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ABSTRACT 

This paper discusses a new type of base n adder 

and storage register. This new type of logic is called 

"n-base binary logic", or NBBL. The NBBL system is 

compared and contrasted with the Post base n system 

(a type of n-valued logic) ~ the binary-coded base n 

ii 

system, and the straight binary system. The main 

purpose of this paper is to show that a decimal, or 

base 10, system can have some important inherent advan

tages over a binary system, such as greater daily 

operational efficiency. Furthermore, it is shown that 

a "decimal-base binary logic" system, or DBBL system, 

has inherent advantages over the Post and binary-coded 

decimal systems. A cost analysis of the DBBL system 

relative to the straight binary system is performed 

and several circuit realizations for general NBBL adders 

and storage registers are shown. Two of the storage 

register realizations are SCR models that the author 

has actually built and thoroughly tested. 
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I. INTRODUCTION 

In most of today's digital computers it is necessary 

to convert all input-output data between the decimal, 

human world and the binary, machine world. On large 

machines employing high-level languages, this necessary 

conversion is usually done automatically by sophisticated 

software and/or hardware conversion systems. On mini

computers, however, these automatic conversion routines 

often may not exist or may not be practical to use in 

the very small specific-task-oriented programs in which 

minicomputers are often applied. Thus, a minicomputer 

programmer may often find himself bothered with the 

tedious task of having to write conversion routines or 

having to actually use pencil and paper to convert his 

machine input-output data. Even on large machines having 

the automatic conversion routines, this conversion must 

still be done. So whether some sophisticated automatic 

routine does it or the programmer does it, time, and thus, 

money, must be spent somewhere along the line doing this 

conversion. Besides losing this conversion time, the 

binary machine user, if his system uses software conversion, 

must bear the ever-increasing cost of such software. 

Obviously, machines that operate in the decimal 

world, just as humans do, would eliminate these problems. 

Of course, decimal machines, such as some of IBM's old 

BCD machines, have existed for quite some time. In general, 



however, such machines have been shied away from, the 

excuse being that they were too expensive and too slow 

when compared to binary machines. This does not mean 

that the idea of decimal machines ever completely died. 

On the contrary, IBM's use of a faster, improved type 

of eight digit BCD adder in the recent IBM System/360 

Model 195 indicates that the idea of decimal arithmetic 

machines is still quite alive even in cost-conscious 

industry [1] • 

2 

This paper proposes a new type of adder and storage 

register made with 11 n-base binary logic .. (NBBL). Further

more, it is shown that a decimal mahcine using "decimal

base binary logic" (DBBL) adders and registers, although 

it would still cost more to build, can offer its user 

the important advantage of greater daily operational 

efficiency. 
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II. ADDERS 

The adder circuitry in a digital computer can be 

designed to operate on numbers in any base. This section 

discusses straight binary, traditional binary-coded base 

n, Post base n, and NBBL adders. 

A. Standard Binary Adder 

The internal circuitry of a standard binary adder is 

of little importance in this paper. Therefore, the standard 

binary adder stage will be viewed as a 11 black box 11 con

taining a carry input from the previous stage, one input 

from each of the two digits to be added, one sum digit 

output, and a carry output to the next adder-stage (Fig. 1). 

B. Binary-Coded Base N Adder 

The binary-coded base n adder is traditionally a 

modified standard binary adder designed to operate on 

numbers in bases greater than two. The main difference 

between a binary-coded base n adder stage and a straight 

binary adder stage is that whereas the straight binary 

device has only one input line from each digit to be 

added and one sum output line, the binary-coded device 

has multiple input lines from each digit to be added and 

multiple sum output lines. These multiple lines represent 

a binary-coded form of the digits [2] (Fig. 2). Note 

that only one line is shown for the input and output 
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Fig. 1. Standard Binary Adder Stage 
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Fig. 2. Binary-Coded Base N Adder Stage 
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carries. A little thouyht verifies that, no matter what 

the base, as long as only two numbers are being added, 

the input and output carries of any single adder stage 

can only take on the values 0 or 1. Thus, one binary

valued line can suffice in representing the input and 

output carries of any adder stage. 

As might be expected, there are some problems in

volved in trying to convert a straight binary adder into 

a binary-coded adder which will operate successfully on 

nonbinary numbers. The most important of these problems 

is that if the base being used is not a power of 2, 

correction circuitry must be added to each adder stage 

to correct the sum digit output whenever a decimal out-

put carry occurs [1], [2). (This correction circuitry 

is not necessary if one uses a direct logical implemen

tation designed specifically for binary-coded base n 

addition instead of the traditional approach of using a 

modified standard binary adder [1] .) Consider the example 

in Fig. 3 using a binary-coded decimal, or BCD, adder 

stage. The coded x input is decimal 9, or binary 1001, 

the coded y input is decimal 3, or binary 0011, and the 

input carry is decimal 1, or binary 1. Since the correct 

sum is decimal 13, the BCD adder stage should produce a 

carry output of 1 and a sum digit of decimal 3, or 0011 

in binary-coded decimal. However, note that to get the 

correct sum digit output, the adder stage must perform a 

correction to the initial result which consists of 



XIN 

1001 
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Sour 
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+ 0 I I 0 CORRECT I ON FACTOR 
0 0 I I CORRECTED Sour 

Fig. 3. Correction Procedure in Traditional 
BCD Addition 



subtracting decimal 10. That is, binary 1010 must be 

subtracted from the initial result whenever the correct 

sum of the input data is greater than decimal 9. This 

is usually done by the equivalent process of adding 

binary 0110 to the initial sum digit result [l], where 

binary 0110 is the 2's complement of binary 1010 if the 

normal sign bits are deleted. Any output carry that 

would result from the correction process is not needed 

and therefore ignored. 

c. Post Base N Adder 
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Wojcik and Metze, having found that multi-valued 

logic could be advantageous in the control circuitry of 

asynchronous systems, decided to investigate the feasi

bility of multi-valued logic in adders and storage 

registers. Post adders and storage registers were there

fore researched by Wojcik and Metze in detail [2), [3]. 

Unlike the standard binary and binary-coded systems 

already discussed, the Post base n system is not purely 

2-valued logic. On the other hand, after detailed study, 

one finds that the Post base n system is not purely n

valued logic either. Actually, it would be most accurate 

to call this system a hybrid of 2-valued and n-valued 

logic. This fact will become clearer as the discussion 

progresses. 

