
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2014

Access control delegation in the clouds Access control delegation in the clouds

Pavani Gorantla

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Gorantla, Pavani, "Access control delegation in the clouds" (2014). Masters Theses. 7293.
https://scholarsmine.mst.edu/masters_theses/7293

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229050427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7293&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ACCESS CONTROL DELEGATION IN THE CLOUDS

by

PAVANI GORANTLA

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2014

Approved by

Dr. Dan Lin, Advisor

Dr. Wei Jiang

Dr. Sriram Chellappan

iii

ABSTRACT

Current market trends need solutions/products to be developed at high speed. To

meet those requirements sometimes it requires collaboration between the organizations.

Modern workforce is increasingly distributed, mobile and virtual which will incur hurdles

for communication and effective collaboration within organizations. One of the greatest

benefits of cloud computing has to do with improvements to organizations

communication and collaboration, both internally and externally. Because of the efficient

services that are being offered by the cloud service providers today, many business

organizations started taking advantage of cloud services. Specifically, Cloud computing

enables a new form of service in that a service can be realized by components provided

by different enterprises or entities in a collaborative manner. Participating parties are

usually loosely connected and they are responsible for managing and protecting

resources/data entrusted to them. Such scenario demands advanced and innovative

mechanisms for better security and privacy protection of data shared among multiple

participating parties.

In this thesis, we propose an access control delegation approach that achieves

federated security services and preserves autonomy and privacy sharing preferences of

involved parties. An important feature of our mechanism is that each party will not need

to reveal its own sensitive information when making a global decision with other

collaborators, which will encourage a wide range of collaboration and create more

business opportunities.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who have helped me with this

research. First, I would like to thank my advisor Dr. Dan Lin who gave me the

opportunity to work on this research topic. Her valuable insights and suggestions have

helped me to overcome many hurdles during this work. Secondly, I would like to thank

Dr. Sriram Chellappan and Dr. Wei Jiang for being part of my thesis committee and

taking time to review this work.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... viii

SECTION

1. INTRODUCTION .. 1

2. RELATED WORK ... 4

2.1. INTRODUCTION TO XACML... 4

2.2. ACCESS CONTROL DELEGATION IN CLOUD SYSTEM 6

2.2.1. Policy Decomposition for Collaborative Access Control 6

2.2.2. Automated Decomposition of Access Control Policies 7

2.2.3. Privacy Preserving Delegated Access in Public Clouds 7

2.2.4. Ensuring Access Control in Cloud Provisioned Healthcare Systems 8

3. POLICY DECOMPOSITION .. 9

3.1. AN ILLUSTRATIVE EXAMPLE ... 12

3.2. HIERARCHIAL POLICY DECOMPOSITION .. 16

3.2.1. Decomposition Strategy ... 16

3.2.2. Request Evaluation ... 25

3.3. UPDATING OF POLICIES ... 27

3.3.1. When the Global Policy is Updated ... 27

3.3.2. When the Resources Locations are Updated .. 28

vi

4. EXPERIMENTAL RESULTS ... 30

4.1. GENERATION OF DATASET ... 30

4.2. EXPERIMENTAL RESULTS.. 31

4.2.1. Performance Measure with Variations in Levels of Hierarchy 31

4.2.2. Performance Measure with Increase in Number of Departments 33

4.2.3. Performance Measure with Variation of Number of Policies from Same

Department ... 36

4.2.4. Performance Measure for Updating the Resources 37

4.2.5. Performance Measure for Updating the Global Policy 38

5. CONCLUSION .. 41

REFERENCES ... 42

VITA .. 45

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1. Architecture of XACML Engine .. 5

3.1. Data Flow Diagram ... 10

3.2. An Example of Hierarchical Organization Structure .. 13

3.3. An Example of an XACML Global Policy ... 14

4.1. Effect of Request Evaluation Time for different Hierarchy Levels 31

4.2. Effect of Policy Decomposition Time for different Hierarchy Levels 33

4.3. Effect of Request Evaluation Time with Increase in Number of Departments 34

4.4. Effect of Policy Decomposition Time with Increase in Number of Departments 35

4.5. Effect of Request Evaluation Time with increase in number of policies from same

department .. 37

4.6. Effect of Request Evaluation Time with increase in number of resources that are

modified ... 38

4.7. Effect of Request Evaluation Time with increase in number of policies being

updated ... 39

viii

LIST OF TABLES

Table Page

3.1. Atomic Boolean Expressions and Labeling .. 19

3.2. Clustered policies at PEP .. 20

3.3. Effect combination table at PEP ... 20

3.4. Clustered policies at PDP3.. 21

3.5. Effect combination table for PDP3 ... 22

3.6. Clustered policies at PDP2.. 23

3.7. Effect combination table for PDP2 ... 23

3.8. Clustered policies at PDP21.. 24

3.9. Effect combination table for PDP21 ... 24

1. INTRODUCTION

 The modern workforce is increasingly distributed, mobile and virtual [16]. Thus

there will be many hurdles for communication and effective collaboration within

organizations. One of the greatest benefits of cloud computing has to do with

improvements to organizations communication and collaboration, both internally and

externally. Thus by switching to the cloud, corporate resources can be virtualized,

enabling individuals to access the documents they need regardless of location or device.

Several cloud’s web-based tools are developed to reduce communication barriers by

helping people connect to the organizations cloud and get relevant and timely responses.

For example, Event Industry Veteran had launched an EventCollab- cloud based

collaboration software service (SaaS) [17]. It helps professionals to collaborate with stake

holders within every project so that everyone involved in their project is on the same

page. Moreover, cloud service providers also collaborate among themselves in order to

provide better services to their customers. For example, Apple Inc. collaborates with

amazon’s AWS and Microsoft’s Azure to host its iCloud services [18]. Oracle teams up

with Amazon AWS to extend its services to customers [19]. Oracle collaborated with

Microsoft for providing Microsoft Azure customers with oracle software services [20].

Cloud computing collaboration and communication suite of Sales force and Google Apps

enables users of Sales force and Google Apps to collaborate more effectively using the

2

cloud [21]. Hewlett-Packard (HP) collaborated with Sales force cloud service provider

[22]. Sales force thus runs a dedicated instance of HP’s coverage infrastructure on its

cloud, providing a continuous service to HP’s customers. As we can see from the above

examples, cloud computing enables a new form of service in that a service can be

realized by components provided by different enterprises or entities in a collaborative

manner. Participating parties are usually loosely connected and they are responsible for

managing and protecting resources/data entrusted to them. Such scenario demands

advanced and innovative mechanisms for better security and privacy protection of data

shared among multiple participating parties.

