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ABSTRACT

The goal of this work was to quantify the uncertainty and sensitivity of

commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due

to uncertainty in the values of closure coefficients for transonic, wall-bounded flows

and to rank the contribution of each coefficient to uncertainty in various output flow

quantities of interest. Specifically, uncertainty quantification of turbulence model

closure coefficients was performed for transonic flow over an axisymmetric bump at

zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of

0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox

(2006) k-ω Model, and the Menter Shear-Stress Transport Model. The FUN3D code

developed by NASA Langley Research Center and the BCFD code developed by

The Boeing Company were used as the flow solvers. The uncertainty quantification

analysis employed stochastic expansions based on non-intrusive polynomial chaos as

an efficient means of uncertainty propagation. Several integrated and point-quantities

are considered as uncertain outputs for both CFD problems. All closure coefficients

were treated as epistemic uncertain variables represented with intervals. Sobol indices

were used to rank the relative contributions of each closure coefficient to the total

uncertainty in the output quantities of interest. Two studies were performed in this

work. The main study identified a number of closure coefficients for each turbulence

model for which more information will reduce the amount of uncertainty in the output

significantly for transonic, wall-bounded flows. A case study demonstrated that the

RAE 2822 sensitivity results of the main study are independent of the flow solver and

of the computational grid topology and resolution.
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1. INTRODUCTION

This chapter outlines the research presented in this work. First, a introduction

to turbulence modeling is provided, which is followed by an overview of uncertainty

quantification. Next, a literature review discussing previous turbulence modeling

research and uncertainty quantification approaches is presented. The objectives of

the current work are then given, and subsequently the contributions of the current

work are described. Finally an outline for the remainder of the thesis is provided.

1.1. TURBULENCE MODELING

Turbulence is one of the greatest unsolved mysteries of classical physics.

Due to the highly complex and chaotic nature of the phenomenon, the current

physical understanding of turbulence is incomplete. Efforts have been made to

create turbulence models to predict turbulent flows by using computational fluid

dynamics (CFD); however, the lack of physical knowledge has forced modelers to

use dimensional analysis and other methods to identify several constants, called

closure coefficients, which balance the model equations. The numerical values of the

closure coefficients in current turbulence models are chosen by using a combination of

heuristic and empirical decision making. While modelers typically use experimental

data to validate their choice of closure coefficients, a turbulence model is not

guaranteed to be universally valid for any arbitrary flow.

1.2. UNCERTAINTY QUANTIFICATION

Turbulence modeling is one of the primary sources of uncertainty in CFD

simulations. Uncertainties in both the model form and the values of closure

coefficients can yield large uncertainties in output flow quantities of interest (such as
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drag coefficient, for example). This work aims to explore the second aforementioned

source of uncertainty; that is, uncertainty in the output flow quantities due to

uncertainty in the values of closure coefficients.

To minimize the large computational expense associated with uncertainty

quantification (UQ) of high-fidelity CFD simulations with traditional sampling

methods (e.g., Monte Carlo), stochastic expansions based on non-intrusive polynomial

chaos (NIPC) are used as an efficient means of uncertainty propagation in this

work [2]. All closure coefficients were treated as epistemic uncertain variables (i.e.,

uncertainty due to lack of knowledge and not due to inherent, systemic uncertainty).

Sobol indices [3], which are global nonlinear sensitivity indices based on variance

decomposition, were used to rank the relative contributions of each closure coefficient

to the total uncertainty in the output quantities of interest. The uncertainty

quantification methods employed in this work are described in detail in Chapter 4.

1.3. LITERATURE REVIEW

This section contains a literature review of previous research related to UQ and

turbulence modeling. In Section 1.3.1, the demand for uncertainty quantification and

sensitivity analysis of turbulence modeling is described. Several previous examples of

UQ for CFD applications using stochastic expansions are presented in Section 1.3.2.

Some applications of Bayesian approaches to UQ for turbulence modeling are included

in Section 1.3.3. Finally a brief discussion of verification and validation is included

in Section 1.3.4.

1.3.1. Demand for UQ in CFD. There is currently a high demand

for turbulence modeling uncertainty quantification and sensitivity analysis. In a

coordinated study between NASA, Boeing, and others, Slotnick et al. propose a

vision for the capabilities of CFD technology in the year 2030, as well as a number

of suggestions for how to reach that point [4]. One of the basic capabilities for the
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authors’ vision of CFD in 2030 includes, among other things, the management of

errors and uncertainties arising from “all possible sources.” These sources include

physical modeling errors and uncertainties due to turbulence, as well as epistemic

uncertainties due to lack of knowledge in the parameters of particular fluid flow

problems. Another section of the report states that in practice, current CFD

workflows contain considerable uncertainty that is often not quantified. While grid

convergence studies can be performed to reduce numerical uncertainty, they can be

difficult to perform because uniform mesh refinement can be too costly for most

3D problems. Accurate prediction of turbulent flows and the currently limited use

of uncertainty quantification are both listed as current CFD technology gaps and

impediments. The former is described as “perhaps the single, most critical area

in CFD simulation capability.” Slotnick et al. present four “Grand Challenge”

problems for CFD, one of which is a probabilistic analysis of a powered space

access configuration, including error estimates and quantified uncertainty. One of

the authors’ immediate recommendations is to integrate NIPC methods and other

reduced-order model formulations with current CFD technology.

Some previous work has been done on this problem. Godfrey and Cliff [5]

employed the sensitivity-equation method to quantify the sensitivities of the Baldwin-

Lomax, Spalart-Allmaras, and Wilcox k-ω turbulence models due to modeling

coefficients; however they did not quantify the uncertainty in the results. They found

that σw is more influential to the k-ω model than σk (using the NASA Turbulence

Modeling Resource Page [1] nomenclature), and that the most influential parameters

in the Spalart-Allmaras model are cv1, cb1, σ, and cw2 when κ is held constant. Hosder

et al. [6] quantified the uncertainty in nozzle efficiency for a transonic diffuser problem;

however this uncertainty was due to the choice of pressure ratios, computational grids,

flux limiters, and turbulence models (i.e., uncertainty in nozzle efficiency due to the
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choice of either the SA or k-ω model, not due to the uncertainty in the turbulence

models themselves). More work is needed to adequately address the demands of CFD

Vision 2030 above.

1.3.2. UQ of CFD using Stochastic Expansions. It was demonstrated by

Hosder et al. [2] that stochastic expansions based on Non-Intrusive Polynomial Chaos

(NIPC) are capable of producing the same uncertainty and sensitivity information as

crude Monte Carlo simulations, but at a greatly reduced computational cost. This

makes NIPC very attractive for CFD applications, where the computational cost

of every function evaluation may be high. One recent application of uncertainty

quantification to CFD was by West and Hosder [7]. In their work, West and Hosder

demonstrated an application of Point-Collocation Non-Intrusive Polynomial Chaos

(NIPC) with sparse sampling as an efficient means of uncertainty propagation for

both a stagnation point, convective heat transfer in hypersonic flow and a hypersonic

inflatable aerodynamic decelerator during Mars entry. Their analysis consisted of

93 uncertain parameters, the sources of which include both flowfield and radiation

modeling. Another application of uncertainty quantification to CFD was by Adya et

al. [8]. In this work, the NIPC method was applied to the uncertainty quantification

of the downstream velocity profile for a synthetic jet actuator due to uncertainties in

the amplitude and frequency of the oscillation of the piezo-electric membrane used

to produce the jet. In a third analysis by Hosder et al. [9], NIPC was applied to the

uncertainty quantification of a transonic wing damping factor due to uncertainties

in the Mach number and angle of attack. For more examples of how uncertainty

quantification and polynomial chaos techniques have been used in CFD, see the review

by Najm [10]. Further details on polynomial chaos theory are given by Ghanem [11]

and Eldred [12].
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1.3.3. UQ of Turbulence Modeling using Bayesian Approaches.

Uncertainty quantification has a very important application to turbulence modeling in

CFD. In a recent work by Edeling et al. [13], the authors state that “The turbulence

closure model is the dominant source of error in most Reynolds Averaged Navier-

Stokes simulations, yet no reliable estimators for this error component currently

exist.” Furthermore, “there is no consensus on the best coefficient values for most

[turbulence] models, as evidenced by the wide range of coefficients seen in the

literature.” Current efforts to address these concerns employ Bayesian approaches.

Edeling et al. describe a stochastic error estimate of turbulence models based

on variability in model coefficients. Using Bayesian Model-Scenario Averaging, a

stochastic estimate of the output quantities of interest in unmeasured (prediction)

scenarios is obtained. In a sensitivity analysis, it was demonstrated that Von

Kármán’s constant was the most influential model coefficient to uncertainty in u+

in the log layer of a flat plate boundary layer for several turbulence models; these

models included, among others, the Spalart-Allmaras and Wilcox k-ω models. For

almost all prediction cases, the predictions lied within one standard deviation of the

experimental validation data.

Papadimitriou and Papadimitriou [14] also performed uncertainty quantification

of turbulence modeling using a Bayesian approach. In their study, Papadimitriou and

Papadimitriou employed Bayesian inference framework and analytical approximations

to quantify the uncertainty of the Spalart-Allmaras turbulence model due to

uncertainty in its closure coefficients. Specifically, this technique was applied to a

flat plate and a backwards facing step problem. They determined that the most well

informed parameters for the Bayesian inference were κ, cv1, and cb1, followed next

by cw2 and σ. This indicates that these coefficients contribute most significantly to

uncertainty in the Spalart-Allmaras model for the chosen output quantities of interest.
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1.3.4. Verification and Validation. As stated by Slotnick et al. [4],

“Verification is defined as the determination of whether a model is implemented

correctly, whereas validation is defined as the determination of how well the model

represents physical reality.” Verification and validation (V&V) are not the main focus

of this work, but it should be noted that uncertainty quantification and sensitivity

results for turbulence models are both integral components of validation efforts.

Extensive V&V studies have already been performed for CFD [1], [15], however they

have mostly lacked uncertainty quantification and sensitivity analyses of turbulence

models.

1.4. OBJECTIVES OF THE CURRENT WORK

Two studies were performed for this work: a main study, and a case study that

expands on the results of the main study. The objectives of these studies are described

in this section.

1.4.1. Objectives of Main Study. The goal of the main study was

to quantify the uncertainty and sensitivity of commonly used turbulence models in

Reynolds-Averaged Navier-Stokes (RANS) codes due to uncertainty in the values of

closure coefficients for transonic, wall-bounded flows and to rank the contribution

of each coefficient to uncertainty in various output flow quantities of interest.

Specifically, three turbulence models are considered: the Spalart-Allmaras One-

Equation Model (SA) [16], the Wilcox (2006) k-ω Two-Equation Model (W2006) [17],

and the Menter Shear-Stress Transport Two-Equation Model (SST) [18]. Each model

features its own unique set of closure coefficients, which are discussed further in

Chapter 3.

Fun3D, an unstructured RANS code of NASA Langley Research Center

(LaRC), was chosen as the flow solver for all simulations in the main study [19].

More information about Fun3D is included in Section 2.1. Two CFD problems are
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considered in the main study. The first is an axisymmetric, transonic bump validation

case from Bachalo and Johnson [20], which is discussed in detail in Section 2.3. The

second CFD problem is the RAE 2822 transonic airfoil, which is discussed in detail

in Section 2.4.

Uncertainty in the output quantities of interest was quantified by epistemic

intervals using Point-Collocation NIPC. For example, the uncertainty in drag

coefficient was quantified by the minimum and maximum response surface values

calculated using NIPC. Sensitivity information was quantified by Sobol indices. These

global nonlinear sensitivity indices allow for direct comparison and ranking of the

effect that uncertainty in the values of closure coefficients has on the uncertainty in

output flow quantities of interest.

1.4.2. Objectives of Case Study. The objective of the case study was

to verify the RAE 2822 results of the main study using new computational grids of

varying resolution and topology, as well as an additional flow solver. The results of

computational fluid dynamics simulations can be grid-dependent, so it is common

practice to perform grid studies to demonstrate grid-independence of the results.

Different flow solvers are also known to sometimes produce different results. In

addition to Fun3D, the Boeing-developed BCFD code was chosen as an additional

RANS flow solver for the case study. More information about BCFD is included in

Section 2.2.

1.5. CONTRIBUTIONS OF THE CURRENT WORK

This work has several contributions. First, it quantifies the uncertainty in

CFD simulations due to uncertainty in turbulence model closure coefficients. A

deterministic CFD simulation produces a single value for a given output, but there

is no quantifiable measure of confidence in that value. The stochastic approach here

produces a range of all possible values due to the uncertainty in the turbulence
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model. In a research setting, this range can be used to determine the robustness

of a turbulence model, and whether or not efforts should be made to improve the

model in some way. In a design setting, it may be desirable to reduce this range, or

else design a factor of safety around it. In a commercial setting, this range could be

used in a cost analysis (e.g., uncertainty in drag coefficient will affect projected fuel

costs).

A second contribution of this work is the quantification of sensitivity

information. The turbulence modeling community has long recognized the existence

of uncertainty in turbulence models, but with an overwhelming amount of sources of

uncertainty it has been difficult to make a targeted attempt to reduce each model’s

uncertainty. The sensitivity information presented in this work demonstrates that

most of the uncertainty in each turbulence model is only due to a small subset of

the model’s coefficients. Reducing the uncertainty in the values of the coefficients

in these subsets will greatly reduce the total uncertainty of each turbulence model.