Perhaps the most pressing problem with n-valued 



logic systems is deriving a set of basic functions with 

inexpensive circuit realizations, combinations of which 
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can be used to form any complex logical function [2], [3], 

[4]. The systems proposed by Wojcik and Metze use 

three basic functions: (1) the "xi" functions 

(i = 0,1, •••• ,n-1), (2) the "MIN" function, and (3) 

the "MAX 11 function. These functions are described in 

Fig. 4. (Note that throughout this paper, whenever n-

valued functions or n-valued logic are being discussed, 

a general variable name without a superscript, such as 

"x, .. will be used to indicate a single, fully coded, 

multi-valued line. For a general base n, such a variable 

name would usually indicate an n-valued line, although 

in the case of carries, a 11 C 11 without a superscript 

indicates a fully coded 2-valued (0 or 1 volt) carry line. 

However, a superscripted variable name, such as "xi," 

indicates one of a group of 2-valued (0 or n-1 volts) 

lines. The entire group of "xi .. lines compositely 

represents, in general, a "1-out-of-n" multi-line coded 

form of the general n-valued variable "x." In the special 

case of carries .. co" and "c1 " are the two lines which 

together form a "1-out-of-2" coded form of a carry.) 

The use of these functions becomes clearer as one 

studies Fig. 5 which illustrates the basic form of a Post 

base 10 adder stage. Note that, in this adder stage, the 

input lines and lines 1 1 2 9 c , s , s , •••.•. , s are all 



• 
xl = 

X,X~Y 

y I y~ X 

Fig. 4. Three Useful Functions in Post 
Base N Logic 
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FROM X, Y1 CIN STORAGE REGISTER UNITS 

0 9 0 9 x ••••• xv ••••• v 

AND AND 0 R 
GATES 

51 5253 545s5657s8s9 1 
I CIN 
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ALL 

THESE 
ARE 
MIN 

7 GATES 
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Fig. 5. Post Base 10 Adder Stage 



binary valued lines, taking on only the values 0 or 

9. It must be pointed out that in a group of lines 

h 0 1 9 1 2 9 
sue as x , x , ••••.• , x or s , s , ••..• , s , only one 

line in the group, say x2 or sS, can exhibit the high 

voltage (9 volts in base 10) at any given time. At 
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this same instant, all other lines in the group must 

exhibit 0 volts. That is, line s 5 , for example, assumes 

a voltage level of 9 volts whenever the sum digit output 

should be 5 and assumes a voltage level of 0 volts other-

wise. The final sum output line, s, on the other hand, 

is a multi-valued line which can have any integer value 

from 0 through 9. This multi-valued output line, s, is 

formed essentially by "recombining 11 the binary-valued lines 

s 1 , s 2 , •••• , s9 via the MIN and MAX gates shown. Wojcik 

and .fv1etze make the tradi tiona! assumption that such a 

multi-valued line can change from one value to another 

nonadjacent value, say from 0 to 2, in such a way that 

one need not worry about the effect of intermediate values, 

such as 1, on the circuitry that the line drives. Obviously, 

one cannot justify such an assumption by claiming that the 

line changes instantaneously so that intermediate values do 

not really even appear. Such instantaneous changes simply 

do not occur in the real world. Indeed, if the circuitry 

being driven by a multi-valued line were asynchronous 

sequential circuitry, extreme design care would have to be 

taken to insure that the appearance of undesired intermediate 
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values produced no ill effects such as race conditions. 

On the contrary, to realistically justify this assumption, 

Wojcik and Metze limit the circuitry being driven by 

this multi-valued line to clocked sequential circuitry 

so that the appearance of these intermediate values 

poses no problem. Thus, it is important to realize 

that intermediate values in n-valued logic could create 

problems. Finally, in Fig. 5, the carry output line as 

shown is identical in its functioning to the carry out

put line of a standard binary or binary-coded base n 

adder stage. It is fully coded so that a level of 1 

volt indicates the output carry is a 11 1" and a level of 

0 volts indicates the output carry is a "0." Thus, this 

carry output line may be separated into the next-stage 

carry input functions c 0 and c 1 • This separation can 

be accomplished by passage through a Post base 2 storage 

register unit. 

The circuit realizations that Wojcik and Metze assume 

for the MIN and MAX gates also demand realistic comment. 

Ordinary diode-resistor AND gates are proposed as MIN 

gates and diode-resistor OR gates are proposed as MAX 

gates. Fig. 6 illustrates the most basic forms of these 

gates. Since, in diode-resistor gates, only the diode 

with the lowest input voltage will conduct in an AND 

gate and only the diode with the highest input voltage 

wlll conduct in an OR gate, it is true that these gates 
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v+ 

X MIN(X 1 Y) 

y 

X 

y MAX(X,Y) 

--

Fig. 6. Possible MIN and MAX Gate Realizations 
for N-Valued Logic 
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will function as MIN and MAX gates respectively. How

ever, even though more sophisticated models than the 

ones of Fig. 6 are readily available, because all diode

resistor gates are basically passive, their ability to 

transmit a voltage from input to output without degrada

tion is generally poor compared to that of active gates 

having means for voltage reamplification. As a result, 

a desired input value of 5 volts, for example, might 

drop to approximately 4 volts after passing through 

only a few MAX gates. Such a situation is very dangerous 

in multi-valued (nonbinary) logic which generally requires 

accurate voltage levels to insure proper functioning. 

0 • NBBL Adder 

The final type of adder to be discussed is the "n

base binary logic," or NBBL, adder. This adder, of the 

author's own design, can be viewed as a simplification, 

or special case, of the Post base n adder. Fig. 7 

illustrates a .,decimal-base binary logic," or DBBL, 

adder stage. The realization shown in Fig. 7 is entirely 

combinational logic. Thus, the "black box" in this 

figure essentially contains a large decoder possessing 

22 inputs and 12 outputs. Detailed analysis of the 

general realization equations presented by Wojcik and 

Metze for their Post adders indicates that these equations 

are very similar to the equations that would be used to 



0 
X • 

o~ 
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• X y • • • 
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~--~~~~~~~~~--~ 

0 9 
5 ••••••• 5 

Fig. 7. DBBL Adder Stage (Combinational Logic) 

16 



realize NBBL adders. Thus, for example, a Post base 10 

adder stage is quite similar to a DBBL adder stage. 