In this thesis, we propose an access control delegation approach that achieves

federated security services and preserves autonomy and privacy sharing preferences of

involved parties. Our proposed policy decomposition approach decomposes a global

policy that needs to be enforced among participating collaborators. After the

decomposition, the access control rights will be delegated to corresponding parties based

on information available at each local party. Given a request to access certain

information, the request will be evaluated locally at respective participating parties. Then,

the local decisions will be assembled to make the final decision. In this way, each party

will not need to reveal its own sensitive information when making a global decision with

other collaborators.

We cast our solution in the context of the eXtensible Access Control Mark-up

Language (XACML) [2] framework. XACML is a general purpose access control policy

language which defines a request/response language and framework to enforce

authorization decisions. We have chosen XACML because of its widespread adoption as

3

a language of choice for enforcing access control in traditional and distributed

environments [7]. In a typical XACML framework, there is a policy enforcement point

(PEP) and a policy decision point (PDP). The PEP is responsible for issuing requests and

enforcing the access control decisions. The PDP receives requests from the PEP and

evaluates policies applicable to the requests and sends a decision back to the PEP. To

support collaborative access control, we extend the XACML reference architecture by

introducing multiple PDP’s that communicate with a centralized PEP through a request

dispatcher/decision coordinator. If the PDP’s are at different hierarchical level, then that

PDP will have child PDP’s. A global policy is thus decomposed into local policies for

each PDP according to availability/ sensitivity requirements of each party. Given a

request, the central PEP modifies the request and dispatches it to corresponding PDPs,

and then combines the decisions.

The other issue which we are focusing in this thesis is, generally even if a single

policy in a global policy is modified or even if a single resource location has been

modified, then the entire global policy will be re-evaluated which will incur lots of

overhead. So, in this thesis we addressed these issues. We found a way to evaluate only

those particular policies with modified resource locations or modified policies instead of

evaluating whole global policy.

The rest of the thesis is organized as follows. Chapter 2 reviews the related work;

Chapter 3 gives the details of our approach; Chapter 4 discusses the experimental results

and chapter 5 gives the conclusion for our thesis

4

2. RELATED WORK

In this section, a review of XACML policies and significant work in access

control delegation is presented.

2.1 INTRODUCTION TO XACML: (Extensible Access Control Markup Language)

XACML [2] is the OASIS standard language which is used to specify access

control policies. These policies are expressed in XML form. It provides a common

language to express security policies [2]. Here access control decisions are obtained by a

request/ response sequence. The request contains details of subject (User who makes

request to the resources), Action (An operation on Resource), Resource (Data, System

component or Service) and environmental conditions (Set of attributes that are relevant to

an authorization decision and are independent of a particular subject, resource or action).

So, requests finds out if the requesting user is allowed to perform a specific action on a

particular resource under a given set of environmental conditions. The response will be a

decision if the user can access the resource or not and obligations associated with the

decision. The decision could be Permit, Deny, Indeterminate or Not Applicable).

XACML policies include three main components. They are Target, Rule set and

Rule combing algorithms. Target defines a set of conditions in the policy that determine

if the policies apply to a particular request. Rule set contains optional Target, a Condition

and an Effect element.

Architecture of XACML engine is as follows.

5

Figure. 2.1. An Architecture of XACML Engine

Let’s see what individual block does:

PEP (Policy enforcement point): It makes request/ response calls to the system.

PAP (Policy administration point): It creates security policies and stores them in

repository.

Context Handler: Context Handler converts the requests in its native format to the

XACML canonical form and to convert the Authorization decisions in the XACML

canonical form back to the native format.

6

PDP (Policy Decision Point): Functionality of PDP is to receive and examine the

request, retrieve the policies that are applicable, evaluate policies and send output to PEP.

PIP (Policy Information Point): PIP contains data required for policy evaluation

First policy is fed into PAP which stores the security policies. When access

requester sends request to PEP, it sends the request to context handler. Context handler

then notifies PDP about the request and retrieves attribute queries from PDP. Context

handler then sends the attribute query to PIP. PIP will get all the required attributes and

will send then to PDP. PDP will then evaluate the request and send the response to

context handler in XACML form. Then the context handler will convert the context to

native response and send the response to PEP. PEP will full-fill the obligations and sends

the response.

2.2 ACCESS CONTROL DELEGATION IN CLOUD SYSTEM

Some of the access control delegation systems that have been proposed in cloud

are as follows:

2.2.1. Policy Decomposition for Collaborative Access Control[10]. This policy

decomposition was designed for the multi-party collaborative environment. In such

environment decisions needs to be taken by different parties and then decisions from

different organizations are grouped to obtain the final decision. In their system, they have

a single central PEP (Policy Enforcement Point) which will take the global policy as an

input, several PDP’s (Policy Decision Point) which will be policies related to a particular

organization, local repository for each PDP where the policy evaluation in a particular

7

organization take place and a request dispatcher/decision coordinator. Request

dispatcher/decision coordinator connects Central PEP and PDP’s. Their system performs

two main operations policy decomposition and request evaluation. In policy

decomposition the global policies are divided into local policies based on decomposition

constraints. These decomposed policies are sent to local policy repositories

corresponding to their particular PDP’s. Then the policies are evaluated in the

corresponding local repositories and the output is then collaborated. But, they didn’t take

hierarchical level into consideration. The thesis we proposed is an extension to this

project.

2.2.2. Automated Decomposition of Access Control Policies[9]. In dynamic

distributed information systems the resources are distributed in multiple levels of

hierarchy. This policy decomposition strategy was designed to address policies that need

access to resources that are in different levels of hierarchy. Access control at higher level

should be able to define who is allowed to use the resources. At lower levels, policy

should be able to define if the user can access requested concrete resource or not. In this

paper, they proposed a system which will automatically produce lower level policies

from higher level policies. Lower level policies are then distributed to different concrete

resources that use existing access control decision system. But, they didn’t take autonomy

of individual into consideration

2.2.3. Privacy Preserving Delegated Access in Public Clouds[5]. Enforcing fine

grained access control on confidential data hosted in cloud incurs overhead to the data

owner. So, in this approach they resolved that problem. In this approach they proposed a

model which will delegate the fine-grained access to the cloud. Here, they enforced two

8

layers of encryption. User implements coarse grained access control (inner layer) to

encrypt the data and then fine grained access control (Outer Encryption layer) is

performed on the encrypted data for controlling access to data. They proposed an

algorithm for decomposition of policies and demonstrated improved performance. In

order to achieve this policy refinement, described high level policy specifications,

resource type hierarchies, and decomposition rules are required. Then they fed these into

an inference engine to infer low level policies. But, they didn’t take collaborative

environments, hierarchical levels into consideration.

2.2.4. Ensuring Access Control in Cloud Provisioned Healthcare Systems[6].

Here they have analyzed the requirements of access control for health care multi-tenant

cloud systems. They proposed a model to adapt task-role based access control. They

considered privileges such as separation of duty, delegation of tasks, spatial and temporal

access into consideration for giving access to users. But, they didn’t take collaborative

environments, hierarchical levels into consideration.

