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ABSTRACT

This thesis involves the implementation of a Kalman filter for the application

of echo cancellation. This particular Kalman filter is implemented in the frequency

domain, in subbands, so as to make it faster and of lesser calculational complexity

for real time applications. To evaluate the functioning of this subband Kalman filter,

comparison of the performance of the subband Kalman filter is done with respect to

the original time domain Kalman filter, and also with other subband adaptive filters

for echo cancellation such as the NLMS filter. Additionally, since background noise

affects the working of any adaptive filter, the newly developed subband Kalman filters

performance at different noise conditions is compared, and an attempt to keep track

of and predict this noise is also performed.
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1. INTRODUCTION

1.1. THE ECHO CANCELLATION PROBLEM

In telephony, the near end speakers echo is the time delayed version of the

speakers signal transmitted to the far end speaker, which is received along with the

far end speakers signal as noise. There are two major types of echo:

1. Hybrid echo: This type is due to different electrical connections of the telephonic

system between the two speakers- for all purposes of this thesis, it is assumed

that this type of echo does not exist.

2. Acoustic echo: The more common type of echo in a phone call between two

speakers is the acoustic echo, which occurs due to the near end speakers voice

getting reflected across the receiving far end speakers surrounding and then

returning back to the near end speaker as unwanted noise. The work of this

thesis focuses on this type of echo.

The illustration of acoustic echo formation is as shown in Figure 1.1.

Figure 1.1. Illustration of acoustic echo
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1.2. MMSE ADAPTIVE FILTER THEORY

The process of acoustic echo cancellation involves the determination of the

acoustic echo path.. This section will give a brief overview of adaptive filter theory,

focusing on the filters that use the minimization of the mean square error (MMSE)

criterion as the condition for their optimality, since MMSE based linear filtering is

simple, elegant, involves only second order statistics, and is useful in many practi-

cal applications[1]. The least square error approach of the Wiener filter is studied

first, then its solution is extended to the normalized mean square error (NLMS) and

Kalman filter algorithms.

1.2.1. MMSE Estimators. The block diagram for estimation using adap-

tive filters is as shown in Figure 1.2. The definition of the signals used in figure 1.2

is done in the context of a general estimator being used for the application of echo

cancellation.

Figure 1.2. Block diagram for MMSE estimator adaptive filters
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With reference to Figure 1.2, the following can be defined at any given point

of time n:

1. Far end signal: x(n) is the far end signal,which when reflected around the

acoustic environment of the near end speaker then becomes the echo signal.

2. Echo path: h(n) is the echo path of the near end speaker and effectively acts as

a tapped filter, which delays the far end signal x(n) to produce the echo signal.

The echo path is the unknown system to be estimated.

3. Echo signal: y(n) is the echo signal produced when the far end speaker’s signal

goes through the echo path.

4. Background noise: v(n) is the background noise, which is usually the near end

speakers’ signal, which gets added to the echo signal and needs to be taken into

consideration when calculating the estimate of the echo path.

5. Measured signal: d(n) is the measured signal, which is the addition of the echo

signal and the background noise.

6. Echo path estimate: ĥ(n) is the estimate of the echo path that is calculated by

the MMSE filter.

7. Estimate signal: ŷ(n) is the estimate signal obtained by passing the far end

speaker’s signal through the estimate of the echo path.

8. Error signal: e(n) is the difference between the actual measured signal and the

estimated signal.

Optimal signal estimation involves the successful estimation of the unknown

quantity or signal h(n) (in this case the echo path) using data from other related

signals of interest, namely input signal x(n) and unknown systems output or echo
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signal y(n). All these algorithms work on minimizing the square of the error signal

e(n) i.e. to minimize the difference between the signal estimate and the actual signal.

Another important factor that influences the performance of the estimator is the

measurement or background noise that is added to the output signal, v(n).

MMSE estimators, such as the Wiener filter, are single value estimators,which

looks at the entire history of the present and past samples of input data to make a

single ensemble estimation at the present instance of time.

MMSE estimators such as the least mean squares filter(LMS), are time value

estimators, which means that at every given instant of time, the estimate of the

unknown variable is estimated and updated on the existing present and past values

of input data. Such estimators are also known as recursive mean square estimators.

Depending on whether the estimators are ensemble estimators or recursive

estimators, ĥ as the estimate of h(n), is either predicted once based on the causal

history of the data, or is estimated at every time value iteration by a two-step process

of prediction and update based on certain parameters. The difference in the update

equations is what gives rise to the different types of MMSE adaptive filters, which

are further discussed in detail in the following sections.

1.2.2. Echo Cancellation Signal Equations. This section looks at the

context and usage of the defining equations for the various signals that were defined

in the previous section. With reference to Figure 1.2, at any given dicrete time index

n, the acoustic echo path of the near end speaker, of length L is given by

h = [h0 h1 h2 h3... hL−1]
T (1.1)

The latest L number of samples of the input signal which then go through the

echo path or the far end signal vector are then given by 1.2 below.



5

x(n) = [x(n) x(n− 1) x(n− 2) x(n− 3) ... x(n− L+ 1)]T (1.2)

The echo signal of the far end speaker is given by

y(n) = xT (n).h (1.3)

Let v(n) be the background noise or the near end speaker’s signal accord-

ingly(during the scenario of double talk, v(n) will be the near end speaker’s signal

[2], else v(n) is background noise, generally white Gaussian noise) at the time instant

n, whose variance is given by σ2
v(n). Then the total microphone signal is given by

d(n) = y(n) + v(n) (1.4)

The goal of the echo canceller MMSE adaptive filter is to estimate the echo

path h as

ĥ = [ĥ0 ĥ1 ĥ2 ĥ3 ˆhL−1]
T (1.5)

The estimated echo signal is then calculated as

ŷ(n) = xT (n).ĥ(n) (1.6)

The error between the estimated echo and the actual echo is the residual error,

given by

e(n) = d(n)− ŷ(n) (1.7)

This error needs to be subject to the MMSE condition, which will be discussed

in the next subsection.
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1.2.3. Principle of Orthogonality. the cost function for the optimization

of the MMSE estimator, J , is chosen to minimize the mean square error, and with

reference to 1.7, is given by

J = E[|e(n)2|] (1.8)

where E denotes the expectation operator, and || refers to the magnitude.

In order to minimize this cost function, a gradient operator ∇ is defined on

the basis of the coefficients of the filter. Hence, for the ith filter coefficient, hi,

∇i =
∂

∂hi
(1.9)

Applying the gradient vector ∇ to the cost function J , the gradient vector

∇.J is obtained, and is given by

∇iJ =
∂J

∂hi
(1.10)

To minimize the cost function, the elements of the vector in 1.10 must all be zero at

once, ie

∇iJ = 0εi = 0, 1, 2, 3... (1.11)

Hence, to minimize the cost function J , with regards to 1.7, simplifying the

partial derivatives results in the following equation solution [3] at any given time

instant n:

∇iJ = −2E[x(n− i)e∗(n)] (1.12)
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which when equated to 0, specifies the operating conditions required for the

minimization of the cost function J as

E[x(n− i)e∗(n)] = 0εi = 0, 1, 2, 3... (1.13)

This is known as the principle of orthogonality, since two signals are known as or-

thogonal signals when the correlation between them is zero, and here the condition

for optimal linear filtering is that the estimated error is orthogonal to all L input

samples that are involved in the estimation of the echo path at any given instant of

time n.

1.2.4. Assumptions and Limitations. Before looking into the different

MMSE estimators, it is important to note some of the assumptions and limitations

being taken into account during the development of the Kalman filter.

1. The measurement noise or background noise is assumed to be zero mean, white

gaussian noise ( except in the case of double-talk scenario, which will be dis-

cussed later on in this thesis).