Note that if one added an s 0 and a c 0 output to the 

first major block of AND and OR gates in Fig. 5, this 

block of AND and OR gates would then be the decoder of 

Fig. 7. That is, the DBBL adder stage is very nearly 

the first block of AND and OR gates in a Post base 10 

adder stage with the final block of MIN and MAX gates 

removed. Because this block of MIN and MAX gates is 

17 

not present, the DBBL adder stage has as outputs only 

the binary-valued lines c 0 , cl, and sO, sl, ••••••••• , s9. 

Therefore, unlike the Post base 10 adder, the DBBL adder 

is entirely 2-valued binary logic. 

A combinational logic realization such as the one 

in Fig. 7 is definitely not the only means of formulating 

an NBBL adder. Section VI. of this paper proposes 

several other approaches to constructing a general NBBL 

adder stage which could offer significant advantages 

over a combinational realization in important areas such 

as initial circuitry cost and operational speed. 



III. STORAGE REGISTERS 

Like the adder circuitry, the storage registers in 

a digital computer can also be designed to operate on 

numbers in any base. This section discusses straight 

binary, binary-coded base n, Post base n, and NBBL 

storage registers. For the sake of simplicity, all 

storage register units shown here will be considered 

unclocked. 

A. Standard Binary Register 

18 

The internal circuitry of a standard binary storage 

register unit will purposely not be restricted to a 

specific type of circuitry at this point in the paper. 

Therefore, the standard binary storage register unit, 

or flip-flop, will, for now, be viewed as a "black box" 

(Fig. 8). The type of flip-flop shown in Fig. 8 is the 

well known S-R binary flip-flop, having a set input, a 

reset input, a normal output, x, and an inverted output, 

x. 

B. Binary-Coded Base N Register 

The binary-coded base n storage register unit (n > 2) 

is simply a row of two or more standard binary flip-flops. 

Like the binary-coded base n adder, the binary-coded base 

n storage register unit has multiple input lines and 

multiple output lines, these multiple lines again 
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' ~ \ ~ 

s R 

..... 
X X 

' ~ ' v 

Fig. 8. S-R Binary Flip-Flop 
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representing a binary-coded form of the input and output 

data [2] • The multiple set input lines correspond to 

the single set input of the standard binary flip-flop, 

while the multiple normal output lines correspond to 

the single normal output, x, of the binary flip-flop. 

Fig. 9 illustrates one possible realization of a binary

coded base 10, or BCD, storage register unit. 

Remember that in the binary-coded base n adder, when 

the base being used was not a power of 2, the problem of 

normall~ having to use extra correctional circuitry 

appeared. Similarly, in the binary-coded base n storage 

register unit, when the base is not a power of 2, a 

problem is created. This time, however, the problem is 

that of easily producing a complement form of the number 

held in the storage register unit. On the straight 

binary flip-flop, the inverted output, x, is actually 

the l's complement form of the normal output, x. Thus, 

to obtain the l's complement of a multi-digit binary 

number stored in an entire binary storage register 

(merely a string of binary flip-flops) , one simply uses 

all the inverted outputs instead of the normal outputs. 

Consider two binary storage registers containing two 

separate binary numbers. In order to subtract the second 

register from the first, one has only to gate the normal 

outputs of the first register into the adder, gate the 

inverted outputs of the second register into the adder, 



CODED SET 
INPUT 

' I ' 

s 

X 

I \ 

R 

-
X 

' ~ 

I ' 
I 

s R s R 

- -
X X X X 

' v ' v 

.. 

' ~ ' ~ ' ~ ' I NORMAL CODED 
OUTPUT 

Fig. 9. BCD Storage Register Unit 
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and also gate in a "pre-carry." This procedure is 

equivalent to subtracting the second register from the 

first by adding the 2's complement of the second register 

to the first register. It should now be obvious that it 

is quite desirable for a general base n storage register 

to be capable of easily producing the n-l's complement of 

its normal contents. In a binary-coded base n storage 

register, if the base being used is a power of 2, the 

n-l's complement of the register contents is again formed 

by merely using all the inverted outputs in place of the 

normal outputs. On the other hand, if the base being 

used is not a power of 2, merely using the inverted out

puts will not produce the correct n-l's complement (unless 

special, sophisticated codes are employed). In such 

cases, additional combinational circuitry must be used 

to produce this complement. Fig. 10 illustrates the 

logic operations that must be performed on the 4 normal 

outputs of a single BCD storage register unit in order to 

produce the 9's complement of the decimal digit repre

sented by these 4 outputs [1]. (In base 10, the "excess-3" 

code, for example, can produce the 9's complement merely 

by direct complementation of the 4 normal outputs. How

ever, note that the "excess-3" code adder still requires 

correction after the addition. In fact, unlike the tradi

tional BCD adder, it requires correction in all cases, 

whether or not a decimal carry was produced [1} .) 
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C. Post Base N Register 

'I'he Post base n storage register unit [2], [3], like 

the Post base n adder stage, is essentially a hybrid of 

n-valued and 2-valued logic. The reader will recall 

that the Post base n adder stage basically took several 

binary, or 2-valued, input lines and transformed them into 

an n-valued sum output line. On the other hand, the Post 

base n storage register unit takes as input one n-valued 

line, x, and transforms it into the 2-valued output 

f . 0 1 n-1 
unct~ons x , x , •.•••• , x • Fig. 11 depicts a Post 

base 10 storage register unit. 

A Post base n storage register unit merely stores 

the value of voltage on its input by impressing a voltage 

of n-1 on the appropriate output line. For example, if 

a voltage level of 6 volts were supplied as input to the 

base 10 unit of Fig. 11, the x 6 output line would assume 

a value of 9 volts while all other lines assume 0 volts. 

D. NBBL Register 

The NBBL storage register, again of the author's own 

design, is the last type of storage register that will be 

discussed. Such a storage register could be used to 

receive and hold data such as teletype input or core 

memory output, to feed input into a DBBL adder, etc. 