9

3. POLICY DECOMPOSITION

This policy decomposition is suitable for multiparty cloud collaborative

environments. We have considered cloud as our platform since cloud has more resources

and have global policies involving policies authorization from different organizations.

The collaborating parties can be either a group of individual organizations or a single

organization with several departments.

Architecture of our collaborating access control is based on the figure 3.1. Figure

3.1 also shows the information flow. The basic idea is to decompose a global policy in

such a way that each participating party does not need to have any sensitive information

belonging to other parties to make an access control decision, and to combine decisions

made by each participating party to obtain the decision for the global policy.

In our system, there is a central policy enforcement point (PEP) and many parent

policy decision points (PDP) which will in turn collaborate decisions from many local

PDP’s. The central PEP and PDP’s are connected by request dispatcher/decision

coordinators (RDDC). The PEP, RDDC, policy decomposition module, global policy

repository reside at one party called coordinator; each PDP and associated local policy

repository reside at each collaborating party. The system implements two key functions:

policy decomposition and request evaluation.

10

 Figure. 3.1. Data Flow Diagram

The policy decomposition function takes a global policy as input. The global

policy is decomposed into local policies and then sent to the local policy repositories of

corresponding PDPs. This function is performed by the trusted coordinator. After the

decomposition, the global policy is encrypted and stored in a secure store. That means

that the global policy will no longer be used for the subsequent request evaluation.

11

Instead, only the non sensitive information of each global policy is kept as plain text in a

policy table maintained by the coordinator. These rules are decomposed into local

policies and sent to corresponding local/ parent PDP’s. The parent PDP’s will in turn

send’s the policies to corresponding local/ Parent PDP’s. This will continue till the final

local PDP is reached. In short, the coordinator and parent PDP’s are responsible for

coordination and does not maintain any sensitive information; sensitive information is

stored at each local PDP.

The request issued contains subject attributes, resource attributes, action attributes

and environmental attributes. Targets mentioned will determine if the policy can be

applied to the given request. Resource attributes refer to the service. Action attributes

determines the action user wants to perform on the requested service. Environmental

condition refers to the attributes that helps in making authorization decision and whose

conditions are independent of a subject, resource and action. If the target matches, then

the request dispatcher/ decision coordinator will send requests to particular parent PDP

which in turn will send requests to underlying PDP. This will continue till we find a final

local PDP. Each local PDP is associated with local repository. When final PDP is

reached, the requests will be evaluated in the PDP and the decisions obtained from all the

local PDP’s will be grouped in respective parent PDP’s and the final decision will thus be

obtained by grouping the decisions obtained from all local/parent PDP’s in PEP.

Policy decomposition function will take a global policy as an input. In our system,

we assumed that the global policies are arranged in DNF (Disjunctive normal form) [29].

We will decompose the global policy and send them to local PDP’s and save the details

12

of the decomposed policies in coordinator or parent PDP’s. The details include which

policy belongs to which PDP, how the decisions are grouped, policy id’s etc.

The request issued contains subject attributes, resource attributes, action attributes

and environmental attributes. Targets mentioned will determine if the policy can be

applied to the given request. Resource attributes refer to the service. Action attributes

determines the action user wants to perform on the requested service. Environmental

condition refers to the attributes that helps in making authorization decision and whose

conditions are independent of a subject, resource and action.

3.1 AN ILLUSTRATIVE EXAMPLE

To illustrate an example we are considering a set of collaborated organizations.

Let us assume the hierarchical structure of the organization is as in figure 3.2.

So, let us say that the global policy is “If an employee belongs to organization C

and working in training department in organization B with accounts payable less than

10,000 and funding more than 10,000,000 or an employee from organization A and

working in training department in organization B with funding more than 10,000,000 can

buy advanced equipments.” This policy contains two rules. The rule P.r1 states that the

employee who is working on project “access control” and who actually belongs to

organization C and performing a collaborative operation in training department of

organization B and having funding to buy an equipment more than 10,000,000 with

accounts payable by him less than 10,000 can buy advanced equipments. The rule P.r2

states that the employee who is working on project “access control” and who actually

13

belongs to organization A and performing a collaborative operation in training

department of organization B and having funding to buy an equipment more than

10,000,000 can buy advanced equipments.

Figure. 3.2. An Example of Hierarchical Organization Structure

So, XACML global policy will be as shown in figure 3.3. We further assume that

“Project Name” and “Action” are public information and known by any organization,

while information about “accounts payable” and “Funding” is stored in the finance

department in organization C and information about “organization A” is stored in

organization A and information about “organization C” is stored in organization C and

information about training department is stored in organization B.

14

According to the available information at each department, we decompose the

policy P into P1, P2, P3 and P4 with permit effect as follows, where policy P1 contains

information about organization C, P2 contains information about organization B, P3

contain about organization A and P4 only contains financial department information.

Figure. 3.3 An Example of an XACML Global Policy

P1 (Organization C): Any employee of project “Access Control” working in

organization C and having funding> 10,000,000 and amount payable< 10,000 can buy

advanced equipment’s.

P2 (Organization B): Any employee of project “Access Control” working in

training group in developer department in organization B.

15

P3 (Organization A): Any employee of project “Access Control” working in

organization A can buy advanced equipment’s.

P4 (Organization C): Any employee can buy advanced equipment’s for the

project “Access Control” with funding more than 10,000,000 dollars.

In the above example both P1 and P4 are checking for condition funding >

10,000,000. To avoid such redundant evaluation and improve the efficiency, our system

will simplify policy P1 as follows.

P1' (Organization C): Any employee of project “Access Control” working in

organization C and amount payable< 10,000 can buy advanced equipment’s.

P4 (Financial Department): Any employee can buy advanced equipment’s for the

project “Access Control” with funding more than 10,000,000 dollars.

We will then group the policies those belong to same department and send those

clustered policies to particular PDP. Here, policies P1' and P4 belong to same parent,

PDP3. We will cluster these policies together and will send them to PDP3. We will send

the policy P2 to PDP2 and policy P3 to PDP1.

In PDP3, we will further decompose the cluster {P1', P4} based on PDP’s. Here

P1' belongs to PDP3 and P4 belongs to PDP32. So, we can decompose policy P1 ' as

follows:

P5(Organization C): Any employee of project “Access Control” working in

organization C can buy advanced equipment’s.

16

P6(Financial department): Any employee of project “Access Control” and amount

payable< 10,000 can buy advanced equipment’s.