The sensitivity information is valuable because it provides a guide for how resources

should be invested (whether through experimentation, LES/DES, etc.) to reduce the

uncertainty in turbulence models due to the uncertainty in the values of their closure

coefficients. This information could also be used to aid the validation efforts discussed

in Section 1.3.4.

This work serves to bridge the gap between UQ of CFD using stochastic

expansions (Section 1.3.2) and UQ of turbulence modeling using Bayesian approaches

(Section 1.3.3). The uncertainty quantification approach of the former has been very

successful, however it has not yet been applied to turbulence modeling. The approach

of the latter has also seen success, however it relies heavily upon experimental or

Direct Numerical Simulation (DNS) data for the Bayesian model calibration (i.e.,

it cannot be applied to a new problem for which no experimental or DNS data

is available). Furthermore, in the studies discussed in Section 1.3.3, the authors
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assumed uniform probability density functions (PDFs) for each closure coefficient

with lower and upper bounds of plus or minus some percentage of the baseline

coefficient value. This approach is arbitrary and often ignores physical or experimental

evidence suggesting the invalidity of the chosen distributions, effectively biasing the

uncertainty quantification and sensitivity results. In this work, the intervals for all

model coefficients were informed by experimental or numerical results, or else by the

turbulence modelers themselves. These intervals are discussed in detail in Chapter 3.

1.6. THESIS OUTLINE

This thesis is broken down into several chapters. In Chapter 2, the flow

solvers and CFD problems are discussed. The turbulence models used in this work

are described in Chapter 3. Next, in Chapter 4 an overview of the uncertainty

quantification approach is presented. The results of the main study and the case

study are included in Chapters 5 and 6 respectively. Finally in Chapter 7, conclusions

are made and some suggestions for future work are presented.
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2. FLOW SOLVERS AND CFD PROBLEMS

Two flow solvers were employed in this work: Fun3D and BCFD. The details

of each solver are provided in Sections 2.1 and 2.2 respectively. Next, information

is given for the freestream conditions and computational grids of the axisymmetric

transonic bump and RAE 2822 airfoil CFD problems.

2.1. FUN3D

The primary flow solver used in this work was a modified form of Fun3D

version 12.4 [19]. Fun3D is an unstructured, node-based, three-dimensional, finite-

volume RANS code capable of solving steady and unsteady laminar or turbulent flows

with subsonic to hypersonic speeds. The modifications to the code were performed to

allow changes to the values of turbulence model closure coefficients in the uncertainty

analyses. All solutions used a Roe, second-order flux differencing scheme with second-

order spatial accuracy for the viscous terms. The CFL numbers for the mean flow and

turbulence model equations were ramped from 10 to 50 and from 5 to 30, respectively,

across 500 iterations, and then the CFL numbers were fixed at their maximum values

until steady-state convergence was achieved. All of the results in the main study were

obtained using Fun3D. In the case study, results were obtained using Fun3D for all

three turbulence models with the coarse, fine, med-tri, and unstr-m grids.

2.2. BCFD

The second flow solver used in this work was a modifed form of BCFD alpha

version 8.0. The modifications to the code were performed to allow changes to the

values of the SA turbulence model closure coefficients in the uncertainty analyses.

Baseline solutions for each grid were obtained in the following manner: First, the

solver was run in laminar mode for 250 iterations; next, the laminar solution was
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restarted using a first order flux differencing scheme and run for 500 iterations; finally,

the first order solution was restarted using a HLLE++, second order flux differencing

scheme with second-order spacial accuracy for the viscous terms, and it was run until

steady-state convergence was achieved. Subsequent cases for each grid were restarted

from the converged baseline solution. The CFL number was allowed to automatically

adjust for improved convergence time, with a maximum allowable value of 500. BCFD

was not used in the main study. In the case study, results were obtained using BCFD

for the SA model with the original medium, unstr-m, and unstr-f grids.

2.3. PROBLEM 1: AXISYMMETRIC TRANSONIC BUMP

The first CFD problem considered in this work is an axisymmetric transonic

bump validation case from Bachalo and Johnson [20]. The test article in the

experiment consisted of a thin-walled cylinder that extended 61 cm upstream of the

bump’s leading edge, and the cylinder had an outside diameter of 15.2 cm with

a bump chord of 20.32 cm. The flow has freestream M = 0.875, T = 540◦ R,

and Re = 2.763 × 106 (based on the bump length of c = 1). All flow solutions

were obtained by using the 721 x 321 grid from the NASA Langley Research Center

turbulence modeling resource website [1]. The mesh contains 462,882 nodes, 1,155,121

edges, and 230,400 hexahedral cells. It consists of a 1◦ wedge rotated about the x-

axis. The sides of the mesh are treated as periodic interfaces; they are periodic with

each other and rotated through 1◦ in order to simulate axisymmetry. The normal

wall distance is 6×10−6 grid units, and the minimum and maximum y+ values on the

bump surface are 0.045 and 0.590 respectively (calculated from the baseline solution

with the Spalart-Allmaras model). The surface of the bump and cylinder has a solid

wall boundary condition, and all other boundary conditions are farfield Riemann.

A graphical overview of the axisymmetric transonic bump problem is included in
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Fig. 2.1. The circles below the mesh in the figure represent the axisymmetry about

the x-axis. An example pressure contour plot is included in Fig. 2.2 for the transonic

bump case obtained with the SA baseline model.

Y
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Z

x

y/c = 4.0

y/c = 0.375

x/c = -3.2

x/c = 4.4

(not drawn to scale)

rotation through
1 deg about x-axis

x/c = 0 x/c = 1

Figure 2.1: Axisymmetric transonic bump overview from Ref. 1.

2.4. PROBLEM 2: RAE 2822 TRANSONIC AIRFOIL

The second CFD problem considered in this work is the RAE 2822 transonic

airfoil at a lift coefficient of 0.744. The experimental data for this case is from Cook

et al [21]. The flow has freestream M = 0.729, T = 540◦ R, and Re = 6.5 × 106

(based on the airfoil chord of c = 1). Numerical integration of the experimental

pressure coefficient data yields a lift coefficient of CL = 0.744; the angle of attack was

adjusted for each baseline turbulence model to match this value, and all subsequent
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Figure 2.2: Non-dimensional pressure contours (scaled with the maximum value) of
axisymmetric transonic bump.
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Figure 2.3: Non-dimensional pressure contours (scaled with the maximum value) of
RAE 2822 airfoil.

simulations for each model used the same angle of attack as the one found for the

baseline. An example pressure contour plot for the RAE 2822 is included in Fig. 2.3,

which was obtained with the SA baseline model.

The RAE 2822 flow solutions in the main study were obtained by using a

513 x 161 grid containing 206,272 nodes, 514,208 edges, and 102,400 hexahedral cells.

The grid used in the main study (hereafter referred to as the “original medium grid”)

is a 2D C-mesh extruded one unit in the y-direction with y-symmetry boundary
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conditions on either side and with a solid wall boundary condition on the airfoil

surface. All other boundary conditions are farfield Riemann. The original medium

grid started as a structured PLOT3D grid, and it was converted to the unstructured

AFLR3 format for use in Fun3D and BCFD.

Five additional grids were generated based on the original medium grid. These

include a coarse grid, a fine grid, a tri-diagonalized medium grid, and two new

unstructured grids. All of the additional grids were created using MADCAP, a grid

generation software developed by The Boeing Company.

The coarse grid was created by coarsening the original medium grid by one level.

It employs the same geometry definition, but with every other point skipped. The

coarse grid contains 51,936 nodes, 129,104 edges, and 25,600 hexahedral cells.

The fine grid was created by refining the original medium grid by one level. It

employs the same geometry definition, but with new points spaced halfway between

each of the original points on the wall. The fine grid contains 822,144 nodes, 2,052,416

edges, and 409,600 hexahedral cells.

The tri-diagonalized medium grid (hereafter referred to as “med-tri”) was

created by splitting all of the quadralaterals on one 2D face of the original medium

grid into triangles, and then re-extruding by one grid unit. The extrusion results in

a grid consisting of all prism cells, as opposed to the previous grids which consist

of hexahedral cells. The med-tri grid employs the same geometry definition as the

original medium grid. Wall spacing was kept the same at 5 × 10−6 grid units. The

med-tri grid contains 206,272 nodes, 719,008 edges, and 204,800 prism cells.

The first unstructured grid (hereafter referred to as “unstr-m”) employs the

same geometry definition as the original medium grid. It consists of hexahedral

cells near the wall and prism cells further away. Wall spacing was kept the same at

5×10−6 grid units. The unstr-m grid consists of 120,866 nodes, 353,179 edges, 34,270

hexahedral cells, and 51,670 prism cells.
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The second unstructured grid (hereafter referred to as “unstr-f”) employs the

same geometry definition as the fine grid. Like unstr-m, unstr-f consists of hexahedral

cells near the wall and prism cells further away. Wall spacing was halved to

2.5 × 10−6 grid units. The unstr-f grid consists of 220,778 nodes, 630,333 edges,

70,027 hexahedral cells, and 79,556 prism cells.

A summary of the grids is presented in Table 2.1. The normal wall distance (in

grid units), y+min, and y+max are included in Table 2.2. The values of y+ were determined

from baseline solutions with the Spalart-Allmaras model at the first grid point off the

wall. Images of the RAE 2822 grids are included in Figs. 2.4 and 2.5.

Table 2.1: Summary of RAE 2822 computational grids.

Grid Nodes Edges Hex. Cells Prism Cells Total Cells

Original Medium 206,272 514,208 102,400 0 102,400
Coarse 51,936 129,104 25,600 0 25,600
Fine 822,144 2,052,416 409,600 0 409,600
Med-Tri 206,272 719,008 0 204,800 204,800
Unstr-m 120,866 353,179 34,270 51,670 85,940
Unstr-f 220,778 630,333 70,027 79,556 149,583

Table 2.2: RAE 2822 grid wall spacing information.

Grid Normal Wall Distance y+min y+max

Original Medium 5.0× 10−6 0.185 2.016
Coarse 1.0× 10−5 0.440 4.153
Fine 2.5× 10−6 0.078 1.016
Med-Tri 5.0× 10−6 0.082 2.066
Unstr-m 5.0× 10−6 0.167 2.014
Unstr-f 2.5× 10−6 0.085 1.039
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(a) Original medium grid

(b) Coarse grid

(c) Fine grid

Figure 2.4: Computational grids for RAE 2822 airfoil (orig. med., coarse, and fine).
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(a) Med-tri grid

(b) Unstr-m grid

(c) Unstr-f grid

Figure 2.5: Computational grids for RAE 2822 airfoil (med-tri, unstr-m, and unstr-f).
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3. TURBULENCE MODELS

In this chapter, the details of the turbulence models employed in this work

are outlined. Each section contains an overview of a turbulence model, its closure

coefficient values, and estimates of the epistemic intervals for each closure coefficient.

Note that the two-equation turbulence model equations are written in conserved

variable form, but the flow solutions are calculated with primitive variable form

in Fun3D. Also note that in this work, the nomenclature from the NASA LaRC

turbulence modeling website [1] is used.

3.1. SPALART-ALLMARAS ONE-EQUATION MODEL (SA)

The SA model was developed as an evolution of the Nee-Kovasznay model [22],

but with several near-wall and compressibility corrections [16]. It is simpler, less

computationally expensive, and more computationally robust than multi-equation

models, and it is widely used for aerodynamic flows in engineering applications. The

model is given by

∂ν̂

∂t
+ uj

∂ν̂

∂xj
= cb1 (1− ft2) Ŝν̂ −

[
cw1fw −

cb1
κ2
ft2

]( ν̂
d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̂)

∂ν̂

∂xj

)
+ cb2

∂ν̂

∂xi

∂ν̂

∂xi

] (1)

The full formulation of the model is given by Spalart and Allmaras [16]. The closure

coefficients and their suggested values are given in Table 3.1. The closure coefficients

also include

cw1 =
cb1
κ2

+
1 + cb2
σ

(2)



19

The turbulent eddy viscosity is computed from:

µt = ρν̂fv1 (3)

where

fv1 =
χ3

χ3 + c3v1
, χ =

ν̂

ν
(4)

and ρ is the density, ν = µ/ρ is the molecular kinematic viscosity, and µ is

the molecular dynamic viscosity. Additional definitions are given by the following

equations:

Ŝ = Ω +
ν̂

κ2d2
fν2 (5)

where Ω =
√

2WijWij is the magnitude of the vorticity, d is the distance from the

field point to the nearest wall, and

fv2 = 1− χ

1 + χfν1
, fw = g

[
1 + c6w3
g6 + c6w3

]1/6
, g = r + cw2 (r6 − r)

r = min

[
ν̂

Ŝκ2d2
, 10

]
, ft2 = ct3 exp (−ct4χ2) , Wij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

) (6)

According to Spalart and Allmaras [16], the following constraints should be enforced:

σ ∈ [0.6, 1.0] (7)

ct1 ∈ [0.1, 10] (8)

ct3 > 1.0 (9)

cv1 > 6.9 (10)
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Spalart and Allmaras also note in Ref. 16 that ct2 is “not a candidate for much

adjustment,” and that ct4 can be decreased some, but that “values much smaller

than 1 would start affecting the results in the turbulent region.” Bailey et al. [23]

determined that κ = 0.40 ± 0.02 in their turbulent pipe flow experiments, and this

range of κ was used for all of the turbulence models examined in this work. In

private communication with the author [24], Spalart recommended using the bounds

of Fig. 1 in Ref. 16 to determine the epistemic intervals of cb1, cb2, and cw2. Spalart

also recommended that

cw3 ∈ [1.75, 2.5] (11)

In total, eleven closure coefficients were varied in the UQ analysis for SA. A

summary of the SA closure coefficients to be varied, and their associated epistemic

intervals are included in Table 3.1. Brief descriptions of each coefficient are included

in Table 3.2.