Just as the NBBL adder was essentially a modification of 

the Post base n adder, the NBBL storage register is 
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actually a simplification, or special case, of the Post 

base n storage register. Unlike the Post base n storage 

register unit with its single n-valued input line and n 

binary output lines, the NBBL unit has n binary input 

lines and n binary output lines. Actually, in this NBBL 

unit, the n input lines are labeled identically to the 

n output lines. In essence, these input lines receive 

th ·f · 0 1 n-1 . e unct1ons x , x , ••••• , x wh1ch the output lines 

then assume and hold. Remember that only one input and 

only one output can possess the high voltage level, or 

logic 1 level, at any particular instant. Thus, when 

one puts a logic 1 on input line xi, output line xi then 

assumes this logic 1. Fig. 12 illustrates a DBBL storage 

register unit. 

Obviously, since the NBBL storage register unit 

need not transform a multi-valued line into binary lines 

as the Post base n unit does, the internal circuitry of 

the former can be much simpler. Fig. 13 shows one 

possible realization for a base 3 NBBL unit using three 

binary S-R flip-flops. Section VII. of this paper proposes 

many more possible realizations for an NBBL storage 

register unit. A sizeable portion of these realizations 

are not mere interconnections of ordinary binary flip-

flops like the realization of Fig. 13, but instead, are 

original creations designed by the author solely for use 

in NBBL logic systems. These creations can offer advantages 
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over the more ordinary realizations in areas such as 

power consumption and total number of circuit components. 

It has been mentioned that the availability of the 

n-l's complement from a register of general base n is 

a desirable feature which permits an adder to easily 

perform subtraction. Fortunately, the production of 

the n-l's complement from then binary output lines of 

the Post base n or NBBL storage register unit is not at 

all difficult. In fact, an n-l's complement "gate" for 

this purpose can be constructed from n pieces of wire, 

a structure so simple it would not ordinarily be thought 

of as a gate. Consider a "black box" having n input 

pins and n output pins, where each of these sets of n 

0 l n-1 
pins represent the functions x , x , •••••• , x • An 

n-l's complement gate is formed simply by connecting 

each xi input to the x<n-l)-i output, where i = O,l, •.•• ,n-1. 

Fig. 14 depicts a 3's complement gate for use in base 4 

NBBL logic. 

Decimal machines will very probably become increas-

ingly attractive in the future. Sections IV. and v. of 

this paper will demonstrate sufficient justification for 

such an increase in the popularity of decimal machines. 

Furthermore, given this future demand for decimal machines, 

Sections IV., v., VI., and VII. will further contrast NBBL 

logic with its competitors and will specifically show 

why DBBL logic could be quite advantageous over traditional 
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Fig. 14. 3's Complement Gate for Base 4 NBBL Logic 



BCD and Post base 10 logic in the construction of these 

machines. 
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IV. COST ANALYSIS 

This section presents a cost analysis of DBBL adders 

and storage registers relative to straight binary adders 

and storage registers. This analysis is performed on 

a twofold approach, considering both initial purchasing 

cost (or rental cost) and daily operational efficiency of 

the two types of circuitry. Note that it is really quite 

logical to consider pruchasing (or rental) cost and 

operational efficiency as both being related to the over

all cost of using some particular type of machine. 

Obviously, machine purchasing (or rental) cost represents 

a deficit that the user must suffer. On the other hand, 

machine operational speed and efficiency are directly 

related to the daily assets that the user can realize. 

Thus, for example, a user of a digital machine might be 

willing to pay more for a more efficient machine initially 

with the expectation that its greater operational effi

ciency and productiveness would eventually offset his 

greater initial expense. 

In the analysis of relative initial purchasing cost, 

or price, of the circuitry, two entirely different methods 

are employed. The first method is the traditional, but 

virtually outdated, technique of comparing the number of 

gates and the number of gate inputs needed for different 

realizations. The second technique, far more relevant to 

today's technology, assumes the circuitry in question to 



be integrated onto an MSI or LSI chip so that merely 

counting the relative number of pins on different chips 

gives a fair measure of their relative cost. 

A. Purchasing Cost - Traditional Approach 
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Wojcik and Metze have derived a detailed traditional 

cost analysis of Post base n adders and registers rela

tive to their straight binary equivalents [2] , [3] • 

Since their approach was the outdated "number of gates 

and gate inputs" technique, it would be futile to run 

through the same procedure in detail in this paper. 

Instead, by making a few simple approximations, one can 

directly transfer the results of Wojcik and Metze to the 

author's DBBL adders and registers. Such transferral of 

the traditional Post base 10 results to the author's DBBL 

circuitry is indeed only approximate. However, this trans-

ferral does yield a rough indication of the DBBL/binary 

cost ratio using traditional techniques. These traditional 

techniques, in view of their general irrelevancy to modern 

integrated circuit technology, simply do not merit extreme 

accuracy. 

The reader will recall from Section II. that a Post 

base 10 adder stage (Fig. 5) could be converted to a DBBL 

adder stage (Fig. 7) by adding the relatively small number 

of extra AND and OR gates needed to produce the c 0 and s 0 

outputs from the first block of AND and OR gates and by 
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removins the relatively small number of final MIN and MAX 

gates. In other words, the Post base 10 and the combina

tional logic DBBL adder stage contain approximately the 

same number of gates and gate inputs, so that from a 

traditional point of view, these two types of adders 

should differ little in price. Thus, by extrapolating 

the results of Wojcik and Metze out to base 10, one finds 

that a DBBL adder would cost about 5 times as much as a 

straight binary adder with enough stages to handle 

equivalent size numbers. 

Concerning registers, Wojcik and Metze assume basically 

that the ratio of the number of components in a single 

Post base n stage to the number of components in a single 

standard binary stage is always about n/2. Thus, the 

traditional cost viewpoint implies that the relative cost 

of a Post base n stage compared to a binary stage is also 

about n/2. Certainly this assumed Post base n register 

stage versus binary register stage cost ratio of n/2 is 

only approximate and Wojcik and Metze give no real evidence 

of its validity. However, this n/2 factor should be just 

as applicable to an NBBL register stage versus binary 

register stage cost ratio. For example, if one examines 

the number of SCR's required for the SCR-type NBBL register 

stage realizations of Section VII., one finds that a 

2BBL stage requires 2 SCR's (just as a standard binary 

S-R flip-flop can be made with essentially 2 cross-coupled 
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transistors), a 3BBL stage requires 3 SCR's, •••••••• ,a 

DBBL stage requires 10 SCR's, etc. Thus, at least when 

comparing the types of NBBL register stage and standard 

binary register stage realizations just mentioned, one 

finds that the ratio of NBBL stage SCR's to binary stage 

transistors is exactly n/2 for any general base n (n > 2) • 

Therefore, this crude n/2 register stage cost factor 

assumed by Wojcik and Metze can be just as relevant in 

comparing an NBBL register stage to a binary stage as it 

is in comparing a Post base n stage to a binary stage. 

