a function of the strength of the reflected fields from the flange 

edges, is notable reduced. In addition, the strong discontinuity at the edges of the flange 

has also been reduced; allowing the electric to radiate away from the flange more 

efficiently. The subtle rounding at the edges of the flange is shown to reduce the error in 

the reflection coefficient from 46% to approximately 19%. 
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Figure 5.2. Electric field distribution at 0.25 mm into a 3 mm-thick conductor-backed 

dielectric sheet with complex dielectric constant 
r  = 5 – j0.005 for: (a) standard flange, 

(b) rounded flange with r = 5 mm, (c) rounded flange with r = 10 mm, and (d) infinite 

flange. 

 

 

Table 5.1 Reflection coefficient values and errors: conductor-backed. 

Flange Configuration           Percent Error 

Standard 0.1857 + j0.3899 0.2094 45.6 

r = 2.5 mm 0.0729 + j0.4498 0.0854 18.6 

r = 10 mm 0.0224 + j0.4439 0.0351 7.6 

Infinite -0.0121 + j0.4585 - - 

(a) (b) 

(c) (d) 
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 Finally, in Figure 5.2c, the electric field in front of the rounded flange with a 

radius of 10 mm is shown to substantially reduce the discontinuity at the flange edges. 

The electric field distribution much more closely resembles that of an infinite flange. The 

interference pattern of the reflected waves has been significantly reduced to a negligible 

level. In addition, it can be seen that the tapered transition allowed an increased level of 

radiation from the flange edges. In this scenario, the radiation from the flange edges 

describes the fields that efficiently transition from in front of the flange and propagate 

away from it. The radiated fields are beneficial in helping to emulate the fields of an 

infinite flange, assuming they are not redirected back toward the waveguide by 

reflections/scattering from nearby objects. By increasing the radius to 10 mm, the error in 

the reflection coefficient was further reduced to 7.6%. 

 Figure 5.3 presents the electric field distributions for the same flange 

configurations as before, radiating into an air-backed dielectric sheet with identical 

properties as the previous scenario. Figure 5.3a shows the electric field distribution in 

front of a standard 40 mm x 40 mm flange. Once again there is a strong discontinuity 

present at the flange edges. The discontinuity as well as the interference pattern from the 

reflected waves is not as strong as compared to the conductor-backed case due to the 

difference in the field structures (shown in Section 4). However, when compared with the 

electric field distribution for an infinite flange, as shown in Figure 5.3d, the discontinuity 

due to the flange edges is quite apparent.  In Table 2 the simulated complex reflection 

coefficient and error values for all four flange configurations are presented. The standard 

flange produces the largest error in the reflection coefficient with a 7.6% deviation from 

the infinite flange case. Figures 5.3b,c correspond to the rounded flange edges with radii 

of 2.5 mm and 10 mm, respectively. As was true for the conductor-backed case, when the 

radius of the flange edges is increased, the electric field distribution is shown to become 

more like that of an infinite flange. In addition, the error in the simulated reflection 

coefficient is shown to monotonically decrease as the flange edge radius is increased. 
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Figure 5.3. Electric field distribution at 0.25 mm into a 3 mm-thick air-backed dielectric 

sheet with complex dielectric constant 
r  = 5 – j0.005 for: (a) standard flange, (b) 

rounded flange with r = 5 mm, (c) rounded flange with r = 10 mm, and (d) infinite flange. 

 

 

Table 5.2 Reflection coefficient values and errors: air-backed. 

Flange Configuration           Percent Error 

Standard -0.6472 - j0.1658 0.0529 7.6 

r = 2.5 mm -0.6631 - j0.1690 0.0451 6.4 

r = 10 mm -0.6801 - j0.1572 0.0275 3.9 

Infinite -0.6866 - j0.1305 - - 

 

(a) (b) 

(c) (d) 
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 However, for both the conductor-backed and the air-backed dielectric, the 

(vertical) flange edges parallel to the electric field polarization vector are shown to 

perturb the electric field. These perturbations actually become stronger than those along 

the horizontal edges for the rounded flange with r = 10 mm radiating into the air-backed 

sample. Consequently, the next step in the probe design must take into account all four 

edges of the flange, as opposed to only two. In addition to rounding all four edges of the 

flange, another advantage may be gained by generalizing the cross-sectional shape of the 

flange edges from circular to generally elliptical.  This provides more control over the 

transition geometry which will be shown to improve the accuracy of the simulated 

reflection coefficient. 

 

5.4. MODIFIED FLANGE GEOMETRY (4 EDGES) 

 The geometry of the novel waveguide probe that has been designed to further 

improve the flange with two rounded edges is shown in Figure 5.4. The waveguide 

aperture dimensions are denoted by a and b, corresponding to the broad and narrow 

dimensions of the waveguide, respectively. The edge geometry of the flange has been 

modified by replacing all four standard right angle edges with a generally elliptical cross-

section, with radii rt and rp, which provide a smoother geometrical transition at the edges. 

Radius, rt, denotes the lateral directions which are transverse to (rp denotes parallel to) 

the direction of wave propagation in the waveguide. This elliptically-tapered geometry 

significantly reduces the unwanted reflections at the flange edges, as will be shown later. 

It may be possible to determine an optimum flange configuration where the general 

geometries of the four edges on the front of the flange (plane of the aperture) and the four 

edges of the back of the flange (where the feeding waveguide meets the flange) are not 

identical. However, the benefits are expected to be marginal. Consequently, all flange 

edges are assumed to have identical radii. Dimensions Fx (H-plane direction) and Fy (E-

plane direction) denote the footprint of the probe while Ft represents the thickness of the 

flange. The location of the screw holes align with those of a standard waveguide flange, 

which accommodates VNA calibration referenced to the probing waveguide aperture. 
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5.4.1. Comparison Between 2 and 4 Rounded Edges. In order to evaluate the 

advantages of rounding all four edges of the waveguide flange, an additional CST 

simulation was performed for both the conductor and the air-backed dielectric sample 

from the last section. The material properties were identical to the previous simulations (3 

mm thick with    = 5 – j0.005) and the dimensions of the new flange with all four edges 

rounded were chosen to be comparable to the flange with two rounded edges and a radius 

of 10 mm. Consequently, a WR-90 waveguide operating at 10.3 GHz was employed. The 

edge rounding radii of the flange was rt = rp = 10 mm (circular cross-section), and the 

overall flange thickness, Ft = 20 mm. The dimensions of the flat face of the flange that is 

placed against the sample were identical to the previous simulation (40 mm x 40 mm). 