2. The study of estimators is limited to discrete time, linear, causal finite impulse

response response (FIR) estimators.

3. The echo paths that are being estimated by the MMSE estimators in this thesis

are wide sense stationary(WSS) as well as slowly changing non stationary echo

paths.

1.2.5. Wiener Filter. Expanding on the equation for the principle of or-

thogonality, 1.13, with Rex(n) = E[x(n − i)e∗(n)] as the cross correlation between

the error signal and the input signal at any given time instant n and for a given filter

coefficient m, the following can be deduced with the help of equation 1.7.
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Hence, the deduced equation at any given instant of n for the cross correlation

now looks as shown below:

Rex(n) = E[x(n− i)e∗(n)] = E[x(n− i)(ŷ(n)− y(n)]

Simplifying the above solution results in the expression shown in 1.14 given

below:

Rŷ(n)x(n) = Ryx(n) (1.14)

where R ˆy(n)x(n) is the correlation between the input signal and the estimated echo

signal.

From observing equation 1.14 and noting that the estimated output ŷ(n) is calculated

by passing the input signal x(n) through the estimated echo path impulse response

ĥ(n), the following relationship can be obtained for a particular filter coefficient at

any given instant of time n [4] :

ĥ(n) ∗Rxx(n) = Rŷ(n)x(n)

which for all L coefficients of ĥ becomes

L∑
i=1

ĥi(n) ∗Rxx(n) = Ryx(n) (1.15)

Solving for ĥ(n), equation 1.15 then becomes

L∑
i=1

ĥi(n) =
L∑
i=1

Rxx(n− i)−1Ryx(n) (1.16)

Hence, it is seen from equation 1.16 that the estimated echo path ĥ at any given

instance of time n depends on the cumulative correlation matrices Rxx and Ryx until

that instance of time n.

1.2.6. The LMS Algorithm. The Wiener filter, as seen in the previous

subsection, gives an estimate of the echo path at any given instance of time n, not

as a recursively updating estimate value but a single ’true’ estimate based on the
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ensemble values of the correlation matrices of the input signal and the estimated

output up until the present instance of time n.

At any given instant of time n, therefore,the equation 1.16 can then be rewrit-

ten as an equation of vectors, as shown in 1.17.

ĥ(n) = Rxx
−1.Ryx. (1.17)

The LMS algorithm ( and any recursive adaptive filter for that matter) starts

with an initial guess of the echo path estimate, usually with the initial value ĥ(n) = 0,

and then obtaining better approximations by taking steps in the direction of the

negative gradient of the mean square error [1]. This means that the LMS algorithm

uses the method of steepest descent to iteratively optimize the cost function,ie, to

minimize the mean square error. To make this an adaptive procedure, the ensemble

values of Rxx and Ryx are replaced with their instantaneous estimates, given by

x(n).xH(n) and x(n).y∗(n) respectively.

The illustration of the steepest descent algorithm is as given in Figure 1.3.

Figure 1.3. Steepest descent illustration
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Hence, using the concept of the steepest descent to the cost function J from

1.10,The update equation of the echo path estimate simplifies to 1.18.

ĥn+1 = ĥn − µ
∂J

∂hn

(1.18)

Substituting from 1.12 into 1.18, the equation for the iterative echo path esti-

mate is obtained as shown in eq 1.19 as:

ĥn+1 = ĥn + 2µx(n)e∗(n) (1.19)

where µ is the adaptation rate or adaptive step size.

1.2.7. NLMS Adaption Step Size Considerations. The step size µ gen-

erally can take values in the range 0 < µ < 2/max(x(n).xH(n)). This means that

the correlation of the input signal x plays an important role in the performance of

the LMS algorithm. The step size µ is chosen, taking into account the following:

1. A smaller step size decreases the convergence speed of the adaptive filter, but

ensures lower values of residual steady state error.

2. A larger step size will reduce the time taken by the adaptive filter to converge,

but too large a step size can cause the adaptive filter to become unstable and

result in large residual steady state error.

It is also to be noted that µ is generally a constant, for all the L coefficients of

the echo path estimate ĥ, and in general, for all the iterative updates that the filter

performs to obtain the optimal soultion of the echo path estimate, µ is a constant

unless the adaptive filter is designed to be a variable step size adaptive filter.
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1.2.8. Normalized LMS. As seen in the previous subsection, the perfor-

mance of the regular LMS algorithm is highly sensitive to the power of the input

signal. This can be avoided by normalizing the correlation matrix of the input signal

and the error signal, with respect to the energy of the input signal. Thus, when

normalized, the equation of the normalized LMS ( NLMS) algorithm becomes:

ĥn+1 = ĥn +
µ̃

‖ x(n) ‖)2
x(n)e∗(n) (1.20)

where || denotes the L2 norm.

In order to avoid division by zero, the above equation 1.20 is altered slightly

to become

ĥn+1 = ĥn +
µ̃

δ+ ‖ x(n))2 ‖)
x(n)e∗(n) (1.21)

where δ is a small positive constant. It is also important to note that the new

adaptive step size µ̃ is now independent of the input signal eigen values, and hence,

has a range between 0 < µ̃ < 2.
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2. TIME DOMAIN KALMAN FILTER

2.1. NEED FOR KALMAN FILTERING IN ECHO CANCELLATION

The MMSE estimators discussed in the previous sections perform well in the

scenario of stationary problems, which means that for the previously described esti-

mators, the echo path is modelled as a stationary process, whose mean and variance

do not change with time. Unfortunately, an echo path in reality, does tend to change

over time, due to various factors such as the movement of the speaker, temperature

changes,etc.

Since these echo paths, usually modelled as the coefficients of an FIR filter,

are dependent on various factors of the acoustic environment, are better modelled as

slowly varying non stationary processes. The Kalman filter, which can track trajec-

tories of moving objects such as missiles etc [5], is more suited for a non stationary

process such as an acoustic echo path. The Kalman filter, when derived with the

appropriate simplifications and approximations,also offers good convergence features

and moderate computational complexity. [6]

2.2. STATE VARIABLE MODEL

This section outlines the state variable equations for the general Kalman filter

(GKF), as described in [6].

For the general Kalman filter, if the P most recent time samples of the micro-

phone signal are considered, then the far end signal is a matrix of size LXP , given

by

X(n) = [xn xn−1 xn−2 xn−3... xn−P+1]
T (2.1)
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However, to reduce the calculational complexity, P is assumed to be 1, and

hence, 2.1 becomes equivalent to equation 1.2. The equations for the microphone

signal, near end noise signal and the error signal remain the same as discussed in

section 1.2.1.

As mentioned earlier, the echo path is modelled as a slowly varying process,

following a first order Markov model. A first order Markov model is a model of a

probabilistic process that, at any given instance of time, depends on its penultimate

time instance value. Putting this in terms of the current time instance n, the echo

path equation is then modelled as

h(n) = h(n− 1) + w(n) (2.2)

where w(n) is, for all practical purposes, white zero mean gaussian noise, called the

process noise. This process noise, with variance σ2
w(n), is important in capturing the

uncertainties of h(n) [6], and will be discussed in future chapters.

2.3. GENERAL KALMAN FILTER DESIGN EQUATIONS

This section derives the equations of the general Kalman filter, as described in

[6]. Using all the same signal notations defined in section 1.2.1,the optimum estimate

of the echo path, ĥ(n) using the Bayesian approach is given as follows [1]:

ĥ(n) = ĥ(n− 1) + K(n).e(n) (2.3)
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where K(n) is the update factor known as the Kalman gain matrix, and e(n)

is the apriori error signal, given by

e(n) = d(n)− xT (n).ĥ(n− 1) (2.4)

It is to be noted that the error e(n) in equation 1.7 is called the aposteriori error-the

apriori error at any instant of time n is calculated using the estimate of the previous

time instant n− 1.