Furthermore, now consider the difference between a Post 

base 10 and a DBBL storage register stage. The reader 

will again recall that whereas the Post base 10 storage 

register unit (Fig. 11) had only 1 input, the DBBL storage 

register unit (Fig. 12) had 10 inputs. On the other hand, 

the Post unit required special components immediately 

following the input in order to convert this 10-valued 

input into 2-valued, binary outputs. These special com

ponents were not required in the DBBL unit. Thus, since 

the n/2 cost factor of Wojcik and Metze has some validity 

for the author's NBBL units and since the differences 

between a Post base 10 and a DBBL unit tend to approxi

mately "cancel each other," one is finally led to the 

conclusion that DBBL units can be at least as cheap as 

Post base 10 units with similar output structures. That is, 

if the DBBL unit has a row of S-R flip-flops forming its 



outputs (see Fig. 13), the Post base 10 unit should 

also have a row of S-R flip-flops forming its outputs. 

Thus, again extending the results of Wojcik and Metze 

to base 10, one finds that a DBBL register would cost 

about 1.5 times as much as a straight binary register 

with enough stages to hold equivalent size numbers. 

It should now be obvious that, by traditional cost 

analysis, DBBL adders and registers would definitely 

have a higher initial cost than their standard binary 

equivalents. 

B. Purchasing Cost - Modern Approach 
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The modern cost analysis approach which follows not 

only is more applicable to present computer technology 

but also is easier to perform. The assumption in this 

approach is that the circuitry in question is all inte

grated onto one chip and that the chips are all produced 

in large volume quantities by modern automated techniques 

so that by far the most important factor in the cost of 

any single chip is the number of connecting pins which 

must be fastened on the chip. With this assumption in 

mind, one can then obtain a very reasonable measure of 

the relative cost of different chips merely by comparing 

the number of pins on the various chips [5]. 

First of all, in order to make a fair comparison 

between the cost of a base 10 and a base 2 adder or 
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storage register, one needs to know the number of stages 

required in each base to handle equivalent size numbers. 

That is, one needs to know the number of digits necessary 

to represent equivalent numbers in each base. Some 

thought will verify that if one represents a number as 

10d, then d, if rounded up to the next greatest integer 

value, is the number of decimal digits needed to represent 

that number in base 10. In fact, d, even without 

rounding, is a very good indication of how many decimal 

digits are required to represent a given number. Simi

larly, if one represents a number as 2b, then b is a very 

good indication of how many binary digits are required to 

represent that number in base 2. Therefore, the equation 

10d = 2b essentially means that some particular decimal 

number having d digits is exactly equal to a binary number 

having b digits. Solving this equation for d/b yields the 

approximate ratio of decimal to binary digits necessary 

to represent equivalent numbers in base 10 and base 2 

respectively. Taking log10 of both sides gives 

d/b = 1/3.33. In other words, if a base 10 and a base 2 

adder or register are intended to handle equivalent size 

data, then the base 2 device must have about 3.33 stages 

for every one stage of the base 10 device. 

Thus, for example, a 20 bit binary adder could handle 

the same data as a 6 digit DBBL adder. Fig. 15 illustrates 

three chips, the first containing a 20 bit binary adder 
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with "single-rail" inputs {only normal, or "true, .. inputs), 

the second containing a 20 bit binary adder with .. double

rail" inputs {both normal and complemented inputs), and 

the third containing a 6 digit DBBL adder. It must be 

pointed out that a binary adder with "double-rail" inputs, 

even though it obviously costs more than its "single-rail" 

binary counterpart when using a pin-oriented cost approach, 

is quite desirable in cases in which one wants the actual 

adder circuitry on the chip itself to be a fast, basically 

two level type of realization such as AND-OR or NAND-NAND. 

In other words, since one might want to use either the 

"double-rail" or the 11 Single-rail" binary adder, both types 

are included in the DBBL adder versus binary adder cost 

comparison. Note that the ratio of DBBL adder pins to 

binary adder pins runs from approximately 1.8 to 3.0, indi

cating that, in general a DBBL adder would cost about 

1.8 to 3.0 times as much as its straight binary equivalent. 

Fig. 16 compares a 6 digit DBBL register to both 

a 20 bit "D flip-flop•• [6], or latch, type binary register 

and a 20 bit S-R flip-flop type binary register. Fig. 16 

again allows both types of binary registers to have either 

11 Single-rail 11 or 11 double-rail 11 outputs. Note that in 

all the registers shown, either the normal or the comple

ment outputs can be selected by means of the two selection 

lines. Of course, one binary-valued line entering each 

chip could, with a little extra logic on the chip itself, 
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serve the same purpose as these two selection lines. 

However, the difference between one or two output 

selection pins is insignificant when compared to the 

total number of pins on each chip. Also note that no 

clock lines have been shown in any of these registers 
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even though some units, such as the latch type binary 

register, are always clocked. Since the number of clock 

inputs would, in all cases, again be insignificant com

pared to the number of other pins, ignoring these clock 

lines changes the accuracy of the calculations very little. 

Thus, a DBBL register would, in general, cost from 1.5 

to 3.0 times as much as its binary equivalents. 

If the DBBL adder and register chips shown thus 

far were enlarged to include maximal encoding on the 

inputs and outputs, the number of pins on a DBBL chip 

could be greatly reduced. For example, in a DBBL adder, 

4 binary lines would suffice to encode each normal group 

of 10 DBBL inputs and outputs and 1 line would suffice 

to encode each of the normal pairs of DBBL carry inputs 

and outputs. Obviously, such encoding would significantly 

reduce the cost of these DBBL chips relative to their 

binary equivalents. However, such encoding will not be 

considered in this cost analysis because it would unfor

tunately induce additional propogational delays in the 

DBBL units, cutting down substantially on their speed. 

The inherent possibility of high speed operation in DBBL 



logic will soon be shown to be one of its best "selling 

points ... Thus, seriously hampering this speed by the 

introduction of encoding merely to cut down on initial 

cost is not practical. 