Policy P4 belongs to PDP32 and cannot be further decomposed. The Policy P5

and P6 cannot be further decomposed. The PDP3 contains details only about P5. PDP3

doesn’t contain the information about policies P6 and P4 belong to PDP32. So, we will

cluster the policies {P6, P4} and send the policies to PDP32. So, the local policy will be

stored in PDP32. The policy P3 cannot be further decomposed and PDP1 contains

information about the P3. So, we will store P3 in local repository of PDP1. Policy P2

cannot be further decomposed. But PDP2 doesn’t contain details about the P2. So, we

will check to which PDP P2 belongs to in PDP2. Since the policy belongs to PDP21, we

will send the policy to PDP21. PDP21 doesn’t contain the details about P2. Since the

policy belongs to PDP211, we will send the policy to PDP211. It contains the details of

policy P2. So, we will store the policy to PDP211.

We will maintain the details of initial policy decomposition in coordinator and

details of further decompositions in parent PDP’s. We will clearly see how we will

perform the policy decomposition and how we will evaluate the request in next section.

3.2 HIERARCHICAL DECOMPOSITION:

3.2.1. Decomposition Strategy. This work presented in this thesis is an extension

of project “Policy Decomposition for Collaborative Access Control” [10]. There they

have proposed a novel approach for global policy decomposition among collaborative

parties.

17

We are using the same decomposition strategy for policy decomposition, but in

this paper we are considering the hierarchical relationships among PDP’s where each

PDP reports the decision to its parent PDP.

Algorithm for Hierarchical Policy Decomposition (P):

Input: P is a global policy.

1) For each rule ri in P, create a compound Boolean expression for ri.

2) Label each atomic Boolean expression.

3) Decompose the policies and construct local policies.

4) After decomposition cluster the policies that belong to same PDP

5) Distribute the clustered policies to the destination PDP

6) Construct the final effect combination table for each rule at PEP

7) Perform steps 3 to 5 till every local policy in a cluster reaches the final Local PDP

and construct effect combination table at each PDP.

Let us see the working of the algorithm with an example. Consider the policy P

defined in figure 3.3

Step1: In the policy P, we have two rules r1 and r2. They can be represented as follows.

Where {}T represents targets.

18

P.r1 = {(Project Name= “Access Control”) ^ (Action= “Buy”)}T ^

(Organization= “Organization C”) ^ (Work= “Training Group Organization B”) ^

(Funding>10,000,000) ^ (Amount Payable< 10,000)

P.r2 = {(Project Name= “Access Control”) ^ (Action= “Buy”)}T ^

(Organization= “Organization A”) ^ (Work= “Training Group Organization B”) ^

(Funding>10,000,000)

Step2: Labeling each atomic Boolean expression

So based on the table 3.1, rules P.r1 and P.r2 can be represented as follows:

• P.r1: B1(L1) ^ B2 (L2) ^ B3(L1) ^ B4(L1) ^ {B6(Ls) ^ B7(Ls)}T

• P.r2: B5(L3) ^ B2 (L1) ^ B4(L1) ^ {B6(Ls) ^ B7(Ls)}T

Step 3: So, we can decompose the policies as

• P1: B1(L1) ^ B3(L1) ^ B4(L1) ^ {B6(Ls) ^ B7(Ls)}T

• P2: B2 (L2) ^ {B6(Ls) ^ B7(Ls)}T

• P3: B5(L3) ^ {B6(Ls) ^ B7(Ls)}T

• P4: B4(L1) ^ {B6(Ls) ^ B7(Ls)}T

The policy B4 (L1) is executed both in policy P1 and in policy P4. So, we will

decompose the repeated policies as follows:

• P1`: B1(L1) ^ B3(L1) ^ {B6(Ls) ^ B7(Ls)}T

• P2: B2 (L2) ^ {B6(Ls) ^ B7(Ls)}T

19

• P3: B5(L3) ^ {B6(Ls) ^ B7(Ls)}T

• P4: B4(L1) ^ {B6(Ls) ^ B7(Ls)}T

Table. 3.1. Atomic Boolean Expressions and Labeling

ID Unique atomic Boolean Expression Label

B1 Organization= “Organization C” L1

B2 Work= “Training Group” L2

B3 Amount payable < 10,000 L1

B4 Funding > 10,000,000 L1

B5 Organization = “Organization A” L3

B6 Project Name= “Access Control” Ls

B7 Action = “Buy” Ls

Where L1, L2, L3 indicates they are from different departments

Step 4: Here policies P1`, p4 belong to same PDP (PDP3), so group the policies together

and send them to PDP3 as a cluster. Send P2 to PDP2 and P3 to PDP1. So, the three

clusters available here are shown in Table 3.2

20

Table. 3.2. Clustered policies at PEP

Cluster PDP Resource Found

C1:{P1`,P4} PDP3 False

C2:{P2} PDP2 False

C3:{P3} PDP1 True

Step 5: Distribute these clustered policies to respective PDP’s

Step 6: Effect combination table at PEP can been seen in Table 3.3

Step 7: Perform steps 3 to 5 till every local policy in a cluster reaches the final Local PDP

and construct effect combination table at each PDP.

Table. 3.3. Effect combination table at PEP

RID F

P.r1 e(P1`) ^ e(P2) ^ e(P4)

P.r2 e(P3) ^ e(P2) ^ e(P4)

Based on the PDP values we further decompose these policies

21

For C1 at PDP3,

P1` = {(Project = “Access Control”) ∧ (Action= “Buy”)}T ∧ (Organization=

“Organization C”) ∧ (Amount Payable< 10,000)

P5= P1`.c1 = B1 ∧ {B6 ∧ B7}T

P6= P1`.c2 = B3 ∧ {B6 ∧ B7}T

P4 = {(Project = “Access Control”) ∧ (Action= “Buy”)}T ∧

(Funding>10,000,000)

Where P4 cannot be further decomposed,

P5 will be sent to PDP3, which is the final PDP for P5. So, the local policy P5 is

stored in PDP3. P6 and P4 belong to same PDP (PDP32); we will cluster these policies

and will send them to PDP32. PDP32 is the final PDP for policies P6 and P4. So, they

will be stored in PDP32.

Table. 3.4. Clustered policies at PDP3

ID PDP Resource Found

P5 PDP3 True

P6 PDP32 True

P4 PDP32 True

22

Effect combination table for PDP3 is as can be seen in Table 3.5

Table. 3.5. Effect combination table for PDP3

Policy ID Effect

P1` e(P5) ^ e(P6)

P4 e(P4)

For cluster C2, in PDP2,

P2= {(Project = “Access Control”) ∧ (Action= “Buy”)}T ∧ (Work= “Training

Group Organization B”)

 P2 cannot be decomposed further, but PDP21 doesn’t contain the details

regarding P2. So we will send the cluster C2 that contains P2 to next sub department that

contains details of Policy P2.

So, the clustered policies at PDP2 can be seen in Table 3.6

23

Table. 3.6. Clustered policies at PDP2.

ID PDP Resource Found

P2 PDP21 False

So, the effect combination table for PDP2 is shown in Table 3.7

For cluster C2, in PDP21, P2 cannot be decomposed further, but PDP21 doesn’t contain

the details regarding P2. So we will send the cluster C2 that contains P2 to next sub

department that contains details of P2.