For these two simulations the screw holes on the flange were filled with PEC because the 

simulations for the flange with two rounded edges did not include screw holes. 

 

 

 

Figure 5.4. Geometry of the modified flange. 
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 Figure 5.5 shows the electric field distribution at a depth of 0.25 mm into the 

dielectric sheet for the new flange configuration, radiating into the conductor and air-

backed dielectric samples (Figures 5.5a,d respectively). The electric field distribution for 

the previous flange configuration employing two rounded edges (r = 10 mm) has been 

repeated for both the conductor (Figure 5.5b) and air-backed (Figure 5.5e) cases for 

comparison purposes. In addition, the field distribution for an infinite flange has also 

been repeated (Figure 5.5c,f). It can be seen that for both conductor and air-backed cases, 

the discontinuity along the vertical edges and at the corners of the flange has been further 

reduced by rounding all four edges.  This effect is most noticeable for the conductor-

backed case where the discontinuities in the H-plane direction have been removed. 

However, it can be seen that there is still a small interference pattern in the E-plane 

direction. Although the rounded edge significantly reduces the reflected fields it does not 

completely eliminate them. The improvements in the field distribution for the air-backed 

case are much more subtle; however, that is expected as the deviations due to the finite-

sized flanges were much smaller than for the conductor-backed case (Tables 1 and 2). 

Regardless, the electric field distribution for both cases is shown to improve when all 

four edges of the flange are rounded. 

5.4.1. Evalulation of the Flange Geometry. To further study the influence of the 

finite flange along with the improvements of the modified flange geometry shown in 

Figure 5.4, CST was used to simulate a probe with an infinite, standard, and rounded 

flange. The simulations were performed with the probes radiating into the same 3 mm-

thick conductor-backed dielectric sheet (   = 5 - j0.005) as before.  The illuminating 

waveguides were standard WR-90 X-band waveguides (8.2-12.4 GHz) with a cross-

section dimension of 22.86 mm x 10.16 mm.  The standard flange dimensions were Fx = 

Fy = 40 mm, with an overall thickness of Ft = 4 mm. The rounded flange had radii rt = rp 

= 10 mm (corresponding to edges with a circular cross-section), a footprint of Fx = Fy = 

60 mm, and a flange thickness of Ft = 20 mm. As will be seen later, these dimensions 

correspond to those for a custom-designed flange used in measurements. In addition, 

circular edges were employed for simplicity of design and machining while still 

providing the desired effects. 
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Figure 5.5. Electric field distribution for conductor (a-c) and air-backed (d-f) dielectric 

sheets for a flange with four rounded edges (a), (d), two rounded edges (b), (e), and 

infinite spatial extent (c), (f). 

(a) (b) 

(c) (d) 

(e) (f) 
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5.4.2. Effect of Flange Modification on Surface Current Density.  Figure 5.6 

shows the simulated surface current densities on the three waveguide flanges radiating 

into the previously mentioned conductor-backed dielectric sheet (   = 5 - j0.005) at 8.2 

GHz, 10.3 GHz and 12.4 GHz, respectively. The current densities in Figure 5.6 are all 

normalized to the same scale, providing a one-to-one comparison between the different 

geometries. The surface current densities for the infinite flange (Figures. 5.6a,d,g) have 

been truncated so that they could be plotted with the same aperture size as the two other 

flanges. For the infinite flange and for all three frequencies, the current density smoothly 

transitions away from the aperture. The current distribution is generally frequency 

independent with the exception that as the frequency increases the majority of the current 

becomes confined to a slightly narrower region on the flange. Also, the majority of the 

current flow (i.e., vertically in Figures 5.6a,d,g) corresponds to the direction of the TE10 

(dominant waveguide mode) electric field polarization, as expected.  

 The surface current densities on the standard flange (Figures 5.6b,e,h) do not 

closely match those of the infinite flange. The pronounced variations in the current 

density distribution are due to the strong reflections generated by the discontinuity at the 

flange edges. In addition, albeit to a lesser extent, the screw holes on the flange perturb 

the current density path as well. The coherent addition of the multiple reflected waves 

(from the flange edges and screw holes) creates an interference pattern that is unique for 

each frequency. In addition, maximum current density perturbations appear at all four 

edges for 8.2 GHz and 10.3 GHz. At the upper end of the frequency band the amplitude 

of the standing waves are reduced and are predominately in the direction of the TE10 

mode electric field polarization. This is due to the fact that the flange appears electrically 

larger (the operating wavelength is shorter) and, as was seen for the infinite flange case, 

the current distribution at higher frequencies tends to concentrate in a narrower region on 

the flange. Observation of the surface current density on the standard flange shows that 

the effects of the finite-sized flange are strongly dependent on the operating frequency.  

 

 



 

 

74 

 

Figure 5.6. Surface current densities on infinite-, standard-, and rounded-flange 

waveguide probes at: 8.2 GHz (a-c), 10.3 GHz (d-f), and 12.4 GHz (g-i). 

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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 For the rounded flange, the current density distributions, for all frequencies, 

closely mimic those on the infinite flange, as desired. The results show that the variations 

in the current density in the H-plane direction have been removed across the entire 

frequency band, as compared to the standard flange. This is due to the fact that the 

scattering edges were gradually transitioned, thereby allowing the current to flow 

smoothly onto the rounded edges. These edges effectively create a tapered impedance 

match, thereby allowing the electric (and magnetic fields) to more efficiently radiate out 

and away from the sides of the flange as opposed to being reflected back toward the 

probing waveguide aperture. It must be noted that at 8.2 GHz, corresponding to the lower 

limit of the operating frequency band, indications of standing waves are present in the E-

plane direction but with much smaller amplitudes compared to the standard flange. In 

addition, at this frequency, only slight surface currents can be seen at the corners of the 

rounded flange and along the vertical edges, removing the discontinuity that was present 

when only two edges of the flange were rounded. The screw holes on the rounded flange 

also cause a minor disturbance to the current density. However, the advantage of being 

able to directly connect this rounded-flange probe to waveguide calibration standards 

outweighs the field perturbations that are introduced by the holes. Finally, it is evident 

that by rounding the edges of the waveguide flange the induced surface current density on 

the finite-sized flange much more closely emulates the induced surface current density on 

an infinite flange.  