Table 3.1: SA Closure Coefficients and Associated Epistemic Intervals.

Coefficient Standard Value Lower Bound Upper Bound

σ 2/3 0.6 1.0
κ 0.41 0.38 0.42
cv1 7.1 6.9 7.3
cw3 2.0 1.75 2.5
ct1 1.0 0.1 10.0
ct2 2.0 1.9 2.1
ct3 1.2 1.0 2.0
ct4 0.5 0.3 0.7
cb1 0.1355 0.12893 0.13700
cb2 0.622 0.60983 0.68750
cw2 0.3 0.05500 0.35250
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Table 3.2: SA Closure Coefficient Descriptions.

Coefficient Description

σ Turbulent Prandtl number, part of diffusion term

κ Von Kármán’s constant
Calibrates the log layer slope → χ = κy+

cv1 Used in turbulent eddy viscosity calculation and production term
Helps control the log law intercept

cw3 Part of the fw function (in destruction term), which speeds up the
decay rate of the destruction term in the outer region of the BL

ct1 Value empirically selected to control trip location

ct2 Value empirically selected to control trip location

ct3 Part of ft2 function (in production and destruction terms), which
helps transition prediction by attracting ν̂ = 0 as a solution

ct4 Part of ft2 function (in production and destruction terms), which
helps transition prediction by attracting ν̂ = 0 as a solution

cb1 Calibrates the growth of νt, which grows as exp (cb1St)

cb2 Ensures that the integral of ν1+cb2t can only increase, and
smooths out velocity profile if (1 + cb2) /σ > 2

cw2 Part of g function, which controls the slope of fw in destruction
Calibrated to match skin friction coefficient of flat plate

3.2. WILCOX (2006) k-ω TWO-EQUATION MODEL (W2006)

The k-ω model utilizes two equations to model a turbulent kinetic energy and

length scale determining variable. The first equation is for turbulent kinetic energy,

k, and the second equation is for the dissipation per unit turbulence kinetic energy, ω.

In 2006, Wilcox introduced a new version of the k-ω model which greatly improved

its accuracy for free shear flows and strongly separated flows by introducing a cross-
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diffusion term and a built-in stress-limiter [25]. The W2006 model is given by

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

]
(12)

∂(ρω)

∂t
+
∂(ρujω)

∂xj
=
γω

k
P − βρω2 +

∂

∂xj

[(
µ+ σw

ρk

ω

)
∂ω

∂xj

]
+
ρσd
ω

∂k

∂xj

∂ω

∂xj
(13)

The full formulation of the model is given by Wilcox [17]. The closure coefficients

and their suggested values are given in Table 3.3. The closure coefficients also include

γ =
β0
β∗
− σw

κ2√
β∗

(14)

Definitions of the terms in the model include:

P = τij
∂ui
∂xj

(15)

τij = µt

(
2Sij −

2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij (16)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(17)

and the turbulent eddy viscosity is computed from:

µt =
ρk

ω̂
(18)

where:

ω̂ = max

ω, Clim
√

2S̄ijS̄ij
β∗

 (19)

S̄ij = Sij −
1

3

∂uk
∂xk

δij (20)

The auxiliary functions are
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χω =
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∂k

∂xj

∂ω

∂xj
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σdo,
∂k

∂xj

∂ω

∂xj
> 0

(21)

In Ref. 25, Wilcox states that τxy/k ≈ 3/10, so β∗ = (τxy/k)2 ≈ 9/100. From this

description, the author assumed that τxy/k ∈ [0.28, 0.32], yielding β∗ ∈ [0.0784, 0.1024].

Wilcox also states that β∗/β0 = 1.25 ± 0.06 and that the following inequalities must

hold true:

σdo > σk − σw (22)

σk > σdo (23)

In this study, the standard value of 1/8 was used for σdo in all flow solutions.

Acceptable ranges for σw and σk were established from inequalities (22) and (23) and

from Figs. 4.16 and 4.17 in Ref. 25. In private communication with the author [26],

Wilcox stated that the standard value of Clim was chosen mainly for applications

with Mach number greater than two. For the transonic range, Wilcox recommended

a value of Clim closer to one.

In total, six closure coefficients were varied in the UQ analysis for W2006. A

summary of the W2006 closure coefficients to be varied and their epistemic intervals

are included in Table 3.3. Brief descriptions of each coefficient are included in

Table 3.4.
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Table 3.3: W2006 Closure Coefficients and Associated Epistemic Intervals.

Coefficient Standard Value Lower Bound Upper Bound

β∗ 0.09 0.0784 0.1024
Clim 0.875 0.75 1.0
κ 0.40 0.38 0.42

β∗/β0 1.2712 1.19 1.31
σw 0.5 0.5 0.7
σk 0.6 0.5 0.6

Table 3.4: W2006 Closure Coefficient Descriptions.

Coefficient Description

β∗ Relates (τxy/k), which equals ≈ 0.3 in the log layer
Multiplies kω in k-equation of the model

Clim Stress-limiter which improves model accuracy for shear flows
and strongly separated flows

κ Von Kármán’s constant
Involved in log layer calibration → γ = β0/β

∗ − σwκ2/
√
β∗

β∗/β0 β0 used in the calculation of β for ω-equation; ratio approximates
the time decay of homogeneous isotropic turbulence experiments

σw Multiplies (k/ω) in ω-equation; value chosen to match empirical
decay rate behavior of k and νT as wall distance increases

σk Multiplies (k/ω) in k-equation; value chosen to match empirical
decay rate behavior of k and νT as wall distance increases

3.3. MENTER SHEAR-STRESS TRANSPORT TWO-EQUATION
MODEL (SST)

Menter’s SST model uses blending functions to combine the k-ω and k-ε

models [18]. The objective is to use the k-ω model in the near wall region where

it is most accurate, and to take advantage of the freestream independence of the k-ε
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model in the outer part of the boundary layer. The model is given by

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(24)

∂(ρω)

∂t
+
∂(ρujω)

∂xj
=
γ

νt
P − βρω2 +

∂

∂xj

[
(µ+ σwµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσw2
ω

∂k

∂xj

∂ω

∂xj

(25)

The full formulation of the model is given by Menter [18]. The closure coefficients

and their suggested values are given in Table 3.5. The closure coefficients also include

γ1 =
β1
β∗
− σw1

κ2√
β∗

(26)

γ2 =
β2
β∗
− σw2

κ2√
β∗

(27)

As in the W2006 model, P , τij, and Sij are given by:

P = τij
∂ui
∂xj

(28)

τij = µt

(
2Sij −

2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij (29)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(30)

but the turbulent eddy viscosity is computed from:

µt =
ρa1k

max(a1ω, ΩF2)
(31)

Each of the constants is a blend of an inner (1) and outer (2) constant, blended via

φ = F1φ1 + (1− F1)φ2 (32)
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where φ1 represents constant 1 and φ2 represents constant 2. Additional functions

are given by

F1 = tanh(arg41), arg1 = min

[
max

( √
k

β∗ωd
,

500ν

d2ω

)
,

4ρσω2k

CDkωd2

]

νt =
µt
ρ
, CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)

F2 = tanh(arg22), arg2 = max

(
2

√
k

β∗ωd
,

500ν

d2ω

)

Ω =
√

2WijWij, Wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)

(33)

where ρ is the density, νt is the turbulent kinematic viscosity, µ is the dynamic

viscosity, d is the distance from the field point to the nearest wall, and Ω is the

vorticity magnitude.

Menter states that, “It has been the author’s experience that small changes (5-

10%) in modeling constraints can lead to a significant improvement (or deterioration)

of model predictions” [18]. Unfortunately, little more information is available

regarding plausible domains for SST closure coefficients. Many of the SST closure

coefficients are shared with W2006, and in these cases the same epistemic intervals

from W2006 were employed for SST. Georgiadis and Yoder [27] determined that

a1 ∈ [0.31, 0.40]. Menter agreed with this assessment in private communication with

the author [28], stating that “One can only increase a1 — decreasing it interferes with

the log layer calibration.”

In total, nine closure coefficients were varied in the UQ analysis for SST. A

summary of the SST closure coefficients to be varied and their epistemic intervals is

included in Table 3.5. Brief descriptions of each coefficient are included in Table 3.6.
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Table 3.5: SST Closure Coefficients and Associated Epistemic Intervals.

Coefficient Standard Value Lower Bound Upper Bound

σk1 0.85 0.7 1.0
σk2 1.0 0.8 1.2
σw1 0.5 0.3 0.7
σw2 0.856 0.7 1.0
β∗/β1 1.20 1.19 1.31
β∗/β2 1.0870 1.05 1.45
β∗ 0.09 0.0784 0.1024
κ 0.41 0.38 0.42
a1 0.31 0.31 0.40

Table 3.6: SST Closure Coefficient Descriptions.

Coefficient Description

σk1, σk2 Blended and multiplied by (k/ω) in k-equation; values chosen to
match empirical decay rate of k and νT as wall distance increases

σw1, σw2 Blended and multiplied by (k/ω) in ω-equation; values chosen to
match empirical decay rate of k and νT as wall distance increases

β∗/β1, β
∗/β2 Blend of β1 and β2 used in the calculation of β for ω-equation

Blended ratio approximates the time decay of homogeneous
isotropic turbulence experiments

β∗ Relates (τxy/k), which equals ≈ 0.3 in the log layer
Multiplies kω in k-equation of the model

κ Von Kármán’s constant
Involved in log layer calibration (γ1 and γ2 calculations)

a1 Used in turbulent eddy viscosity definition
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4. UNCERTAINTY QUANTIFICATION APPROACH

Uncertainties in computational models fall into two categories: aleatory and

epistemic. Aleatory uncertainties represent inherent variations in a system, whereas

epistemic uncertainties arise due to lack of knowledge. (For example, the outcome

of a coin flip is aleatory because it is due to inherent chance; however if a coin is

placed on a table and covered up, the uncertainty in heads/tails is epistemic because

it is due to a lack of knowledge.) In this work, all closure coefficients are treated as

epistemic uncertain variables due to the lack of a complete physical understanding of

turbulence. Section 4.1 of this chapter describes the point-collocation non-intrusive

polynomial chaos method employed to characterize this uncertainty. Sobol indices

are used as a sensitivity measure, and in Section 4.2 a description and derivation of

Sobol indices is presented.

4.1. POINT-COLLOCATION NON-INTRUSIVE POLYNOMIAL
CHAOS

Rather than resorting to Monte Carlo simulations for uncertainty quantification,

stochastic expansions based on point-collocation non-intrusive polynomial chaos

(NIPC) were employed to reduce computational expense [2]. The strategy of point-

collocation NIPC is to create a surrogate model via least squares approach (i.e.,

polynomial response surface) by using the CFD output obtained at a number of

Latin Hypercube sample points for the propagation of uncertainty. An explanation

of point-collocation NIPC given by West et al. [7] follows. With the polynomial chaos

approach, a stochastic response function α∗ (e.g., drag coefficient, pressure or skin

friction coefficient at a given point in the flow field) can be decomposed into separable
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deterministic and stochastic components within a series expansion:

α∗(x, ξ) ≈
P∑
i=0

αi(x)Ψi(ξ) (34)

where αi is the deterministic component and Ψi is the random variable basis functions

corresponding to the ith mode. α∗ is assumed to be a function of a deterministic

vector x, which includes the spatial coordinates and deterministic parameters of the

problem, and of the n-dimensional standard random variable vector ξ. In theory, the

series in Eq. (34) is infinite, but for practical implementation of the polynomial chaos

expansions it is truncated and a discrete sum is taken over a number of output modes,

(P + 1). Further details on polynomial chaos theory are given by Ghanem [11] and

Eldred [12].

There are three parameters that determine the number of samples required to

generate the response surface: the number of uncertain variables, n; the order of the

response surface polynomial, p; and the oversampling ratio, np. The total number of

samples, Ns, is then given by

Ns = np · (P + 1) = np

[
(n+ p)!

n!p!

]
(35)

The Point-Collocation NIPC method starts with replacing a stochastic response

or random function with its polynomial chaos expansion in Eq. (34). Then, Ns vectors

are chosen in random space and the deterministic code (the CFD flow solver in this

case) is evaluated at these points; this is the left-hand side of Eq. (34). Finally a

linear system of Ns equations is formulated and solved for the spectral modes of the
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random variables. This system is given by:



α∗(x, ξ0)

α∗(x, ξ1)

...