It has now been shown that the traditional and the 

modern methods of initial cost analysis both indicate 
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that DBBL adders and registers would be more costly than 

equivalent standard binary units. In fact, given the 

present state of the art in computer circuitry, by no 

reasonable stretch of the imagination or plausible 

series of assumptions could one ever propose that the 

DBBL system would be cheaper to construct. Thus, since 

the DBBL system would be more costly to build than would 

an equivalent binary system, it is only natural to assume 

that the DBBL machine user would suffer a greater purchasing 

cost if he actually buys his machine or that he would 

suffer larger periodic rental payments if he rents his 

machine. 

c. Daily Operational Efficiency 

Unlike purchasing, or construction, cost, when one 

considers the daily operational efficiency and speed of 

the DBBL system versus that of its binary equivalent, 

the picture is much brighter. First of all, consider 

the simple fact that, in the DBBL machine, conversion 

and reconversion of all input and output data from decimal 
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to binary and back again is not necessary. Not only does 

this mean that the binary system must spend time doing 

this conversion and reconversion, but it must also possess 

the hardware or software to do these operations. Obviously, 

this extra time and hardward or software mean money spent 

by the binary machine user that the DBBL machine user 

need not spend. For instance, in the IBM System/360 

Model 50, the two machine instructions "Pack" and "CVB 11 

(Convert To Binary) are necessary to convert the initial 

coded numerical data read in from the card reader into 

binary data. Similarly, the two instructions "CVD" 

(Convert To Decimal) and "Unpack" are required to convert 

binary machine data back into the coded data to be printed 

by the printer. The "CVD" instruction, as a specific 

example, can take anywhere from 13.00 to about 44.75 

microseconds of machine time depending on the size of 

the data being reconverted [7]. It is clear that in a 

commercial operation having relatively large amounts of 

input and output data, such as a bank's use of a computer, 

the amount of time spent doing conversion and reconversion 

could represent a substantial portion of the machine's 

daily running time [1]. 

Now consider the potential speed of a DBBL adder 

compared to the speed of its standard binary equivalent. 

The reader should by now have grasped the idea that DBBL 

logic has a highly parallel form of structure. This 



inherent parallelism is a definite advantage over the 

traditional BCD adder system with its basically serial 

approach of "first add --then correct." Consider, 

for the sake of argument, that one wants to create AND 

and OR gate realizations of both a DBBL adder stage and 
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a binary adder stage. These stages will be assumed to not 

have carry inputs or carry outputs, but only sum outputs, 

in order to keep the comparison simple. Furthermore, since 

the binary adder stage will require its inputs in both 

normal and inverted form ("double-rail" form), the inverted 

form of the inputs will be assumed to come either from 

storage register units feeding the adder stage or from 

inverters preceeding the adder stage so that no inverter 

gates need be included in the realization. Thus, the 

equation for the sum output line of the binary adder stage 

is s = xy + xy. This equation implies a two-level logic 

network, 2 parallel AND gates feeding into 1 common OR 

gate. Each sum output line of the DBBL adder stage can 

be formed from exactly the same type of two-level reali

zation. For instance, the equation for the s 0 output is 

so= xoyo + xly9 + x2y8 + •••. + x8y2 + x9yl, again implying 

a two level AND and OR realization. Thus, an entire DBBL 

adder stage is nothing more than 10 of these two-level 

realizations in parallel. In other words, as long as a 

DBBL and a binary adder stage are realized via similar 

structures, the propogational speed of both stages should 
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be the same. Obviously, if one insisted on building his 

entir~ adder by merely connecting individual stages together 

to form a row of connected, but discrete, stages, the 

determining speed factor would be the time required for 

the carry to serially propogate down through all stages. 

Therefore, given such an adder layout, since a DBBL adder 

requires only 1/3.33 times as many stages as its binary 

equivalent, it should be capable of adding a number at 

least 3.33 times as fast as the equivalent binary adder. 

However, such a binary adder layout employing a mere 

connected row of discrete single adder stages is a virtually 

outdated type of layout. For example, it is quite common 

to see 4 individual binary adder stages grouped together 

as one block having a fast 11 look-ahead" carry available 

from the fourth individual stage on the block of 4 stages. 

Such blocks using carry "look-ahead" help to increase the 

speed of the entire adder. Obviously, to further increase 

the speed of a binary adder, one could in fact form the 

binary adder by connecting blocks together, each of which 

contains a purely two-level realization of a 3 or 4 bit 

binary adder. These separate 3 or 4 bit binary adders 

thus could each complete their 3 or 4 bit addition in the 

same time required by a single DBBL adder stage to complete 

its addition. Therefore, since 3.33 binary digits are 

about equivalent in numerical size to 1 decimal digit, a 

binary adder constructed according to this scheme could 

add numbers approximately as fast as its DBBL equivalent 
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providing the DBBL adder is a mere connection of discrete, 

single-digit DBBL stages. 

Finally, in situations requiring the ultimate in 

speed, one could also extend the idea of a two-level 

realization to an entire adder. That is, one can form 

two-level combinational logic realizations for both an 

entire 20 bit binary adder and its 6 digit DBBL equiva

lent. Of course, such two-level realizations of entire 

multi-stage adders require huge numbers of logic gates 

and gate inputs, far more than are required in the slower, 

more serial realizations previously mentioned. However, 

the modern integrated circuit cost approach already pre

sented indicates that the complexity, or size, of the 

internal circuitry of a chip containing such a two-level 

adder has very little effect on the cost of the adder. 

Therefore, it is reasonable to assume that, in the interest 

of overall adder speed, one might want to construct such 

two-level realizations. Given then, that both the 20 bit 

binary adder and its 6 digit DBBL equivalent are both 

entirely two-level realizations, both adders would be 

capable of adding their equivalent size numbers with 

identical speeds after these numbers reach the adders. The 

only difference is that the binary adder demanded previous 

"uncoding" of each of its binary inputs into "double-rail" 

inputs including both the normal and the inverted forms 

of each input variable. Whether this uncoding was done 
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by passing the inputs through a binary register or whether 

it was done by separate inverter gates, this necessary 

uncoding potentially implies, in general, one extra 

level of propogational delay which is not present in 

the DBBL system. The alert reader will note that this 

particular advantage of DBBL results directly from the 

fact that the DBBL system, as proposed in this paper, is 

a highly "uncoded" form of logic. That is, the DBBL 

system does not transmit its signals from circuit to 

circuit via maximally encoded lines as today's binary 

system usually does. At best, one could refer to a group 

of 10 DBBL data transmission lines as using a "1-out-of-10" 

code to indicate each possible value of the decimal digit 

represented by such a group of lines. (Of course, one 

could create a binary machine which has all variables 

that are transmitted throughout the machine available in 

both true and complemented form. However, such a machine 

would be, in reality, a base 2 NBBL, or 2BBL, machine.) 