5.4.1. Effect of Flange Modification on Electric Field Distribution. Figure 5.7 

shows the magnitude of the electric field evaluated on a line passing directly under the 

center of the waveguide aperture and normalized to the maximum magnitude of the 

electric field for an infinite flange along this same line. In addition to the previously-

shown standard and circularly rounded (rt = rp = 10 mm) flanges, the results for a 

rounded flange with a footprint indicated by Fx = Fy = 60 mm and radii rt = 10 mm, rp = 

5 mm (corresponding to an ellipse with an axial ratio of 2) is also included in Figure 5.7.   

These results were evaluated at a depth of 1.5 mm into the same 3 mm-thick, conductor-

backed, dielectric sheet (   = 5 - j0.005) at a frequency of 10.3 GHz. The magnitude of 

the electric field for a flange with infinite spatial extent has also been included for 

comparison. The standing waves introduced by the flange discontinuity, as was shown in 
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Figure 5.6, are a function of frequency with the strongest deviations occurring at the 

lower edge of the band. The mid-band frequency of 10.3 GHz was chosen to give a 

representative view of the typical electric field deviations that can be expected. The solid 

bar at the bottom of Figures 5.7a,b illustrates the physical size of the standard flange 

while the dashed lines show the footprint of the circular and elliptical flanges. The cutout 

in the solid black bar shows the location of the waveguide aperture. 

 The results shown in Figure 5.7a were evaluated along a line parallel to the 

direction of the dominant waveguide mode (TE10) electric field polarization (E-plane). 

The magnitude of the electric field, simulated for a standard flange, shows that the abrupt 

discontinuity at the flange edges creates a strong reflected wave that eventually enters the 

probing waveguide as part of the overall reflected wave.  This discontinuity causes the 

electric field directly in front of the standard flange (± 20 mm) to be considerably 

different than that for an infinite flange with maximum deviations of more than 50% the 

field strength of an infinite flange. More importantly, the reflected waves have perturbed 

the electric field directly in front of the aperture causing noticeably higher amplitude than 

for the infinite flange case, which translates to a substantial difference in the measured 

reflection coefficient at the aperture, as will be shown later.  

 The magnitude of the electric fields for both the circularly and the elliptically 

rounded flanges much more closely follow the magnitude of the electric field for the 

infinite flange. For these flanges, the amplitude of the standing waves directly in front of 

the flanges is significantly decreased (maximum deviations of approximately 8% from 

the infinite flange case) and the field distribution directly in front of the aperture is very 

similar to that of the infinite flange.  Outside the edges of the finite flanges, for both the 

standard and the rounded edges, the electric field intensities significantly deviate from 

those of the infinite flange.  This is due to the fact that the parallel plate guiding structure 

between the flange and the conductor backing is no longer present in this region, as 

compared to the infinite flange.  Consequently, the fields are no longer bounded within 

the dielectric sheet and are able to propagate as surface waves in the dielectric and radiate 

into free-space around the probe.  

 Figure 5.7b shows the magnitude of the electric field on a line perpendicular to 

the direction of the TE10 electric field (H-plane). Again, the standard flange displays an 
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average electric field intensity that significantly deviates from both the infinite and the 

rounded flanges. There is a noticeable increase in field strength outside the footprint of 

the standard flange, which is representative of the scattered field caused by the current 

maxima along the edges of the flange (Figure 5.6e). Both rounded flanges are shown to 

closely match the fields of the infinite flange especially at the aperture location, which is 

the foremost contributor to any measured reflection coefficient. However, the electric 

fields for all the finite-sized flanges show less variation in this direction. This can be 

attributed to the radiation pattern of the open-ended waveguide as the majority of the 

energy is directed along the E-plane direction as opposed to the H-plane direction.  

5.4.1. Impact of Flange Dimensions on Simulated Complex Reflection 

Coefficient. In order to further investigate the relationship between the radii of the flange 

edges on the simulated reflection coefficient, CST simulations were performed for an 

open-ended waveguide radiating into a 1.52 mm-thick conductor-backed dielectric sheet 

with a relative dielectric constant of (   = 3.3 - j0.0025) and for several flange 

configurations. This was chosen to model a typical microwave printed circuit board 

material. First, the X-band waveguide probe (WR-90) was assumed to have edges with 

circular cross sections (rt = rp), while the effect of overall flange dimensions (Fx = Fy) of 

60 mm, 80 mm, and 120 mm were investigated. These dimensions correspond to Fx = Fy 

of 3.75 , 5.0  and 7.5  (normalized to the mid-band wavelength in the dielectric). The 

overall flange thickness, Ft, was 20 mm and the circular edge radius was varied from 2 

mm to 10 mm. The error in the simulated reflection coefficient, as a function of 

frequency, is defined as the Euclidian distance between the reflection coefficient for an 

infinite flange and the reflection coefficient for a finite-sized flange on the complex 

plane, as was given in (1). 
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Figure 5.7. 1D-slice of the electric field 1.5 mm into a 3 mm-thick conductor-backed 

dielectric sheet at 10.3 GHz across: a) narrow dimension of the waveguide aperture and 

b) broad dimension of the waveguide aperture. 
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 Figure 5.8 shows the error versus frequency for the flange with four different 

circular edge radii, and an overall size of 60 mm x 60 mm. A radius of (0 ) corresponds 

to a standard 90 -edge. These results show that the error in the reflection coefficient, 

especially for flanges with little or no rounding on the edges, is highly frequency 

dependent. This frequency dependence stems from the unique standing wave pattern that 

is set up in front of the flange (see Figure 5.2a). Furthermore, it can be seen that as the 

radius of the circular edges increases, the magnitude of errors decrease and show less 

variation across the frequency band. This can be attributed to the impedance 

transformation that allows the fields to more efficiently radiate away from the flange. In 

addition, the tapered edges provide a broadband impedance match which helps to reduce 

the frequency dependence of the errors. For Fx = Fy = 80 mm and 120 mm, similar 

behaviors were observed (not shown here). 