α∗(x, ξ(Ns−1))


=



Ψ0(ξ0) Ψ1(ξ0) . . . ΨP (ξ0)

Ψ0(ξ1) Ψ1(ξ1) . . . ΨP (ξ1)

...
...

. . .
...

Ψ0(ξ(Ns−1)) Ψ1(ξ(Ns−1)) . . . ΨP (ξ(Ns−1))





α0

α1

...

αP


(36)

An oversampling ratio of 1.0 yields the minimum number of samples required

to produce a response surface. Hosder et al. [29] demonstrated that an oversampling

ratio of np = 2.0 gives a better approximation to the statistics at each polynomial

degree they considered. For this reason, np = 2.0 was used for all of the UQ analyses

in this work. Given np > 1.0, Eq. (36) is overdetermined and can be solved using a

least squares approach. In the current work, a polynomial order of two (p = 2) was

used for all UQ analyses.

Due to the bounded nature of epistemic input uncertainties, Legendre

polynomials are used in this study as the basis functions. Although stochastic

response surfaces created with the NIPC approach allow the calculation of confidence

intervals along with various statistics of the output for probabilistic (aleatory) input,

in this study only the maximum and the minimum of the response will be calculated

from the response surface to determine the epistemic interval for each uncertain

output.

4.2. SOBOL INDICES

Sobol indices (global nonlinear sensitivity indices) were used to rank the relative

contributions of each closure coefficient to the total uncertainty in the output

quantities of interest. Sobol indices can be derived via Sobol Decomposition, which
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is a variance-based global sensitivity analysis method. This derivation utilizes the

polynomial chaos expansion coefficients calculated in Eq. (36). First, the total

variance, D, can be written in terms of the PCE as shown in Eq. (37).

D =
P∑
j=1

α2
j (t, ~x)

〈
Ψ2
j(
~ξ)
〉

(37)

Then, as shown by Sudret [3] and Crestaux et al. [30], the total variance can be

decomposed as:

D =
i=n∑
i=1

Di +
i=n−1∑

1≤i<j≤n

Di,j +
i=n−2∑

1≤i<j<k≤n

Di,j,k + · · ·+D1,2,...,n (38)

where the partial variances (Di1,...,is) are given by:

Di1,...,is =
∑

β∈{i1,...,is}

α2
β

〈
Ψ2
β(~ξ)

〉
, 1 ≤ i1 < . . . < is ≤ n (39)

Then the Sobol indices (Si1···is) are defined as,

Si1···is =
Di1,...,is

D
(40)

which satisfy the following equation:

i=n∑
i=1

Si +
i=n−1∑

1≤i<j≤n

Si,j +
i=n−2∑

1≤i<j<k≤n

Si,j,k + · · ·+ S1,2,...,n = 1.0 (41)

The Sobol indices provide a sensitivity measure due to individual contribution

from each input uncertain variable (Si), as well as the mixed contributions

({Si,j}, {Si,j,k}, · · · ). As shown by Sudret [3] and Ghaffari et al. [31], the total

(combined) effect (STi) of an input parameter i is defined as the summation of the

partial Sobol indices that include the particular parameter:
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STi =
∑
Li

Di1,...,is

D
; Li = {(i1, . . . , is) : ∃ k, 1 ≤ k ≤ s, ik = i} (42)

For example, with n = 3, the total contribution to the overall variance from the first

uncertain variable (i = 1) can be written as:

ST1 = S1 + S1,2 + S1,3 + S1,2,3 (43)

From these formulations, it can be seen that the Sobol indices can be used to provide

a relative ranking of each input uncertainty to the overall variation in the output

with the consideration of nonlinear correlation between input variables and output

quantities of interest.
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5. RESULTS OF MAIN STUDY

The results of the main study uncertainty quantification analyses are presented

in this chapter. The axisymmetric, transonic bump is discussed in Sections 5.1 and

5.2; and the RAE 2822 transonic airfoil is discussed in Sections 5.3 and 5.4. A

comparison of the results from both CFD problems is discussed in Section 5.5.

5.1. AXISYMMETRIC TRANSONIC BUMP - ORIGINAL ANALYSES

The purpose of the original uncertainty quantification analyses was to identify

the closure coefficients that contribute significantly to uncertainty in the output

quantities of interest. These coefficients were later used in reduced-dimensionality

analyses. For the transonic bump, the output quantities of interest include drag

coefficient (CD); pressure and skin friction coefficient distributions (Cp and Cf ); and

separation bubble size.

Sobol indices were used to rank the relative contributions of each closure

coefficient to the overall uncertainty in CD. Coefficients with higher Sobol indices

contribute more to the uncertainty than coefficients with lower Sobol indices. The

Sobol indices of the closure coefficients for each turbulence model for CD are presented

in Table 5.1, where they are ranked from highest to lowest. The largest contributors

to uncertainty in each model are typed in blue. Coefficients with Sobol indices of less

than 3.0×10−2 were not considered to be significant. The closure coefficients retained

for each turbulence model with this approach account for at least 95% of the total

uncertainty in the output quantity of interest (Table 5.1).

The largest contributors to uncertainty in CD for the SA model are κ, σ, and cv1.

The largest contributors for W2006 are σw, Clim, and β∗. The largest contributors

for SST are β∗, σw1, β
∗/β1, and β∗/β2. Note that β∗ is shared by both the W2006
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and SST models. Also note that σw1 in the SST model is the equivalent of σw in the

W2006 model. Von Kármán’s constant (κ) is included in all three models, but it is

only significant to uncertainty in CD for the SA model.

Response surfaces for pressure coefficient (Cp) and skin friction coefficient (Cf )

were generated at each axial location across the bump. Sobol indices for these

coefficients were also calculated at each axial location. Plots of the Sobol indices for

Cp and Cf versus x were generated so that the closure coefficients significant to these

quantities at points in the flow could be identified. These plots are included in Fig.

5.1. For clarity, only the Sobol indices of coefficients with significant contributions to

uncertainty in Cp are shown in the plots.

The largest contributors to uncertainty in Cp and Cf for the SA model are σ, κ,

cv1, cw3, cb1, and cw2. The largest contributors for the W2006 model are β∗, Clim, and

σw. The largest contributors for the SST model are σw1, β
∗/β1, β

∗/β2, β
∗, and a1.

Table 5.1: Sobol Indices of Closure Coefficients for CD.

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 8.50×10−1 σw 7.75×10−1 β∗ 8.03×10−1

σ 5.99×10−2 Clim 1.42×10−1 σw1 9.24×10−2

cv1 5.38×10−2 β∗ 1.26×10−1 β∗/β1 7.79×10−2

cw2 2.59×10−2 σk 2.12×10−2 β∗/β2 3.54×10−2

cb1 1.11×10−2 κ 1.99×10−2 σw2 1.85×10−3

cb2 4.66×10−4 β∗/β0 7.46×10−3 σk2 1.21×10−3

cw3 5.33×10−5 a1 8.25×10−4

ct3 9.71×10−6 σk1 4.91×10−4

ct1 8.91×10−6 κ 1.24×10−4

ct4 8.57×10−6

ct2 5.13×10−6
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(a) Sobol indices for Cp versus x (SA). (b) Sobol indices for Cf versus x (SA).

(c) Sobol indices for Cp versus x (W2006). (d) Sobol indices for Cf versus x (W2006).

(e) Sobol indices for Cp versus x (SST). (f) Sobol indices for Cf versus x (SST).

Figure 5.1: Sobol index distributions for transonic bump (Original Analyses).
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Table 5.2: Sobol Indices of Closure Coefficients for Separation Bubble Size.

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 5.58×10−1 Clim 7.26×10−1 β∗ 6.49×10−1

κ 1.82×10−1 β∗ 2.57×10−1 σw1 1.15×10−1

cw2 1.54×10−1 σw 1.03×10−1 a1 1.06×10−1

cb1 6.74×10−2 σk 1.46×10−2 β∗/β2 9.48×10−2

cw3 3.71×10−2 κ 9.92×10−3 β∗/β1 9.24×10−2

cv1 1.87×10−3 β∗/β0 5.51×10−3 σk2 2.09×10−2

ct3 6.76×10−4 κ 1.70×10−2

ct4 6.05×10−4 σw2 1.36×10−2

ct2 5.98×10−4 σk1 9.77×10−3

cb2 5.68×10−4

ct1 5.56×10−4

The separation bubble size for each case of each model was taken as the difference

between the x-coordinate of the zero-intersection points in the Cf versus x curves.

Using the same process as before, stochastic response surfaces were created for the

separation bubble size for each model. The Sobol indices of the closure coefficients

for separation bubble size are given in Table 5.2.

The largest contributors to uncertainty in separation bubble size for the SA

model are σ, κ, cw2, cb1, and cw3. The largest contributors for the W2006 model are

Clim, β∗, and σw. The largest contributors for the SST model are β∗, σw1, a1, β
∗/β2,

and β∗/β1.

In sum, six closure coefficients were found to contribute significantly to at

least one output quantity of interest for the SA model; three closure coefficients

for the W2006 model; and five coefficients for the SST model. This information is

summarized in Table 5.3.
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Table 5.3: Closure Coefficients with Significant Contributions to Transonic Bump.

SA W2006 SST

σ β∗ σw1
κ Clim β∗/β1
cv1 σw β∗/β2
cw2 β∗

cb1 a1
cw3

5.2. AXISYMMETRIC TRANSONIC BUMP - REDUCED
DIMENSIONALITY ANALYSES

To further increase the accuracy of the uncertainty analysis by creating the

stochastic response surface with a smaller number of uncertain variables, a reduced

dimensionality analysis (RDA) was performed for the axisymmetric transonic bump

with each turbulence model by using only the significant closure coefficients found in

Table 5.3.

A baseline case was run with the standard set of closure coefficients for each

turbulence model. Stochastic polynomial response surfaces of CD were obtained

with NIPC on the uncertain domain. The minimum and maximum values of drag

coefficient (CD) for each model were calculated from these response surfaces. To verify

the accuracy of each response surface, additional CFD solutions were generated by

using the sets of closure coefficients that produced the minimum and maximum values

of CD on the response surface; the CD comparison between the response surfaces and

the CFD is summarized in Table 5.4. In each case, the response surface is within

4.07% or less of the CFD. The difference values reported in Table 5.4 indicate an

acceptable level of accuracy for epistemic uncertainty analyses.

In the experiment, Bachalo and Johnson estimated the separation and

reattachment points to be x = 0.70 and x = 1.1 respectively. This yields a separation

bubble size of 0.40(x/c) (based on the bump length of c = 1). The separation
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Table 5.4: Drag Coefficient Results, in Drag Counts (RDA).

Baseline CD Min CD Max CD

Model CFD Resp. Surf. CFD Difference Resp. Surf. CFD Difference

SA 2.232 2.148 2.130 0.85% 2.270 2.288 0.79%
W2006 2.226 2.116 2.098 0.86% 2.243 2.224 0.85%

SST 2.284 1.813 1.890 4.07% 2.647 2.612 1.34%

Table 5.5: Separation Bubble Size Results (RDA).

Baseline Size Min Size Max Size
Model CFD Resp. Surf. Resp. Surf.

SA 0.467 0.441 0.507
W2006 0.535 0.522 0.672

SST 0.507 0.000 0.903

bubble size results for the UQ analyses are included in Table 5.5. Originally, the

SST response surface for separation bubble size yielded a negative minimum bubble

size. This was due to the fact that for certain samples there was a very small, or

even no separation region, yielding negative values for the response. Since this is not

physical, the minimum value is set to zero.

The Sobol indices for CD and separation bubble size agree well with the Sobol

indices in the original analyses. These values are included in Tables 5.6 and 5.7.

The ranking of importance is mostly the same between the original and reduced-

dimensionality analyses. Even when the ranking of importance is not the same, the

actual numeric values of the Sobol indices in the reduced-dimensionality analyses are

still reasonably close to their corresponding values in the original analyses.
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Table 5.6: Sobol Indices of Closure Coefficients for CD (RDA).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 8.51×10−1 σw 7.26×10−1 β∗ 7.95×10−1

σ 6.08×10−2 β∗ 2.07×10−1 σw1 9.19×10−2

cv1 5.35×10−2 Clim 1.89×10−1 β∗/β1 7.96×10−2

cw2 2.56×10−2 β∗/β2 4.86×10−2

cb1 1.08×10−2 a1 3.01×10−3

cw3 3.17×10−5

Table 5.7: Sobol Indices of Closure Coefficients for Separation Bubble Size (RDA).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 5.79×10−1 Clim 7.49×10−1 β∗ 6.27×10−1

κ 1.84×10−1 β∗ 2.71×10−1 β∗/β1 1.86×10−1

cw2 1.45×10−1 σw 7.63×10−2 σw1 1.37×10−1

cb1 5.91×10−2 β∗/β2 1.24×10−1

cw3 3.27×10−2 a1 7.99×10−2

cv1 3.65×10−3

Response surfaces for pressure coefficient (Cp) and skin friction coefficient (Cf )

were generated at each axial location across the bump. Sobol indices for these

coefficients were also calculated at each axial location. The minimum and maximum

possible values of Cp and Cf were calculated at each axial location from the response

surfaces.