The state estimation error or aposteriori misalignment is given by

µ(n) = (h)(n)− (ĥ)(n) (2.5)

The correlation of the state estimation error Rµ at any given instant of time

n is given by

Rµ(n) = E[µ(n).µT (n)] (2.6)

The state estimation error ie the difference between the actual echo path and

the estimated echo path is required to derive the Kalman gain.The apriori state

estimation error is hence given by

m(n) = (h)(n)− (ĥ)(n− 1) (2.7)

and the correlation of the apriori state estimation error m(n) is given by

Rm(n) = E[m(n).mT (n)] (2.8)
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The relation between the apriori misalignment correlation at any given instant

of time n with the aposteriori misalignment correlation at the previous time instant

n− 1 is given by

Rm(n) = Rµ(n− 1) + σ2
w(n) (2.9)

The solution of the Kalman gain matrix involves minimizing the below cost

function J(n) with respect to K(n), which is nothing but the MMSE optimal estima-

tor criterion.

J(n) =
1

L
.tr(Rµ(n)) (2.10)

where .tr is the trace. Hence, the Kalman filter gain matrix is found to be

K(n) = Rm(n).x(n)[xT (n).Rm(n).x(n) + σ2
v(n)]−1 (2.11)

However, the correlation of the apriori error signal defined in equation 2.4 at any

instant of time n, can be expressed in terms of the correlation of the apriori misalign-

ment defined in equation 2.9 at the previous time instant n− 1, as

Re(n) = xT (n).Rm(n).x(n) + σ2
v(n) (2.12)

Hence, substituting equation 2.12 into the equation for Kalman gain matrix 2.11

yields

K(n) = Rm(n).x(n).Re
−1 (2.13)
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After calculating the Kalman gain for the current iteration,the aposteriori

misalignment is then updated as

Rµ(n) = [IL −K(n).xT (n)].Rm(n) (2.14)

2.4. SUMMARY OF EQUATIONS

The following steps, followed in order, summarize the operation of the Kalman

adaptive filter algorithm for echo cancellation, going through the iterative process of

prediction and update.

1. for the time instant n = 0, initialise (ĥ)(0) = 0, Rµ(0) = 0 and Rm(0) = ∆.IL,

where ∆ = .00001 is a small normalizing factor, and IL is an identity matrix of

size LXL where L is the length of the echo path.

2. Update Rm as per the below equation:

Rm(n) = Rm(n− 1) + σwIL (2.15)

where σw is the process noise variance.

3. for the next instant of time n, calculate the correlation of the apriori error

signal, Re(n), given by equation 2.12.

Re(n) = xT (n).Rm(n).x(n) + σ2
v(n) (2.16)

4. The residual error after passing the far end signal through the echo path estimate

is then calculated as

e(n) = d(n)− xT (n).(ĥ)(n− 1) (2.17)
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5. Using the value of Re(n) calculated in the first step, the Kalman gain matrix

is calculated as

K(n) = Rm(n).x(n).Re
−1 (2.18)

6. The estimate of the echo path is then updated as follows:

ĥ(n) = ĥ(n− 1) + K(n).e(n) (2.19)

7. The aposteriori error correlation is then updated for use in the next iteration

n+ 1 as

Rµ(n) = [IL −K(n).xT (n)].Rm(n) (2.20)

8. Go back to step 1 and repeat the prediction update iteration process for the

next time instant n+ 1 with the updated values of ĥ and Rµ calculated in the

previous steps as the initial values for the following iterations.
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3. THE THEORY OF SUBBANDING

As discussed earlier in previous chapters, the features of an acoustic echo

path in a dynamically changing environment are not so easy to model- many chal-

lenges involved include the fact that sometimes, the echo paths are of really large

lengths(typically of length 125ms or more). Also, as mentioned earlier, the echo path

is not a stationary statistic process, but has often and sometimes drastic changes in

its coefficients.

These long and fast changing echo paths make the traditional echo cancellation

algorithms such as the NLMS algorithm ineffective in a dynamically changing acoustic

echo path environment. The Kalman filter is an upgrade to the NLMS, and is much

more capable at handling the issues caused by long and fast changing echo paths. The

concept of subbanding, [7] further helps ameliorate the problem of a non stationary

acoustic echo path scenario, and this chapter will discuss the concept of frequency

subbanding for the purpose of echo cancellation. The subband acoustic echo canceller

shown in figure Figure 3.1 is based on the subband approach proposed by Kellermann

in [8].

The subband echo canceller shown in figure Figure 3.1 involves splitting the

input and desired signals into several smaller signals, and then applying echo cancel-

lation techniques on each of the smaller signals. The input and desired signals are

first filtered into subbands, using an analysis system. The echo cancellation is then

performed on each of the subbanded signals individually, after which the individual

residual errors of each subband are then reconstructed into a single residual error

signal using the synthesis system. The entire sequence of events in the process is

referred to as the analysis-synthesis system (ASS) [7].
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Figure 3.1. Illustration of subbanding operation

The analysis or subbanding system consists of a bank of filters, which are

modulated versions of a low pass prototype filter [9]. The input and desired signals

are subsampled or downsampled and filtered using these analysis system filter banks,

after which the echo cancellation would take place. The filter banks work by dividing

the frequency spectrum of the signal into K subbands between 0 and 2π radians,

with a subsampling factor of R. Since the frequency bands above π radians are

complex conjugates of those below π radians, only K/2 frequency bands need adaptive

filters, since the remaining bands can be calculated by taking the respective complex

conjugates. K and R are selected based on a number of criteria. Increasing the value

of K will increase the overall delay, and downsampling will lead to aliasing, which is

why the value of the downsampling factor R chosen is also important. R is preferred

to be as large as possible, since the higher the downsampling, lower is the complexity

of the subband processing (echo cancellation), and downsampling with subbands of

bandwidth 2π/R reduces the spectral dynamics of the input speech signal, making
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the eigen spread of the input signal similar to that of white noise [8], which helps

improve convergence of the subband adaptive filters. The synthesis or reconstruction

system involves recombination of the residual error signal for each subband into a

single whole residual signal, by a summation of an interpolated and filtered version of

each of the subband residual error signals. The working of the analysis and synthesis

filterbank will be discussed in more detail in the following chapters.

The primary advantage of subbanding is that the operation of each of the

adaptive filters in each subband are independent of each other. Hence, subbands

which have low energy signal components converge at approximately the same rate

as those with high energy signal components. Hence, the overall convergence speed

increases. Another factor that helps increase convergence speed is that since the

number of taps of the adaptive filters to be estimated in the subbands is reduced

by a factor of R, the time taken to converge also reduces. However, the effect of

this factor is negated by the fact that the adaptive filters are now updated only 1/R

times as often, reducing the overall speed of convergence.The other main advantage of

the subbanding is reduced computational complexity, since the number of taps to be

estimated reduces from quite a large number (1024 or greater) to much smaller number

of taps depending on the number of subbands chosen. Another secondary advantage

of subbanding is that acoustic echo paths of rooms will have different lengths for

different subbands, and hence, the length of the adaptive filters used to estimate the

subbands can be varied to match the expected echo path of that subband, further

leading to computational efficiency.