 

 

 

Figure 5.8. Error in the simulated reflection coefficient for a rounded flange with Fx = Fy 

= 60 mm for various flange edge radii (rt = rp) 
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In addition to edges with circular cross-sections, elliptical edges were evaluated 

for three flanges with the same Fx, Fy, and Ft dimensions as in the previous case. Radius 

rt was held constant at 10 mm while the radius rp was varied. Figure 5.9 shows the root-

mean-square (RMS) error for the simulated vector reflection coefficient for both the 

circular and the elliptical rounded flanges with respect to that of an infinite flange, 

terminated in the same dielectric structure as before. The RMS error is defined as: 

 

     2

f

1
  Γ   Γ  Γi i

ff

cRMS Error f f
N

   (12) 

 

The RMS errors for the circular edges are denoted by a solid line while the RMS errors 

for the elliptical edges are denoted with a dashed line. The circular and elliptical edged 

RMS errors are equal for a standard flange (i.e., 0 ), and for rp = 0.635  where the 

elliptical cross-section becomes a circular cross-section (rt = rp). The RMS error for the 

circular edges is shown to monotonically decrease. As the circular radius is increased, the 

edge of the flange becomes smoother and, consequently, provides a more gradual wave 

impedance transition. However, the RMS error for the elliptical edges does not 

monotonically decrease and is shown to reach a minimum for a value of approximately 

0.3  (an axial ratio of approximately 2). This is due to the fact that the elliptical shape 

provides the most gradual impedance transition across the frequency band for these 

flange dimensions. However, the taper with these dimensions is optimized for these 

material properties.  For a dielectric sheet with a different thickness and relative dielectric 

constant, the taper dimensions may have to be changed to obtain minimum RMS error.  

 The optimal flange rounding parameters from Figure 5.9 were used to investigate 

the effect of the overall flange dimensions on the complex reflection coefficient. 

Simulations were performed for a flange with Ft = 20 mm, rt = 10 mm and rp = 5 mm 

radiating into the same conductor-backed dielectric structure (   = 3.3 - j0.0025). In 

addition to εrʺ = 0.0025, two other relative loss factors of 0.05 and 0.1 were also 

simulated, as shown in Figure 5.10. The results indicate that the RMS error in the 

reflection coefficient does not monotonically decrease as a function of increasing flange 

size. Although the signal reflected from the edges of the flange travels a longer electrical 
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distance and therefore experiences higher attenuation, this does not ensure that the 

standing wave pattern generated from the edge reflections will have a reduced influence 

on the reflection coefficient. The peaks in error correspond to flange dimensions whose 

standing wave patterns generate maxima directly in front of the waveguide aperture. It 

can be seen, however, that as the loss factor increases the RMS error for a specific flange 

size decreases.  For a specific standing wave pattern, increasing the loss dampens the 

amplitude of this interference.  

 

 

 

Figure 5.9. RMS error in reflection coefficient for waveguide flanges with circular (solid 

line) and elliptical (dashed) cross-sections for varied values of rp. 
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Figure 5.10. RMS error in reflection coefficient for varying flange sizes and loss factors.    

 

 

 

5.5. SIMULATED MEASUREMENT OF RUBBER SHEET 

To further investigate the effectiveness of the new waveguide probe shown in 

Figure 5.4, an additional conductor-backed scenario was simulated in the X-band 

frequency range and for a 3.175 mm-thick dielectric sheet with (   = 4.8 – j0.17), 
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infinite in spatial extent.  
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Figure 5.11 presents the simulated complex reflection coefficient at the aperture 

of each waveguide terminated in the respective flanges (shown on the complex plane). 

The reflection coefficient for a flange with infinite spatial extent is also included for 

comparison. It can be seen that the reflection coefficient for the waveguide terminated in 

a standard flange has the largest deviations from that of an infinite flange. The reflection 

coefficient for the waveguide with a large standard flange also deviates from that of an 

infinite flange but with less deviation compared to the standard flange. This is due to the 

increased attenuation of the reflected waves as they travel a larger electrical distance 

between the flange edges and the waveguide aperture. In addition, the repetitive arcs in 

the reflection coefficient are due to the rapid phase variation of the reflected signal as it 

travels to and from the flange edges.  Finally, it can be seen that the small and large 

rounded flanges provide increasingly accurate reflection coefficients, respectively. Herein 

lies the major advantage of the rounded flange edges: since the reflected wave due to the 

discontinuity at the flange edges is significantly reduced the result is a more accurate 

measurement of reflection coefficient. 

 

 

 

Figure 5.11. Simulated reflection coefficient of a 3.175 mm-thick conductor-backed 

dielectric sheet with 
r = 4.8 – j0.17. 
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Figure 5.12 shows the Euclidian error in the reflection coefficient as a function of 

frequency, as expressed in (1). The standard flange has the largest amplitude error due to 

the strong edge reflections and a shorter electrical distance between the aperture and the 

flange edges (as compared to that of the large flange). The error for all flanges undulates 

across frequency due to phase variations in the reflected waves. The error associated with 

the rounded flanges, in general, have smaller amplitudes and less variation, as expected.  

In addition, the large rounded flange is shown to produce smaller errors than the small 

rounded flange, except at the lower edge of the frequency band (for this particular case). 

 

 

Figure 5.12. Error in the simulated reflection coefficient shown in Figure 5.11 plotted 

versus frequency. 
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permittivity and the loss factor. The large rounded flange produces the most accurate 

estimation of the complex dielectric constant; with the exception of the first 100 MHz of 

the band. This corresponds to the peak in the Euclidian error, shown in Figure 5.12. Due 

to the complex relationship between the desired material properties (electrical and 

geometrical), the operating frequency, and the reflection coefficient, it can be seen in 

Figure 5.13 that the error in the estimated relative permittivity and loss factor is not 

necessarily proportional. 

 

 

 

Figure 5.13. Calculated complex dielectric constant for various flange configurations for 

a conductor-backed dielectric sheet with 
r  = 4.8 – j0.17 
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Figure 5.14. Flange geometries used for X-band measurements: (a) standard flange (40 

mm x 40 mm), (b) small rounded flange (Fx = Fy = 60 mm) with rounded edges of radius 

10 mm, (c) large flange (152 mm x 152 mm), (d) large rounded flange (Fx = Fy = 100 

mm) with rounded edges of radius 10 mm. 
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Measurements of the reflection coefficient at the aperture of the open-ended waveguides 

were performed at X-band (8.2-12.4 GHz) using an Agilent 8510C VNA. 

5.6.1. Complex Dielectric Constant Evaluation of a Conductor-Backed 

Rubber Sheet. Figure 5.15 shows the measured vector reflection coefficients plotted on 

the complex plane. As was seen in simulation, the standard small flange produces the 

largest errors in the measurement. The large flange follows the reflection coefficient of an 

infinite flange more closely, and, finally, the flanges with rounded edges produce a 

smooth reflection coefficient more closely matching the simulated infinite flange curve. It 

is important to note that all four of the measured complex reflection coefficients closely 

follow the corresponding simulated ones, as shown in Figure 5.11. In general, for the two 

rounded flanges (particularly the large one), measurement very closely matches the 

simulated results obtained by the infinite flange.  Slight deviations from the simulated 

values for the infinite flange are attributed to measurement-related issues.  