Plots of Cp versus x were generated for all of the cases used in the UQ analysis,

for each turbulence model. This was done to verify the physical feasibility of the

solutions. Each plot contains data for the baseline case; UQ training cases (green

lines); minimum and maximum Cp bounds; and experimental data from Bachalo and

Johnson [20]. It should be emphasized that Bachalo and Johnson did not report any



40

experimental uncertainty in their results, so the experimental data in these figures

should be considered as reference only. A proper comparison with experiment should

take into account the uncertainty both in the numerical model and experimental data,

and the difference should be quantified with appropriate metrics for the validation of

the numerical model.

The Cp versus x plots are included in Figs. 5.2a, 5.2c, and 5.2e. The Sobol

indices for Cp versus x are included in Figs. 5.2b, 5.2d, and 5.2f. For clarity, only

the Sobol indices of coefficients with significant contributions to uncertainty in Cp

are shown in the figures. For each model, additional cases were run at the corners of

the hypercube defined by the epistemic interval bounds of only the most significant

closure coefficients; this was done to eliminate the effect of discontinuities in the

response surfaces near the shock and to determine the epistemic uncertainty interval

for the output in the shock region only. The Cp minimum and maximum curves in

Figs. 5.2a, 5.2c, and 5.2e are piece-wise combinations of the NIPC response surfaces

and these hypercube cases in the shock region.

Note that each of the minimum and maximum Cp curves may not in general

correspond to one flow solution each, because each point along each curve is calculated

from either the response surface generated by using the Cp values of each UQ case

at that specific x-location, or by one of the hypercube corner cases. While there

exist flow solutions that pass through or very near to the minimum and maximum Cp

curves at each point, there is no flow solution that passes through all of the minimum

or all of the maximum points.

Plots of skin friction coefficient at each axial location were created in a similar

fashion as the plots of pressure coefficient. Plots of Cf versus x for each UQ case

are included in Figs. 5.3a, 5.3c, and 5.3e. As before, the minimum and maximum Cf

curves in these figures are piece-wise combinations of the NIPC response surfaces at

each axial location and hypercube corner samples in the shock region. The vertical
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

(c) Cp versus x (W2006). (d) Sobol indices for Cp versus x (W2006).

(e) Cp versus x (SST). (f) Sobol indices for Cp versus x (SST).

Figure 5.2: Pressure coefficient results for transonic bump.
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lines in the plots are the separation and reattachment point locations reported by

Bachalo and Johnson [20]. The Sobol indices for Cf at each axial location are shown

in Figs. 5.3b, 5.3d, and 5.3f.

Based on the reduced-dimensionality results, all of the coefficients found to be

significant to the axisymmetric transonic bump in Section 5.1 are indeed significant to

their respective turbulence models, even in the absence of possible numerical “noise”

caused by the insignificant coefficients in the original analyses. Of the three turbulence

models, the SST model is most sensitive to changes in its closure coefficients; this is

evidenced by large variations in the model’s values for CD and separation bubble size,

as well as the large solution bands for Cp and Cf . The SA and W2006 models are

roughly equally sensitive to changes in their closure coefficients. All of the models

are most sensitive to changes in their closure coefficients in the shock and separated

regions of the flow, particularly so in the latter region. None of the models exhibit

large uncertainties in Cp upstream of the shock or downstream of the reattachment

point, however the uncertainty in Cf remains large in these regions.

5.3. RAE 2822 AIRFOIL - ORIGINAL ANALYSES

As with the original analyses of the transonic bump, the purpose of the original

analyses of the RAE 2822 airfoil was to identify the closure coefficients that contribute

significantly to uncertainty in the output quantities of interest. For the RAE 2822, the

output quantities of interest include the lift coefficient (CL), drag coefficient due to

pressure (CDpress), drag coefficient due to skin friction (CDsf
), and pressure coefficient

distribution (Cp). The skin friction coefficient distribution was not investigated for the

RAE 2822 because no separation bubble was observed in the baseline case solutions.

In the same manner as for the transonic bump, Sobol indices were calculated

for the output quantities of interest of the RAE 2822. The results for CL, CDpress , and

CDsf
are included in Tables 5.8, 5.9, and 5.10 respectively.
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(a) Cf versus x (SA). (b) Sobol indices for Cf versus x (SA).

(c) Cf versus x (W2006). (d) Sobol indices for Cf versus x (W2006).

(e) Cf versus x (SST). (f) Sobol indices for Cf versus x (SST).

Figure 5.3: Skin friction coefficient results for transonic bump.
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Table 5.8: Sobol Indices of Closure Coefficients for CL of RAE 2822.

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.07×10−1 Clim 8.55×10−1 β∗/β2 4.22×10−1

ct4 2.34×10−1 β∗ 9.57×10−2 a1 4.13×10−1

ct3 1.82×10−1 σw 4.23×10−2 β∗ 2.50×10−1

cv1 7.30×10−2 κ 1.83×10−2 σw2 2.37×10−2

cb1 3.18×10−2 β∗/β0 1.27×10−2 σw1 1.64×10−2

cw2 1.78×10−2 σk 1.19×10−2 β∗/β1 1.59×10−2

σ 1.55×10−2 σk2 1.11×10−2

cb2 1.51×10−2 σk1 9.95×10−3

cw3 9.52×10−3 κ 8.63×10−3

ct1 8.12×10−3

ct2 6.13×10−3

Table 5.9: Sobol Indices of Closure Coefficients for CDpress .

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 4.64×10−1 Clim 6.62×10−1 β∗ 6.30×10−1

cw2 2.13×10−1 σw 2.14×10−1 β∗/β2 2.36×10−1

cb1 1.91×10−1 β∗ 1.71×10−1 a1 1.34×10−1

ct4 7.10×10−2 β∗/β0 4.81×10−3 β∗/β1 3.22×10−2

cv1 2.90×10−2 κ 2.46×10−3 σw1 1.18×10−2

κ 2.74×10−2 σk 2.32×10−3 σw2 1.11×10−2

ct3 2.07×10−2 σk2 4.99×10−3

cb2 1.25×10−2 σk1 4.71×10−3

ct2 7.16×10−3 κ 1.95×10−3

ct1 5.01×10−3

cw3 3.90×10−3

For the SA model, the largest contributors to uncertainty in CL are κ, ct4, ct3,

cv1, and cb1. The largest contributors to uncertainty in CDpress are σ, cw2, cb1, and ct4;

and the largest contributors to uncertainty in CDsf
are κ, σ, cw2, ct4, ct3, and cv1.
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Table 5.10: Sobol Indices of Closure Coefficients for CDsf
.

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.65×10−1 σw 6.41×10−1 β∗ 7.75×10−1

σ 2.36×10−1 Clim 2.39×10−1 σw1 1.22×10−1

cw2 8.50×10−2 β∗ 1.56×10−1 β∗/β1 9.50×10−2

ct4 4.30×10−2 κ 1.07×10−2 a1 9.84×10−3

ct3 3.58×10−2 σk 9.71×10−3 β∗/β2 5.32×10−3

cv1 3.06×10−2 β∗/β0 3.59×10−3 σw2 1.17×10−3

cb1 1.97×10−2 σk1 8.58×10−4

cb2 1.65×10−3 σk2 8.34×10−4

ct1 1.36×10−3 κ 1.30×10−4

cw3 1.17×10−3

ct2 6.17×10−4

For the W2006 model, the largest contributors to uncertainty in all three

integrated quantities are Clim, β∗, and σw. The order of importance is different for

CL, CDpress , and CDsf
, but the important coefficients are the same for each quantity.

For the SST model, the largest contributors to uncertainty in CL are β∗/β2,

a1, and β∗. The largest contributors to uncertainty in CDpress are β∗, β∗/β2, a1, and

β∗/β1; and the largest contributors to uncertainty in CDsf
are β∗, σw1, and β∗/β1.

Response surfaces for Cp were generated at each x-location on the top

and bottom surface of the airfoil so that the closure coefficients with significant

contributions to Cp at any given point in the flow could be identified. These plots are

included in Fig. 5.4. In Fig. 5.4a, the largest contributor to uncertainty in Cp for the

majority of the x domain in the SA model is κ. There are also spikes in the Sobol

indices of ct3, ct4, and σ, indicating that these coefficients are also important in some

parts of the flow; particularly, spikes appear near the shock on the upper surface and

near the high-pressure region at the leading edge on the lower surface. In Fig. 5.4b,

the uncertainty in Cp for the W2006 model is almost completely dominated by Clim,
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Table 5.11: Closure Coefficients with Significant Contributions to RAE 2822.

SA W2006 SST

σ β∗ σw1
κ Clim β∗/β1
cv1 σw β∗/β2
ct3 β∗

ct4 a1
cb1
cw2

with only a few minor contributions from β∗ and σ2. In Fig. 5.4c, the uncertainty in

Cp for the SST model is mostly attributed to β∗/β2, β
∗, and a1. At x ≈ 0.6, σw1 also

has a minor contribution.

In sum, seven closure coefficients were found to contribute significantly to at

least one output quantity of interest for the SA model; three coefficients for the W2006

model; and five coefficients for the SST model. This information is summarized in

Table 5.11.

5.4. RAE 2822 AIRFOIL - REDUCED DIMENSIONALITY ANALYSES

As with the transonic bump, a reduced-dimensionality analysis was performed

on the RAE 2822 for each of the turbulence models to further improve the accuracy

of the response surfaces used in the uncertainty analyses. A baseline case was run

with each of the original, unchanged turbulence models for the RAE 2822 airfoil. The

response surfaces of drag coefficient and lift coefficient for the RAE 2822 were verified

in the same manner as the response surfaces of the drag coefficient of the transonic

bump; the minimum and maximum values of CD and CL were first calculated from the

response surfaces, and then CFD simulations were run by using the closure coefficients

that produced these minimum and maximum values. The comparison between the
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(a) Sobol indices for Cp versus x (SA).

(b) Sobol indices for Cp versus x (W2006).

(c) Sobol indices for Cp versus x (SST).

Figure 5.4: Sobol index distributions for RAE 2822 airfoil (Original Analyses).
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response surfaces and CFD is summarized in Tables 5.12 and 5.13. All of the CD

response surfaces are within 4.37% or less of the CFD, and the CL response surfaces

are within 1.18% or less of the CFD.

The Sobol indices for CL, CDpress , and CDsf
agree well with the Sobol indices

in the original analyses. The results for the reduced-dimensionality analyses are

included in Tables 5.14, 5.15, and 5.16. As with the transonic bump, the ranking of

importance of the closure coefficients for each quantity is mostly the same between the

original and reduced-dimensionality analyses. Even when the ranking of importance

is not the same, the actual numeric values of the Sobol indices in the reduced-

dimensionality analyses are still reasonably close to their corresponding values in

the original analyses.

Pressure coefficient plots were generated for each turbulence model. Each of the

plots contains data for the baseline case; UQ training cases (green lines); the minimum

and maximum Cp bounds; and experimental data from Cook et al. [21]. Cook et al.

did not report any experimental uncertainty, so the experimental results are included

Table 5.12: RAE 2822 Drag Coefficient Results, in Drag Counts (RDA).

Baseline CD Min CD Max CD

Model CFD Resp. Surf. CFD Difference Resp. Surf. CFD Difference

SA 146.0 134.7 135.8 0.81% 152.8 151.2 1.06%
W2006 142.3 130.2 128.5 1.32% 144.4 144.4 0.00%

SST 128.5 107.2 112.1 4.37% 183.0 182.8 0.11%

Table 5.13: RAE 2822 Lift Coefficient Results (RDA).

Baseline CL Min CL Max CL

Model CFD Resp. Surf. CFD Difference Resp. Surf. CFD Difference

SA 0.744 0.735 0.739 0.57% 0.769 0.764 0.69%
W2006 0.744 0.733 0.738 0.68% 0.749 0.748 0.13%

SST 0.744 0.710 0.719 1.18% 0.778 0.774 0.45%
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Table 5.14: Sobol Indices of Closure Coefficients for CL of RAE 2822 (RDA).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.09×10−1 Clim 8.96×10−1 a1 5.21×10−1

ct4 2.18×10−1 β∗ 9.93×10−2 β∗/β2 3.27×10−1

ct3 1.81×10−1 σw 1.84×10−2 β∗ 2.81×10−1

cv1 1.03×10−1 β∗/β1 1.10×10−1

σ 2.83×10−2 σw1 4.48×10−2

cb1 2.60×10−2

cw2 2.23×10−2

Table 5.15: Sobol Indices of Closure Coefficients for CDpress of RAE 2822 (RDA).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 4.55×10−1 Clim 7.01×10−1 β∗ 6.64×10−1

cb1 2.24×10−1 β∗ 1.82×10−1 β∗/β2 2.02×10−1

cw2 2.23×10−1 σw 1.64×10−1 a1 1.77×10−1

ct4 5.26×10−2 β∗/β1 5.15×10−2

κ 4.27×10−2 σw1 2.19×10−2

cv1 3.19×10−2

ct3 2.17×10−2

as reference only. The Cp versus x plots are included in Figs. 5.5a, 5.5c, and 5.5e; and

the Sobol indices for Cp versus x are included in Figs. 5.5b, 5.5d, and 5.5f. For clarity,

only the Sobol indices of coefficients with significant contributions to uncertainty in

Cp are shown in the figures. Similarly to the transonic bump, the minimum and

maximum Cp curves Figs. 5.5a, 5.5c, and 5.5e are piece-wise combinations of the

NIPC response surfaces and cases run at the corners of the hypercubes defined by

the epistemic bounds of the closure coefficients in the shock region.
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

(c) Cp versus x (W2006). (d) Sobol indices for Cp versus x (W2006).