As mentioned earlier, the major disadvantage of subbanding is the additional

delay caused by the filtering operations performed by the analysis filters and the syn-

thesis filters, which add some overhead to the delay due to the process of adaptive

filtering itself. The amount of delay is propotional to the number of subbands. An-

other disadvantage of subbanding is that the stopbands of different subbands can alias
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and leak into other subbands,interfering with the convergence of that subband, by re-

ducing the attenuation of the stop band in question, which introduces aliased signals

as well as noise into the subband and hinders convergence of the error. Analytical

filter design is required to overcome this problem. Another important but overlooked

issue with subbanding is that of the introduction of leading taps. As mentioned in

[8], downsampling and low pass filtering to subbands can cause the adaptive filters

in the subbands to become non-causal, and in order to avoid this, inducing delays

into the echo path may become necessary, which further add to the overhead in the

delay caused by the subbanding system. However, the acoustic echo path usually

gains this delay due to the distance between the far end loudspeaker and the near

end microphone. Hence, these effects can be overlooked if there is enough distance

and hence delay between the far end and near end.
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4. SUBBAND ANALYSIS AND SYNTHESIS FILTERS

This chapter of the thesis looks at the equations and working of the filters

used in the process of subbanding, the analysis filters and the synthesis filters.

4.1. ANALYSIS FILTERBANK

Following the equations in [9], the signal in a subband m, denoted as xm(k),

is calculated by filtering and downsampling of the full length signal x(n), given by

xm(k) =
K−1∑
l=0

fm(l).x(rk − l) (4.1)

with the subband filter for the mth subband denoted by fm(n) of length K

and the downfactoring or subsampling factor is R. These filters fm(n) are modulated

versions of the analytically designed prototype filter f(n). The vector representation

of the subband filters can be expressed as fTm = wT
m.F, where

fm = [fm(0) fm(1) fm(2) ... fm(K − 1)]T (4.2)

wm = [1 e
j.2π.m
M

(1) e
j.2π.m
M

(2) ... e
j.2π.m
M

(M−1)]T (4.3)

F = [diag(̃f0) diag(̃fM) ... diag(̃fK−M)] (4.4)
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where diag denotes a diagonal matrix. The representation of the diagonal

matrix is given as per 4.5 below.

diag(̃fi) =


f(i) ... 0

: ... 0

: ... f(i+M − 1)

 (4.5)

The signal can then be subsampled by a factor of R, and only one sample

every R sample periods would be required to obtain the subband signals [10]. This

R number of samples constitute what is called a frame [9]. The fullband input vector

signal for a frame k is defined as

x(k) = [x(rk) x(rk − 1) ... x(rkK + 1)]T (4.6)

Now, the set of modulation vectors for the M subbands can be cumulatively

represented by a modulation matrix, W, given by

W = [w0 w1... wM−1]
T (4.7)

The M subband samples for a given frame k can be calculated as

[x(rk) x(rk − 1) ... x(rkK + 1)]T = WFx(k) (4.8)

From 4.5, it can be seen that F is a sparse matrix, hence Fx(k) from equation

4.8 can be calculated using K real multiplications. Also, with respect to the definition

of the inverse discrete Fourier transform (IDFT), W/M is the inverse DFT matrix.

Hence, the computationally efficient way of calculating the subband samples at frame

number k according to 4.8 is to first use K multiplications to calculate Fx(k), then

taking the inverse discrete fourier transform of Fx(k), and dividing by M .
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The concept of the subbanding can be better understood by looking at what

goes on in any one subband m, depicted in figure Figure 4.1.

Figure 4.1. Block diagram of mth subband analysis filter

As seen in Figure 4.1, the input signal x(n) is modulated in the mth subband

by multiplying it by e−j2πmn/M , after which the modulated signal is low pass filtered

using the subband filter ga, to produce the subband signal xm(n), which is then

downsampled by a factor of R to give the downsampled signal xm(k) at frame k.

4.2. SYNTHESIS FILTERBANK

The synthesis filterbank is used to reconstruct the error signals from the var-

ious subbands to obtain the cumulative residual error signal. The general structure

of the synthesis filterbank is as shown in figure Figure 4.2. The signals being re-

constructed are the error signals in each of the subbands obtained after the echo

cancellation operation is performed in each of the subbands. As seen in figure Fig-

ure 4.2, em(k) is upsampled by a factor of R, by the insertion of R− 1 zeros between

each sample of em(k), resulting in ėm(n). This creates duplicate images of em(k) in

the frequency domain, which is why the signal ėm(n) is then low pass filtered using

the reconstruction filter g(s) to eliminate these images. Then the modulation of ėm(n)
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by multiplying by fm(n) to shift it back up by m subbands, to obtain e′m(n). fm(n)

is given by

fm(n) = ej2πmn/M (4.9)

Then, all the processed subband signals at that instant of time n are summed

together to obtain the reconstructed signal as

en =
M−1∑
m=0

e′m(n) (4.10)

The filtering operation can be performed using a form II FIR structure, how-

ever, for reducing the amount of delay overhead involved in the subbands, a transpose

form II FIR structure is chosen, as shown in figure Figure 4.3.

Figure 4.2. Block diagram of mth subband signal’s synthesis filter
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Figure 4.3. Transpose form II FIR structure

The equations of the above configuration are better explained using state vec-

tors, as explained in [9]. The state vector of a subband m,for the above configuration,

for a given frame k, smk which is L values long, (L being the length of the recon-

struction filter, can be defined for the sake of convenience into two vectors, an upper

vector of length R and a lower vector of length L− r, written as

sm(k) =

sum(k)

slm(k)

 (4.11)

where the upper state vector sum(k) is given by

sum(k) = [sm,0(kr) ... sm,r−1(kr)]
T (4.12)

and the lower state vector slm(k) is given by

slm(k) = [sm,r(kr) ... sm,K−1(kr)]
T (4.13)
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Now, a frame k consists of R samples, hence, in the fullband, R samples can be

calculated at a time, by summing the upper state variables of the state vector, which

contain the most recently calculated values. These R values calculated are given by

[e(kr − r + 1) e(kr − r + 2) ... e(kr)]T =
M−1∑
m=0

r−1∑
u=0

sum,r(k) (4.14)

Now, due to interpolation, every subband error sample will be followed by

R − 1 zeros, and for these R − 1 time samples, the state vector will only undergo a

time shift, hence, R− 1 time shifts will occur before the next R fresh samples of the

fullband signal are calculated. Similar to the analysis filters, the modulated versions

of the synthesis filter, g(n), are given by the filter vector (for a particular subband

m) as

gm = [gm(0) ...gm(K − 1)]T = Gwm (4.15)

where G is a sparse matrix defined as

G = [diag(g̃0) diag(g̃M) ... diag(g̃K−M)] (4.16)

and the diag function is defined in equation 4.5. As mentioned earlier, the state

vector is shifted by r − 1 positions (one time delay or time shift per time sample)

and then added to the modulated input subband sample. The whole process can be

represented by the following equation:

sm(k) =

sml (k − 1)

0r

 + Gwmem(k) (4.17)



28

The sum of state vectors, or vector of all subband state vectors, can similarly

be defined as

s(k) =

sl(k − 1)

0r

 + GWesub(k) (4.18)

where W is defined in equation 4.7 and esub(k) at any given frame k is given

by

esub(k) = [e0(k) e1(k) ... eM−1(k)]T (4.19)

The above equation, eq 4.19, represents the system in Figure 4.3. esub(k) will

only be non zero every r samples, hence for the remaining R − 1 samples, there is

only time shifting of the state vector s(k). At the end of every frame k, the first

R samples of the state vector s(k) are obtained as the newly calculated n − R to n

samples, where n is the time instant for the full band vector. It is to be noted that

the prototype analytical filter and synthetic filter were designed as a minimization

problem solved using quadrative programming as described in [9].
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5. SUBBAND ADAPTIVE FILTERS

This section of the thesis looks at the design equations of the subbanded

adaptive filters, as well as a few special scenarios and practical conditions involved

during the process of acoustic echo cancellation.

