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A B S T R A C T

A vertex-composite graph is a graph that can have unequal 

chromaticities on its vertices. Vertex-composite graph coloring or 

composite graph coloring involves coloring each vertex of a composite 

graph with consecutive colors according to the vertex's chromaticity with no 

two vertices adjacent to one another having the same color(s).

New heuristic algorithms including the use of the saturation degree 

method have been developed in this research. All eleven heuristic 

algorithms including Clementson and Elphick algorithms were then tested 

using random composite graphs with five different chromaticity 

distributions. The best algorithm which uses the least average colors from 

the experiment is the MLF1I algorithm follow very closely by the MLF2I 

algorithm.

Four applications, Timetabling, Job Shop Scheduling, CPU Scheduling 

and Network Assignment Problem, have been formulated as composite 

graph coloring problems and solved using heuristic composite graph 

coloring algorithms.
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I. INTRODUCTION

Graph coloring is a classical problem of graph theory and has been 

around for a long time. It has applications in many areas such as code 

design, circuit troubleshooting, distribution of computer memory, design of 

integrated circuits, timetabling, storage or transportation of goods, and 

scheduling of jobs.

In general, graph coloring is a coloring of a graph in which a color is 

assigned to each vertex of the graph in such a way that no two adjacent 

vertices connected by an edge have the same color. For a given graph, a 

vertex that can be assigned any one color is said to have a chromaticity of 

one. Standard graph coloring involves coloring non-composite graphs or 

simply graphs having vertices of equal chromaticities. A graph is 

r-colorable if it can be colored with r or less colors. Figure 1 shows a graph 

with arbitrary assignment of colors to its vertices.

Ill]

Figure 1. A coloring of a non-composite graph.



For any graph, G, there exists a minimum coloring (number) for that graph 

denoted by the chromatic number of the graph, *(G). An optimal coloring 

of a graph, G, is one which uses exactly x(G) colors. However, trying to 

determine the x of any graph is, unfortunately, NP-complete, which means 

there is no known algorithm that can color any graph optimally in a time 

bounded by a polynomial function (1). The problem of determining the x is 

classified as the standard graph coloring problem or graph coloring 

problem as cited in the literature. Algorithms computing x exactly are 

applicable only to rather small graphs and because of their limitations, 

many heuristic (approximation) algorithms have been developed for solving 

larger graph coloring problems.

A number of search papers have been published in the area of the 

standard graph coloring problem. Results range from better algorithms to 

new applications using the graph coloring technique. An example from the 

algorithm side is a paper published by Peemoller (1) in 1986 which 

discussed the various algorithms and the results from the numerical 

experiments conducted . From the application side, Larus and Hilfinger (2) 

used the graph coloring method for storage (register) allocation in the LISP 

compiler.

A few years back as more efficient algorithms and new applications 

were introduced, Clementson and Elphick (3) proposed the composite graph 

coloring problem. The meaning composite relates to the color or 

chromaticity associated with each vertex of the graph. Each vertex of a 

graph can be allocated one or more colors. A graph is said to be composite
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if its vertices' chromaticities are not ail equal. The standard graph coloring 

algorithm only solves problems of non-composite graphs or simply graphs. 

As an illustration, Figure 2 shows an arbitrary coloring of a composite graph 

with vertices having unequal chromaticities.

HI 231

Figure 2. A simple coloring of a composite graph.

It is also known that finding the exact chromatic number of a composite 

graph is NP-complete. The composite graph coloring problem suffered the 

same fate as the standard graph coloring problem (4), inheriting the 

NP-completeness property. For this reason, attention has been focused on 

the development of heuristic algorithms which will hopefully produce good 

colorings for any composite graphs in a reasonable amount of time.

In the case of composite graph coloring, Clementson and Elphick (3) in 

1983 presented four heuristic algorithms:

1) LF1 - Largest first by chromaticity,
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2) LF1I - Largest first by chromaticity with interchange,

3) LF2 - Largest first by chromatic degree, and

4) LF2I - Largest first by chromatic degree with interchange.

All of these algorithms are the vertex-sequential type coloring algorithms 

which will be discussed in greater detail later in the literature review 

section.

These are not the only algorithms which have been published. In 1987, 

Johnnie Roberts (5) pursued on the same track and produced another eight 

heuristic algorithms. The eight algorithms are:

1) LFPH - Largest-first-by-pigeonhole-measure,

2) LFPHI - Largest-first-by-pigeonhole-measure-with-interchange,

3) LFCD - Largest-first-by-chromaticity-times-degree,

4) LFCDI - Largest-first-by-chromaticity-times-degree-with-interchange,

5) RLF1 - Recursive largest first coloring algorithm using chromatic degree,

6) RLFD1 - Recursive largest first coloring algorithm using degree,

7) DYNPH - Dynamic-pigeonhole-measure, and

8) DYNFPH - Dynamic-floating-point-pigeonhole-measure.

All the algorithms presented order the vertices by the following measures : 

(1) the chromaticities of the vertices, (2) the chromatic degrees of the 

vertices, and (3) the degree of the vertices. The LFPH algorithm 

(largest-first-by-pigeonhole-measure) orders the vertices of the graph by the 

pigeonhole principal. On the other hand, the LFCD algorithm (largest 

-first-by-chromaticity-times-degree) orders the vertices in decreasing order 

according to the product of the chromaticity and the degree of a vertex.
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Both the LFPHI and LFCDI algorithms employ the same interchange 

technique used by Clementson and Elphick.

The RLF1 and the RLFD1 algorithms are the recursive-largest-first 

algorithms, generalizations of the RLF algorithm from the standard graph 

coloring problem presented by Leighton (6). The last two algorithms, the 

DYNPFI (dynamic-pigeonhole-measure) and the DYNFPH (dynamic-floating 

-point-pigeonhole-measure) use the measures based upon the pigeonhole 

measure to determine the next vertex to be colored.

The perspective thrust of this research is to explore further possibilities 

of "better" algorithms and potential application areas in which composite 

graph coloring can be applied. The algorithms to be presented employ 

similiar strategies as listed by Roberts including a new one, the saturation 

degree method. The saturation degree method was first introduced by 

Brelaz (7) in the standard graph coloring problem. He defined the 

saturation degree of a vertex as the number of different colors used for 

vertices adjacent to it. It was shown that the saturation degree algorithm is 

exact for a group of graphs called bipartite graphs. As was noted by 

Spinrad and Vijayan (8), this algorithm has its own worst case behavior and 

may use n colors on 3-colorable graphs having O(n) vertices. However the 

algorithm performed much better than other heuristics on randomly chosen 

graphs (7,9).
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Two algorithms using Brelaz's method have been developed. The 

algorithms, DS1I and DS2I, preorder the vertices and use the modified 

saturation degree methods to select the uncolored vertices. Whenever the 

algorithms try to color the vertices with higher color(s) than the maximum 

current color, the interchange procedure used by Clementson and Elphick is 

invoked to attempt reducing the number of colors used. Three algorithms 

using the largest-first strategy have also been developed. The LF3 

algorithm, closely resembles the LF1I and LF2I algorihms, orders the 

vertices in decreasing chromaticities and sub-orders in decreasing degrees. 

The next two algorithms which are dynamic in nature used the modified 

saturation degree methods similiar to the DS1I algorithm and DS2I 

algorithm. MLF1 algorithm and MLF2 algorithm preorder the vertices in 

decreasing chromaticities and sub-orders with the modified saturation 

degree methods.

A more elaborate description of each of the new algorithms is 

presented in Chapter IV. The developed algorithms are tested by coloring 

groups of 25 random composite graphs with vertices, n =  100 and n =  200. 

Various edge density distributions including the truncated Poisson were 

used. The results of the experimentation are then presented later in 

Chapter VI.

Since the composite graph coloring concept is still relatively new to the 

world of graph coloring, there have been no reported applications in the 

literature. Four possible composite graph coloring applications were 

investigated. The first application which has been formulated as a standard
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graph coloring problem is the Timetabling Problem. The Timetabling 

Problem involves scheduling of classes with no conflict of timeframes or 

scheduling of examination timetabling for students. The second application 

is the Job Shop Scheduling Problem. Jobs which require several operations 

to be processed without taking precedence of which operations are to be 

performed first can be formulated as a composite graph coloring problem. 

The third application is called the CPU Scheduling Problem and it involves 

scheduling the quickest way to run jobs on different processors. The last 

application is a network problem, called appropriately, the Network 

Assignment Problem. Given a center (location) disseminating vital 

information, the problem is to find the quickest way to send the information. 

The problem then can be constructed as a composite graph coloring 

problem.

A more detailed description of each applications is presented in 

Chapter V including examples of the applications solved by the composite 

graph coloring strategy.
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II GRAPH DEFINITIONS

An ordered pair consists of two objects in a given fixed order and is 

not a set consisting of two elements (10, p.122). The ordering of two objects 

is important and the objects may not be distinct. An ordered pair is 

denoted by < x ,y > . A familiar example of an ordered pair is the 

representation of a point in a two-dimensional plane in cartesian 

coordinates. Thus the notion of an ordered pair can be extended to define 

an ordered triple and more generally, an n-tuple.

A. GENERAL DEFINITIONS

A graph is an ordered triple (3-tuple), G=<V,E,<£> where V is a 

nonempty set called the set of vertices, nodes or points of the graph, E is 

said to be the set of edges of the graph and <p is a mapping from the set of 

edges E to a set of ordered or unordered pairs of elements of V (10, p.469). 

An edge e e E is associated with an ordered pair < u ,v >  or an unordered 

pair (u,v) where u,v e V. Thus the edge e connects or joins the vertices u 

and v, and the endpoints of the edge e are the vertices u and v. Vertices 

connected by an edge in a graph are called adjacent vertices. In a graph a 

vertex which is not adjacent to any other vertex is called an isolated vertex. 

A graph containing only isolated vertices is called a null graph. A graph in 

which every edge is undirected (connected by unordered pair of vertices) is 

called an undirected graph. If every edge of a graph is directed (connected 

by ordered pair of vertices) it is called a directed graph. The degree of a 

vertex v in a graph G, denoted by dG(v), is the number of edges connected
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to the vertex v. A graph is said to be a complete graph if every vertex is 

adjacent to all other vertices in the graph. Figure 3 shows an undirected 

graph with V =  {v'1,v2,v3,v4,v5} and E = {e,,e2,e3,e4,e5}. The mapping of 

vertices to edges are $(e,) =  (vt,v2), 4>(e2) =  (v2,i/3) , (f)(e3) =  (vuv3) and etc. 