Table. 3.7. Effect combination table for PDP2

Policy Id Effect

P2 e(P2)

So, the clustered policies at PDP21 can be seen in Table 3.8

So, the effect combination table for PDP2 is shown in Table 3.9

24

Table. 3.8. Clustered policies at PDP21

ID PDP Resource Found

P2 PDP211 True

Here, the policy P2 will be evaluated. For cluster C3, in PDP1, PDP1 is the final

resource. Since, all the final local PDP’s are reached, we will stop the decomposition.

Table. 3.9 Effect Combination Table at PDP21

Policy Id Effect

P2 e(P2)

After performing policy decomposition our main concern is to cluster the policies

that belong to same PDP which will reduce the number of calls to that particular PDP.

Let us assume there are different policies p1, p2, p3, p4, p5, p6, p7, p8, p9, p10. {p1, p2,

p3} ϵ D1. {p4, p5, p6} ϵ D2 and {p7, p8, p9, p10 } ϵ D3. If a policy set in the global

policy is as follows (p1 ∧ p4 ∧ p7 ∧ p2 ∧ p5 ∧ p8 ∧ p3 ∧ p6 ∧ p9 ∧ p10). The traditional

XACML policy will execute one policy at a time. In our approach, we will group the

policies from same department together. That is, we will send (p1∧p2∧p3) to D1,

25

(p4∧p5∧p6) to D2 and (p7∧p8∧p9∧p10) to D3 respectively. This will reduce the time

number of calls to Local PDP.

3.2.2. Request Evaluation. Now, let us see how request evaluation takes place.

Let us assume that Bob working in organization C and is working in a training group

department of organization B as a part of “Access Control” project and has a funding of

50,000,000, has the accounts repayable as 5,000 and he wants to buy an equipment.

Corresponding request <Bob, Project-Name= “Access Control”, Action= “Buy”> is

received by the coordinator, the coordinator will check if the targets of the request

matches with the targets in the global policy. If the target matches, then it sends the

request to the organization A, Organization B and Organization C. The organization C

will evaluate the request to permit if the employee belongs to organization C and will

send the policies related to financial department to next level. The policies related to

financial department are evaluated here and the output is sent to organization C, there the

decisions will be combined. Similarly, it will transfer the details regarding employee to

training group and will evaluate if Bob belongs to training department or not. The request

will be evaluated in training group department. Finally, all the outputs are grouped in

final PEP. Similarly the policies will be sent to other departments. Since Bob satisfies all

the conditions specified in P.r1, P.r1 will return permit decision. Since, one rule returns

permit and since the rule combining algorithm is “Permit- Override”, the above request

will return Permit decision.

A straightforward approach to evaluate a request consists of three basic steps: (i)

for each rule applicable to the request, evaluate its local policies; (ii) In Parent PDP

26

combine the decisions based on effect combination table; and (iii) apply the policy

combining algorithm at PEP to obtain the final decision of the request.

Different policies may share the same local policies and hence some policies may

be repeatedly evaluated. So, in our approach we will not reevaluate the policies that are

repeated. Consider the permit-override combining algorithm as an example. If a rule with

the permit effect is evaluated true, we do not need to check other rules, i.e., we do not

need to check corresponding local policies.

Two main data structures are used in our method. IRE is an intermediate result

table which stores the effects of local policies on a given request. RS is a response time

table which keeps a record of evaluation time of each rule and each local policy.

We will store the output of that particular policy in an IRE table. We will get the

output from IRE table if the policy is repeated again. If the policy combining algorithm is

permit- override, if one policy returns permit, we will stop the execution of remaining

policies and will send the decision to the user. Similarly, based on the policy combining

algorithms available, we will evaluate the request till one policy set returns a permit

decision

So, the request evaluation algorithm will be as follows:

Algorithm for Request_evaluation(q,G)

Input: q is a request regarding policy P.

1) For each rule applicable to the request, evaluate its local policies

27

2) Combine the effects of local policies based on effect combining tables.

3) Store the decisions in Intermediate result table (IRE) and response time in

Response time table (RS)

4) If the policies are repeated, then get the output from IRE table

The other areas which we focused on are:

3.3 UPDATING OF POLICIES

One of the drawbacks of the existing work is that if there is a small change in

already available global policy or if the resource location has been moved, then the whole

policy will be recompiled, which consumes lot of time. So, here we addressed this

problem. There are two cases in this.

3.3.1. When the Global Policy is Updated. Here, first we will check if the global

policies are updated by computing “Levenshtein Distance” [28]. If the policies are

updated, then we will check how many policies have been updated

The below mentioned algorithm explains how does the algorithm work.

Algorithm for Update of global policies:

1) Then, we will check if there is a change in global policy by computing

“Levenshtein Distance” [28].

2) If there is a change in global policy, then we will execute only those requests

corresponding to modified PDP’s.

28

3) For others, we will store the results obtained from the IRE

Let us see how the algorithm works. For simplicity let us assume the policy as

follows. Let us assume the values of a=3, b=4, d=6 and e=4 and the initial global policy

is G=((a<3) ∧(b<6) ∧(d>5) ∧(b>3))V((b>2) ∧(a<3) ∧(d<7) ∧(e>3)). So, the output list

will be <ArrayList<ArrayList<Boolean>>>, which will be as follows

[[false,true,true,true], [true,true,true,true]]

If the policy has been modified, as follows G = ((a<5) ∧ (b<6) ∧ (d>5) ∧ (b>3)) V

((b>2) ∧ (a<3) ∧ (d<7) ∧ (e>3))

Here a single condition is changed, that is, the condition a<3 is modified to a<5.

Generally, if the policies are modified, then the entire policy will be reevaluated. So, in

this approach by using leveinshtein distance to find which policies have been modified.

We will only compute that one policy which has been modified. So, we will compute the

output for that single policy and will update the value in already existing output list. So,

we will calculate the value of a<5 which is true, and update that particular policy’s

Boolean value. So, the new output list will be [[true,true,true,true], [true,true,true,true]].

From there we will calculate the final output.

3.3.2. When the Resources Locations are Updated. There might be a situation

where we need to move the resource from one department to another department. In such

cases, instead of re-evaluating whole policy we can just re-evaluate the part of policies

whose resource values have been changed.

Algorithm for Update of resources:

29

1) We will check if there is a change in old resources and newly allocated resources.

If there is a change, then we will build a new hash table in which we will save the

details like to which PDP the new resources now belong to

2) Then we will execute only those policies whose resource location is modified.

3) For other policies we will retrieve the information from the values stored in IRE

table and compute the results

Let us see how the algorithm works. Let us say there are resources (r1, r2 and r3

in Organization1) and (r4, r5 and r6 in Organization2). The resource, r3 has been moved

from organization 1 to organization2. So, we will find which resources have been

modified. Here by comparing old and new resources and we will see that the resource r3

is added to Organization2.