Thus, at one extreme, if one organizes equivalent 

size DBBL and standard binary adders using single-digit 

adder stages as the basic building block (allowing the 

carry to "trickle down" serially through each stage) , the 

resultant DBBL adder would be much faster than its binary 

equivalent. At the other extreme, if one uses a purely 

two-level realization of both adders in their entirety 

(such as AND-OR or NAND-NAND), then both adders would 



themselves be equal in speed. However, even at this 

purely two-level extreme, the DBBL system due to its 

highly "uncoded 11 form of data transmission, still holds 

the general advantage over the standard binary system 

of never needing additional uncoding delays preceeding 

the adder itself. Therefore, the DBBL system exhibits 

the definite potential of faster overall arithmetic 

operation. 
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Whether or not the overall DBBL system offers any 

advantage over its overall binary equivalent in average 

power consumption is questionable. Consider the combina

tional logic realizations of each adder discussed thus 

far. The traditional initial cost analysis demonstrated 

that the DBBL adder would cost more to purchase because 

it contained many more gates and gate inputs than its 

binary equivalent. It is therefore reasonable to deduce 

that this DBBL adder realization consumes more average 

power than its binary counterpart. On the other hand, 

now consider a 6 stage DBBL storage register and its 20 

stage binary equivalent. If the DBBL register stages 

are the SCR types shown in Section VII.,then only one 

SCR is on at any given time in each register stage. 

Similarly, if the flip-flops in the binary register are 

the familiar type consisting of two cross-coupled transis

tors, then one transistor is also on in each binary stage. 

Assuming then that the SCR's and the transistors have 
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identical voltage supplies and load resistors, the average 

power consumption of the DBBL register would be less than 

that of its binary counterpart. Note that this would not 

be true if the DBBL stages were built from a row of 

binary flip-flops like those in the binary register (see 

Fig. 13). Therefore, although the DBBL and the binary 

system each have some advantage in the area of power con

sumption, it is not fair to say that either system as a 

whole is definitely superior. 

By far the most significant advantage of the DBBL 

system over the equivalent size binary system lies in 

the area of daily operational efficiency and speed. The 

DBBL system need not waste time performing conversion and 

reconversion, and thus also need not have any hardware 

or software to perform this conversion and reconversion. 

Furthermore, when compared to a standard binary system, 

the DBBL system has the definite potential of faster 

overall arithmetic operation within the machine. Such 

considerations indicate that the DBBL system is generally 

capable of doing more work per unit of time. 
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V. NBBL SYSTEMS 

This section discusses some of the advantages and 

disadvantages of NBBL systems compared to straight binary, 

binary-coded base n, and Post base n systems. The major 

asset of a base 10 NBBL, or DBBL, system, namely greater 

daily operational efficiency than that of a standard 

binary system, has already been discussed in detail in 

Section IV. Therefore, this particular advantage will 

not be mentioned again here. Instead, this section con

centrates on basic characteristics of NBBL systems 

which might easily be overlooked. 

A. General Advantages 

One important advantage of an NBBL system that must 

be stressed is its good, binary noise immunity. In a 

multi-valued Post base n system, voltage levels would, 

in general, be much more critical than in purely binary 

systems such as the straight binary, the binary-coded 

base n, and the NBBL systems. 

It cannot be said that the NBBL system offers any 

advantage in the area of computer architecture, or "lay

out." However, it can be said that NBBL should not force 

architecture to be more complex than it is in today's 

standard binary systems. Actually, one can picture an 

NBBL machine as merely having n lines routed wherever the 

binary machine has one. Thus, the architecture of an 
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NBBL machine is not more complex, but simply on a larger 

scale than that of the equivalent binary machine. 

Similarly, the NBBL system creates no new problems 

in the area of fault diagnosis. For example, the very 

commonly assumed "stuck-at-1" and "stuck-at-0" faults 

which are used in ordinary binary systems are also 

applicable to the NBBL system. Obviously, a more complete 

list of possible faults would be necessary in a multi

valued Post base n system. 

Another important advantage of an NBBL system is the 

possibility of simpler peripheral devices. In a straight 

binary or binary-coded device, all characters, including 

the numerical digits O, 1, •••• , 9, which enter the computer 

from a device such as a card reader or teletype must be 

put in some form of binary code. Obviously, this means 

that these peripheral devices must contain coding networks 

to perform this coding. Even in a Post base 10 system, 

the numerical digits would have to be transformed into 10 

accurate discrete voltage levels. However, in the DBBL 

system, the "coding•• of the numerical digits would consist 

only of sending each of the digits 0, 1, ••••• , 9 into the 

computer on the corresponding correct line of the group 

0 1 9 . f 
of 10 lines x , x , ••••• , x • Of course, th1s lack o 

actual numerical coding in DBBL peripheral devices should 

also make the DBBL system capable of getting numerical 

data into and out of the machine faster than is possible 
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with the other systems. 

Finally, it must be mentioned that since NBBL logic 

is entirely binary in nature, it is, in general, just as 

capable of successful asynchronous operation as are 

binary systems. Thus, unlike a Post base n system [2], 

[3], an NBBL system could take advantage of the speed 

increase that asynchronous operation offers over syn

chronous operation. 

B. General Disadvantages 

Naturally, just as NBBL has several inherent advan

tages, it also has some basic inherent disadvantages. 

The most obvious of these general NBBL disadvantages is 

the increased inter-module wiring and the increased 

number of individual circuit components required by most 

bases in comparison to an equivalent binary system. 

Using the equivalent 20 bit binary and 6 digit DBBL adders 

of Section IV. as an example, these wiring and component 

increases are evidenced respectively by the greater modern 

and traditional purchasing costs of the DBBL adder. Among 

other things, more inter-module wiring and more components 

mean, for the general NBBL system, increased physical size, 

and greater probability of at least one component fault 

occurring during any given time period. 