(e) Cp versus x (SST). (f) Sobol indices for Cp versus x (SST).

Figure 5.5: Pressure coefficient results for RAE 2822.
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Table 5.16: Sobol Indices of Closure Coefficients for CDsf
of RAE 2822 (RDA).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.69×10−1 σw 6.92×10−1 β∗ 7.91×10−1

σ 2.33×10−1 Clim 2.10×10−1 σw1 1.15×10−1

cw2 8.30×10−2 β∗ 1.45×10−1 β∗/β1 9.10×10−2

ct4 4.25×10−2 a1 1.09×10−2

cv1 4.05×10−2 β∗/β2 3.68×10−3

ct3 3.52×10−2

cb1 1.89×10−2

Based on the reduced-dimensionality results, all of the coefficients found to

be significant to the RAE 2822 airfoil in Section 5.3 are indeed significant to their

respective turbulence models. Of the three models, the SST model is most sensitive to

changes in its closure coefficients, as evidenced by its larger variations in CL, CDpress ,

and CDsf
, and by its larger solution band for Cp compared to the SA and W2006

models. The SA and W2006 models are roughly equally sensitive to changes in their

closure coefficients, with the latter particularly insensitive. All of the models are most

sensitive to changes in their closure coefficients in the shock region; everywhere else,

there is very little uncertainty in Cp.

5.5. COMPARISON OF UNCERTAINTY QUANTIFICATION
RESULTS BETWEEN THE TWO CFD CASES

The uncertainty quantification and sensitivity results of the axisymmetric

transonic bump and RAE 2822 airfoil are consistent with one another. For the

W2006 and SST models, every closure coefficient which is significant to at least one

output quantity of interest for the transonic bump is also significant to at least one

output quantity of interest for the RAE 2822 and vice versa. This agreement is nearly

observed by the SA model as well, with only one coefficient significant to the transonic
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Axisymmetric Transonic Bump RAE 2822 Transonic Airfoil

(a) SA - Significant closure coefficients.

Axisymmetric Transonic Bump RAE 2822 Transonic Airfoil

(b) W2006 - Significant closure coefficients.

Axisymmetric Transonic Bump RAE 2822 Transonic Airfoil

(c) SST - Significant closure coefficients.

Figure 5.6: Closure coefficients significant to uncertainty in at least one output
quantity of interest for each CFD problem and for each turbulence model.

bump but not the RAE 2822, and only two coefficients significant to the RAE 2822,

but not the transonic bump. A summary of all of the significant closure coefficients

is included in Fig. 5.6.

Note that for the SA model, cw3 was only significant to uncertainty in the

separation bubble size for the transonic bump. Also, in the Sobol index distribution

for Cf with the SA model (Fig. 5.1b), the peak in the Sobol index of cw3 occurs at the

same x-location as the local maximum of Cf within the separation bubble. The RAE

2822 does not feature a separation bubble; this explains why cw3 was not significant

for that problem. The significance of ct3 and ct4 to uncertainty for the RAE 2822 is

explained in Section 6.9 of the case study.
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Compared to the transonic bump results, the RAE 2822 results are much less

sensitive to changes in all three turbulence models’ closure coefficients. The same

trends still apply however; the SST model is most sensitive to changes in its closure

coefficients, and the SA and W2006 models are roughly equally sensitive to changes

in their closure coefficients. Uncertainties in Cp are particularly large in the shock

region of each flow for all three turbulence models.

The information presented in this chapter is expected to be of interest to the

CFD community because it demonstrates that large changes in turbulence model

behavior can be observed by changing specific sets of closure coefficients. In particular,

there are two main results that can enable the advancement of turbulence models

used in RANS simulations. The first result is that if improved matching between

CFD and experiments (i.e., the data representing the real physical phenomena) is

desired, the Sobol indices presented in this chapter for certain output quantities of

interest give clues for which closure coefficients to modify first. The second result

is that if the aerospace community can reduce the uncertainty in only a certain

set of closure coefficients (whether through experimentation, LES/DES, etc.), the

uncertainty in turbulence model predictions can be greatly reduced. For example, the

uncertainty in the value of Von Kármán’s constant in the SA model was responsible

for approximately 85% of the uncertainty in CD of the axisymmetric transonic bump.

If more information were known about the true value of κ, the results of the SA model

would be much less uncertain.

If improved accuracy is desired, a good starting point may be to first consider

the integrated quantities; that is, CD for the axisymmteric transonic bump, and CL,

CDpress , and CDsf
for the RAE 2822 airfoil. Referring back to Tables 5.6, 5.14, 5.15, and

5.16, a small number of closure coefficients can be identified for each turbulence model

which consistently contribute to very large amounts to uncertainty in the output

quantities of interest. These coefficients include κ and σ for the SA model; Clim and
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σw for the W2006 model; and β∗ for the SST model. This result is in agreement with

the work done by Godfrey and Cliff [5], Edeling et al. [13], and Papadimitriou and

Papadimitriou [14]. It is suggested that these coefficients be considered first in future

refinements of the turbulence models discussed here.
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6. RESULTS OF CASE STUDY

In this chapter, the results of all RAE 2822 uncertainty quantification analyses

for the case study are presented. These results were obtained during a summer

internship at The Boeing Company, and they have been cleared for release under

RROI 15-00615-EOT. The Fun3D results for the coarse, fine, med-tri, and unstr-

m grids are presented in Sections 6.1-6.4 respectively. The BCFD results for the

SA model with the original medium, unstr-m, and unstr-f grids are presented in

Sections 6.5-6.7 respectively. A summary of the case study results is included in

Section 6.8. All results are compared to the Fun3D results for the original medium

grid in Section 5.4. The SA model results require additional explanation, which is

included in Section 6.9. Only the coefficients found to contribute most significantly

to uncertainty for the RAE 2822 in the main study are treated as uncertain in the

proceeding analyses; recall that these coefficients are listed in Table 5.11.

As in the main study, Sobol indices were used in the case study to rank the

relative contributions of each closure coefficient to the overall uncertainty in the

output quantities of interest for the RAE 2822, which include the lift coefficient (CL),

drag coefficient due to pressure (CDpress), and drag coefficient due to skin friction

(CDsf
). Recall that coefficients with higher Sobol indices contribute more to the

uncertainty than coefficients with lower Sobol indices.

Pressure coefficient plots were also generated for each analysis, and are included

in the proceeding sections. Each of the plots contains data for the baseline case (with

the original set of closure coefficients); UQ training cases (green lines); the minimum

and maximum Cp bounds; and experimental data from Cook et al. [21]. The minimum

and maximum Cp bounds were calculated from response surfaces at each chord-wise



56

position along the airfoil. Sobol index distributions for Cp were also calculated and

plotted from these response surfaces. Cook et al. did not report any experimental

uncertainty, so the experimental results are included as reference only.

In some analyses, additional CFD cases were run at the corners of the

hypercube defined by the epistemic interval bounds of only the most significant closure

coefficients; this was done to eliminate the effect of discontinuities in the response

surfaces near the shock and to determine the epistemic uncertainty interval for Cp in

the shock region only. In these instances, the Cp minimum and maximum curves are

piece-wise combinations of the NIPC response surface and the hypercube cases in the

shock region.

6.1. COARSE GRID (FUN3D)

The Sobol indices for CL, CDpress , and CDsf
with the coarse grid are included

in Tables A.1, A.2, and A.3 of Appendix A respectively. The Cp distributions and

corresponding Sobol index distributions are included in Fig. 6.1.

For the SA model, the most significant coefficients for the integrated quantities

from the original medium grid remain as the most significant for the coarse grid;

however ct3 and ct4 have significantly decreased importance. The general shape of

the coarse grid Cp Sobol index distribution remains similar to that of the original

medium grid. Although the curves for ct3 and ct4 are noticably smaller, the regions

where κ and σ contribute significantly to uncertainty in Cp are the same; κ dominates

uncertainty until just aft of the shock, where σ has a large spike near x = 0.6. Then

κ rises again until approximately x = 0.7, where σ has increased significance until

approximately x = 0.9.

For the W2006 model, the results for the integrated quantities with the coarse

grid are consistent with the results from the original medium grid. The distributions

of Sobol indices for Cp are also very similar.
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For the SST model, the results for the coarse grid are inconsistent with the

results from the original medium grid. Note that the sum of the Sobol indices for

each integrated quantity for the SST model is much larger than one; this indicates

significant mixed contributions to uncertainty between coefficients. Although the Cp

distribution for the coarse grid appears to be similar to the Cp distribution for the

original medium grid, the Sobol index distributions for Cp are completely different.

One possible reason for the discrepancy between results is that the SST model is

known to be sensitive to near-wall spacing [32]. Furthermore, Menter recommends

∆y+ < 3 to simulate a smooth wall boundary condition [18]; however the maximum

value of y+ for the coarse grid is larger than four.

6.2. FINE GRID (FUN3D)

The Sobol indices for CL, CDpress , and CDsf
with the fine grid are included in

Tables A.4, A.5, and A.6 of Appendix A respectively. The Cp distributions and

corresponding Sobol index distributions are included in Fig. 6.2.

For the SA model, ct3 and ct4 have significantly increased importance for the

integrated quantities. This observation is explained in Section 6.9. Note that in

Fig. 6.2a a small number of UQ samples is set apart from the others in the shock

region; it was determined that these cases feature ct3 and ct4 near their maximum

and minimum epistemic bounds respectively, yielding large values for ft2. The Sobol

index distribution for Cp with the fine grid is completely dominated by ct3, then ct4.

For the W2006 and SST models, the results for the integrated quantities with

the fine grid are consistent with the results from the original medium grid. The

distributions of Sobol indices for Cp are also very similar.
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

(c) Cp versus x (W2006). (d) Sobol indices for Cp versus x (W2006).

(e) Cp versus x (SST). (f) Sobol indices for Cp versus x (SST).

Figure 6.1: Pressure coefficient results for RAE 2822, coarse grid (FUN3D)
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

(c) Cp versus x (W2006). (d) Sobol indices for Cp versus x (W2006).

(e) Cp versus x (SST). (f) Sobol indices for Cp versus x (SST).

Figure 6.2: Pressure coefficient results for RAE 2822, fine grid (FUN3D)
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6.3. MED-TRI GRID (FUN3D)

The Sobol indices for CL, CDpress , and CDsf
with the med-tri grid are included

in Tables A.7, A.8, and A.9 of Appendix A respectively. The Cp distributions and

corresponding Sobol index distributions are included in Fig. 6.3.

For the SA model, the most significant coefficients for the integrated quantities

with the original medium grid remain as the most significant coefficients with the

med-tri grid; however ct4 has decreased importance. The Cp and corresponding Sobol

index distributions for the med-tri grid are very similar to those of the original medium

grid.

For the W2006 model, the results for the integrated quantities with the med-tri

grid are consistent with the results from the original medium grid. The distributions

of Sobol indices for Cp are also very similar.

For the SST model, the results for CL and CDsf
with the med-tri grid are

consistent with the results from original medium grid. The results for CDpress are

also similar, except that a1 has increased significance for the med-tri grid. The Sobol

index distribution for Cp with med-tri grid is even more dominated by a1 than the

distribution with the original medium grid, but the rise in importance of β∗ aft of the

shock and back to the training edge is still present.

6.4. UNSTR-M GRID (FUN3D)

The Sobol indices for CL, CDpress , and CDsf
with the unstr-m grid are included

in Tables A.10, A.11, and A.12 of Appendix A respectively. The Cp distributions and

corresponding Sobol index distributions are included in Fig. 6.4.

For all three turbulence models, the results for the integrated quantities with the

unstr-m grid are in very good agreement with the results from the original medium

grid. In fact, the percent of the total uncertainty in each integrated quantity due to

each coefficient only varies by approximately 2% at most between the two grids (see
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

(c) Cp versus x (W2006). (d) Sobol indices for Cp versus x (W2006).

(e) Cp versus x (SST). (f) Sobol indices for Cp versus x (SST).

Figure 6.3: Pressure coefficient results for RAE 2822, med-tri grid (FUN3D)
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the CDpress values for Clim in the W2006 model), and in most cases this variation is

much less. The distributions of Sobol indices for Cp are also very similar between

the unstr-m grid and the original medium grid, especially for the W2006 and SST

models.

6.5. ORIGINAL MEDIUM GRID (BCFD)

The Sobol indices for CL, CDpress , and CDsf
with the original medium grid in

BCFD are included in Table A.13 of Appendix A. Recall that only the the SA model

was run in BCFD. The Cp distribution and corresponding Sobol index distribution

are included in Fig. 6.5.