 Let us say the policy is as follows (p1∧p2∧p3∧p4)V(p3∧p5Vp6). Here, the policy

let us assume that the p1 operates on r1, p2 on r2, p3 on r3 , p4 on r4,p5 on r5 and p6 on

r6. Let us say that the output list previously is as follows [[true,false,true,true],

[true,true,true]]. Now since, the resource r3 has been moved we need to evaluate the

policies p3. And find the output and modify the output for those policies and compute the

output again.

30

4. PERFORMANCE STUDY

4.1 GENERATION OF DATASET

The datasets that we are generating for conducting the tests are global policies and

requests.

Global policies contain set of policy sets, where each policy contains set of

policies in it. Since, the policies will be in the form of Boolean expressions, we randomly

generated some conditions. We generated the data in the form of DNF. Here we

generated the policies for three levels of hierarchies. We are generating the policies for

20 different departments. In level one hierarchy, we will assume that there are 20

different departments. In second level we assume that each department has 10 sub

departments in it. In third level of hierarchy we assume that each department again has 10

sub departments under them. We even assume that with increase in a level of hierarchy,

retrieving the decision will get will get delayed by 1 millisecond. That is, if the policies

are at level 1, the decision retrieval will take 1 millisecond; for level 2 it is 2 milliseconds

and for level 3 it is 3 milliseconds. For conducting the tests we took 20 different global

policies and evaluated the performance by taking the average of the 20 different policies.

We assume that the global policy contains 10 policy sets and each policy set contains 10

policies.

We generated different request values randomly.

31

4.2 EXPERIMENTAL RESULTS

Here are some experiments we conducted to test the efficiency of the request

evaluation structure defined.

4.2.1. Performance Measure at Different Hierarchical Levels. The purpose of

this test is to check how the request evaluation time and policy decomposition time gets

affected when evaluating the policies which are at different levels of hierarchy.

Here we are generating global policies involving policies only from 10

departments. Here, we are varying the hierarchy levels and we are even checking the

performance, if the global policies are fully clustered, fully distributed and semi

clustered.

a) Request evaluation time:

Figure. 4.1. Effect of Request Evaluation Time for different Hierarchy Levels

0

5000

10000

15000

20000

25000

level1 level2 level3

R
eq

u
es

t
E

v
a
lu

a
ti

o
n

 T
im

e
in

M
ic

ro
 S

ec
o
n

d
s

Hierarchical Level of The PDP's

Fully Clustered

Fully Distributed

Partially Clustered

32

Figure 4.1 represents the results of request evaluation time for global policies with

different hierarchy levels and with different clustered levels. We can observe here that

with increase in hierarchical levels, the request evaluation time increase. We can even

observe that the request evaluation time will be less if the policies are fully clustered and

will be high if the policies are fully distributed.

This confirms that if policies are fully clustered then the evaluation time will be

less. This is because, if the policies are fully clustered, then for evaluating these policies

we will send all these policies to local PDP at once. So the number of calls to the PDP

will be less. So, the evaluation time will be less. On other hand, if the policies are fully

distributed then the evaluation time will be more. This even confirms that with increase

in hierarchical levels, the request evaluation time increases. This is because, with the

increase in level of hierarchy, the time taken to reach local PDP is high.

b) Policy decomposition time:

Here we are generating global policies involving policies only from 10

departments. Here, we are varying the hierarchy levels and we are even checking the

performance, if the global policies are fully clustered, fully distributed and semi

clustered.

Figure 4.2 represents the results of policy decomposition time for global policies

with different hierarchy levels and with different clustered levels. We can observe here

that increase in hierarchical levels doesn’t affect the policy decomposition much. But,

clustering policies affect the policy decomposition time. That is, if the policies are fully

33

clustered, then the policy decomposition time is high. But, if the policies are fully

distributed, then the policy decomposition time will be less.

Figure. 4.2. Effect of Policy Decomposition Time for different Hierarchy Levels

This confirms that if policies are fully clustered then the policy decomposition

time will be more. This is because if the number of policies to be clustered is more, it will

take time to cluster the policies together. So, the policy decomposition time will be high.

On the other hand, if the number of policies to be clustered is less, it will take less time

for performing policy decomposition.

4.2.2. Performance Measure with Increase in Number of Departments. The

purpose of this test is to check how the request evaluation time and policy decomposition

time will get effected with increase in number of departments.

0

20

40

60

80

100

120

140

level1 level2 level3

P
o

lic
y

d
ec

o
m

p
o

si
ti

o
n

 T
im

e
in

M

ic
ro

 S
ec

o
n

d
s

Hierarchical Level of The PDP's

Fully Clustered

Fully Distributed

34

Here we are varying number of departments from 2 to 20. We are assuming that

all the policies are from hierarchical level 2 and we are even checking the performance, if

the global policies are fully clustered, fully distributed and semi clustered.

a) Request Evaluation time:

Here we are also checking the execution time if the execution is performed

without any policy decomposition

Figure. 4.3. Effect of Request Evaluation Time with Increase in Number of Departments

Figure 4.3 represents the results of request evaluation time for global policies with

increase in number of departments and with different clustered levels. We can observe

that with increase in number of departments, the request evaluation time increase. We can

even observe that the request evaluation time will be less if the policies are fully clustered

0

5000

10000

15000

20000

25000

30000

2 4 6 8 10 12 14 16 18 20

R
eq

u
es

t
E

v
a
lu

a
ti

o
n

 T
im

e
in

M
ic

ro
 S

ec
o
n

d
s

Number of Departments Per Policy

Fully Clustered

Fully Distributed

Partially Clustered

Undecomposed

35

and will be high if the policies are fully distributed. We can even observe that the time

taken to evaluate un-decomposed policies is more compared to time taken to evaluate

policies after performing policy decomposition.

This confirms that if policies are fully clustered then the evaluation time will be

less and if the policies are fully distributed than the evaluation time will be more. This

confirms that with increase in number of departments, the request evaluation time

increases. This is because increase in number of departments implies more PDP’s, which

implies more local PDP’s to evaluate the request. This even confirms that policy

decomposition will improve the performance of the request evaluation.

b) Policy decomposition time:

Figure. 4.4. Effect of Policy Decomposition Time with increase in number of

departments

0

20

40

60

80

100

120

140

160

2 4 6 8 10 12 14 16 18 20

P
o
li

cy
 d

ec
o

m
p

o
si

ti
o
n

 T
im

e
in

M
ic

ro
 S

ec
o
n

d
s

Number of Departments Per Policy

Fully Clustered

Fully Distributed

36

Figure 4.4 represents the results of policy decomposition time of global policies

with variation in number of departments and with different clustered levels. We can

observe here that increase in number of departments doesn’t affect the policy

decomposition much. But, clustering policies affect the policy decomposition time. That

is, if the policies are fully clustered, then the policy decomposition time is high. But, if

the policies are fully distributed, then the policy decomposition time will be less.