The vertex vs is an isolated vertex. As an illustration, the vertices v, and v2 

are adjacent vertices of the edge e,. The degree of the vertex v, is equal to 

three, i.e., dG(v,) =  3 and dG(v4) =  2.

1

Figure 3. An undirected graph.

Figure 4 shows a complete graph. Note that all vertices are adjacent to 

all other vertices in the graph. A complete graph is also known to be a 

graph with an edge density of one. If not all the vertices are adjacent to all 

other vertices in the graph then the graph is said to have a density less than 

one depending on the percentage of the connectivity of the vertices.
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1

Figure 4. A complete graph.

The composite graphs can be defined in two ways: a) an 

edge-composite graph (e-composite graph) or b) a vertex-composite graph 

(v-composite graph) (3).

B. COMPOSITE GRAPH DEFINITIONS

An e-composite graph G is a triple <V,E,C(E)> where V is a non-empty 

finite set of vertices, E is a finite set of edges and C(E) is a finite set of 

positive integers called edge chromaticities. Thus the graph can have 

multiple edges with any pair of vertices connected by more than one edge. 

Associated with the edge set {e,} are the chromaticities, c'j's associated with 

each edge. The graph G is said to be K-edge colorable if to each of its 

edges e, there may be assigned cej of integers the integers ( 1 such that 

the integers assigned to each edge are distinct and consecutive, and such
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that no two adjacent edges have an integer in common. If G is K-edge 

colorable, but not (K-l)-edge colorable, then the edge chromatic number of 

G denoted by *(G) is K.

A v-composite graph is also a triple <V,E,C(V)> where V is a 

non-empty finite set of vertices, E is a finite set of edges and C(V) is a finite 

set of positive integers called vertex chromaticities. Thus associated with 

each vertex v, is the vertex chromaticity cvi. The adjacency matrix A =  [a (y] 

of G with n vertices is defined as a n X n matrix in which ait =  1 if v, is 

adjacent to vy and a,7 =  0 if otherwise. The graph G is K-colorable if the 

coloring to the vertices vy with integers 1,...,K are distinct and consecutive 

and such that no two adjacent vertices have an integer in common. If graph 

G is K-colorable but not (K-l)-colorable, then the chromatic number of G 

denoted by *(G) is K which is the exact coloring of the graph G. The vertex 

chromatic degree of vertex v, , denoted by fh is given by

n

The total vertex chromaticity of G, denoted by cv (G) , is given by

n
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III. LITERATURE REVIEW

Considerable literature in the field of graph theory has dealt with the 

coloring of graphs as can be read from Ore's extensive book "The 

Four-Color Problem" (11). The coloring problems at the time were 

concerned with coloring planar graphs. Graphs which can be drawn in the 

plane without any two of its edges crossing each other are called planar 

graphs. In the five-color conjecture it was proven that every planar graph 

can be colored with five colors so that no two adjacent vertices are of the 

same color. In 1976, Appel and Haken (12) proved the famous four-color 

conjecture to be true by using computer generated planar graphs to show 

that planar graphs are 4-colorable. It has been debated since then because 

the conjecture could not be proven without the use of a computer.

A. THE STANDARD GRAPH COLORING PROBLEM

A number of problems can be formulated as a graph coloring problem, 

for example :

i) the construction of examination timetables by Wood (13),

ii) the construction of school timetables by Williams (14),

iii) the assignment of frequencies for radio stations by Hale (15),

iv) the storing of parser tables by Dencker (16).

There are more but these examples will suffice to show the importance of 

the graph coloring problem and provide the foundation to the understanding 

of the composite graph coloring problem. Over the years many heuristic 

standard graph coloring algorithms have been developed to produce better
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colorings. In 1967, Welsh and Powell (20) proposed an algorithm called the 

largest-first (LF) in which the vertices of the graph are arranged in 

non-increasing order of their degrees and are colored sequentially. This 

algorithm in a slightly different but equivalent form is mentioned by Wood 

(13), Christofides (19), and Matula et al (17). Today, the algorithm is called 

the vertex-sequential coloring algorithm. There are also two other types of 

algorithms, the vertex-sequential with interchange and the color-sequential 

coloring algorithms (5).

1. Vertex-sequential coloring algorithms. Algorithms belonging to this 

type arrange or preorder the vertices of the graph in some order and then 

assign a color to each of the vertices in the preordered sequence with the 

least possible color. There are essentially two algorithms in the literature 

which use this approach. They are the largest-first (LF) and the 

smallest-last (SL) algorithms (17). The LF algorithm as described earlier, 

orders the vertices in the order of decreasing degrees, i.e., d(v,) >  d{v^) for 

1 <  i <  n where V =  {v,,..., v„}. The SL algorithm is similiar to LF in 

strategy but it recursively orders the smallest degree vertices last. That is, 

it orders the vertices in an order in which each vertex has the smallest 

degree in the induced subgraph on the set of vertices preceding and 

including the vertex. More formally, SL ordering selects c/(v„) =  min d(w)
weV

and for n-1 > i >  1, dv(v() =  min dv(w) where U = V - {v„,..., v, .}.

Both the LF and SL algorithms tend to order the high degree vertices 

first before the low degree vertices. As noted by Leighton (6), from
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computational experience, this is generally a good strategy compared with 

algorithms which color the higher degree vertices last.

2. Vertex-sequential with interchange coloring algorithms. An 

algorithm of this type colors graphs using the same method as the 

vertex-sequential algorithms with the addition of the interchange module 

The interchange module is invoked each time the algorithm tries to use a 

color that has not been assigned earlier in the coloring process. The 

purpose of the interchange process then is an attempt to prevent the 

introduction of any further new color in the graph by trying to use the 

available colors previously assigned.

Given any graph G = (V,E) and color function f such that f(w) e {i,j} for 

all w e V, then (i,j)-interchange on G is a redefinition of f such that if f(w) =  i 

previously, f(w) is now assigned j and vice versa for all w e V. The 

interchange module has been shown to yield good results when used in 

conjunction with LF and SL algorithms. The following gives an illustration of 

how the interchange process works. Let vm be the current vertex and K be 

the current largest color used, denoted by K =  maxf(Vj). For 1 <  i <  j <  K,
i<m

let G,y be the subgraph of G induced by the vertices of G previously colored i 

or j. If possible, select i and j such that no connected component of G/y 

contains two differently colored vertices both adjacent to vm. If such a G(/ 

exists, then perform an (i.j)-interchange on each connected component of 

Gjj which contains an i-colored vertex adjacent to vm in G. Now it is possible 

to assign the color i to vm and thus the addition of a new color, K +  1, has
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been avoided. However, if no G/y exists, then the interchange will fail and vm 

will be assigned the color K + 1.

In the literature two interchange methods were introduced one by 

Matula, Marble and Issacson (17) and an extended version by Johnson 

(5,6,18). Leighton (6) reported that based upon a limited amount of 

computational experience, the extended version seemed to produce slightly 

better results than the other interchange method.

3. Color-sequential coloring algorithms. The color-sequential coloring 

algorithms color a graph by coloring all the possible vertices with color k 

first before proceding to color other vertices with color k+ 1 . One 

color-sequential coloring algorithm may start out by assigning color 1 to all 

vertices in the graph that can be assigned color 1. These vertices form an 

independent set (19), not necessarily a maximum independent set (AMIS), of 

the subgraph. Upon completing the coloring of all possible vertices with 

color 1, the next set of vertices (next independent set) are colored with color 

2 and so on until all the vertices in the graph are colored. Note, each 

remaining uncolored vertex is always adjacent to at least one vertex that 

has been assigned the color i for each i e I [1 ,K ], There were four 

color-sequential coloring algorithms in the literature proposed by Welsh and 

Powell (20), Williams (14), Johnson (18) and Leighton (6). A more detailed 

description of the various algorithms can be read in Roberts' (5)

dissertation.
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B. THE COMPOSITE GRAPH COLORING PROBLEM

1. Vertex-sequential coloring algorithms. A vertex-sequential coloring 

algorithm for coloring the composite graphs preorders the vertices of the 

graph to be colored in some order and then colors the vertices in 

accordance with the pre-determined ordering. The algorithm is similiar in 

strategy to the standard vertex-sequential coloring algorithms discussed 

earlier in the standard graph coloring section of this chapter except when 

coloring the individual vertices due to the unequal chromaticities of the 

composite graph. Using the notation <  v,,..., vy >  as the subgraph induced 

by the vertex set {v,,..., v;} and an ordering v,,..., vn of the vertices of a graph 

G, the algorithm colors the graph as follows:

a) v, is assigned colors 1,2,3,..., cv 1 since v, has a chromaticity of cv 1.

b) if <  v,,..., v,_, >  has been j-colored, then vu..., v,_, have the same colors 

in <  vt,..., v, >  and v, is assigned colors (m +  1),...,(m + cvi ), where m <  

j is the minimum integer such that none of colors (m +1),..,(m + cvi ) 

have been assigned to vertices in <  v,,..., v,_, which are adjacent to v,.

Clementson and Elphick (3) described two algorithms, LF1 and LF2, 

which use this strategy. Along the same line of development, Roberts (5) 

described two more algorithms, LFPH and LFCD. Both the LF1 and LF2 

algorithms require a preordering of vertices using the largest vertex first 

ordering. The largest vertex first ordering unlike the original LF algorithm 

does not order vertices according to the highest degree rule. In the LF1 

algorithm, the vertices are ordered in decreasing chromaticity order and
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vertices having equal chromaticities are sub-ordered in decreasing 

chromatic degree order. The chromatic degree of a vertex v, is the sum of 

chromaticities of the vertices adjacent to it plus the chromaticity of vertex 

(v,). In the LF2 algorithm, the vertices are first ordered in decreasing 

chromatic degree and if ties exist, the vertices in question are sub-ordered 

in decreasing chromaticity order.

The largest-first-by-pigeonhole-measure (LFPH) algorithm orders the 

vertices in decreasing static pigeonhole measure order. The static 

pigeonhole measure of a vertex is the pigeonhole measure of the vertex for 

conditions prior to coloring any vertices of the graph. Further information 

about the pigeonhole principal can be obtained from Roberts' (5) 

dissertation. The next algorithm, LFCD, is called the largest-first-by 

-chromaticity-times-degree algorithm and it arranges the vertices in 

decreasing order by the value of the product of a vertex's chromaticity and 

its degree.