The most significant coefficients for the integrated quantities from the original

medium grid in Fun3D remain as the most significant for the original medium grid

in BCFD; however ct3 and ct4 have significantly decreased importance. Very good

agreement is observed, however, between the integrated quantity results with coarse

grid in Fun3D and the original medium grid in BCFD. The Cp and Sobol index

distributions with the original medium grid in BCFD also agree well with those of

the coarse grid in Fun3D . This agreement is explained in Section 6.9.

6.6. UNSTR-M GRID (BCFD)

The Sobol indices for CL, CDpress , and CDsf
with the unstr-m grid in BCFD are

included in Table A.14 of Appendix A. The Cp distribution and corresponding Sobol

index distribution are included in Fig. 6.6. The results for the unstr-m grid in BCFD

are very similar for the results for the original medium grid in BCFD – although these

results are different than results for the original medium grid in Fun3D , they are

similar to the results for the coarse grid in Fun3D .
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

(c) Cp versus x (W2006). (d) Sobol indices for Cp versus x (W2006).

(e) Cp versus x (SST). (f) Sobol indices for Cp versus x (SST).

Figure 6.4: Pressure coefficient results for RAE 2822, unstr-m grid (FUN3D)
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

Figure 6.5: Pressure coefficient results for RAE 2822, original medium grid (BCFD)

(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

Figure 6.6: Pressure coefficient results for RAE 2822, unstr-m grid (BCFD)

6.7. UNSTR-F GRID (BCFD)

The Sobol indices for CL, CDpress , and CDsf
with the unstr-f grid in BCFD are

included in Table A.15 of Appendix A. The Cp distribution and corresponding Sobol

index distribution are included in Fig. 6.7. The results for the unstr-f grid in BCFD
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are very similar for the results for the original medium and unstr-m grids in BCFD

– although these results are different than results for the original medium grid in

Fun3D , they are similar to the results for the coarse grid in Fun3D .

(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

Figure 6.7: Pressure coefficient results for RAE 2822, unstr-f grid (BCFD)

6.8. SUMMARY OF CASE STUDY RESULTS

To better compare results across all grids, Figs. 6.8, 6.9, and 6.10 were created

to show the Sobol indices of the integrated quantities for each turbulence model and

for each grid. Each of the vertical lines in the figures shows the dispersion of Sobol

indices for a particular flow quantity and turbulence model. Note the consistency

of the results; for the SA model, only the fine grid features large discrepancies from

the other SA results, and for the SST model, only the coarse grid features large

discrepancies from the other SST results. There are no major differences between

any of the W2006 results.
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The main focus of the case study was to verify the sensitivity information

presented in Section 5.4, however for completeness the minimum and maximum CL

and CD calculated from the response surfaces of each grid and each turbulence model

are included in Tables B.1 and B.2 of Appendix B. As expected, the minimum and

maximum CL and CD results in Tables B.1 and B.2 that agree best with the original

medium grid results correspond to analyses that have good agreement between Sobol

indices.

Overall, the Fun3D results presented in the case study are in good agreement

with the results from Section 5.4. Of all the results from the case study grids, the SST

results from the coarse grid were most different than those of the original medium

grid. This should be expected however, as the coarse grid is of the lowest quality

of all the case study grids (specifically, it features very high aspect ratio cells near

the wall). The results from the fine grid with the SA model indicate significantly

increased importance of ct3 and ct4 compared to the original medium grid, and this

finding is explained in Section 6.9.

The most significant coefficients for the SA model with the original medium

grid in Fun3D remain as the most significant for all three of the grids run in BCFD;

however ct3 and ct4 have decreased importance compared to the original results. The

BCFD results are in good agreement with the results obtained with the coarse grid

in Fun3D. These findings are also explained in Section 6.9.

6.9. EXPLANATION OF SA MODEL BEHAVIOR

Overall the case study results for the SA model are in good agreement; however

there are clearly differences in the results of the fine grid with Fun3D compared

to those of the original medium grid. Additionally, the coarse grid results show a

slight decrease in the importance of ct3 and ct4 compared to the results of the original



67

0

0.2

0.4

0.6

0.8

1

S
ob

ol
 In

de
x

 

 

orig. m
ed

coarse fine
med−tri

unstr−
m

bcfd−med

bcfd−unstr−
m

bcfd−unstr−
f   

σ

κ

cv1
ct3
ct4
cb1
cw2

(a) Sobol Indices for CL (SA).

0

0.2

0.4

0.6

0.8

1

S
ob

ol
 In

de
x

 

 

orig. m
ed

coarse fine
med−tri

unstr−
m

bcfd−med

bcfd−unstr−
m

bcfd−unstr−
f   

σ

κ

cv1
ct3
ct4
cb1
cw2

(b) Sobol Indices for CDpress (SA).

0

0.2

0.4

0.6

0.8

1

S
ob

ol
 In

de
x

 

 

orig. m
ed

coarse fine
med−tri

unstr−
m

bcfd−med

bcfd−unstr−
m

bcfd−unstr−
f   

σ

κ

cv1
ct3
ct4
cb1
cw2

(c) Sobol Indices for CDsf
(SA).

Figure 6.8: Sobol indices of integrated quantities for all grids (SA).
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Figure 6.9: Sobol indices of integrated quantities for all grids (W2006).
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medium grid, and this behavior is also observed in the BCFD results. All of these

observations are explained by the ft2 function in the SA model, which appears in

both the production and destruction terms.

Fun3D uses the “standard” implementation of the SA model as described by [1].

BCFD employs a slightly different, but very common implementation of the model

in which ft2 is set to zero. The production and destruction terms are, respectively:

cb1 (1− ft2) Ŝν̂ (44)

−
[
cw1fw −

cb1
κ2
ft2

]( ν̂
d

)2

(45)

where

Ŝ = Ω +
ν̂

κ2d2
fv2 (46)

ft2 = ct3 exp
(
−ct4χ2

)
(47)

Notice that both Eqns. (44) and (45) contain (ν̂/d)2, where d is the normal wall

distance; as d approaches zero, (1/d)2 becomes very large. Also notice that on the

edges of the epistemic intervals for ct3 and ct4 (see Table 3.1), ft2 can grow very large

compared to its value with the baseline coefficients as χ increases in the boundary

layer. A plot depicting the ratio of the perturbed ft2 to the baseline value for varying

χ is included in Fig. 6.11.

The purpose of the ft2 function is to act as an attractor so that ν̂ = 0 is a solution

for the SA model (ν̂ = 0 should be a solution at the wall). When ft2 is large and d

is small, the attraction becomes so strong that the flow begins to laminarize. This

is illustrated in Figure 6.12. For the baseline case in Fig. 6.12a, the non-dimensional

values of ν̂ at the wall on the upper surface are larger than the freestream, indicating

turbulent flow. Contrastingly, the non-dimensional values of ν̂ on the wall are the
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(a) Baseline case, fine grid. (b) Case 9, fine grid.

Figure 6.12: Contours of ν̂ (non-dimensionalized) for fine grid.

same as the freestream for UQ Case 9 (Fig. 6.12b), indicating laminar flow before the

shock at approximately x = 0.6. The fine grid has a small d because the first grid

point is very close to the surface; Case 9 has a large ct3 and small ct4.



72

The laminarization of Case 9 explains why the Cp plot in Fig. 6.2a features a

small group of UQ cases set apart from the rest (recall that each of these cases has

large ct3 and small ct4). The rearward shifting of the shock and subsequent flat region

are indicative of a laminar shock wave, which is in agreement with the observations

made in Fig. 6.12.

Note that this laminarization can be observed for coarser grids as well. In

additional CFD runs, laminarization started to occur near the leading edge for

the original medium grid with very large ct3 (outside of the epistemic interval)

and small ct4. This observation explains the large contributions of ct3 and ct4 to

uncertainty the Cp distribution near the leading edge of the original medium grid in

Fig. 5.5b.

These findings explain why ct3 and ct4 have significantly larger Sobol indices for

all output quantities of interest for the fine grid than for all other grids. As (ν̂/d)

grows large deep in the boundary layer, it is multiplied by ft2 which can also be large

for large ct3 and small ct4. For the fine grid, (ν̂/d) becomes especially large because

d is at least twice as small as for the other grids; thus laminarization occurs much

more readily, and its occurrence is sensitive to ct3 and ct4.

One way to avoid laminarization all together is to simply set ft2 = 0. Doing

so should yield UQ and sensitivity results similar to those obtained with the coarse

grid in Fun3D (where large d mitigates the effects of ft2) and similar to the results

of all grids in BCFD (where ft2 is already set to zero). To verify this statement, two

additional UQ analyses were performed using Fun3D: one with the original medium

grid and one with the fine grid. ft2 was set to zero in both analyses.

Figs. 6.13 and 6.14 show the pressure coefficient and corresponding Sobol index

distributions for the original medium and fine grids with ft2 = 0. Figs. 6.13b

and 6.14b have the same shape as Figs. 6.1b, 6.5b, 6.6b, and 6.7b; this confirms

that setting ft2 to zero yields consistent UQ and sensitivity results. Furthermore,
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Fig. 6.15 shows consistent integrated quantity results for the ft2 = 0 analyses when

compared to the coarse grid in Fun3D and all grids in BCFD. The Sobol indices for

the integrated quantities with ft2 = 0 in Fun3D are included in Tables A.16 and

A.17 of Appendix A. The epistemic intervals of CL and CD are reported in Tables

B.1 and B.2 of Appendix B respectively. The epistemic intervals for CL and CD for

the analyses with ft2 = 0 are in very good agreement with each other, as well as with

the coarse grid results.

Finally, the observations made in this section explain why ct3 and ct4 are

significant to uncertainty for the RAE 2822, but not the transonic bump (see

Fig. 5.6a). As d grows smaller, ct3 and ct4 grow more significant to uncertainty;

the transonic bump has a wall spacing of 6 × 10−6 grid units, which is 20% larger

than that of the original medium grid for the RAE 2822.
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(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

Figure 6.13: Pressure coefficient results for RAE 2822, original medium grid, ft2 = 0
(FUN3D).

(a) Cp versus x (SA). (b) Sobol indices for Cp versus x (SA).

Figure 6.14: Pressure coefficient results for RAE 2822, fine grid, ft2 = 0 (FUN3D).
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7. CONCLUSIONS AND FUTURE WORK

Two studies were performed to quantify the uncertainty in commonly used

turbulence models due to uncertainties in the values of their closure coefficients. The

conclusions from these studies are presented in this chapter.

In the main study, two detailed uncertainty quantification analyses were

performed on an axisymmetric transonic bump at zero degrees angle of attack and

the RAE 2822 transonic airfoil at a lift coefficient of 0.744. The transonic bump

has freestream M = 0.875 and Re = 2.763 × 106, and the RAE 2822 has freestream

M = 0.729 and Re = 6.5× 106. The turbulence models considered were the Spalart-

Allmaras Model, Wilcox (2006) k-ω Model, and Menter Shear-Stress Transport

Model. The uncertainty quantification employed stochastic expansions based on non-

intrusive polynomial chaos as an efficient means of uncertainty propagation. The

drag coefficient, wall pressure and skin friction coefficient distributions, and shock-

induced separation bubble size were considered as uncertain outputs for the transonic

bump. The lift coefficient, pressure and skin friction components of drag coefficient,

and wall pressure coefficient distribution were considered as uncertain outputs for

the RAE 2822. Sobol indices were used to rank the relative contributions of each

closure coefficient to the total uncertainty in the output quantities of interest. This

information can be used a potential starting point in the future advancement of the

turbulence models considered here, and it is a first step towards quantifying model-

form uncertainty.

Based on the results of the main study, the following conclusions can be made:

For the SA model, the coefficients that contribute most to uncertainty in the output

quantities of interest are σ, κ, cv1, cb1, cw2, ct3, ct4, and cw3. For the W2006 model, the

coefficients that contribute most to uncertainty in the output quantities of interest
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are β∗, Clim, and σw. For the SST model, the coefficients that contribute most to

uncertainty in the output quantities of interest are σw1, β
∗/β1, β

∗/β2, β
∗, and a1.

With the exception of cw3, ct3, and ct4 in the SA model, all other closure coefficients

were found to be significant to both the axisymmetric transonic bump and RAE

2822 transonic airfoil. For the SA model, cw3 was only significant to uncertainty in

the separation bubble region of the transonic bump; the RAE 2822 does not have a

separation region, which is why cw3 was not significant for that problem.

In the case study, several more UQ analyses were performed to confirm the

RAE 2822 sensitivity results of the main study with computational grids of varying

resolution and topology. The same UQ methodology was used in both the main study

and the case study. The W2006 results of the case study are extremely consistent

across all grids. The SST results are mostly consistent except for the results of the

coarse grid; however the SST model is known to be sensitive to near-wall resolution.

The SA results were mostly consistent except for the results of the fine grid, which

had a sharp increase in the importance of ct3 and ct4.

It was determined that for the SA model, the coupling of large ct3, small ct4, and

small wall-normal spacing can lead to laminarization of the flow on the upper surface

of the RAE 2822 before the shock. This led to the formation of a laminar shock wave

in several UQ training cases, and it produced physically unrealistic results for the

fine grid analysis. Laminarization increases as the wall-normal distance decreases;

this explains why ct3 and ct4 were significant to uncertainty for the RAE 2822 airfoil,

but not the transonic bump (which has a larger wall-normal spacing than the RAE

2822) in the main study. In the case study, it was demonstrated that by setting ft2

to zero, grid independence of the SA UQ and sensitivity results is achieved.