This confirms that if policies are fully clustered then the policy decomposition

time will be more and if the policies are fully distributed that the policy decomposition

time will be less.

4.2.3. Performance Measure with Variation of Number of Policies from Same

Department. The purpose of this test is to check how the policy decomposition time will

get effected with variation of number of policies from same department

Here we are varying the number of departments from which you retrieve the

policies in policy set. We will vary the number of policies from same department from 1

to 5 and will measure the performance. We are keeping the default hierarchical level as

level 2.

Figure 4.5 represents the results of policy decomposition time by varying the

number of departments from same department from 1 to 5. We can observe here that with

increase in number of policies from same department’s decreases the request evaluation

time.

So, from here we can confirm that if the policy set has all the policies, from same

department then the request evaluation time will be less, which even satisfies the fully

37

clustered condition. We can even observe that if the policy set has all policies from

different department, then the request evaluation time will be more, which will satisfy the

full distributed condition.

Figure. 4.5 Effect of Request Evaluation Time with increase in number of policies from

same department

4.2.4. Performance Measure for Updating the Resources. The purpose of this

test is to check how the request evaluation time will get effected with variation of number

of resources to be updated

Here we are varying the number of resources to be updated from 10 to 100 and

will measure the performance. We are keeping the default hierarchical level as level 2,

and the number of departments as 10.

0

5000

10000

15000

20000

25000

1 2 3 4 5

R
eq

u
es

t
E

v
a
lu

a
ti

o
n

 t
im

e
ta

k
en

in
 M

ic
ro

 S
ec

o
n

d
s

Number of Policies from Same Department

38

Figure. 4.6. Effect of Request Evaluation Time with increase in number of resources that

are modified

Figure 4.6 represents the results of request evaluation time by varying the number

of resources modified from 10 to 100. We can observe here that with increase in number

of modified resources, the request evaluation time increases.

So, this confirms this approach is efficient if the number of resources modified is

less than 60% of all the resources being used in the global policy. So, evaluating global

policies when resources locations are modified without reevaluating entire policy

increases the performance of the system if the number of resources being modified is less

than 60%.

4.2.5. Performance Measure for Updating the Global Policy. The purpose of

this test is to check how the request evaluation time will get effected with variation of

percentage of global policy being updated

0

5000

10000

15000

20000

25000

30000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

T
im

e
ta

k
en

 t
o
 u

p
d

a
te

 p
o
li

ci
es

 i
n

m
ic

ro
 s

ec
o
n

d
s

Number of resources that have been modified

orignal time taken

executing policies

time taken to

update

39

Here we are varying the percentage of global policy being updated from 10 to 100

and will measure the performance. We are keeping the default hierarchical level as level

2, and the number of departments as 10.

Figure. 4.7. Effect of Request Evaluation Time with increase in number of policies being

updated

Figure 4.7 represents the results of request evaluation time by varying the

percentage of global policy being modified from 10 to 100. We can observe here that

with increase in percentage of modified global policy, the request evaluation time

increases.

So, this confirms that this approach is efficient if the percentage of global policies

modified is less than 50% of all policies available in global policies, then the request

0

5000

10000

15000

20000

25000

30000

35000

40000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

T
im

e
ta

k
en

 t
o
 u

p
d

a
te

 p
o
li

ci
es

 i
n

m
ic

ro
 s

ec
o
n

d
s

Percentage of modified global policies

orignal time taken

to executepolicies

applying policy

decomposition

40

evaluation time for evaluating the policies will be less compared to reevaluating the

whole policy. So, evaluating the global policies if the number of policies that are

modified are less than 50% without reevaluating entire policy increases the performance

of the system.

41

5. CONCLUSION

In this paper, we have proposed an access control model for collaborative access

control in cloud environment. Our architecture is developed based on the XACML

framework which allows our technique to be easily integrated into existing systems. The

main idea is to properly decompose a global policy and distribute it to each collaborating

party in the different hierarchical level. The decomposition ensures the autonomy and

confidentiality of each involved party and guarantees the consistency of the decisions.

Also, we proposed an algorithm to update the resources without reevaluating whole

policy and proposed an algorithm to update the global policy without reevaluating whole

policy.

42

REFERENCES

[1] Sun’s XACML open source implementation http://sunxacml.sourceforge.net

[2] Extensible access control markup language (XACML) version 2.0. OASIS

Standard, 2005.

[3] Hierarchical resource profile of XACML v2.0 OASIS Standard, 1 February 2005.

[4] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First experiences using

XACML for access control in distributed systems. In Proc. of ACM workshop on

XML security, pages 25–37, 2003.

[5] M. Nabeel, E.West Lafayette Bertino. Privacy Preserving Delegated Access

Control in Public Clouds. IEEE Transactions on Knowledge and Data

Engineering PP(99): 1, 2013.

[6] H.A.J. Narayanan, M.H. Giine. Ensuring access control in cloud provisioned

healthcare systems. IEEE Consumer Communications and Networking

Conference (CCNC):247 – 251, 2011.

[7] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First experiences using

XACML for access control in distributed systems. In Proc. of ACM workshop on

XML.

[8] M. Nabeel and E. Bertino, “Privacy preserving delegated access control in the

storage as a service model,” IEEE International Conference on Information Reuse

and Integration (IRI), 2012.

[9] L. Su, D. W. Chadwick, A. Basden, and J. A. Cunningham. Automated

decomposition of access control policies. In Proc. of International Workshop on

Policies for Distributed Systems and Networks, pages 3–13, 2005.

[10] Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, and Jorge Lobo, "Policy

Decomposition for Collaborative Access Control", ACM Symposium on Access

Control Models and Technologies(SACMAT), Colorado, USA, 2008.

[11] Collaboration, http://en.wikipedia.org/wiki/Collaboration, April 26, 2014.

[12] Why collaboration is Crucial to success,

http://www.fastcompany.com/3024246/leadership-now/why-collaboration-is-

crucial-to-success, April 26, 2014.

http://sunxacml.sourceforge.net/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nabeel,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bertino,%20E..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Narayanan,%20H.A.J..QT.&searchWithin=p_Author_Ids:38057027500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Giine,%20M.H..QT.&searchWithin=p_Author_Ids:37717768900&newsearch=true
http://web.mst.edu/~lindan/publication/policy_decompostion.pdf
http://web.mst.edu/~lindan/publication/policy_decompostion.pdf
http://en.wikipedia.org/wiki/Collaboration
http://www.fastcompany.com/3024246/leadership-now/why-collaboration-is-crucial-to-success
http://www.fastcompany.com/3024246/leadership-now/why-collaboration-is-crucial-to-success

43

[13] Cannabis Companies Garner Attention As Sector Continues to Grow: Company

Announces Collaboration To Develop Seed To Sale Software,

http://www.marketwatch.com/story/cannabis-companies-garner-attention-as-

sector-continues-to-grow-company-announces-collaboration-to-develop-seed-to-

sale-software-2014-04-10, April 26, 2014.