2. Vertex-sequential with interchange coloring algorithms. The 

algorithms are similiar to the standard graph coloring vertex-sequential 

coloring algorithms. Vertices of a composite graph are ordered according 

to some strategy and are colored with the lowest possible sequence of 

colors. The interchange module is invoked whenever the algorithms tries to 

color a vertex using color(s) that has (have) not been assigned previously. 

In the standard graph coloring, two interchange methods were discussed; in 

the composite graph coloring the only interchange method currently
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available involves changing the colors of two vertices, the current vertex 

and an adjacent vertex in such a way both vertices will be assigned the 

sequence of colors that have been used currently so that no new color(s) 

will be used.

The following is a description of how the interchange method works. 

Let vertex v„ with chromaticity cv/ , be the next vertex to be colored and let 

the current number of colors in use be denoted by K. Assume the 

sequential-vertex coloring algorithm assigns the colors j,(j +  1),...,(j +  cvi -1) 

to vertex vh then

a) if (/ +  cvi — 1) <  K, then these colors will be assigned to v, and the 

algorithm proceeds to color vi+v

b) if (j +  cvi —f) >  K, then the interchange module is invoked and an 

attempt is made to reduce the number of colors currently being used in 

the coloring. The attempt is made as follows:

i) Try assigning each of the initial colors 1,...,(j-1) to v,. A subset P =  

{Pk} , k =  1,...,r of the integers 1,...,(j-1) is constructed such that, if v, 

is assigned the initial color Pk , then only one of the vertices v,,..., v,_, 

adjacent to v, is colored with one or more colors Pk,...,(Pk +  cvi — 1). 

Therefore, locate a vertex vk with chromaticity cv* which is adjacent to 

v, being colored with one or more colors Pk,...,(Pk +  cvi — 1) for each 

corresponding element Pk of P.

ii) If P = <f>, v, is colored j,...,(j +  cvi -  1 ) and the algorithm proceeds to 

color vertex v)+1. Denote the set of permissible initial colors for vk by 

Q =  {QJ, k =  1,...,r. A subset R of P, Pk e R is constructed only if
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Qk < (j 4- cvi — cvk —1) to ensure that the last color used by vk Is not 

greater than (j +  cvi - 1).

iii) If R =  4>, no color reduction can be produced and v, is colored 

j,...,(j+ cvi —1 ) and the algorithm proceeds to color vertex v(+1. 

Otherwise (R ^  (ft ) , the total number ot colors used up to v, can be 

reduced by changing colors with one of the vertices in v,,..., v,_,. 

Define k0 as follows:

max(P^o +  cv', Qko +  0 % )  =  min max(Pk +  cv', Qk +  cVk).
k

Vertex v( is assigned the initial color PkQ and vertex vk is assigned the 

initial color QkQ, and the algorithm proceeds to color vertex v/+1. 

Essentially when R #  </> , there exists sets of sequences of colors for 

vertex v, and the adjacent vertex vk which are less than (j +  cvi — 1). 

The above expression simply states to select the minimum set of 

sequence of colors for v, and vk such that the two sets of sequences of 

colors selected are the least from the sets of sequences of colors 

avaiable.

Four algorithms, LF1I, LF2I, LFPHI and LFCDI, belong to the 

vertex-sequential with interchange algorithms. The first two were the

product of Clementson and Elphick (3), and the last two the product of 

Roberts (5).



3. Color-sequential coloring algorithms. As with the standard graph 

coloring problem, Roberts proposed two new color-sequential coloring 

algorithms for composite graphs. The nature of the color-sequential 

coloring algorithms for composite graphs is similiar to the color-sequential 

coloring algorithms found in the standard graph coloring. The RLF1 and the 

RLFD1 coloring algorithms described by Roberts (5) are generalizations of 

the RLF coloring algorithm presented by Leighton (6). Both algorithms 

color vertices by the order of the chromaticity of a vertex, similiar in 

strategy as the LF1 coloring algorithm. In the two algorithms, the next 

vertex to be colored is a vertex with the highest chromaticity from the set of 

all uncolored vertices that are not adjacent to a vertex that has been 

assigned the current color. If ties occur with equal chromaticity, both 

algorithms prescribed a set of criterion to break the ties.

4. Other algorithms. Roberts (5) introduced a new concept in the 

stategy of coloring the vertices of a graph. The concept, called the 

pigeonhole measures, is based on the pigeonhole principle. Low integer 

values are assigned to vertices that are easy to color and higher values to 

vertices that are likely to use new colors in the coloration. Two algorithms, 

the dynamic-pigeonhole-measure (DYNPH) and the dynamic-floating

point-pigeonhole-measure (DYNFPH) use the pigeonhole measures to 

determine the order in which the vertices of a composite graph are colored.

20
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5. Applications of the coloring problem. The composite graph coloring 

problem was proposed initially by Punter (21) to overcome the limitation of 

the standard graph coloring problem formulation which causes models to be 

inflexible. An example is the school timetabling problem which require 

some multiple period lessons and these multiple periods pose a problem in 

the assignment of consecutive colors to the vertices which represent the 

multiple periods. According to Clementson et al (3), the composite graph 

coloring problem is applicable to scheduling problems and store economy 

problem. The store economy deals with reduction of memory size required 

by a program.
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IV. NEW HEURISTIC ALGORITHMS

Roberts (5) reported that there is no single heuristic algorithm which 

can color all composite graphs with a minimum number of colors. He 

observed that the largest-first algorithms tend to use more colors as the 

number of vertices of the graph increase and the opposite is true for the 

recursive largest-first algorithms. One observation from the results is that 

an algorithm which uses the largest-first strategy up to now can produce 

good sub-optimal colorings. Another observation is, for lower edge density, 

20% and less, the largest-first algorithms produced better colorings than 

any other algorithms known.

In realistic application of graph colorings, Leighton (6) and Lotfi (22) 

used the standard graph coloring algorithms to solve the examination 

timetabling and course scheduling application using graphs having edge 

densities approximately 18% and 3.93%. Since such applications exist for 

the non-composite (standard) graph coloring problem then similiar 

applications should exist for the composite graph coloring problem.

Armed with the above observations, then further investigation into new 

heuristic algorithms would be necessary to see if there are other feasible 

algorithms that can be included into the set of good algorithms.
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A. DEGREE SATURATION ALGORITHMS

The degree saturation algorithms originated from the standard graph 

coloring algorithm described by Brelaz (7). The algorithm for the standard 

graph coloring called the Dsatur algorithm, colors vertices of a 

non-composite graph relying upon the comparison of the degrees and 

structure of a graph. It uses the saturation degree of vertices to determine 

which vertex to color first. The saturation degree of a vertex is defined to 

be the number of different colors to which it is adjacent to colored vertices. 

In Brelaz's report the Dsatur algorithm was proven to be an exact algorithm 

for bipartite graphs and has a running polynomial time of 0(n2). A bipartite 

graph is a graph whose vertices can be divided into two disjoint groups with 

each edge having one vertex in each group. As an illustration, Figure 5 

shows a bipartite graph with 7 vertices. Vertices 1, 2 and 3 belong to one 

group while vertices 4, 5, 6 and 7 belong to another group.

Figure 5. A bipartite graph.
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The algorithm is also an important part of heuristic procedures to find 

maximal cliques in general graphs.

Two composite graph coloring algorithms using this measure have 

been developed. The saturation degree of a composite graph vertex (an 

uncolored vertex) is defined as the number of colors in the sequences of 

colors of vertices adjacent to it. As an illustration, if vertex 1 is colored 1,2 

and 3, vertex 2 is colored 2,3,4 and 5, and vertex 3 is an uncolored vertex 

adjacent to vertices 1 and 2, then the saturation degree of vertex 3 is 5. The 

first algorithm is called the DS1I algorithm uses the same procedure as the 

Dsatur algorithm from the standard graph coloring except when there is a 

tie in selecting the maximal saturation degree, the vertex that has the 

largest chromatic degree will be selected to color first. If there is an 

equality in the chromatic degree selection, the first vertex with the equal 

chromatic degree is selected for coloration. Furthermore, if the vertex to be 

colored uses higher colors than the current maximum color the interchange 

procedure is invoked to attempt reducing the number new colors. An 

outline of the DS1I algorithm is given as follows:

- DS1I Algorithm - 1 2 3

1) Select a vertex with the largest (maximal) degree.

2) Color the vertex of maximal degree according to the vertex's 

chromaticity, i.e., 1,..., cv/.

3) Select a vertex with a maximal saturation degree. If there is an equality, 

select any vertex of maximal chromatic degree in the uncolored 

subgraph.
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4) Color the chosen vertex with the least possible (lowest numbered) 

sequence of color(s). If the colors used exceed the current maximum 

color, invoke the interchange procedure.

5) If all the vertices are colored, stop. Otherwise, return to step 3.

The second algorithm is called the DS2I algor ithm. It is similiar to DS1I 

except in step 3, chromatic degree is replaced by chromaticity. a vertex 

which has the largest chromaticity to be colored first. An outline of the DS2I 

algorithm is as follows:

- DS2I Algorithm -

1) Select a vertex with the largest (maximal) degree.

2) Color the vertex of maximal degree according to the vertex's 

chromaticity, i.e., 1,..., cv>.

3) Select a vertex with a maximal saturation degree. If there is an equality, 

select any vertex of maximal chromaticity in the uncolored subgraph.

4) Color the chosen vertex with the least possible (lowest numbered) 

sequence of color(s). If the colors used exceed the current maximum 

color, invoke the interchange procedure.

5) If all the vertices are colored, stop. Otherwise, return to step 3.

When the two composite coloring algorithms start coloring a graph, there is 

a possibility that there may be more than one vertex having the maximal 

degree. In both cases, the first vertex having equal maximal degree will be

colored first.
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An exact algorithm for coloring composite bipartite graphs equivalent 

to the Dsatur algorithm can be constructed by modifying step 3 and step 4 

of either the DS1I algorithm or the DS2I algorithm. In step 3, when there is 

an equality in selecting the maximal saturation degree, the tie is broken by 

selecting any vertex of maximal degree. In step 4, the only modification is 

the removal of the interchange procedure. The algorithm with the modified 

steps, DSO, is exact for composite bipartite graphs. The DSO algorithm was 

compared with DS1I algorithm and DS2I algorithm in a set of trial random 

composite graphs. The results indicated DS1I and DS2I were using less 

colors on the average compared to DSO. However, when the three

algorithms were run using a set of composite bipartite graphs, all three 

algorithms produced the same colorings. As a result, only the DS1I 

algorithm and the DS2I algorithm were used in the actual experimentation 

with other heuristic algorithms.