5.1. SUBBAND NLMS DESIGN EQUATIONS

The equations for the subband NLMS remain similar to those of the fullband

NLMS, except that now the NLMS algorithm is applied individually to each of the M

subbands. Hence, the equations for the subband NLMS are now expressed in terms

of subbanded signals, for any particular subband m. The update equation for ĥm,n+1

hence becomes

ĥm,n+1 = ĥm,n +
µ̃

δ+ ‖ xm(n))2 ‖)
xm(n)e∗m(n) (5.1)

After the estimation of the subband echo paths is performed and the echo

cancellation takes place, the residual errors in each of the subbands are then fed

back into the synthesis filterbank as discussed in the previous sections to obtain the

fullband residual error, which can be used to study the performance of the subband

echo canceller.

5.2. SUBBAND KALMAN FILTER DESIGN EQUATIONS

Similar to the NLMS algorithm, the equations for the subband Kalman filter

are designed and expressed for each subband, m, and can be summarized in the

following equations:
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1. Initialise (ĥ)m(0) = 0 and Rµm(0) = 0.

2. Update Rmm as per the below equation:

Rmm(n) = Rmm(n− 1) + σwIl (5.2)

where σw is the process noise variance.

3. Rem(n) is then calculated as

Rem(n) = xTm(n).Rmm(n).xm(n) + σ2
vm(n) (5.3)

4. The residual error in each subband is then calculated as

em(n) = dm(n)− xTm(n).(ĥm)(n− 1) (5.4)

5. Now the Kalman gain matrix is calculated as

Km(n) = Rmm(n).xm(n).Rem
−1 (5.5)

6. The estimate of the echo path is then updated as

ĥm(n) = ĥm(n− 1) + Km(n).em(n) (5.6)

7. The aposteriori error correlation is then updated for use in the next iteration

n+ 1 as

Rmm(n) = [Il −Km(n).xTm(n)].Rmm(n) (5.7)
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8. step 1 is then repeated to continue the prediction update process with the

calculations of previous iterations as updated values for the variables.

It is to be noted that in the subbands, the adaptive echo cancellation algo-

rithms work on complex valued numbers.
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6. NEAR END ENERGY ESTIMATION FOR NOISE POWER

An adaptive filter’s estimation of the echo path coefficients depends on a large

extent, on the error between the echo path estimate and the actual echo path. This

error is estimated accurately by the original design equations assuming the measure-

ment noise v(n) is zero, or whose power is assumed to be known.With reference to

Figure 1.2, the measurement noise v(n) is the near end noise that gets added to the

echo signal y(n). In case of usual telephonic scenarios, where noise power is an un-

known changing variable, it becomes necessary to track the noise power and estimate

it as accurately as possible, in order to avoid the coefficients of the adaptive filter

diverging and losing track of the true echo path coefficients. There is also the sce-

nario of double talk to be considered, where the near end speaker also speaks, and

his signal gets added to the echo signal along with background measurement noise.

The equation for the near end noise signal v(n) then becomes

v(n) = w(n) + nx(n) (6.1)

where w(n) is the background noise with variance σ2
w and nx(n) is the near end

speaker’s speech signal, with variance σ2
n.

Hence, slight modifications are necessary to the Kalman algorithm, to account

for noise tracking. This thesis uses the cross correlation between the far end signal

x(n) and the residual error e(n) to estimate the measurement noise variance, as per

[2]. From [2],The cross correlation rex(n) between the far end and error signals is

given by

rex = E[x(n)e(n)] = Rxxδh(n− 1) (6.2)
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where E is the expectation operation, Rxx = E[xxT] and δh(n−1) = h−ĥ(n−1).The

variance of the error e(n) in terms of the E operation is given as

σ2
e(n) = E[e2(n)] = δhT (n− 1)rex + σ2

w(n) + σ2
n(n) (6.3)

Now,approximating Rxx using only the nth latest far end signal sample x(n)

(also called the excitation signal) rather than the entire vector x(n) with variance σ2
x,

and calling the near end energy estimate as ν(n) = σ2
v + σ2

n(n), from equation 6.3,

the following equation for the near end energy estimate can be written as:

ν(n) ≈ σ2
e(n)− rex(n)T rex(n)

σ2
x

(6.4)

The values of the variables used in eq 6.4 are exact and not readily available,

hence the estimates of the above variables are used instead.

ν̂(n) ≈ σ̂2
e(n)− r̂ex(n)T r̂ex(n)

σ̂x
2 (6.5)

The estimates are recursively calculated every iteration as

r̂ex(n) = λr̂ex(n− 1) + (1− λ)x(n)e(n)

σ̂x
2(n) = λσ̂x

2(n− 1) + (1− λ)x2(n)

σ̂2
e(n) = λσ̂2

e(n− 1) + (1− λ)e2(n)

(6.6)

In algorithms such as the NLMS algorithm, double talk is usually detected

using the Geigel detection algorithm [10], and whenever the criterion for double talk

is met, the adaptation of the adaptive filter coefficients is halted so as to prevent

further divergence of the coeffcients of the adaptive filter from the true echo path.

Other methods for adaptation during the detected double talk include a variable step

size for the NLMS update equation, as studied in [2], which ultimately acts like a
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Geigel detector, almost halting estimation when double talk is detected, and then

varying the learning rate of the NLMS algorithm to ensure the coefficients of the

adaptive filter catch up with the changes in the echo path coefficients. The main

advantage of the Kalman filter over the NLMS filter, in either fullband or subband,

is that double talk is not an issue provided the noise estimation is done accurately

enough. This means that following the noise estimation described in eq 6.5, the

Kalman filter can still keep actively tracking the true echo path coefficients without

the need to halt echo path estimation. This will be shown in the results, which will

be discussed in the following chapter.



35

7. SIMULATION RESULTS

This section details the results of the simulations of the NLMS and Kalman fil-

ter algorithms in the fullband and subbands, to evaluate the performance of the newly

developed subband Kalman filter. All simulations were carried out in MATLAB. All

results are the average of 5 iterations.

7.1. INPUT SPECIFICATIONS

The adaptive filters were tested using both speech and white gaussian noise as

the far end speaker’s signal x(n). The subband filters work on complex data, hence,

even the fullband signals were tested with complex white gaussian noise, to see how

they perform when fed with complex inputs. The speech input is as shown in figure

Figure 7.1.

Figure 7.1. Speech input signal
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7.2. ECHO PATH SPECIFICATIONS

The fullband and subband filters were tested with two 256 tap length echo

paths, an impulse, and a random echo path, as shown in figures Figure 7.2 and

Figure 7.3.

Figure 7.2. Impulse echo path

Figure 7.3. Random echo path
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7.3. TEST SPECIFICATIONS

The fullband and subband filters were tested under the following conditions:

1. Constant measurement noise power: In this scenario,the measurement noise

that gets added to the echo signal is assumed to have constant power, and the

signal to noise ratio (SNR) is set at 30dB.

2. Varying measurement noise power: In this scenario, the noise power is increased

halfway through the simulation, to observe how the adaptive filters react to the

change in noise power estimation. In these simulations, the SNR was changed

from 30dB to 20dB.

3. Varying echo path: To study the converging properties of the adaptive filters,

the echo paths were changed midway through the simulations, to see how the

adaptive filter coefficients handled the sudden change in the echo path coeffi-

cients. The SNR for these simulations remain at 30dB.

4. Double talk: In this scenario, a near end speaker’s signal is introduced halfway

through the simulation, and the performance of the adaptive filters is studied

to see the effects of double talk.