The consistency of the sensitivity results in the case study leads to the conclusion

that, based on the epistemic intervals for the closure coefficients established here,

there are a small subset of coefficients for each model that are responsible for the
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majority of the uncertainty in the output quantities of interest, independent of grid

resolution or topology. Future work should focus increasing knowledge of appropriate

values for these coefficients, which includes κ and σ for the SA model; Clim and

σw for the W2006 model; and β∗ for the SST model. Improved knowledge of the

values of these particular closure coefficients will have the largest impact on reducing

the uncertainty in integrated quantities of interest for the RANS simulations of

wall-bounded transonic flows. Future work should also focus on determining why

certain closure coefficients contribute more or less to uncertainty at different flow

locations. For example, research should be done to determine why σ in the SA model

becomes important to Cf for the transonic bump after the reattachment point, but

not before. Finally, future work should include more CFD problems, particularly in

three dimensions.



APPENDIX A

Sobol Indices of Integrated Quantities (Case Study)
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This appendix includes the tabulated Sobol indices for CL, CDpress , and CDsf

with each of the case study grids, turbulence models, and flow solvers. Coefficients
which contribute significantly to uncertainty are typset in blue.

Table A.1: Sobol indices for CL, coarse grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 7.13×10−1 Clim 9.34×10−1 β∗/β1 5.89×10−1

cv1 1.12×10−1 β∗ 7.81×10−2 σw1 3.89×10−1

cb1 9.43×10−2 σw 6.04×10−3 a1 3.37×10−1

σ 6.95×10−2 β∗/β2 2.48×10−1

cw2 1.10×10−2 β∗ 7.92×10−2

ct3 3.25×10−3

ct4 3.04×10−3

Table A.2: Sobol indices for CDpress , coarse grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 4.82×10−1 Clim 7.70×10−1 a1 4.68×10−1

cb1 2.60×10−1 β∗ 1.90×10−1 σw1 3.99×10−1

cw2 2.15×10−1 σw 9.65×10−2 β∗/β1 3.50×10−1

κ 2.19×10−2 β∗/β2 2.65×10−1

cv1 2.10×10−2 β∗ 1.73×10−1

ct4 3.57×10−3

ct3 2.88×10−3
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Table A.3: Sobol indices for CDsf
, coarse grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 6.54×10−1 σw 6.54×10−1 a1 5.84×10−1

σ 2.14×10−1 Clim 2.10×10−1 β∗/β1 4.66×10−1

cw2 8.26×10−2 β∗ 1.85×10−1 β∗/β2 4.09×10−1

cv1 3.85×10−2 β∗ 1.57×10−1

cb1 1.33×10−2 σw1 1.56×10−1

ct3 4.27×10−5

ct4 1.78×10−5

Table A.4: Sobol indices for CL, fine grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

ct3 6.62×10−1 Clim 8.71×10−1 a1 4.68×10−1

ct4 3.05×10−1 β∗ 1.24×10−1 β∗/β2 3.96×10−1

κ 6.31×10−2 σw 2.76×10−2 β∗ 2.52×10−1

σ 5.08×10−2 β∗/β1 1.17×10−1

cb1 4.82×10−2 σw1 4.71×10−2

cw2 3.31×10−2

cv1 8.76×10−3

Table A.5: Sobol indices for CDpress , fine grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

ct3 4.68×10−1 Clim 6.72×10−1 β∗ 6.55×10−1

ct4 4.16×10−1 σw 2.03×10−1 β∗/β2 2.20×10−1

σ 1.03×10−1 β∗ 1.84×10−1 a1 1.56×10−1

κ 9.95×10−2 β∗/β1 3.13×10−2

cb1 9.52×10−2 σw1 1.23×10−2

cv1 7.34×10−2

cw2 5.82×10−2
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Table A.6: Sobol indices for CDsf
, fine grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

ct3 4.92×10−1 σw 7.11×10−1 β∗ 7.92×10−1

ct4 3.28×10−1 Clim 2.09×10−1 σw1 1.14×10−1

κ 1.12×10−1 β∗ 1.28×10−1 β∗/β1 9.07×10−2

σ 1.08×10−1 a1 9.67×10−3

cb1 6.53×10−2 β∗/β2 3.82×10−3

cw2 3.37×10−2

cv1 1.87×10−2

Table A.7: Sobol indices for CL, med-tri grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.44×10−1 Clim 8.97×10−1 a1 8.77×10−1

cv1 1.77×10−1 β∗ 1.11×10−1 β∗/β2 9.10×10−2

ct3 1.44×10−1 σw 2.83×10−3 β∗ 7.57×10−2

σ 1.32×10−1 β∗/β1 3.33×10−2

cb1 7.23×10−2 σw1 2.19×10−2

cw2 6.39×10−2

ct4 5.02×10−2

Table A.8: Sobol indices for CDpress , med-tri grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 5.07×10−1 Clim 7.62×10−1 a1 5.64×10−1

cb1 2.56×10−1 β∗ 1.82×10−1 β∗ 3.59×10−1

cw2 1.73×10−1 σw 9.35×10−2 β∗/β2 9.45×10−2

κ 3.63×10−2 β∗/β1 2.02×10−2

cv1 2.84×10−2 σw1 1.75×10−2

ct3 1.22×10−2

ct4 1.79×10−3
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Table A.9: Sobol indices for CDsf
, med-tri grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 6.20×10−1 σw 6.53×10−1 β∗ 7.74×10−1

σ 2.24×10−1 Clim 2.34×10−1 σw1 1.23×10−1

cw2 6.91×10−2 β∗ 1.61×10−1 β∗/β1 9.15×10−2

cv1 5.79×10−2 a1 2.35×10−2

ct3 2.91×10−2 β∗/β2 2.77×10−3

cb1 1.95×10−2

ct4 1.18×10−2

Table A.10: Sobol indices for CL, unstr-m grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.07×10−1 Clim 9.01×10−1 a1 4.92×10−1

ct4 2.12×10−1 β∗ 9.27×10−2 β∗/β2 3.66×10−1

ct3 1.92×10−1 σw 1.97×10−2 β∗ 2.73×10−1

cv1 1.02×10−1 β∗/β1 1.13×10−1

σ 2.90×10−2 σw1 4.79×10−2

cb1 2.36×10−2

cw2 2.17×10−2

Table A.11: Sobol indices for CDpress , unstr-m grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

σ 5.10×10−1 Clim 7.21×10−1 β∗ 6.68×10−1

cw2 2.06×10−1 β∗ 1.70×10−1 β∗/β2 2.02×10−1

cb1 1.79×10−1 σw 1.53×10−1 a1 1.80×10−1

ct4 5.52×10−2 β∗/β1 5.29×10−2

κ 4.48×10−2 σw1 2.15×10−2

cv1 3.16×10−2

ct3 2.34×10−2
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Table A.12: Sobol indices for CDsf
, unstr-m grid (FUN3D).

SA W2006 SST
Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 5.69×10−1 σw 6.94×10−1 β∗ 7.93×10−1

σ 2.29×10−1 Clim 2.09×10−1 σw1 1.14×10−1

cw2 8.35×10−2 β∗ 1.45×10−1 β∗/β1 9.08×10−2

ct4 4.26×10−2 a1 9.80×10−3

cv1 4.00×10−2 β∗/β2 3.86×10−3

ct3 3.78×10−2

cb1 1.98×10−2

Table A.13: Sobol indices for integrated quantities with original medium grid, SA
model (BCFD).

CL CDpress CDsf

Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 7.12×10−1 σ 5.80×10−1 κ 6.53×10−1

cv1 1.19×10−1 cw2 2.07×10−1 σ 2.10×10−1

cb1 8.14×10−2 cb1 1.90×10−1 cw2 8.80×10−2

σ 8.03×10−2 cv1 1.82×10−2 cv1 3.76×10−2

cw2 9.04×10−3 κ 6.17×10−3 cb1 1.27×10−2

ct3 2.94×10−5 ct3 3.31×10−4 ct3 3.32×10−5

ct4 2.27×10−5 ct4 2.69×10−4 ct4 1.64×10−5

Table A.14: Sobol indices for integrated quantities with unstr-m grid, SA model
(BCFD).

CL CDpress CDsf

Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 7.35×10−1 σ 5.17×10−1 κ 6.53×10−1

cv1 1.19×10−1 cw2 2.23×10−1 σ 2.10×10−1

cb1 6.97×10−2 cb1 1.97×10−1 cw2 8.79×10−2

σ 6.88×10−2 κ 3.36×10−2 cv1 3.75×10−2

cw2 8.09×10−3 cv1 2.91×10−2 cb1 1.28×10−2

ct4 2.30×10−5 ct4 1.03×10−4 ct3 3.16×10−5

ct3 1.29×10−5 ct3 5.98×10−5 ct4 1.52×10−5
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Table A.15: Sobol indices for integrated quantities with unstr-f grid, SA model
(BCFD).

CL CDpress CDsf

Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 7.12×10−1 σ 5.39×10−1 κ 6.54×10−1

cv1 1.21×10−1 cw2 2.17×10−1 σ 2.09×10−1

σ 8.54×10−2 cb1 1.86×10−1 cw2 8.82×10−2

cb1 7.16×10−2 cv1 3.00×10−2 cv1 3.76×10−2

cw2 1.00×10−2 κ 2.89×10−2 cb1 1.29×10−2

ct4 3.35×10−5 ct4 1.55×10−4 ct3 3.23×10−5

ct3 2.72×10−5 ct3 1.48×10−4 ct4 1.46×10−5

Table A.16: Sobol indices for integrated quantities with original medium grid, SA
model, ft2 = 0 (FUN3D).

CL CDpress CDsf

Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 7.28×10−1 σ 4.98×10−1 κ 6.53×10−1

cv1 1.19×10−1 cw2 2.27×10−1 σ 2.11×10−1

cb1 7.36×10−2 cb1 2.14×10−1 cw2 8.71×10−2

σ 7.15×10−2 κ 3.39×10−2 cv1 3.79×10−2

cw2 8.69×10−3 cv1 2.84×10−2 cb1 1.29×10−2

ct4 1.09×10−4 ct3 1.51×10−4 ct3 3.06×10−5

ct3 5.38×10−5 ct4 1.37×10−4 ct4 1.33×10−5

Table A.17: Sobol indices for integrated quantities with fine grid, SA model, ft2 = 0
(FUN3D).

CL CDpress CDsf

Coefficient Sobol Index Coefficient Sobol Index Coefficient Sobol Index

κ 7.21×10−1 σ 5.10×10−1 κ 6.53×10−1

cv1 1.20×10−1 cw2 2.24×10−1 σ 2.10×10−1

σ 7.89×10−2 cb1 2.03×10−1 cw2 8.76×10−2

cb1 7.18×10−2 κ 3.51×10−2 cv1 3.79×10−2

cw2 9.30×10−3 cv1 2.96×10−2 cb1 1.28×10−2

ct4 2.46×10−5 ct4 9.24×10−5 ct3 3.05×10−5

ct3 1.17×10−5 ct3 4.30×10−5 ct4 1.42×10−5



APPENDIX B

Epistemic Intervals of Integrated Quantities (Case Study)
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This appendix includes the tabulated epistemic intervals for CL and CD with
each of the case study grids, turbulence models, and flow solvers.

Table B.1: Epistemic intervals for CL (Case study).

Baseline Min Max

coarse SA 0.735 0.724 0.750
W2006 0.742 0.730 0.747
SST 0.738 0.669 0.809

fine SA 0.746 0.681 0.862
W2006 0.742 0.731 0.747
SST 0.744 0.708 0.776

med-tri SA 0.730 0.708 0.758
W2006 0.743 0.730 0.749
SST 0.739 0.707 0.782

unstr-m SA 0.748 0.739 0.775
W2006 0.746 0.737 0.753
SST 0.749 0.714 0.781

bcfd-med SA 0.738 0.729 0.753

bcfd-unstr-m SA 0.733 0.724 0.747

bcfd-unstr-f SA 0.734 0.725 0.748

*orig. med. SA 0.744 0.735 0.758
*fine SA 0.746 0.737 0.760

*indicates a Fun3D analysis with ft2 set to zero
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Table B.2: Epistemic intervals for CD, given in drag counts (Case study).

Baseline Min Max

coarse SA 147.1 137.8 153.6
W2006 142.8 129.5 144.7
SST 128.6 76.2 194.9

fine SA 146.0 126.0 155.8
W2006 142.8 129.8 144.0
SST 128.6 109.7 183.9

med-tri SA 141.4 128.4 147.5
W2006 142.7 129.1 144.2
SST 126.9 116.7 188.0

unstr-m SA 148.0 136.0 156.3
W2006 143.8 131.7 145.8
SST 131.7 111.1 184.3

bcfd-med SA 153.8 145.2 160.8

bcfd-unstr-m SA 152.0 142.9 158.2

bcfd-unstr-f SA 151.9 142.7 158.3

*orig. med. SA 146.0 137.3 152.0
*fine SA 146.0 137.0 152.2

*indicates a Fun3D analysis with ft2 set to zero
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