B. VERTEX-SEQUENTIAL ALGORITHMS

Three algorithms based on the vertex-sequential method have been 

developed. The first algorithm called LF3I is in parallel with LF1I and LF2I 

algorithm in terms of strategy. The LF3I algorithm starts by arranging the 

vertices in an order before sequentially coloring the vertices. Whenever the 

algorithm tries to use color(s) higher than the current maximum color, the 

interchange procedure is invoked.
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Given a composite graph, the LF3I algorithm sorts the vertices using 

heap sort to order the vertices in decreasing chromaticity. If more than one 

vertex has the same chromaticity, the vertices in question are then 

sub-order in decreasing degree. The algorithm then colors the vertices 

sequentially according to the sorted order. As mentioned above, the 

interchange procedure is invoked when the algorithm uses new color(s). 

Below is an outline of the LF3I algorithm.

- LF3I algorithm - 1 2 3 4

1) Order the vertices of the composite graph by decreasing chromaticity 

and sub-order in decreasing degree.

2) Color the ordered vertex starting with the highest chromaticity first.

3) Check for new color(s) used. If so, call the interchange procedure.

4) If all vertices have been colored, stop. Otherwise go back to step 2.

The other two algorithms, MLF1 and MLF2, incorporate the saturation 

degree method while using the largest first strategy. The vertices are 

ordered in decreasing chromatic degree - the same initial ordering of 

vertices as the LF1 algorithm. When the algorithms find that there are two 

or more vertices having equal chromaticity, one of the vertices is selected 

for coloration based on the maximal saturation degree rule. Unlike the DS1I 

algorithm and DS2I algorithm, the vertices to be colored sequentially are 

fixed within the chromaticity ordering. Vertices with equal chromaticity in 

the ranking of the chromaticity ordering are the only ones subjected to the 

ordering by saturation degree method. The difference between MLF1 

algorithm and MLF2 algorithm lies in the saturation degree method and is
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shown in step 2 of the outline of each algorithm. The following is an outline 

of the MLF1 algorithm. The outline of MLF2 algorithm follows immediately 

after the outline of MLF1 algorithm.

- MLF1 <M LF1I> Algorithm -

1) Order the vertices of the composite graph by decreasing chromaticity 

and sub-order in decreasing chromatic degree.

2) Check to see if there is more than one vertex with the same 

chromaticity. If none, color the vertex with the minimum sequence of 

color(s). Otherwise find the vertex with the maximal saturation degree 

and color it with the minimum sequence of color(s). If a tie occurs in the 

selection of maximal saturation degree, select the vertex with the largest 

degree.

3) < Interchange> : Check for new color(s) used. If so, invoke the 

interchange procedure. Otherwise go on to the next step.

4) If all vertices have been colored, stop. Otherwise go back to step 2.

- MLF2 <  MLF2I >  Algorithm -

1) Order the vertices of the composite graph by decreasing chromaticity 

and sub-order in decreasing chromatic degree.

2) Check to see if there is more than one vertex with the same 

chromaticity. If none, color the vertex with the minimum sequence of 

color(s). Otherwise find the vertex with the maximal saturation degree 

and color it with the minimum sequence of color(s). If a tie occurs in the 

selection of maximal saturation degree, select the vertex with the largest 

chromatic degree.
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3) < Interchange > : Check for new color(s) used. If so, invoke the 

interchange procedure. Otherwise go on to the next step.

4) If all vertices have been colored, stop. Otherwise go back to step 2.

The interchange procedure included in the outline of both of the algorithms 

is used to enhance the original algorithms. Using the interchange 

procedure then produces two enhanced algorithms, MLF1I and MLF2I 

respectively. All seven new heuristic algorithms in this chapter were used 

in the experimentation to be described in Chapter VI.
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V. APPLICATIONS OF COMPOSITE GRAPH COLORING

A. TIMETABLING PROBLEM

The timetabling problem has been a major topic in the application of 

the standard graph coloring problem. Wood (13) and Welsh and Powell (20) 

have shown the basic examination scheduling problem is a standard graph 

coloring problem. Each vertex of the graph is represented by each course 

examination and each undirected edge is introduced between two vertices 

(courses) if the two courses cannot have the examinations at the same time 

frame. By minimizing the number of colors of the graph, the equivalent 

formulation then represents the objective of the examination scheduling 

which is to minimize the number of time frames used for the overall 

scheduling problem.

Recent timetabling applications still use the standard graph coloring 

method - see Lotfi and Sarin (22) and Mehta (23). Punter (21) observed that 

most schools require some multiple time frames for certain courses and 

these courses are represented by multiple vertices in the standard 

(non-composite) graph. In coloring such vertices, there is no guarantee that 

the colors (time frames) assigned to these vertices will be consecutive. The 

composite graph concept is introduced to overcome this limitation.

One of the composite graph coloring applications presented now is the 

timetabling problem. The objective is to assign instructors to classrooms in 

such a way that there is no conflict of classrooms for instructors. Note the 

timetabling problem could also be extended to examination scheduling
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where there are unequal durations of examination time. As an example

problem,

Prof. 1 
T. Asst. 
T. Asst. 
T. Asst. 
T. Asst. 
Prof. 2 
Prof. 3 
T. Asst. 
Prof. 4 
Prof. 5 
T. Asst. 

(Note: Room

uses
1 uses
2 uses
3 uses
4 uses 

uses 
uses

5 uses 
uses 
uses

6 uses
213 is

classroom 
classroom 
classroom 
classroom 
classroom 
classroom 
classroom 
classroom 
classroom 
classroom 
classroom 

a personal

#202 for 
#213 for 
#213 for 
#213 for 
#203 for 
#206 for 
#206 for 
#202 for 
#203 for 
#216 for 
#216 for 
computer

4 courses.
1 course.
1 course.
1 course.
1 course.
2 courses.
1 course.
1 course.
2 courses.
1 course.
1 course, 
laboratory.)

The problem then is to schedule the classrooms (rooms) so that no two

instructors will use the same room at the same time and the number of time

frames used in the scheduling is minimum. Below is a procedure to 

formulate the problem as a composite graph coloring problem.

1) Assign the duration of class time to each room, i.e., all courses take 

50-minutes except for the PC laboratory courses which take 1 hour and 

50-minutes.

2) Label all rooms and let the same room number be under the same label. 

This step is essentially to simplify the identification of the room 

numbers.

Label the room numbers as follows:
1 1 1 1 2 2 2 3 4 4 4 1 3 3 4 4  

eg., 1 represents room #202, 2 represents room #213 and etc.

3) Relabel the rooms to represent the number of vertices of the graph and 

join edges with vertices having the same room. This relabeling process 

is necessary to make the vertex numbers of the composite graph unique.
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Label each room to correspond to each vertex of the graph: 
Room: 1 1 1 1 2 2 2 3 4 4 4 1 3 3 4 4  
Vertex: 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16

4) Use a composite graph coloring algorithm (MLF1I) to solve the problem. 

(The solution to the timetabling is shown in Figure 6.)

Figure 6. A graphical solution to the timetabling problem.

The number(s) in the parentheses represents the time period(s) the rooms 

corresponding to the vertices will be utilized. By mapping the vertex 

number back to the room number, the various instructors' time schedules 

can be found. If color 1 denotes the timeframe from 8:30 am to 9:20 am then
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the sequence of colors on upwards represent the increments of color 1's 

time frame. For instance, vertices V1, V2, V3 and V4 represent room 202 

traced to Professor 1. V2 and V4 colorings interpret to the professor's 8:30 

am to 10:20 am class schedule. Similiar interpretations result in various 

instructors' class schedules as listed below:-

Solution to timetabling
Prof. 1 .... 8:30 am -10:20 am, 11:30 am - 12:20 pm (Rm. 202)
T.A. 1 .... 10:30 am - 12:20 pm (Rm. 213)
T.A. 2 .... 12:30 pm - 2:20 pm (Rm. 213)
T.A. 3 .... 8:30 am - 10:20 am (Rm. 213)
T.A. 4 .... 8:30 am - 9:20 am (Rm. 203)
Prof. 2 .... 8:30 am - 9:20 am, 11:30 am - 12:20 pm (Rm. 216)
Prof. 3 .... 10:30 am - 11:20 am (Rm. 216)
T.A. 5 .... 10:30 am - 11:20 am (Rm. 202)
Prof. 4 .... 9:30 am - 11:20 am (Rm. 203)
Prof. 5 .... 9:30 am - 10:20 am (Rm. 216)
T.A. 6 .... 12:30 pm - 1:20 pm (Rm. 216)

B. JOB SHOP SCHEDULING PROBLEM

In a job shop setting, jobs which may be having several different 

operations are sent to work centers for processing. A job can have more 

than one operation depending on the job's requirement. A work center on 

the other hand may consist of a single machine or several machines 

working to perform a type of operation. The job shop scheduling activity is 

divided into two steps, allocating appropriate jobs to the right work centers 

(machine loading) and sequencing the order of jobs to be processed (job 

sequencing) at the work centers.
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The job shop scheduling problem which will be solved using composite 

graph coloring is the problem of minimizing the total completion time of 

jobs at the work centers. The problem is complicated by the fact that there 

may be hundreds or thousands of individual jobs competing for time on 

limited work centers. Given a job shop scheduling problem, the problem 

can be represented by a composite graph. The vertices of the composite 

graph will be the jobs or the operations of the jobs. An edge is joined to 

the two vertices (operations) if both operations require the use of the same 

machine or are part of a job. A composite graph coloring algorithm can 

then be used to solve the shortest completion time for all jobs. An example 

problem is now given as follows.