 

 

 

Figure 5.15. Measured vector reflection coefficient of conductor-backed 3.175 mm-thick 

dielectric sheet with 
r  = 4.8 – j0.17. 
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 The measured data shown in Figure 5.15 was used to estimate the relative 

permittivity and loss factor of the dielectric sheet.  The calculated data can be seen in 

Figure. 5.16. Once again, the rounded flanges provide increasingly accurate relative 

permittivity estimates. The worst case error of 18% for a standard flange was improved to 

approximately 2% for both rounded flanges.  In addition, even though the estimated loss 

factors have significantly higher error margins with respect to the actual value, the 

rounded flanges provided much improved results compared to the non-rounded small and 

large flanges. It can be seen that the large rounded flange provides the best loss factor 

estimate, as is expected since it best approximates the fields of an infinite flange. 

However, it is known that this technique is not as accurate for measuring loss factor, 

when compared to permittivity, and typically overestimates loss factor values [28]. Once 

again, the results from the measurements follow those obtained in simulation (see Figure 

5.13). 

 

 

 

Figure 5.16. Calculated complex permittivity values for the measured reflection 

coefficients seen in Figure 5.15. 
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5.6.2. Complex Dielectric Constant Evaluation of a Conductor-Backed 

Acrylic Sheet (Low Loss). To provide an additional conductor-backed example that has 

proven to be difficult to measure due to its low loss properties, a conductor-backed 

acrylic (plexiglass) sheet was evaluated. Using the completely-filled waveguide 

technique [8], [19] and reported in [28], the dielectric constant of the 11 mm-thick 

Plexiglas material was evaluated to be    = 2.6 – j0.02. The complex dielectric constant 

evaluated from the completely-filled waveguide technique showed little variation as a 

function of frequency and consequently, was assumed to be constant. Due to the lower 

permittivity than the previous rubber material that was evaluated, the electrical 

dimensions of the waveguide flanges are reduced by a factor of approximately 35%. In 

addition, the loss factor has been reduced by approximately 8.5 times. Using the large 

standard flange as well as the large rounded flange, the complex dielectric constant was 

evaluated at 51 frequency points. The resulting permittivity and loss factor values can be 

seen in Figure 5.17. Once again the rounded flange is shown to provide a more accurate 

estimation of both the permittivity and the loss factor values, although the errors 

associated with the loss factors is much greater.  

 

 

 

Figure 5.17. Evaluated complex dielectric constant of a low-loss acrylic sheet. 
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5.6.3. Complex Dielectric Constant Evaluation of an Air-Backed Stratified 

Composite Structure. A valuable characteristic of this technique is its nondestructive 

nature in evaluating material characteristics. Consequently, this technique lends itself 

well to structural health monitoring of stratified composites. Therefore, a stratified 

composite structure was evaluated using the previously described small-rounded edge 

waveguide probe. The structure contained five layers: three layers of glass fiber 

reinforced polymers (GFRP) separated by two identical low-density, low-permittivity 

paper honeycomb layers. The small rounded probe was chosen because this composite 

structure was backed by an infinite air half-space. The completely-filled waveguide 

technique [8] was used to evaluate the dielectric properties of the GFRP layers (used as 

the measured ground-truth data). These values were used as the initial guess for the 

forward-iterative optimization technique. Due to the brittle composition of the paper 

honeycomb, accurate loaded waveguide measurements were not possible. Consequently, 

it was assumed that the honeycomb layers would have a relative permittivity near unity, 

and a very small loss-factor. The assumption of using the actual value of the GFRP layers 

as the initial guess value is justified since for structural health monitoring purposes the 

goal is to detect changes in the material properties of a stratified composite whose ideal 

characteristics are assumed to be known.  

 Ten reflection coefficient measurements of this stratified structure were 

conducted and the complex dielectric constant of all five layers was simultaneously 

estimated. In addition, when evaluating a large number of parameters (10 parameters in 

this example), the system of equations becomes severely under-determined. 

Subsequently, the complex dielectric constant was assumed to be constant as a function 

of frequency. This allows the frequency diversity of the measurement to be exploited, 

which makes the multiple-parameter evaluations more robust. This assumption is 

acceptable for this structure, because, it has been shown that the dielectric constant of 

low-loss materials is quite constant as a function of frequency [41].  

 The calculated complex dielectric constant values for each of the five layers, 

along with two standard deviations (i.e. 95% confidence interval) are listed in Table 3. 

Even though all three GFRP layers were essentially identical in dielectric properties, 

given their relative locations within the stratified composite and slight variations in their 
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properties (i.e., slight thickness variation) as a function of multiple measurements, their 

recalculated permittivity values are not expected be identical. However, considering the 

standard deviation associated with the recalculated dielectric constants for the GFRP 

layers, these values are for all practical purposes (statistically) identical. Similarly, the 

relative permittivity of the honeycomb layers is nearly identical. The loss factor 

calculated for the honeycomb layers is below the dynamic range of this technique and 

therefore do not have practical value beyond agreeing with the original low loss 

assumption. 

 

 

Table 5.3 Estimated complex dielectric constant values of the stratified composite 

structure.  

Layer 

Loaded Waveguide 

Actual 
r  

Actual Thickness 

(mm) Estimated    

Layer1 3.0 – j0.025 0.76 (3.03±0.05) – j(0.023±0.009) 

Layer 2 - 4.95 (1.15±0.007) – j(9E-5±1E-5) 

Layer 3 3.0 – j0.025 1.30 (3.04±0.13) – j(0.025±0.001) 

Layer 4 - 4.95 (1.23±0.01) – j(1E-4±1E-5) 

Layer 5 3.0 – j0.025 0.62 (3.07±0.16) – j(0.027±0.013) 

 

 

 

5.7. CONCLUSION 

 A modification to the standard waveguide flange has been introduced that 

markedly improves the accuracy capabilities of the open ended waveguide technique for 

material characterization. First, the standard waveguide flange was modified by adding 

circular extensions to the two flange edges that generate the largest reflected fields. In 

order to improve upon this flange, all four edges of the waveguide flange were rounded 

with generally elliptical cross-sections. By rounding all four edges of the waveguide 

flange, the electric field distribution around the waveguide aperture as well as the induced 

surface currents on the flange much more closely match those of an infinite flange. In 

addition, by adding a generally elliptical cross section to the flange edges, an ideal 

geometry may be designed for a specific application. The axial ratio of the ellipse that is 
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employed is dependent upon the properties of the sample and should be designed 

accordingly. 