7.4. TEST CRITERIA SPECIFICATIONS

The following criteria were used to study the performance of the adaptive

filters:

1. Residual error: The error signal, which is the difference between the echo signal

and the estimated echo signal, can be studied to observe the rate of convergence

of the adaptive filters and the steady state error of the filters.
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2. Echo to return loss enhancement(ERLE): the echo to return loss enhancement

is a measure of the amount of energy of the far end signal with respect to that

of the energy signal. A lower error signal will result in a higher ERLE. The

ERLE was calculated as an average over 1000 samples and expressed in dB, as

expressed in the formula below:

ERLE(n) = 10 log(xavg(n)/eavg(n) + 1) (7.1)

where xavg and eavg are the averaged values of the far end and error signals

respectively.

7.5. CONSTANT SNR SCENARIO

The residual error versus the far end signal for the fullband and subband filters

are as shown in Figure 7.4 and Figure 7.5.

Figure 7.4. Residual error for fullband filters
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Figure 7.5. Residual error for subband filters

The averaged ERLE for the fullband and subband filters are as shown in

Figure 7.6 and Figure 7.7.

Figure 7.6. ERLE for fullband filters
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Figure 7.7. ERLE for subband filters

The residual error versus the far end signal for the fullband and subband filters

for the random echo path are as shown in Figure 7.8 and Figure 7.9.

Figure 7.8. Residual error for fullband filters for random echo path
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Figure 7.9. Residual error for subband filters for random echo path

The averaged ERLE for the fullband and subband filters are as shown in

Figure 7.10 and Figure 7.11.
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Figure 7.10. ERLE for fullband filters for random echo path

Figure 7.11. ERLE for subband filters for random echo path
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As seen in the above results, the subband Kalman filter is not performing as

effectively as the fullband Kalman filter, while the subband NLMS filter shows al-

most the same performance in both fullband and subbands. This is because of the

parameter called the process noise variance, which, as mentioned earlier, captures

the uncertainities of the echo path. Varying this parameter slightly affects the perfor-

mance of the Kalman filter in the subbands, but not to the extent that it outperforms

the NLMS. The process noise is attempted to be tracked recursively using the corre-

lation between the current estimate of the echo path ĥ(n) and the previous estimate

ĥ(n− 1) using the following equation:

σ2
w(n) = λ(σ2

w(n− 1)) + (1− λ).(deltah′deltah) (7.2)

where deltah = ĥ(n)− ĥ(n− 1).

This equation helps improve the performance of the subband kalman filter marginally,

but still not to the extent that the subband filter matches the fullband filter’s perfor-

mance.

7.6. VARYING SNR SCENARIO

The residual error versus the far end signal for the fullband and subband filters

for varying SNR are as shown in Figure 7.12 and Figure 7.13. The SNR drops from

30dB to 20dB halfway through the simulation.
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Figure 7.12. Residual error for fullband filters with change in SNR

Figure 7.13. Residual error for subband filters with change in SNR
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The averaged ERLE for the fullband and subband filters are as shown in

Figure 7.14 and Figure 7.15.

Figure 7.14. ERLE for fullband filters with change in SNR
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Figure 7.15. ERLE for subband filters with change in SNR

The error vs far end signal plot for a random echo path subject to a change

in SNR is as shown in Figure 7.16 and Figure 7.17.

Figure 7.16. Residual error for fullband filters for a random echo path for SNR change
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Figure 7.17. Residual error for subband filters for a random echo path for SNR change

The ERLE plot for the random echo path scenario with a change in the SNR

midway through the simulations is as shown in Figure 7.18 and Figure 7.19.
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Figure 7.18. ERLE for fullband filters for a random echo path for SNR change

Figure 7.19. ERLE for subband filters for a random echo path for SNR change
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7.7. VARYING ECHO PATH SCENARIO

Here, the echo path is changed suddenly midway through the simulation. The

residual error vs far end signal plot for an echo path change is as shown in Figure 7.20

and Figure 7.21.

Figure 7.20. Residual error for fullband filters with echo path change
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Figure 7.21. Residual error for subband filters with echo path change

The ERLE for the above scenario is shown in Figure 7.22 and Figure 7.23.

Figure 7.22. ERLE for fullband filters with echo path change
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Figure 7.23. ERLE for subband filters with echo path change

The residual error for a random echo path, which changes midway through the

simulation into another random echo path, is as shown in Figure 7.24 and Figure 7.25.

Figure 7.24. Fullband filter error for random echo path with path changes
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Figure 7.25. Subband filter error for random echo path with path changes

The ERLE for the above described scenario is shown in Figure 7.26 and Fig-

ure 7.27.
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Figure 7.26. Fullband filter ERLE for random echo path with path changes

Figure 7.27. Subband filter ERLE for random echo path with path changes
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7.8. DOUBLE TALK

In this scenario, halfway through the simulation, a near end speaker’s signal

was added to the echo signal, and the performance of the adaptive filters at distin-

guishing between the far end and near end signal was studied.

The residual error for the fullband and subband filters is as shown in Fig-

ure 7.28 Since near end talk was introduced mid way through the simulations, The

residual error halfway through the simulations will now contain the near end speaker’s

speech, as observed in Figure 7.28.

Figure 7.28. Fullband filter error for double talk
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Figure 7.28 however, does not make it clear the amount of near end signal

present in the residual error. Hence, only the second half of the residual error signal

for each of the adaptive filters is plotted against the original near end signal to see

how much of the near end signal is identified.

The near end signal vs the residual error for the fullband NLMS is as shown

in Figure 7.29. The near end signal vs the residual error for the subband NLMS is as

shown in Figure 7.30.

Figure 7.29. Fullband NLMS double talk signal
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Figure 7.30. Subband NLMLS double talk signal

As seen in the above figures, in both the fullband and the subband, the double

talk signal is not obtained, since the echo path estimate diverges instead of converging,

adding far end signal to the double talk signal. Figure 7.31 and Figure 7.32 show the

double talk signal for fullband and subband kalman adaptive filters respectively.
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Figure 7.31. Fullband kalman double talk signal

Figure 7.32. Subband kalman double talk signal
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Although it can be seen that the fullband Kalman filter performs much better

than the subband Kalman filter in terms of double talk detection, there is a slight

improvement in the double talk detection of the subband Kalman over the subband

NLMS. As discussed earlier, this is due to the process noise variance determination,

and double talk detection in the subband Kalman filter can definitely be improved by

focusing on estimating the process noise better. From all the above plots, it can be

clearly seen that the fullband Kalman filter is superior in performance to its currently

developed subband counterpart. However, the main advantage of the subbanding is

the computational compexity, which will be discussed in the next part of the results.

7.9. COMPUTATIONAL COMPLEXITY AND TIME STUDIES

The Computational complexity Cadaptive of an adaptive filter is propotional to

the length of the adaptive filter, L, as Cadaptive ∝ L2. In the subbands, due to the

fact that the signals are broken into smaller lengths, there is a reduction in the com-

putational complexity which leads to the computational complexity in the subbands

being Csubband ∝ L2

N2 . There is further computational complexity reduction since the

filters are updated only every 1
N

intervals, however, the effect of this reduction is

negated by the fact that the subbands have to now perform N calculations for every

update. A reduction in computational complexity by N.2 is very profitable, especially

when dealing with long echo paths. For a 1000 length echo path, the computational

complexity of a fullband adaptive filter is 1000000 while for a subband adaptive filter

for the same echo path, the complexity reduces to ≈ 977. This is a huge gain, hence,

subband adaptive filters are favored for real time implementations, where memory is

limited and the adaptation needs to be performed quickly.
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To notice just how fast subband filters are compared to fullband filters, Table

7.1 can be referred, where the simulation time for fullband and subband filters are

noted for a single iteration.

Filter Fullband Kalman Subband Kalman Fullband NLMS Subband NLMS

Time in seconds 661.531 20.816802 3.03125 6.099183

Table 7.1. Simulation time of the studied adaptive filters

As seen in the above table, the time of simulation is reduced greatly for the

subband Kalman filter compared to the fullband Kalman filter, which makes it favor-

able for use in real time scenarios.
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8. CONCLUSION AND FUTURE WORK

In this thesis, a subband Kalman filter was developed and studied against

existing adaptive filter algorithms to evaluate its performance and potential for real

time applications. Future work would involve study of the estimation of process noise

in the subbands, which is a major performance factor as discussed in the results.