Job A a(2), b(1); Job B a(2), c(3), d(2)
Job C d(2), e(1); Job D a(1)

The above information is interpreted as jobs with its given operations' 

processing time units in parentheses. For instance, job A involves two 

operations - operation 'a' takes 2 processing time units and operation 'b' 

takes 1 processing time unit. In reality such operations might be drilling 

operations taking 2 minutes on one drilling operation type and another 1 

minute for the other drilling operation type. To set up the problem as a 

composite graph, let each operation represents a vertex in the composite 

graph. There are seven operations in the example problem and therefore 

seven vertices are needed in the composite graph. In Job A, operation 'a' 

is represented by vertex 1 and operation 'b' is represented by vertex 2. The 

operations of the rest of the jobs are represented in similiar fashion. As 

explained earlier, edges are then connected to the vertices if the operations
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represented by those vertices require the same machine for processing or 

the operations are part of a job. The algorithm used for coloring this 

problem is the LF3I algorithm. Figure 7 shows the composite graph 

equivalent of the example problem already solved by the LF3I algorithm. 

The numbers in brackets beside the vertex numbers represent the 

operations' time and schedule for processing. Referring to Figure 7, vertex 

1 or operation 'a' of Job A takes the first and second time units and vertex 2 

or operation 'b' of Job A takes the third time unit. This means that 

operation 'a' will be processed first follow by operation 'b'. The minimum 

completion time for all the jobs is 7 time units. Similiar interpretations 

produce the solution on the next page.

I [ l  2)

6[l 21 5f6 71

Figure 7. Composite graph of the job shop scheduling problem.
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Solution: Job Operations
A a(1 2 ), b(3)
B a(4 5), c(1 2 3), d(6 7)
C d(2 3), e(1)
D a(3)

At the moment, minimizing the completion time of jobs at the work 

centers does not seem to pose any problems. However in another objective 

which is to minimize the completion time of each operation, the problem 

becomes difficult to solve. Finding the minimum completion time of jobs 

does not guarantee minimum completion time of each operation in the jobs 

as illustrated in Figure 8 of the same example problem.

1 [2 3 ]

6[2 3] 5[6 7]

Figure 8. Graph with minimum completion time of each operation.
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To calculate the minimum completion time of each operation add up the 

completion time of each operation of all jobs. In Figure 8 the minimum 

completion time of each operation is 24 time units whereas in figure 7 the 

minimum completion time of each operation is 28 time units. An algorithm 

was developed to handle the minimum completion time of each operation 

after a coloring algorithm solves the minimum completion time for all jobs. 

Unfortunately, the algorithm could not solve complex combination of jobs 

and related operations. Another problem from the composite graph 

formulation is that operations can not be prioritized due to the simplistic 

nature of the composite graph. A proposed modified composite graph is 

discussed later in Chapter Vlll.

C. CPU SCHEDULING PROBLEM.

The CPU scheduling problem involves scheduling of jobs (programs or 

tasks) to be executed by processors. The objective of the problem is to find 

the shortest execution time for all processors and the minimum completion 

time for each job. To illustrate how the scheduling problem can be 

implemented as a composite graph coloring problem, an example problem 

is given:

Jobs in queue CPU Time factor
1 P1 3
2 P2 2
3 P3 4
4 P1 1
5 P2 3
6 P1 5
7 P3 2
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Associated with each job is a time factor which is the execution time of each 

job. In this problem there are three processors P1, P2 and P3 being used 

by the various jobs coming in a queue waiting for execution. The CPU 

scheduling problem might be the problem of a job scheduler which controls 

the routing of the various jobs to the appropriate processors. In the 

example problem after collecting enough jobs in the queue, the job 

scheduler then queues the jobs in an order for the appropriate processors. 

Assuming there is no parallel processing involved in the various jobs, then 

all jobs are run sequentially.

In constructing the composite graph an important observation is made. 

Since each processor handles the jobs assigned to it sequentially, the 

composite graph represented by that processor is a complete composite 

graph. By including other processors, the overall composite graph is made 

up of complete composite sub-graphs represented by each of the 

processors. The CPU scheduling problem then can handle a single 

processor or multiple processor scheduling problem. Also since each 

processor (in the example problem) is represented by a complete composite 

sub-graph, the shortest execution time of each processor is the sum of all 

the execution times of jobs belonging to that processor - which solved the 

objective of finding the shortest completion time for all processors. To 

solve the shortest execution time for each job is the problem of finding the 

minimum completion time for each job. By observation, if the vertex (job) 

with the least time units is colored first then when totaling the completion 

time of the jobs, the optimal completion time for the jobs can be found. For
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instance in the example problem, if job 2 is colored (4 5) and job 5 is 

colored (1 2 3), then the minimum completion time for the individual jobs 

adds up to 8 (5 +  3). However if job 2 is colored (1 2) and job 5 is colored (3 

4 5), the completion time for the individual jobs adds up to only 7 (2 +  5). So 

in order to minimize the completion time of each job, job 2 will have to be 

run first and then follow by job 5 for processor P2. Note that since the jobs 

are processed sequentially, the overall shortest execution time of the two 

jobs for processor P2 is 5 which is the optimal time since the 2 jobs form 

the complete graph. An algorithm which colors the smallest chromaticity 

first was developed to solve this particular composite graph coloring 

application. Figure 9 shows the colored composite graph of the example 

problem solved by using the algorithm described above.

The vertices of the composite graph directly represent the jobs in the queue. 

In order to find the shortest completion time for all the processors and jobs 

the scheduler will have to order the jobs in the following manner:

CPU Job Time factor
P1 4 1

1 2 3 4
6 5 6 7 8 9

P2 2 1 2
5 3 4 5

P3 7 1 2
3 3 4 5 6
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1 [2 3 4 ]

6 [5 6 7 8 9

3 [3 4 5 6 ]

2 [1 2]

4 1 1 ]

Figure 9. Composite graph of the CPU scheduling application problem.

D. NETWORK ASSIGNMENT PROBLEM.

The composite graph coloring method may have applications in the 

network problem. A case problem might be to determine the locations in a 

network for quickest dispersal of information through a network. Given, say, 

a company's central information center, the problem is to find locations that 

can transmit information relatively fast and at the same time reduce the 

number of transmissions handled by the information center. To construct 

the graph equivalent to the network, let the vertices be the company's 

locations and the edges joining the locations be the connection between the
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locations. The importance of a location can be determined by locality of the 

location (or remoteness of the location) and the transmission factors of the

location. The transmission factors are the chromaticities of the vertices

(locations) and are evaluated from the efficiency and the effectiveness of the

communication facility at that location. Consider a 12 location example:

Location 1 connected to location 2 
Location 2 connected to locations 1, 
Location 3 connected to location 2 
Location 4 connected to locations 2, 
Location 5 connected to locations 4, 
Location 6 connected to location 5 
Location 7 connected to location 5 
Location 8 connected to locations 4, 
Location 9 connected to location 8 
Location 10 connected to location 8 
Location 11 connected to location 8 
Location 12 connected to location 8

3 and 4

3, 5 and 8 
6 and 7

9, 10, 11 and 12

An algorithm which colors the largest degree first and sub-orders by 

highest chromaticity produces the coloring shown in brackets in Figure 10.

To select the locations for receiving information from the information center, 

simply choose locations starting with the lowest colors beginning with color 

1. In the example the chosen locations are:

a) Location 2

b) Location 5

c) Location 8

Note that this application has not been studied as a composite graph 

coloring application. The application is presented to motivate interest in the 

network problems.
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Figure 10. Composite graph representing the network example problem.
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VI. RESULTS

A total of eleven heuristic algorithms were investigated using random 

composite graphs. A random composite graph G<npd> is defined as a graph 

having n vertices with n(n-1)/2 possible edges occuring with probability 

0 < p <  1 (called the edge density), and the chromaticities of vertices 

determined by the chromaticity distribution, d. The objectives of the 

experiment were :

1) to corroborate and compare the results with Clementson et al (3) and 

Roberts (5) experiments.

2) to investigate the saturation degree methods and combination of 

chromaticity, chromatic degree and degree measures with the saturation 

degree methods.

3) to investigate the effects of varying the chromaticities, edge densities 

and increasing the number of vertices.

In the Clementson et al (3) experiments four (heuristic) algorithms, LF1, 

LF1I, LF2 and LF2I were compared with random composite graphs of 100 

vertices using a truncated Poisson distribution with parameter q =  1 as the 

chromaticity distribution and with edge densities p =  0.2, 0.3 and 0.4. In 

this research, five chromaticity distributions were used. The five 

chromaticity distributions are:

1) truncated Poisson distribution - TP as abbreviation.

2) uniform distribution - UF as abbreviation.

3) 'down ramp' distribution - DR as abbreviation.

4) shifted binomial distribution - BN as abbreviation.

5) 'up ramp' distribution - UR as abbreviation.
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Each of these distributions are described in detail by Roberts (5). The range 

of chromaticity values used in the chromaticity distributions in this 

experiment is between 1 and 10. A brief introduction to one of the 

chromaticity distributions is presented. The truncated Poisson expression is 

given by:

P(cv' =  k) =  qk/{eq — 1 )k\ where k =  1,2,...

In the experiment the parameter q is set to 1.0 and each integer increment 

of chromaticity, k, is calculated fork =  1 ,...,10. Rather than describing each 

of the chromaticity distributions further, a calculated and ready to use table 

for assigning the chromaticities to vertices is provided. Table I shows the 

cumulative values calculated for the five chromaticity distributions. To 

assign chromaticity to a vertex, a random number is generated and a 

comparison is made against the type of distribution. If the random number 

falls between the range of specified values then the chromaticity belonging 

to the range of specified values is assigned to the vertex. For instance if a 

random composite graph uses the TP distribution (truncated Poisson 

distribution), the chromaticity of a vertex is determined by the random 

number conversion. Suppose the random number has a value of 0.653, then 

comparing the cumulative values of Table I, chromaticity of k =  2 is chosen 

and assigned to that vertex since 0.582 >  0.653 > 0.873.
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Chromaticity Distributions

k TP UF DR BN UR

1 0.58198 0.1 0.190 0.002 0.010

2 0.87297 0.2 0.360 0.020 0.040

3 0.96997 0.3 0.510 0.090 0.090

4 0.99422 0.4 0.640 0.254 0.160

5 0.99907 0.5 0.750 0.500 0.250

6 0.99988 0.6 0.840 0.746 0.360

7 1.00000 0.7 0.910 0.910 0.490

8 1.00000 0.8 0.960 0.980 0.640

9 1.00000 0.9 0.990 0.998 0.810

10 1.00000 1.0 1.000 1.000 1.000

Table I. CUMULATIVE DISTRIBUTIONS OF THE CHROMATICITY

DISTRIBUTIONS.