 Most importantly, by modifying the flange geometry the accuracy by which 

material properties may be evaluated is significantly improved. This improvement is most 

notable for low loss, thin, and conductor-backed samples which have generally proven 

difficult to measure. The flange modifications presented here have been shown in both 

simulation and measurement to surpass the accuracy of a custom flange whose footprint 

requires significantly larger area. By rounding the edges of the waveguide flange, the 

reflections generated at the flange edges have been significantly reduced. Consequently, 

the electric field around the probe more accurately matches that of an infinite flange 

which, in turn, allows for material properties to be evaluated with much improved 

accuracy. 
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6. SUMMARY AND FUTURE WORK 

6.1. BACKGROUND 

 The open-ended waveguide technique has proven to be versatile and applicable to 

many NDT applications when dealing with stratified (layered) composite structures. The 

major benefits of this technique are its non-invasive nature, simple measurement setup, 

and ability to simultaneously evaluate the material properties (e.g. complex dielectric 

constant and/or layer thickness) of multiple layers in a stratified composite. Recently, an 

electromagnetic model that accounts for higher-order modes generated at the waveguide 

aperture has been developed and was briefly described in Section 2. Accounting for these 

higher-order modes has shown to improve the accuracy by which material properties may 

be evaluated [28]. The goal of this thesis was to investigate the additional sources of 

inaccuracy in evaluating material properties, starting with measurement system noise. 

However, it was shown that the primary source of errors is due to the reflected fields 

generated by the finite-sized waveguide flange that is used in measurements. 

 

6.2. SYSTEM NOISE 

 In Section 3, the effect of system noise, which contaminates the measured 

reflection coefficient, on the evaluated material properties was investigated. In order to 

do so, simulations were developed that estimate the uncertainty a specified level of noise 

power introduces into the evaluated material properties. This was accomplished by using 

the electromagnetic model to calculate the exact reflection coefficient for a given 

dielectric structure and operating frequency. Next, noise adhering to a complex Gaussian 

distribution was injected into the exact reflection coefficient to simulate the noise 

introduced by a measurement system. Finally, the desired material properties were 

evaluated using the iterative procedure detailed in Section 2. The results of these 

simulations showed that the uncertainty introduced by the measurement system is a 

function of the material properties as well as the operating frequency. In addition, the 

uncertainty in the permittivity was generally quite small, with respect to the nominal 
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value. However, the loss factor showed large uncertainty values, rendering its 

measurement mostly ineffective. 

 To verify these simulations, measurements were performed using an Agilent 

8510C VNA. By cascading a variable attenuator between the VNA port and the open-

ended waveguide, the noise-floor of the 8510C VNA could be manipulated. When the 

attenuation was increased, the signal power available at the open-ended waveguide was 

decreased. Consequently, the power in the reflected signal would also be decreased while 

the sensitivity of the VNA receiver remained unchanged. As a result, the noise floor of 

the measurement system could be controlled. It was shown that the measured noise floor 

of the 8510C VNA was be comparable to the noise levels approximated in the 

simulations. However, the measured reflection coefficient was seen to strongly deviate 

from the reflection coefficient predicted by the electromagnetic model. These deviations 

were observed to be deterministic as they were consistently present in multiple 

measurements as well as for multiple calibrations. Moreover, the evaluated material 

properties were shown to deviate well beyond the uncertainty bounds generated from the 

simulation procedure. These deviations were due to the reflections generated at the edges 

of the finite-sized flange that was employed. These reflected fields are not accounted for 

in the electromagnetic model which assumes the waveguide to be terminated into an 

infinite flange. 

 A comparison between the 8510C VNA and an in-house built VNA with a non-

coherent detection scheme was also presented in Section 3. Due to the architecture of the 

in-house built VNA, the noise performance was sacrificed for an economical and 

compact design. Four different dielectric structures were measured with both systems and 

the complex dielectric constants were evaluated. The dielectric structures that were 

chosen to be measured were high in loss so that the effects of the finite-sized flange could 

be negated (strong attenuation for any fields that propagate to and from the flange edges). 

It was shown that, in general, the two systems were in good agreement in their dielectric 

constant estimations. However, the noisier in-house built VNA consistently produced 

material estimations with larger standard deviations than the 8510C. Regardless, it was 

shown that for open-ended waveguide measurements, the more economical choice 

provided results that were quite similar to the expensive 8510C VNA.  
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6.3. EVALUTION OF THE FINITE FLANGE 

 In Section 4 the effect of the finite-sized waveguide flange was further evaluated. 

Using CST simulations it was shown that both air and conductor-backed structures have 

wave guiding properties. Air-backed dielectric sheets were shown to support surface 

waves along the flange while the conductor-backed structure operated as a parallel plate 

waveguide. Both of these configurations were shown to guide the electromagnetic energy 

toward the edge of the finite-sized flange where a reflected field was generated. The 

reflected field is due to a wave impedance mismatch between the guided fields and those 

radiating away from the flange where the guiding structure is no longer present. 

  In addition, the effect of material properties on these guided fields was evaluated. 

It was shown that the errors introduced in the reflection coefficient by the finite-sized 

flange were strongest for low loss materials. This can be attributed to the fact that higher 

loss materials attenuate the fields that reach and are reflected from the flange edges. 

Similarly, increasing the flange dimensions typically improves the accuracy of the 

measured reflection coefficient, although this improvement is not monotonic with respect 

to flange size. Increasing the flange dimensions requires the guided fields to travel a 

longer electrical distance and to incur more attenuation. However, due to the unique 

interference pattern that is a function of the flange dimensions, the material properties, 

and the operating frequency, the increased flange size does not ensure the reflected fields 

will have a decreased effect on the overall electric field at the location of the waveguide 

aperture.  