[14] Wave Systems Corp. Announces Expanded collaboration with Micron

Technology, http://ustradevoice.com/wave-systems-corp-nasdaqwavx-announces-

expanded-collaboration-with-micron-technology-inc-nasdaqmu-3606.html, April

26, 2014.

[15] 50 examples of business collaboration, http://www.co-society.com/wp-

content/uploads/CO_business_2013.pdf, April 26, 2014.

[16] Benefits of Cloud Computing: Tools that Improve Communication &

Collaboration, http://sheepdog.com/2013/04/benefits-of-cloud-computing-tools-

that-improve-communication-collaboration/, April 26, 2014.

[17] Event Industry Veteran Launches Start-up, EventCollab - Cloud-based

Collaboration Software That Will Make Event Professionals More Efficient,

http://www.telepresenceoptions.com/2014/04/event_industry_veteran_launche/,

April 26, 2014.

[18] Oracle Teams With Amazon, Intel in Cloud-Seeding

Deals,http://www.theregister.co.uk/2011/09/02/icloud_runs_on_microsoft_azure_

and_amazon/, April 26, 2014.

[19] H. Walaika. 2008. Retrieved April 26, 2014 from

http://www.technewsworld.com/story/64617.html.

[20] Oracle and Microsoft announce cloud collaboration,

http://www.businesscloudnews.com/2013/06/25/oracle-and-microsoft-announce-

cloud-collaboration/, April 26, 2014.

[21] Cloud Computing Collaboration: Appirio Marries Salesforce Chatter, Google

Apps, http://www.crn.com/news/cloud/228600161/cloud-computing-

collaboration-appirio-marries-salesforce-chatter-google-apps.htm, April 26, 2014.

[22] Salesforce.com, HP unveil 'Superpod' cloud collaboration,

http://www.zdnet.com/salesforce-com-hp-unveil-superpod-cloud-collaboration-

7000023334/, April 26, 2014.

[23] Amazon Rivals Collaborate: Dell, Microsoft Unveil Cloud Partner Ecosystems,

http://www.datacenterknowledge.com/archives/2013/12/12/amazon-rivals-

collaborate-dell-microsoft-unveil-cloud-partner-ecosystems/, April 26, 2014.

http://www.marketwatch.com/story/cannabis-companies-garner-attention-as-sector-continues-to-grow-company-announces-collaboration-to-develop-seed-to-sale-software-2014-04-10
http://www.marketwatch.com/story/cannabis-companies-garner-attention-as-sector-continues-to-grow-company-announces-collaboration-to-develop-seed-to-sale-software-2014-04-10
http://www.marketwatch.com/story/cannabis-companies-garner-attention-as-sector-continues-to-grow-company-announces-collaboration-to-develop-seed-to-sale-software-2014-04-10
http://ustradevoice.com/wave-systems-corp-nasdaqwavx-announces-expanded-collaboration-with-micron-technology-inc-nasdaqmu-3606.html
http://ustradevoice.com/wave-systems-corp-nasdaqwavx-announces-expanded-collaboration-with-micron-technology-inc-nasdaqmu-3606.html
http://www.co-society.com/wp-content/uploads/CO_business_2013.pdf
http://www.co-society.com/wp-content/uploads/CO_business_2013.pdf
http://sheepdog.com/2013/04/benefits-of-cloud-computing-tools-that-improve-communication-collaboration/
http://sheepdog.com/2013/04/benefits-of-cloud-computing-tools-that-improve-communication-collaboration/
http://www.telepresenceoptions.com/2014/04/event_industry_veteran_launche/
http://www.theregister.co.uk/2011/09/02/icloud_runs_on_microsoft_azure_and_amazon/
http://www.theregister.co.uk/2011/09/02/icloud_runs_on_microsoft_azure_and_amazon/
http://www.technewsworld.com/story/64617.html
http://www.businesscloudnews.com/2013/06/25/oracle-and-microsoft-announce-cloud-collaboration/
http://www.businesscloudnews.com/2013/06/25/oracle-and-microsoft-announce-cloud-collaboration/
http://www.crn.com/news/cloud/228600161/cloud-computing-collaboration-appirio-marries-salesforce-chatter-google-apps.htm
http://www.crn.com/news/cloud/228600161/cloud-computing-collaboration-appirio-marries-salesforce-chatter-google-apps.htm
http://www.zdnet.com/salesforce-com-hp-unveil-superpod-cloud-collaboration-7000023334/
http://www.zdnet.com/salesforce-com-hp-unveil-superpod-cloud-collaboration-7000023334/
http://www.datacenterknowledge.com/archives/2013/12/12/amazon-rivals-collaborate-dell-microsoft-unveil-cloud-partner-ecosystems/
http://www.datacenterknowledge.com/archives/2013/12/12/amazon-rivals-collaborate-dell-microsoft-unveil-cloud-partner-ecosystems/

44

[24] Collaborating Clouds, http://nasawatch.com/archives/2010/06/collaborating-

c.html, April 26, 2014.

[25] Cloud Computing. 2014, http://en.wikipedia.org/wiki/Cloud_computing, April 26,

2014.

[26] Security Guidance from Critical Areas of Focus in Cloud Computing.

https://cloudsecurityalliance.org/csaguide.pdf, April 26, 2014

[27] K. L. Ronald, V. D. Russell, Cloud Security, A Comprehensive Guide to Secure

Cloud computing. Indianapolis: Wiley Publishing Inc., 2010.

[28] Levenshtein distance, http://en.wikipedia.org/wiki/Levenshtein_distance, April

26, 2014.

[29] Disjunctive Normal Form, http://en.wikipedia.org/wiki/Disjunctive_normal_form,

April 27, 2014.

http://nasawatch.com/archives/2010/06/collaborating-c.html
http://nasawatch.com/archives/2010/06/collaborating-c.html
http://en.wikipedia.org/wiki/Cloud_computing
https://cloudsecurityalliance.org/csaguide.pdf
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Disjunctive_normal_form

45

VITA

 Pavani Gorantla was born in India. She earned her bachelor’s degree in Computer

Science Engineering from Jawaharlal Nehru Technological University, India in June

2012. She has been a graduate student in Computer Science Department at Missouri

University of Science and Technology from August 2012 and worked as a graduate

research assistant under Dr. Dan Lin. She received her Master’s degree in August 2014.

She has a relevant internship experience as an Operations Research intern during her

Master’s program.

	Access control delegation in the clouds
	Recommended Citation

	tmp.1415289964.pdf.xD2VG