46

As part of the experiment, the random composite graphs were 

generated under the G<npd> groupings. Graphs with vertices n =  100 and 

200, p =  0.1,...,0.5 edge density together with chromaticity distribution of 

TP, UF, DR, BN and UR combined were tested using the 11 heuristic 

algorithms. The random composite graphs used were based on the G<npd> 

groupings and to show how the the random composite graphs were 

generated in the groupings, the following pseudo code is provided: 

for n =  100 and 200 do

for p =  0.1 to 0.5 by 0.1 do 

for d =  TP, UF, DR, BN, UR do 

for i =  1 to 25 by 1 do 

generate G<npd>

In each G<npd> grouping, 25 random composite graphs were used by 

the eleven heuristic coloring algorithms namely, LF1, LF1I, LF2, LF2I, LF3I, 

DS11, DS2I, MLF1, MLF1I, MLF2 and MLF2I. The results of the colorings by 

the eleven algorithms are placed in the Table II to Table XI. To interpret the 

results in the tables, each algorithm's results are read column wise. The 

first row of the algorithm shows the number of wins coloring the 25 random 

composite graphs with respect to other algorithms. The second row shows 

the number of draws coloring the 25 random composite graphs with respect 

to other algorithms. The last row or third row represents the average colors 

used by the algorithm in coloring the 25 random composite graphs.
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After examining Table II to Table XI for algorithms using the least 

colors, four algorithms, LF1I, LF3I, MLF1I and MLF2I, consistently were 

using less colors than other algorithms. To find out more about the nature 

of those algorithms, plots on the four algorithms were generated based on 

different chromaticity distributions, edge density variations and vertices 

expansion. The plots are shown on Figure 11 to Figure 36.



Tab le  II. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices =  100, Edge Density =  10%)

LF1 LF1I LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 0 1 1 0 0 0 0
TP b) 5 14 0 2 15 6 4 8 21 8 21

c) 11.72 10.84 13.44 11.80 10.80 11.68 11.88 11.40 10.56 11.36 10.60
a) 0 1 0 0 4 2 4 0 2 0 0

UF b) 1 5 0 2 4 3 3 0 5 1 9
c) 39.72 36.52 43.76 38.44 36.36 37.48 37.64 39.60 36.60 39.64 36.28
a) 0 0 0 2 3 1 3 0 2 0 0

DR b) 2 9 0 0 9 1 4 2 10 1 10
c) 33.68 29.72 35.44 31.44 29.96 31.84 30.28 34.00 29.48 33.72 29.56
a) 0 3 0 2 3 3 4 0 1 0 0

BN b) 0 2 0 2 0 2 5 0 6 0 7
c) 43.36 38.56 44.24 39.24 38.40 38.64 37.96 42.92 38.44 42.68 38.60
a) 0 0 0 1 5 0 7 0 1 0 1

UR b) 0 3 0 0 5 4 3 0 5 0 3
c) 55.08 49.72 60.44 52.24 49.04 50.32 49.36 54.68 49.80 54.96 49.96

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.



Tab le  III. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices =  100, Edge Density = 20%)

LF1 LF11 LF2 LF2I LF3I DS1I DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 3 0 0 0 0 0 0 4 0 0
TP b) 0 7 0 1 9 0 1 3 16 2 15

c) 17.20 15.64 20.24 17.92 15.76 18.04 17.84 16.28 15.08 16.44 15.40
a) 0 6 0 0 4 0 0 0 2 0 4

UF b) 0 5 0 0 5 0 0 0 2 0 4
c) 58.04 53.04 66.04 57.92 53.12 58.72 57.56 58.44 53.28 58.16 53.20
a) 0 3 0 0 6 0 0 0 1 0 1

DR b) 0 6 0 1 8 0 0 0 12 1 10
c) 46.60 42.64 54.00 47.48 42.36 48.44 48.24 45.88 42.28 46.16 42.44
a) 0 4 0 1 4 0 4 0 3 0 1

BN b) 0 3 0 2 2 2 2 0 5 0 5
c) 63.60 57.28 67.72 59.28 56.96 59.56 58.52 61.88 57.00 61.80 57.36
a) 0 5 0 0 4 0 2 0 3 0 3

UR b) 0 1 0 0 3 1 1 1 6 1 5
c) 82.56 74.36 89.92 78.92 74.12 77.88 77.04 80.36 73.76 79.64 73.28

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.



Tab le  IV. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices = 100, Edge Density =  30%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 0 0 0 0 2 0 0
TP b) 0 10 0 0 12 0 2 3 19 3 20

c) 22.96 21.08 26.28 23.80 21.00 23.72 24.12 21.84 20.52 21.80 20.52
a) 0 7 0 0 2 0 0 0 3 0 5

UF b) 0 3 0 0 3 0 0 0 7 0 5
c) 85.44 78.36 99.56 88.04 79.60 89.56 87.00 83.92 78.36 84.48 78.08
a) 0 5 0 0 2 0 0 1 2 0 1

DR b) 0 5 0 0 7 0 0 0 8 0 11
c) 60.04 54.48 70.00 60.84 54.48 62.76 61.40 58.48 54.00 58.56 53.76

a) 0 4 0 0 3 2 1 0 4 0 1
BN b) 0 1 0 0 1 4 1 0 9 0 7

c) 84.08 77.92 92.52 80.88 77.80 78.04 80.76 81.92 76.40 81.72 77.00
a) 0 4 0 0 5 C 0 0 8 0 1

UR b) 0 2 0 0 1 0 0 1 5 0 5
c) 105.96 97.28 119.12 103.40 98.36 103.76 102.64 104.84 94.96 103.44 97.04

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs,



Tab le  V. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices =  100, Edge Density = 40%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 0 0 0 0 3 0 7
TP b) 0 6 0 0 3 0 0 5 13 3 14

c) 27.80 25.68 32.16 29.36 26.36 30.00 29.72 26.12 25.12 26.16 24.84

a) 0 7 0 0 7 0 0 0 7 0 0
UF b) 1 1 0 0 1 0 0 0 4 0 2

c) 106.20 98.80 123.56 108.76 99.76 110.84 109.24 105.12 98.00 104.92 99.36
a) 1 5 0 0 6 0 1 0 5 0 3

DR b) 0 1 0 1 2 0 0 0 2 0 3
c) 74.72 68.96 86.92 78.48 69.24 77 84 79.16 73.76 68.92 74.00 68.80
a) 0 3 0 2 3 0 0 0 2 0 4

BN b) 0 4 0 0 3 0 1 0 7 0 10
c) 102.16 95.48 113.36 98.92 96.52 101.32 98.28 100.04 94.80 100.88 94.48
a) 0 8 0 0 4 0 0 0 5 0 2

UR b) 0 2 0 0 1 0 0 0 5 1 5
c) 133.00 122.80 148.92 131.64 125.04 132.24 130.60 130.48 122.20 130.68 122.96

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.



Tab le  VI. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices =  100, Edge Density = 50%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 1 0 0 1 6 0 5
TP b) 0 7 0 0 0 0 0 3 7 1 11

c) 33.76 31.12 38.44 34.36 32.00 36.08 35.40 31.72 30.44 31.92 30.40
a) 0 8 0 0 3 0 0 0 4 0 6

UF b) 0 2 0 0 0 0 0 0 3 0 3
c) 129.44 119.44 148.68 132.76 121.36 133.20 134.96 128.32 120.28 128.52 120.16
a) 0 4 0 0 1 0 0 0 6 0 4

DR b) 0 5 0 0 2 0 0 1 8 0 8
c) 88.96 82.64 104.28 94.52 84.44 95.60 94.28 88.28 81.44 88.56 82.44
a) 0 8 0 0 6 1 0 0 2 1 3

BN b) 0 1 0 0 0 0 0 1 2 1 3
c) 124.32 116.04 137.64 122.28 117.60 122.04 122.32 120.56 116.92 120.80 116.36
a) 0 6 0 0 5 0 0 0 4 1 8

UR b) 0 1 0 0 0 0 0 0 1 0 1
c) 161.28 150.76 180.12 161.48 150.84 160.88 160.80 155.80 150.76 157.52 149.00

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.



Tab le  V II. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices =  200, Edge Density = 10%)

LF1 LF11 LF2 LF2I LF3I DS1I DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 1 0 0 0 0 0 0 3 0 4
TP b) 0 9 0 0 6 0 0 2 15 0 16

c) 17.16 15.68 20.60 18.52 15.92 18.88 18.16 16.44 15.36 16.60 15.28
a) 0 4 0 0 5 0 0 0 1 0 5

UF b) 0 4 0 0 3 0 0 0 7 0 7
c) 67.04 59.96 76.44 66.12 59.56 65.48 65.56 66.08 59.92 66.04 59.88
a) 0 2 0 0 3 0 0 0 2 0 3

DR b) 1 6 0 0 4 0 0 0 12 0 13
c) 46.80 43.20 56.24 48.20 43.56 49.44 48.60 47.24 42.80 47.32 42.36
a) 0 5 0 0 0 1 2 0 4 0 5

BN b) 0 3 0 0 1 3 2 0 7 0 6
c) 64.40 57.56 69.88 61.00 60.20 59.12 59.04 63.40 57.32 62.76 57.40
a) 0 6 0 0 2 0 3 0 4 0 2

UR b) 0 6 0 0 4 0 0 0 4 0 4
c) 82.04 74.68 92.24 81.32 76.12 78.72 77.40 80.76 74.48 80.04 74.56

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.

n-T vU>



Tab le  V lll.  RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices = 200, Edge Density = 20%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 0 0 0 1 3 0 3
TP b) 0 6 0 0 5 0 0 3 18 1 15

c) 25.96 23.92 31.40 28.40 24.20 28.72 29.28 24.16 23.12 24.36 23.24
a) 0 8 0 0 3 0 0 0 4 0 7

UF b) 0 2 0 0 0 0 0 0 1 0 3
c) 102.92 93.28 120.08 107.32 94.32 106.56 106.88 99.60 93.52 99.56 92.92
a) 0 3 0 0 4 0 0 0 3 0 2

DR b) 0 5 0 0 3 0 0 0 11 0 11
c) 71.88 65.36 86.36 75.04 66.16 77.20 76.36 69.68 64.72 70.00 64.80

a) 0 3 0 0 3 0 1 0 2 0 5
BN b) 0 3 0 0 1 0 1 1 7 0 9

c) 99.64 92.48 110.92 97.88 94.08 97.56 95.88 96.40 91.64 96.00 91.00
a) 0 7 0 0 3 0 0 0 7 0 7

UR b) 0 1 0 0 0 0 0 0 1 0 1
c) 128.28 118.28 149.04 131.24 120.48 129.80 129.00 126.20 117.32 125.88 117.52

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.