The measurement noise variance update equation also needs investigation, since the

assumption of both measurement and process noise being white, gaussian and un-

correlated will not hold in the subbands. Finally, a real time implementation of the

developed kalman filter could help to see if actual real time performance matches

MATLAB simulated results.
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tic

clc

clear all

close all

load speech.mat

% h1 = randn (256 ,1); %random echo path scenario

% h2 = h1;

h1=zeros (256 ,1); %impulse response with one

sample with value 1

h1(128) =1;

h2=zeros (256 ,1);

h2(128) =1;

% h2 = randn (256 ,1); %change in echo path

scenario

h=h1;

n = length(h1);

x = 10* speech; %input signal

x_near_end = 0.1* wavread('nineoneone.wav');
x_near_end = [x_near_end;x_near_end;x_near_end;

x_near_end;x_near_end ];

[y1 ,state] = filter(h,1,x); %filtered output

y2 = filter(h2 ,1,x,state); %filtered output

y=[y1;y2];

x=[x;x];

iter = 5;

delta3 = 0.03;

mu = 1;

for ii=1: iter

clear y1

% y1 = y; %ideal no noise scenario

y1 = awgn(y,30,'measured '); %constant SNR

scenario

%SNR changing scenario

% y1 = y;

% y2 = y1*0;

% y2(1: round(length(y1)/3)) = awgn(y1(1:

round(length(y1)/3)) ,25,'measured ');
% y2(round(length(y1)/3)+1: round (2* length(y1

)/3)) = awgn(y1(round(length(y1)/3) +1: round (2*

length(y1)/3)) ,18,'measured ');
% y2(round (2* length(y1)/3)+1: end) = awgn(y1(

round (2* length(y1)/3)+1:end) ,10,'measured ');
% y1 = y2;



63

% y1 = y1+ x_near_end (1: length(y1)); %

double talk scenario

Il = eye(n); %identity matrix of size nXn

Ip = eye(1); %identity matrix of size 1X1

delta =.00001;

Rmu = delta*Il; %apriori misalignment

initialization

w_cov_const = 0.01; %process noise variance

v_cov_const = 0.1; %observation noise variance

hhat = zeros(length(h) ,1);

lambda =.9;

lambda_v = 0.999;

sigmae = 0.001;

sigmax = 0.001;

Rex = 0.001* ones(n,1);

for i=1: length(x)-n+1

X = (x(i:i+n-1));

Rm = Rmu + w_cov_const*Il;

Re = X.'*Rm*X + (v_cov_const)*Ip;

K = Rm*X/(Re+delta3);

e(i) = (y1(i+n-1) - X.'*hhat);
hhold=hhat;

hhat = hhat + K*e(i);

Rmu = (Il -K*X.')*Rm;
deltah=hhat -hhold;

temp = deltah .* deltah;

w_cov_const=lambda*w_cov_const +(1- lambda)*(

deltah.'*deltah);
% background noise tracking implemented here

...

Rex = lambda_v*Rex + (1-lambda_v)*X*e(i);

%correlation between far end signal

and residual error

sigmax = lambda_v*sigmax + (1-lambda_v)*

X(end).^2; %excitation signal variance

sigmae = lambda_v*sigmae + (1-lambda_v)*e

(i).^2; %cancellation error variance

v_cov_const = (sigmae - (1/( sigmax+delta3

)*(Rex.'*Rex)));
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end

%NLMS algorithm implemented here

hhat_nlms = zeros(length(h) ,1);

X_nlms=hhat_nlms *0;

for i=1:1: length(x)

X_nlms (2:n)=X_nlms (1:n-1);

X_nlms (1)=x(i);

e_nlms(i)=y1(i)-hhat_nlms '* X_nlms;
hhat_nlms=hhat_nlms+ mu.*conj(e_nlms(i))

.* X_nlms ./(X_nlms '* X_nlms+delta);

end

error1(ii ,:) = e;

error1_nlms(ii ,:) = e_nlms;

end

average_error1 = sum(error1)/iter;

average_error1_nlms = sum(error1_nlms)/iter;

figure (1);

hold on;

plot(real(x),'r');
plot(real(average_error1));

plot(real(average_error1_nlms),'g');
title('Plot of Cancelled echo Signal (e) for

speech.mat voice data input ');
legend('signal ','error -Kalman filter ','error -

NLMS');

x1=x(1: length(average_error1));

x2 = x(1: length(average_error1_nlms));

xx=filter(ones (1000 ,1) ./1000 ,1,x1.^2);

xx2 = filter(ones (1000 ,1) ./1000,1 ,x2.^2);

xx = xx.';
xx2 = xx2.';
ee=filter(ones (1000 ,1) ./1000 ,1, average_error1

.^2);

ee_nlms = filter(ones (1000 ,1) ./1000 ,1,

average_error1_nlms .^2);

erle =10.* log10 (((xx)./(ee))+1);

erle_nlms = 10.* log10 ((( xx2)./( ee_nlms))+1);
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figure (2);

hold on;

plot(erle (100: end),'linewidth ' ,2)
plot(erle_nlms (100: length(x)-n+1),'g','linewidth

' ,2);
legend('ERLE for Kalman ','ERLE for NLMS');
toc

%DT plots in figures (3) and (4)

figure (3);

subplot (2,1,1);

plot(x_near_end (1: length(y1(round(length(y1)/2):

end))),'r')
xlabel('samples ')
ylabel('Amplitude ')
title('near end signal ')
subplot (2,1,2);

plot(average_error1 ((round(length(y1)/2)):end),'
g')

ylim([min(y11) max(y11)])

xlabel('samples ')
ylabel('Amplitude ')
title('error signal for subband kalman filter ')
figure (4);

subplot (2,1,1)

plot(x_near_end (1: length(y1(round(length(y1)/2):

end))),'r')
xlabel('samples ')
ylabel('Amplitude ')
title('near end signal ')
subplot (2,1,2)

plot(average_error1_nlms ((round(length(y11)/2)):

end),'g')
ylim([min(y11) max(y11)])

xlabel('samples ')
ylabel('Amplitude ')
title('error signal for subband NLMS')
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tic

clc

clear all

close all

rng('shuffle ');
load EE341_filters; %load the filters

load speech; % load the speech file

h1 = 0.01* randn (256 ,1);

h2 = h1;

% h1=zeros (256 ,1); %impulse response with one

sample with value 1

% h1 (128) =1;

% h2=zeros (256 ,1);

% h2 (128) =1;

% h2 = 0.03* randn (256 ,1); %change in echo path

scenario

h=h1;

n = length(h);

x1 = 10* speech; %input signal

x_near_end = 0.1* wavread('nineoneone.wav');
x_near_end = [x_near_end;x_near_end;x_near_end;

x_near_end;x_near_end ];

delta2 = 0.01;

delta3 = 0.035;

[y1 ,state] = filter(h,1,x1); %filtered output

y2 = filter(h2 ,1,x1,state); %filtered output

y1=[y1;y2];

x1=[x1;x1];

iter = 5;

for ii=1: iter

clear y11;

% y11 = y1; %ideal no noise scenario

y11 = awgn(y1 ,30,'measured '); %constant SNR

scanario

% changing SNR scanario below

% y11 = y1;

% y11 (1: round(length(y1)/2)) = awgn(

y11 (1: round(length(y11)/2)) ,30,'measured ')
;

% y11(round(length(y11)/2)+1: end) =

awgn(y11(round(length(y11)/2)+1: end) ,20,'
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measured ');