 

6.4. MODIFICATIONS TO THE FINITE FLANGE 

 Finally, Section 5 introduced a novel waveguide probe that was designed to 

remove the discontinuity introduced by the finite-sized waveguide flange. The goal of 

this probe was to emulate the electric field distribution as well as the surface current 

density of a waveguide terminated in an infinite flange. The solution presented here 

replaced the standard 90  flange edges with a generally elliptical cross section. The 

resulting elliptical edges operate as a wave impedance transformer, helping to better 
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match the wave impedance of the guided fields with those propagating away from the 

waveguide. Simulated data using CST was presented and showed that this flange 

modification allowed the surface current density as well as the electric field distribution 

in front of the flange to much more closely emulate those of an infinite flange. In 

addition, an optimal axial ratio of the elliptical edges is possible which minimizes the 

RMS error in the reflection coefficient (as a function of frequency). However, this 

optimum axial ratio is dependent on the properties of the material being evaluated. When 

the edges have an axial ratio of 1 (i.e. a circular cross-section) the errors in the reflection 

coefficient are seen to monotonically decrease as the edge radius is increased. Like the 

standard flange, increasing the lateral dimensions of the flange typically improves the 

performance, although it is not a monotonic improvement. This is due to the unique 

interference patterns generated in front of the waveguide flange due to the fields reflected 

from the flange edges. 

 Finally, the advantages of rounding the flange, as were seen in simulated data, 

were confirmed via measurements. Two waveguides with modified rounded flanges were 

machined and used to make reflection coefficient measurements. These measurements 

were compared with a standard waveguide flange as well as a custom, large waveguide 

flange that had standard 90  edges. The two flanges with rounded edges were shown to 

consistently measure the reflection coefficient more accurately (with respect to that 

calculated by the electromagnetic model). Consequently, the rounded flanges provided 

significantly more accurate estimations of the material characteristics. In addition, the 

evaluated material characteristics exhibited a markedly reduced standard deviation. By 

rounding the edges of the waveguide flange, the electric field distribution in front of the 

finite-sized waveguide flange much more closely mimics that of an infinite flange, 

allowing for more accurate reflection coefficient measurements. Consequently, since the 

measurement setup is more accurately described in the electromagnetic model, the 

accuracy by which material properties are characterized is significantly improved. 

 

6.5. FUTURE WORK 

 The novel waveguide probe presented here has many aspects which may be 

refined and tuned to achieve the best possible performance. First, it was shown in Section 
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5 that the electromagnetic fields which are radiated away from the flange are assumed to 

propagate away from the flange without any mechanism to scatter/reflect the fields back 

toward the aperture. However, in practice, it is quite likely that objects will be near the 

waveguide probe or discontinuities in the sample (e.g. sample edges or curvature) may 

generate reflections. Consequently, an absorbing material may be employed near the 

rounded flange edges to dissipate the radiated fields near the waveguide probe before 

they reach a scattering/reflecting discontinuity. 

 Next, it was stated in Section 5 that the modified edge geometry was assumed to 

be identical on all four edges as well as symmetric on the front (plane of the aperture) and 

back (location were feeding waveguide meets the flange) of the waveguide flange. 

However, in order to minimize the dimensions and tune the waveguide flange for a 

specific application, these conditions may be relaxed. For instance, the edges on the back 

of the waveguide flange play a reduced role in the operation of the modified flange 

(shown by the fact that the surface current density on the back of the flange has 

considerably lower amplitude when compared to the front). Consequently, the most 

effective probe geometry may have more gradual edges on the front of the flange than on 

the back of the flange. Simply stated, the volume the flange occupies may be more 

efficiently used if the rounded edges are not assumed to all be identical. 

 Other flange modifications such as a choke on the back of the flange to prevent 

surface currents or corrugating the rounded edges (increase their effective dimensions) 

may provide additional performance improvements. However, any additional flange 

modification is expected to provide marginal improvements as the impedance 

transformation the rounded edges introduce eliminate the most significant reflected 

fields.  
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APPENDIX 

Matlab Code 

 

A.1 INTRODUCTION 

 This appendix contains examples of the Matlab
® 

programs detailed in this thesis. 

The object, nlayer, that is used in the noise simulations contains the solver for the 

electromagnetic model [28] as created by Dr. Mohammad T. Ghasr and refined by Dr. 

Toby Case. The program outlining the procedure to control CST via Matlab
®
 has been 

generalized but could be employed with an arbitrary number of for loops to step multiple 

parameters through an arbitrary number of values.  

 

A.1.1 Matlab Script for Evaluating Uncertainty Introduced by Measurement Noise. 

clear all; close all; clc; 

  
% Set number of frequencies and noise power in dB 
NF = 21; 
NoisePower = [-50] 

  
% Convert dB noise power to linear 
NP = 10.^(NoisePower./10); 

  
% Define layer(s) whose properties are to be evaluated 
Layer = [1]; 

  
% Set start and stop frequencies in GHz 
F_Start = 8.2; 
F_Stop = 12.4; 

  
% Set permitivity and loss tangent(s) 
Erp = 5; 
tand = [0.2]; 

  
% Set Thickness(es) as fraction of mid-band wavelength in material 
Thickness = [0.25] 

  
% Calculate mid-band wavelength in mm 
Lambda = 3e11/((F_Start+(F_Stop-F_Start)/2)*1e9*sqrt(Erp)); 
Thickness = [0.25]*Lambda 

  
% Set convergence tolerance for permittivity (delta mean and delta 
% standard deviation) 

  
meantol = 0.005*Erp 
stdtol = 0.005*Erp 
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% Set minimum number of trials 
mintrials = 480 

  
% Set number of consecutive trials that must pass convergence  
% criteria AFTER the minimum number of trials has been satisfied. 
numconvergecheck = 20 

  
%Set NLayer convergence criteria 
NL_ConergeTestTol = 1e-3; 

  
% Set fminsearch tolerances and maximum number of  
%iterations/evaluations. 
opt = optimset('TolFun',1e-6,'TolX',1e-6,'Display','iter',... 
                'MaxIter',1e3,'MaxFunEvals',1e3); 

  

       
% Define Frequency vector 
F =  linspace(F_Start,F_Stop,NF); 

  
% Generate noise to add to S11 
rnoise = sqrt(NP/2).*randn(NF,1)+1i*sqrt(NP/2).*randn(NF,1); 

  
% Set trial counter to 1. 
iT = 1; 

  
% For loop to set through thicknesses (if vector) 
for iTK = 1:length(Thickness) 

     

     
    % For loop to set through loss tangents (if vector) 
    for iTD = 1:length(tand) 

  
        % Define Nlayer object with specified parameters and 6 modes. 
        NL = nlayer('x',F,[Erp-1i*Erp*tand(iTD)],[Thickness(iTK)],3,2); 