Tab le  IX. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices = 200, Edge Density =  30%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 0 0 0 1 5 0 5
TP b) 0 0 0 0 4 0 0 6 14 4 13

c) 35.20 32.80 41.88 37.52 32.56 39.36 38.80 32.72 31.52 32.44 31.56
a) 0 0 0 0 3 0 0 0 7 0 7

UF b) 0 2 0 0 5 0 0 0 4 0 5
c) 135.00 126.60 160.92 144.28 126.16 143.56 144.00 130.76 124.72 132.32 125.28
a) 0 6 0 0 2 0 0 0 5 0 7

DR b) 0 3 0 0 1 0 0 0 3 0 3
c) 95.84 88.44 144.12 102.60 90.08 104.64 105.80 94.96 88.32 94.60 87.64
a) 0 6 0 0 1 0 1 0 5 1 5

BN b) 0 2 0 0 0 0 2 1 6 1 3
c) 133.32 124.68 150.36 135.12 125.88 133.52 133.08 127.88 123.64 127.64 124.32
a) 0 6 0 0 4 0 0 0 4 0 6

UR b) 0 2 0 0 1 0 0 0 4 0 3
c) 173.96 160.28 198.64 180.88 162.20 177.80 176.52 168.72 160.36 167.36 160.60

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.

Ui



Tab le  X. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices =  200, Edge Density = 40%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 0 0 0 0 0 0 0 1 0 4
TP b) 0 5 0 0 4 0 0 3 15 6 18

c) 44.48 41.72 52.52 47.56 42.12 49.32 48.04 41.88 40.72 41.44 40.36
a) 0 7 0 0 2 0 0 0 6 0 8

UF b) 0 0 0 0 2 0 0 0 1 0 1
c) 171.72 161.60 206.88 184.68 162.24 184.64 185.08 168.24 160.76 167.88 160.32
a) 0 4 0 0 3 0 0 0 8 0 6

DR b) 0 1 0 0 1 0 0 0 3 0 3
c) 120.24 111.60 144.68 129.28 112.56 131.72 131.40 117.20 110.44 117.48 110.60
a) 0 7 0 0 7 0 0 0 5 0 2

BN b) 0 3 0 0 1 0 0 0 2 1 3
c) 168.12 157.88 189.44 172.04 158.28 171.08 171.00 162.20 157.88 161.88 159.48
a) 0 3 0 0 3 0 0 0 6 0 11

UR b) 0 0 0 0 2 0 0 0 1 0 1
c) 215.96 203.64 253.60 227.04 202.16 227.68 223.60 210.20 202.88 211.48 201.32

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.

OnO'



Tab le  XI. RESULTS OF EXPERIMENT IN COLORING RANDOM COMPOSITE GRAPHS.

(Vertices = 200, Edge Density =  50%)

LF1 LF11 LF2 LF2I LF3I DS11 DS2I MLF1 MLF1I MLF2 MLF2I

a) 0 1 0 0 0 0 0 0 7 0 8
TP b) 0 1 0 0 0 0 0 2 7 3 8

c) 54.84 51.24 64.92 58.56 52.44 59.64 59.92 51.72 50.12 51.36 50.08
a) 0 4 0 0 2 0 0 0 9 0 8

UF b) 0 1 0 0 0 0 0 0 2 0 1
c) 210.64 200.32 249.52 226.52 200.08 227.48 227.76 206.68 197.40 207.00 197.96
a) 0 5 0 0 3 0 0 0 7 0 5

DR b) 0 2 0 0 0 0 0 0 4 0 4
c) 145.88 135.56 174.64 158.56 137.60 163.68 160.28 142.60 135.32 143.68 135.20
a) 0 7 0 0 1 0 0 2 5 0 6

BN b) 0 3 0 0 1 0 0 0 1 1 2
c) 205.00 194.08 235.72 210.76 197.56 209.80 209.48 199.80 194.08 200.04 195.68
a) 0 3 0 0 5 0 0 1 6 0 9

UR b) 0 0 0 0 0 0 0 0 1 0 1
c) 264.76 250.84 310.88 274.32 250.12 277.72 275.84 257.88 248.88 259.00 248.32

a) Row representing number of win(s).
b) Row representing number of draw(s).
c) Row representing average colors used in the 25 random composite graphs.



AVERAGE COLORS BY DISTRIBUTION TYPES PLOT

ALGORTM —  LF 1 I 
o-o-o ML F1 I

— - LF31 
—  MLF2I

Figure 11. Graph with vertices =  100 and edge density -  10%.
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AVERAGE COLORS BY DISTRIBUTION TYPES PLOT

ALGORTM—  LF 1 I 
e-e-a ML F 1 I

—  LF31
—  MLF2I

Figure 12. Graph with vertices =  100 and edge density = 20%.
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AVERAGE COLORS BY DISTRIBUTION TYPES PLOT

A
V
E
R
A
G
E

C
0
L
0

TP UF DR BN 
DISTRIBUTION TYPES

UR

ALGORTM—-  LF I I —  LF3I 
6-8-0 MLF1 I MLF21

Figure 13. Graph with vertices = 1 0 0  and edge density =  30%.
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AVERAGE COLORS BY D IS T R IB U T IO N  TYPES PLOT

ALGORTM—-  LF 1 I LF3I
*■«-«» MLF1 I *-~MLF2I

1C Graph with vortices «  200 and edge density = 10%.
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AVERAGE COLORS BY DISTRIBUTION TYPES PLOT

ALGORTM—  LF1 I 
e-®-e MLF 1 I

LF31 
^ - * M L F 2 I

Figure 15, Graph with vertices =  200 and edge density =  20%.
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AVERAGE COLORS BY DISTRIBUTION TYPES PLOT

ALGORTM—  LF1 I 
— bMLFII

—  LF31 
— MLF2I

Figure 16. Graph with vertices =  200 and edge density =  30%.



64

AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTM-~ LF1 I 
e-e-e ML FI I

—  LF31 
MLF2I

Figure 17. Graph with vertices =  100 and TP distribution type.



65

AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTM—  LF 1 I 
e-s-B MLF1 I

—  LF31 
— MLF2I

Figure 18. Graph with vertices =  100 and UF distribution type.
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AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTM— - LF1 I LF3I
e-s-®liLF1I MLF21

Figure 19. Graph with vertices =  100 and DR distribution type.



AVERAGE COLORS BY EDGE DENSITY PLOT

EDGE DENSITY

ALGORTM —  LF 1 I 
e-e-e ML F 1 I

LF31 
— MLF2I

Figure 20. Graph with vertices =  100 and BN distribution type.
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AVERAGE COLORS BY EDGE DENSITY PLOT

A
V
E
R
A
G
E

C
0
L
0
R
S

10% 20% 30% 40% 50%
EDGE DENSITY

ALGORTM—  LF1 I LE3I
®-«-«MLF1I *-*-*MLF2I

Figure 21. Graph with vertices =  100 and UR distribution type.
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AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTM—  LF1 I 
®-a-e ML F 1 I

—  L F 3 1  
MLF2I

Figure 22. Graph with vertices =  200 and TP distribution type.
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AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTM—  LF1 I 
m -b ML FI I

—  LF31 
^ M L F 2 I

Figure 23. Graph with vertices =  200 and UF distribution type.



AVERAGE COLORS BY EDGE DENSITY PLOT

EDGE DENSITY

ALGORTM—  LF 1 I 
e-e-e MLF 1 I

—  LF3I 
— MLF2I

Figure 24. Graph with vertices =  200 and DR distribution type.



AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTM—  LF1 I LF3I
« - b MLF1 I — MLF2I

Figure 25. Graph with vertices =  200 and BN distribution type.
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AVERAGE COLORS BY EDGE DENSITY PLOT

ALGORTh—  LF1 I LF3I
®-b-b MLF1 I MLF21

Figure 26. Graph with vertices =  200 and UR distribution type.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM~- LF1 I LF3I
e-e-B MLF1 I ^ M L F 2 I

Figure 27. Graph with edge density =  0.10.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF 1 I —  LF3I 
w-e MLF1 I — MLF2I

Figure 28. Graph with edge density =  0.20.



AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I —  LF3I 
MLF1 I — MLF2I

Figure 29. Graph with edge density =  0.30.



AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF 1 I LF3I
e-e-B MLF1 I ^ M L F 2 I

Figure 30. Graph with edge density =  0.40.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I ~ ~  LF3I 
«-« MLF1 I *—*MLF2I

Figure 31. Graph with edge density =  0.50.



AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I —  LF3I
«-« ML F1 I — MLF2I

Figure 32. Graph with TP distribution.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I LF3I
e-B-s MLF1 I ~~MLF2I

Figure 33. Graph with UF distribution.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I LF3I
MLF1 I *MLF2I

Figure 34. Graph with DR distribution.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I —  LF3I 
-«M LF1I «~-*MLF2I

Figure 35. Graph with BN distribution.
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AVERAGE COLORS BY VERTEX PLOT

ALGORTM—  LF1 I LF3I
6-b-b MLF1 I MLF2I

Figure 36. Graph with UR distribution.
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By observing the number of wins of each of the best four heuristic 

algorithms there is clearly no one best algorithm which won consistently 

over all the test random composite graphs administered to it. To 

corroborate the current results with the experimentation by Clementson et 

al (3) and Roberts (5), four heuristic algorithms, LF1, LF1I, LF2 and LF2I, 

which were used in the experiments of Clementson et al and Roberts, were 

selected. Edge densities of 0.2, 0.3 and 0.4 with the exact truncated Poisson 

distribution from Clementson et al's experiment were used and furthermore, 

Roberts' five distributions (with probabilities rounded to three decimal 

places to the right of the decimal point) including the truncated Poisson 

distribution were used to corroborate with his experiment. The primary 

corroboration objective was to check/verify the consistency of the four 

heuristic algorithms in the current experiment with the four heuristic 

algorithms used in Clementson et al's experiment and Roberts' experiment. 