%double talk scenario

% y11(round(length(y11)/2):end) = y11(

round(length(y11)/2):end) + x_near_end (1:

length(y11(round(length(y11)/2):end)));

Ip = eye(1); %identity matrix of size 1X1

delta =.00001; %normalizing factor

N=32; % Number of subbands between 0 and 2*

pi

R=16; % Downsampling factor in subbands

w_cov_const = 1.5/R; %process noise variance

v_cov_const = 1.5/R; %observation noise

variance

Lsub=ceil(n./R);

hhat = zeros(Lsub ,1); %initialising estimate

of h as hhat

Il = eye(Lsub); %identity matrix of size

LsubXLsub

Rmu = delta*Il; %apriori misalignment

initialisation

[xsub] = sba_local(x1,anal_sbflt ,N,R); %

converting input signal into subbands

[ysub] = sba_local(y11 ,anal_sbflt ,N,R); %

converting filtered signal into subbands

[rows ,cols] = size(xsub); %determining

number of rows

lambda =.999;

lambda_v = 0.999;

e=zeros(rows ,cols -Lsub +1);

for jj =1: rows %accessing all columns of a

particular row at once

hhat = zeros(Lsub ,1); %initialising

estimate of h as hhat for every

iteration

Rmu = delta*Il; %aposteriori

misalignment initialisation

x = xsub(jj ,:); %accessing one subband
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of input signal at a time

y = ysub(jj ,:); %accessing one subband

of filtered signal at a time

w_cov_var=w_cov_const;

v_cov_var = v_cov_const;

mu = 1;

Rex = 0.001* ones(Lsub ,1);

sigmax = 0.001;

sigmae = 0.001;

for i=1:cols -Lsub+1

X = (x(i:i+Lsub -1).');
Rmu = Rmu + abs(w_cov_var)*Il; %

apriori Misalignment update

Re = X.'*Rmu*X + (v_cov_var)*Ip; %

apriopri error signal correlation

K = (Rmu*X)/(Re+ delta3); %Kalman

Gain calculation

e(jj ,i) = (y(i+Lsub -1) - X.'*hhat);
%error signal calculation

hhold=hhat;

hhat = hhat + K*e(jj ,i); %h estimate

update equation

deltah=hhat -hhold;

Rmu = (Il -K*X.')*Rmu; %aposteriori

Misalignment update

w_cov_var=lambda*w_cov_var +(1- lambda

)*( deltah.'*deltah);
%background noise tracking

implemented here ...

Rex = lambda_v*Rex + (1-lambda_v)*X*

e(jj ,i); %correlation between far

end signal and residual error

sigmax = lambda_v*sigmax + (1-

lambda_v)*(abs(X(end))).^2; %

excitation signal variance

sigmae = lambda_v*sigmae + (1-

lambda_v)*(abs(e(jj,i))).^2; %

cancellation error variance

v_cov_var = (sigmae - (1/( sigmax+

delta3))*abs(Rex.'*Rex));
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end

%NLMS performed here

hhat_nlms = zeros(Lsub ,1);

X_nlms=hhat_nlms *0;

for i=1:1: cols

X_nlms (2: Lsub)=X_nlms (1:Lsub -1);

X_nlms (1)=x(i);

e_nlms(jj,i)=y(i)-hhat_nlms '* X_nlms;
hhat_nlms=hhat_nlms+ mu.*conj(e_nlms

(jj ,i)).* X_nlms ./(X_nlms '* X_nlms+
delta);

end

end

% e_10(ii ,:,:) = e;

error1(ii ,:) = sbs_local(e,synth_sbflt ,N,R);

%reconstructing the error signal using

synth_sbflt

error1_nlms(ii ,:) = sbs_local(e_nlms ,

synth_sbflt ,N,R); %reconstructing the

error signal using synth_sbflt

end

average_error1 = sum(error1)/iter;

average_error1_nlms = sum(error1_nlms)/iter;

figure (1);

hold on;

plot(real(x1),'r');
plot(real(average_error1));

plot(real(average_error1_nlms),'g');
title('Plot of Cancelled echo Signal (e) for

speech.mat voice data input ');
legend('signal ','error -subband Kalman ','error -

subband NLMS');
hold off;

xlabel (['Samples '])
ylabel (['Amplitude '])
figure (2)
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x11=x1(1: length(average_error1));

x12 = x1(1: length(average_error1_nlms));

xx=filter(ones (1000 ,1) ./1000 ,1, x11 .^2);

xx1 = filter(ones (1000 ,1) ./1000,1 ,x12 .^2);

ee=filter(ones (1000 ,1) ./1000 ,1, real(

average_error1 .^2));

ee_nlms = filter(ones (1000 ,1) ./1000 ,1, real(

average_error1_nlms .^2));

erle =10.* log10 (((xx)./(ee).')+1);
erle_nlms =10.* log10 ((( xx1)./( ee_nlms).')+1);
plot(erle (100: end),'linewidth ' ,2);
hold on;

plot(erle_nlms (100: end),'g','linewidth ' ,2);
legend('ERLE -Kalman filter ','ERLE -NLMS')
xlabel (['Samples ']);
ylabel (['ERLE(in dB)']);
toc

average_error1_n = 0.8*( average_error1/max(abs(

average_error1)));

%DT plots in figures (3) and (4)

figure (3);

subplot (2,1,1);

plot(x_near_end (1: length(y11(round(length(y11)

/2):end))),'r')
xlabel('samples ')
ylabel('Amplitude ')
title('near end signal ')
subplot (2,1,2);

plot(average_error1_n ((round(length(y11)/2)):end

),'g')
ylim([min(y11) max(y11)])

xlabel('samples ')
ylabel('Amplitude ')
title('error signal for subband kalman filter ')
figure (4);

subplot (2,1,1)

plot(x_near_end (1: length(y11(round(length(y11)

/2):end))),'r')
xlabel('samples ')
ylabel('Amplitude ')
title('near end signal ')
subplot (2,1,2)
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plot(average_error1_nNLMS ((round(length(y11)/2))

:end),'g')
ylim([min(y11) max(y11)])

xlabel('samples ')
ylabel('Amplitude ')
title('error signal for subband NLMS')



APPENDIX C

ANALYSIS FILTERBANK-MATLAB CODE
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function [xsub] = sba_local2(xlong ,anal_sbflt ,N,

R);

L=length(anal_sbflt);

LN=L/N;

H=diag(anal_sbflt (1:N));

for n=2:LN

H=[H, diag(anal_sbflt ((n-1)*N+1:n*N))];

end

r=N/2;

lngexp=r*( floor(length(xlong)/r));

x=zeros(L,1);

m=0;

for n=1:r:lngexp

% x(2:L)=x(1:L-1);

% x(1)=xlong(n)

x(r+1:L)=x(1:L-r);

x(1:r)=flipud(xlong(n:n+r-1));

m=m+1;

xsub(:,m)=N*ifft(H*x);

end



APPENDIX D

SYNTHESIS FILTERBANK-MATLAB CODE
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function xhat = sbs_local2(xsub ,synth_sbflt ,N,R)

; % use your own synthesis filterbank here

L=length(synth_sbflt);

LN=L/N;

G=diag(synth_sbflt (1:N));

for n=2:LN

G=[G; diag(synth_sbflt ((n-1)*N+1:n*N))];

end

r=N/2;

lngexp=r*size(xsub ,2);

s=zeros(L,1);

m=0;

xhat=zeros(lngexp ,1);

for n=1: lngexp

s(1:L-1)=s(2:L);

s(L)=0;

if rem(n,r)==0

y=N*ifft(xsub(:,n/r));

s=G*y+s;

end

xhat(n)=s(1);

end
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