         
        % Set starting value for # of Gaussian Intergration points. 
        NL.DesiredNumRho = 100; 
        NL.ConvergeTestTol = NL_ConergeTestTol; 

         
        % Run NLayer convergence test. 
        NL.ConvergeTest(); 

         
        % Store number of Gaussian Intergration points required for 
        %convergence. 
        NL_NumRho(iTK,iTD) = NL.DesiredNumRho; 

         
        % Store the calculated reflection coefficient. 
        ActualRef(:,iTK,iTD) = NL.CalcRef(); 

         
        % Plot calculated reflection coefficient on complex plane. 
        figure() 
        plot(ActualRef) 
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        hold on 
        zplane([]) 

         
        % For loop to set noise power (if vector) 
        for iN = 1:length(NoisePower) 

             
            % Clear the exit flag 
            exitflag = 0; 

             
            % Clear the convergence counter 
            convergecounter = 0; 

             
            % While loop for convergence of results. 
            while (exitflag ~= 1) 

                 
                % Create complex noise vector for specific trial. 
                rnoise = sqrt(NP(iN)/2).*randn(NF,1)... 
                    +1i*sqrt(NP(iN)/2).*randn(NF,1); 

                 
                % Store noise vector to it is accessible  
                %after simulations. 
                noise(:,iT,iTK,iTD,iN) = rnoise; 

                 
                % Contaminate actual ref. coefficient with noise. 
                NoiseRef(:,iT,iTK,iTD,iN) = ActualRef(:,iTK,iTD)... 
                    +noise(:,iT,iTK,iTD,iN); 

                 
                % Create NLayer object and make it identical to  
                % that which was used to calculate the  
                %actual ref. coef. 
                NL = nlayer('x',F,[Erp-1i*Erp*tand(iTD)],... 
                                            [Thickness(iTK)],3,2); 
                NL.DesiredNumRho = NL_NumRho(iTK,iTD); 

  
                % Find the complex dielectric constant with noisy 
                % Reflection coefficient as the given ref. 
                NL.FindErF(NoiseRef(:,iT,iTK,iTD,iN),1,[1,1],opt) 

                 
                % Store the evaluated dielectric constant. 
                Er(:,:,iT,iTK,iTD,iN) = NL.Er; 

  
                % Clear object for next trial. 
                clear NL 

  
                % Create temporary matrix containing Complex   
                % dielectric value from every trial. 
                clear tempEr 
                tempEr = squeeze(Er(:,1,1:1:iT,iTK,iTD,iN)); 

  
                % Calculate average and Std of permittivity for each 
                % frequency across the trials. 
                meanEr(:,iT,iTK,iTD,iN) = mean(real(tempEr),2) 
                stdEr(:,iT,iTK,iTD,iN) = std(real(tempEr),0,2) 
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                % Plot the average and std permittivity values for  
                % each trial iteration. 
                figure(2) 
                subplot(2,1,1) 
                plot(linspace(1,iT,iT),squeeze(... 
                    meanEr(:,1:1:iT,iTK,iTD,iN)),'o-') 

                 
                subplot(2,1,2) 
                plot(linspace(1,iT,iT),squeeze(... 
                    stdEr(:,1:1:iT,iTK,iTD,iN)),'o-') 

                 
                % Plot the current uncertainity errorbars for  
                % permittivity 
                figure(3) 
                errorbar(F,real(meanEr(:,iT)),std(real(squeeze(... 
                    Er(:,1,:))),0,2)*3,... 
                    -3*std(real(squeeze(Er(:,1,:))),0,2)) 
                drawnow; 

                     
                % If mintrials are reached, check convergence  
                % criteria and make appropriate update  
                % to check flags. 
                if (iT>=mintrials) 
                    deltamean(:,iT,iTK,iTD,iN) = abs(... 
                        meanEr(:,iT,iTK,iTD,iN)-... 
                        meanEr(:,iT-1,iTK,iTD,iN)) 

  
                    deltastd(:,iT,iTK,iTD,iN) = abs(... 
                        stdEr(:,iT,iTK,iTD,iN)-... 
                        stdEr(:,iT-1,iTK,iTD,iN)) 

  
                    if ((deltamean(:,iT,iTK,iTD,iN) <= meantol)... 
                            &(deltastd(:,iT,iTK,iTD,iN) <= stdtol)) 

                         
                        convergecounter = convergecounter + 1; 
                    else 
                        convergecounter = 0; 
                    end 

  
                    if (convergecounter > numconvergecheck) 
                        exitflag = 1; 
                    end  

  
                end 

                 
                % Increment the trial counter. 
                iT = iT+1; 

                 
            end 

             
        % Clear the trial counter. 
        iT = 1; 

         
        % Save the current data. 
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        save('NoiseSensitivity_Erp5_CB3Lossy.mat') 
        end 
    end 
end 

 

 

A.1.2 Example of Controlling CST via a COM Server 

clear all; close all; clc; 

  
% CST Model Filename 
CSTFile = 'Filename_of_CST_model.cst');    

  
% Filename for S-Parameters 
SParameterFile 'Filename_for_SParameters.s1p');  

  
% Set values for CST parameters that should be changed. 
CST_Parameter1_Value = 1.000; 
CST_Parameter1_Value = 22.86; 

  
% Open CST via COM Interface 
cst = actxserver('CSTStudio.Application');       

  
% Open specified CST Project 
project = cst.invoke('OpenFile',CSTFile);       

  
% Using current project, create solver object 
solver = project.invoke('FDSolver');           

  
% Define results object for Touchstone (.s1p)                                    
results = project.invoke('TOUCHSTONE');       

  
% Do not renomalize S-Parameters to 50 Ohms 
results.invoke('Renormalize','False');        

  
% Using project object, update necessary parameter values 
project.invoke('StoreParameter','CST_Parameter1',CST_Parameter1_Value); 
project.invoke('StoreParameter','CST_Parameter2',CST_Parameter2_Value); 

  
% Rebult CST Model to update the parameters. 
project.invoke('Rebuild'); 

  
% Start simulation with settings defined in CST Model. These settings 
% are the frequencies, adaptive meshing settings, convergence critera, 

etc. 
solver.invoke('Start'); 

  
% When simulation is finished, set location for exporting S-Parameters. 
results.invoke('Filename',SParameterFile); 

  
% Export S-Parameters to location set in previous step. 
results.invoke('Write'); 
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