The secondary corroboration objective was to make sure that the 

chromaticity distributions corresponded to the average colors produced by 

the four heuristic algorithms when compared to the results of Clementson et 

al and Roberts. A method that was used to verify this process was to 

calculate the percentage deviation of average colors used in the other 

experiments with respect to the current experiment. The expression for 

calculating the % deviation is given by:

(x  -  y)% deviation —------—— x 100
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where x is the average colors used in Clementson et al (3) and Roberts (5) 

for each chromaticity distribution experiment and y is the average colors 

obtained from Table III, Table IV and Table V for each chromaticity 

distribution of this experiment. Table XII shows the % deviation in 

parenthesis besides the average color used in the chromaticity distribution 

experiments by Clementson et al (3) and Roberts (5).



n =  100, p =  0.2 LF1 LF11 LF2 LF2I
TP (Clementson) 
TP (Roberts)
UF (Roberts)
DR (Roberts)
BN (Roberts)
UR (Roberts)

16.80(-2.33%) 
17.24(0.23%) 

65.36(12.61%) 
46.12(-1.03%) 
63.12(-0.76%) 
81.04(-1.84%)

15.60(-0.26%) 
15.68(0.26%) 

59.56(12.29%) 
42.08(-1.31 %) 
57.08(-0.35%) 
74.24(-0.16%)

19.20(-5.14%) 
19.68(-2.77%) 
73.40(11.15%) 
52.20(-3.33%) 
66.40(-1.95%) 
91.44(1.69%)

16.20(-9.60%) 
17.56(-2.01 %) 
64.64(11.60%) 
46.24(-2.61 %) 
59.40(0.20%) 
79.72(1.01%)

n =  100, p = 0.3 LF1 LF11 LF2 LF2I
TP (Clementson) 
TP (Roberts)
UF (Roberts)
DR (Roberts)
BN (Roberts)
UR (Roberts)

21.80(-5.05%) 
22.20(-3.31 %) 
85.72(0.33%) 
59.48(-0.93%) 
83.20(-1.05%) 
106.16(0.19%)

20.20(-4.18%) 
20.68(-1.90%) 
77.76(-0.77%) 
53.48(-1.84%) 
75.44(-3.18%) 
97.60(0.33%)

25.60 (-2.59%) 
25.84(-1.67%) 
95.84(-3.74%) 
68.72(-1.83%) 
90.44(-2.25%) 
119.96(0.71%)

22.20(-6.72%) 
22.56(-5.21 %) 
85.64(-2.73%) 
60.76(-0.13%) 
79.08 (-2.23%) 
104.56(1.12%)

n = 100, p = 0.4 LF1 LF11 LF2 LF2I
TP (Clementson) 
TP (Roberts)
UF (Roberts)
DR (Roberts)
BN (Roberts)
UR (Roberts)

29.20(5.04%) 
27.76(-0.14%) 
104.84(-1.28%) 
72.36(-3.16%) 
101,68(-0.47%) 
130.76(1.71%)

26.00(1.25%) 
25.28(-1.56%) 
96.08 (-2.75%) 
68.12(-1.22%) 
93.12(-2.47%) 
120.28 (-2.05%)

32.00(-0.50%) 
31,24(-2.86%) 
120.20 (-2.72%) 
84.12(-3.22%) 
113,36(0.00%) 
148.00(-0.62%)

29.60(0.82%) 
28.20(-3.95%) 
105.32(-3.16%) 
75.68 (-3.57%) 
99.24(0.32%) 

131,00(-0.49%)

Table XII. CORROBORATION OF RESULTS WITH CLEMENTSON ET AL AND ROBERTS.

oc
ON
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The negative % deviation shows the average color used in this 

experiment for that particular chromaticity distribution is larger than that of 

Clementson et al or Roberts and the positive % deviation is just the 

opposite of the negative % deviation. By gathering the extreme (largest) 

positive % deviation and extreme (smallest) negative % deviation from 

Table XII, which are between -9.60% and 12.61%, there is 1.505% ±  

11.105% recorded by Clementson et al and Roberts. It also shows the 

average colors in this experiment for graph vertices, n =  100 and edge 

density, p =  0.2, the average colors were slightly lower by 1.505% Note, 

edge densities of p = 0.3 and 0.4 are not included in the above conclusion 

because the two extreme % deviation were obtained at p =  0.2 with n =  

100 where the average colors are small. It is known a slight change in 

small numbers will result in % deviation to swing widely and therefore it is 

paradoxical to assume for Table XII that the average colors in this 

experiment were lower by 1.505% from the average colors of Clementson et 

al and Roberts. However, as the average colors get larger and larger, the 

extreme points of % deviation will get smaller and smaller as can be seen 

for the case n =  100 with p =  0.3 and 0.4 of Table XII.

Among the eleven algorithms, four heuristic algorithms were competing 

fiercely with one another. Figure 11 to Figure 16 are plots with chromaticity 

distributions. All algorithms showed close colorings. In Figure 17 to Figure 

26, varying the edge densities, did not retard any of the algorithms. As the 

vertices increased as in Figure 27 to Figure 36, all algorithms seemed to do 

well without dropping off from the others. Since most of the plots showed
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close competitions, a table is set up to show the algorithm that has the most 

wins in the close race. Table XIII shows the number of actual wins of each 

algorithm from Table II to Table XI results. An algorithm is a winner if it has 

the smallest average colors when compared with other algorithms for that 

chromaticity distribution. If a tie occurs then those algorithms involved are 

declared winners. The results in Table XIII show the MLF1I algorithm as the 

overall winner follow very closely by the MLF2I algorithm. The LF1I 

algorithm came in as third follow by the LF3I algorithm as fourth.
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Algorithms LF1I LF3I MLF1I MLF2I

Table II - 2 2 1

Table III 1 1 2 1

Table IV - - 3 3

Table V - - 2 3

Table VI 2 - 1 2

Table VII - 1 2 2

Table Vlll - - 3 2

Table IX 1 - 3 1

Table X 1 - 2 3

Table XI 1 - 2 3

Total wins 6 4 22 21

Table XIII. NUMBER OF ABSOLUTE WINS OF EACH ALGORITHM.
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VII. CONCLUSION

By observing the number of wins of each of the four best algorithms, 

LF1, LF1I, MLF1I and MLF2I, there is clearly no one best algorithm which 

won consistently over the test random composite graphs administered to it. 

The results showed the MLF1I to be better than the MLF2I algorithm. The 

overall winner position is not absolute due to the relative closeness of the 

number of wins of the two MLFxi algorithms.

Even though the MLFxi algorithms seized the top positions, another 

factor to consider is the run time of these algorithms. The preordering of 

vertices for all algorithms except the DSxl algorithms uses the heapsort 

method and therefore is 0(n log2n). The DSxl algorithms only selects the 

vertex that has the highest maximal degree which used 0(1). The degree 

saturation method is known to have the run time 0(n2) as reported by 

Brelaz (7). The vertex sequential coloring algorithms without the 

interchange procedure has 0(n) run time. Since the run time of the 

interchange procedure is not known, let it be on 0(l). The vertex sequential 

with interchange algorithms run times are less than 0(n2) when compared 

with the DSx algorithms coloring the same composite graphs. The worst 

case analysis of the interchange procedure is also not known. When 

comparing the run times, definitely the LF1I algorithm and the LF3I 

algorithm top the list.

The DSxl algorithms simply did not fair well in this experiment at all. 

However as a note of interest, when the DSxl algorithms were ran with
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vertices n =  20 or less they performed very well against the rest of the 

algorithms in the current experiment.

Corroboration with Clementson et al's (3) experiment and Roberts' (5) 

experiment showed the reproduction of Clementson et al's algorithms, LF1, 

LF1I, LF2 and LF2I, were consistent with their algorithms. There were not 

much % deviations from the results of the current experiment compared to 

their experiments from the sampling done in Table XII.

Cross comparison of results from the current experiment with Roberts' 

experiment or Clementson et al's experiment is not possible. The reason is 

each experiment was conducted using a set of test random composite 

graphs which is different in each experiment. Therefore it is not possible to 

judge the results from each of the experiment and conclude the overall best 

algorithm from the experiments. However, a conclusion can be drawn by 

comparing the new algorithms with Clementson et al's algorithms in the 

current experiment. The new algorithms, LF3I, MLF1I and MLF2I, are as 

good as Clementson et al's algorithms if not better.

An exact composite graph coloring algorithm has been attempted in the 

research but due to the exponential run time of the algorithm, the algorithm 

was not used in the experiment to solve large graphs with the heuristic 

algorithms. The exact algorithm uses the implicit enumeration method to 

find an exact solution. No trimmed down version of the exact algorithm is 

attempted due to the unknown properties of composite graph.



92

On the applications of composite graph coloring, those applications 

listed namely, the timetabling problem, job shop scheduling problem, cpu 

scheduling problem and network assignment problem are not limited to 

those application problems nor limited to those exact problems presented. 

For example, in the timetabling problem the composite graph coloring 

problem can easily be used to schedule an examination timetabling.

The job shop scheduling problem certainly posed a limitation to 

composite graph formulation by not being able to prioritize the operations in 

a job. In the next chapter about future research, a modified composite 

graph is proposed to hopefully overcome the priority limitation as exists in 

the current composite graphs.
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VIII. FUTURE RESEARCH

As mentioned before, the composite graph coloring problem is still 

relatively new in the world of graph coloring. Applications using the 

composite graph formulation have not been reported or published and 

certainly would be worth while to investigate further.

Heuristic algorithms developed so far did not show one superior 

algorithm over the rest. New heuristic algorithms should be attempted to 

gather a pool of good heuristic algorithms. To find a good coloring for a 

particular composite graph, all the good heuristic algorithms from the poo! 

should be tried.

Properties of the composite graphs need to be investigated more 

thoroughly to assist in the development of better heuristic algorithms and 

possibly exact algorithms which will not be that prohibitive with respect to 

run time.

The job shop scheduling problem using the composite graph 

formulation as it is, caused a limitation in which operations represented by 

the vertices of the graph cannot be prioritized within the job. A modified 

composite is proposed. Suppose a vertex now represents a job instead of 

an operation. The job in turn might consist of a sequence of operations with 

arbitrary processing time in a given order. By allowing the vertex to hold 

all the operations of the job and fixing the order of the operations then 

perhaps a modified composite graph coloring algorithm can be allowed to 

color the operations in the given order. Another research possibility might
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be to find the minimum completion time of each operation since the 

algorithm created in the research could not handle combinations of jobs 

and operations well. Overall, the job shop scheduling problem is worth 

while investigating further as with the rest of the other applications.
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