Another disadvantage of a general NBBL system would 

be increased initial cost of core storage compared to 
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equivalent core storage in a standard binary system. 

The reader will recall from Section IV. that a 6 digit 

DBBL storage register was equivalent to a 20 bit straight 

binary storage register. Similarly, a 6 digit word of 

DBBL core storage would be the equivalent of a 20 bit 

word of straight binary core storage. However, note 

that 6 digits of DBBL core storage actually require 60 

individual magnetic cores while 20 bits of straight 

binary core storage require only 20 magnetic cores. 

Thus, this comparison yields, for core memories, a DBBL 

to binary initial cost ratio of about 3 to 1. Thus, 

one can conclude that, in general, "NBBL" implies 

costlier core memories than does "binary". 

Finally, one last point must be mentioned concerning 

the use of adders to realize logic functions such as 

the "Exclusive Or" function. In a standard binary machine, 

the bit-by-bit Exclusive Or of two binary numbers is 

easily performed by merely adding the two numbers while 

inhibiting the carries in the adder. Even though one 

might never have any need for such an Exclusive Or in 

a base n machine (n > 2) , if one attempted to form the 

Exclusive Or of two numbers (each of which were all l's 

or O's) in an NBBL machine using the above technique, the 

result would not always be correct. For example, with the 

carries inhibited in a DBBL adder, the sum of two l's 

would yield "2," not "0" as desired in an Exclusive Or 
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operation. This does not mean that comparably easy 

techniques for realizing such binary logic functions in 

NBBL machines cannot be found. It simply means that 

the normal techniques now in use in standard binary 

machines would not work. 
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VI. NBBL ADDER REALIZATIONS 

This section proposes some NBBL adder realizations 

other than the strictly combinational one of Section II. 

It is possible that thorough research with the realizations 

shown here might yield advantages over such combinational 

realizations in areas such as simplicity, initial cost, 

and speed. For the sake of simplicity only, the adder 

stage circuits shown in this section do not contain input 

and output carries. That is, each adder stage shown here 

produces a sum digit from only the addend and augend digits 

without allowing an input carry digit and without pro

ducing a carry output digit. Eliminating these carry 

inputs and outputs does not detract from the real world 

practicality or applicability of these circuits. It does 

however allow the presentation and explanation of these 

circuits to be of reasonable length. 

A. SCR Steering Array Realization 

The first circuit shown in Fig. 17 is an SCR steering 

array base 3 NBBL adder stage. Note that this circuit, 

like all others shown in this section and the next section, 

can easily be extended to a larger base, such as base 10. 

A simple example can best illustrate how this adder stage 

functions. Consider feeding two l's into this circuit 

to be added. Obviously, the answer should be 2 in base 

3. one of these l's would enter the circuit on input line 
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Fig. 17. SCR Array 3BBL Adder Stage 
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x1 while the other "1" would enter on line yl. The function 

of the latter "1" is to shift the logical one voltage on 

line x1 over to the s 2 output line. Thus, only the s2 

output is at the logic one voltage level, indicating a 

sum output of 2 as desired. The reader might wonder why 

no load resistors are shown leading from each of the sum 

output lines to ground. Such resistors are not shown 

because they would not be necessary in all cases. For 

example, if this adder stage were feeding one of the SCR

type storage register stages shown in Section VII., the 

load for each sum output is already contained in the 

storage register stage. On the other hand, inputs, y0 , 

y1 , and y 2 would definitely need resistors not shown in 

order to keep the SCR gate currents in the adder at the 

proper level. 

B. ROM Realizations 

The next two types of adder realizations are termed 

Read Only Memory (ROM) realizations because their structures 

are very similar to common types of ROM's. These reali

zations do not actually contain standard ROM's because, for 

instance, they do not contain the addressing circuitry 

included at the input of standard ROM packages. However, 

these realizations do contain diode arrays and rows of 

transformer cores exactly like those found in various ROM's. 
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Fig. 18 illustrates a diode ROM [8) realization for 

a base 3 NBBL adder stage. This realization is really 

nothing more than a group of diode-resistor AND and OR 

gates set up so that each sum output line represents 

a sum-of-products equation for the proper sum digit. 

For example, the top three horizontal lines and the 

vertical s 0 line actually represent the equation s 0 = 

x0y 0 + x1y2 + x 2y1 • Note that, just as was the case 

with the SCR array of Fig. 17, the resistors shown in 

Fig. 18 between each of the sum output lines and ground 

may not be needed if the adder stage is feeding an SCR-

type register stage such as those shown in Section VII. 

Obviously, without these resistors, when a particular 

sum output line is "off," it would essentially be pro-

viding the circuitry it feeds an open circuit condition 

instead of a ground. With most types of logic, such an 

open circuit would not produce the same results as a 

ground. However, with many SCR's, an open circuit on 

a gate lead will function identically to a ground on a 

gate lead. 

Finally, Fig. 19 depicts a braid transformer.ROM [8] 

realization of a base 3 NBBL adder stage. Note that 

each transformer core contains a list of the input lines 

that pass through it. Any input lines not listed in a 

particular core pass around that core. Further note 

that each particular core is bypassed by a different 
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Fig. 18. Diode ROM 3BBL Adder Stage 
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NLEQ OUTPUT= 0 IFF ALL INPUTS SAME 

Fig. 19. Braid Transformer ROM 3BBL Adder Stage 



pair of input lines. In fact, each core is bypassed by 

a different one of the nine unique input combinations. 

For example, the first, second, and third cores on the 

left are bypassed by x 0y 0 , x1y2 , and x 2yl respectively, 

where each of these combinations should produce a "0" 
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sum digit. Thus, when any of. these three input combina

tions are gated into the adder, the left NLEQ (Not Logical 

Equivalence) gate will always have one of its three inputs 

at ground level while the other two NLEQ gates will have 

all high inputs. The result is that the left NLEQ gate 

will produce a logical 1 output while the others produce 

logical 0 outputs, thus forming the correct s 0 , s 1 , and 

s2 outputs. Note that since all transformer outputs will 

be zero when the adder stage is not being used, all NLEQ 

outputs will then be zero. Thus, if these adder stage 

outputs were connected directly to an SCR register stage 

like those in Section VII., this special case of all 

register stage input lines being zero would simply not 

affect the register stage outputs. 

The NLEQ gates, if driven directly by the transformer 

output windings as shown in Fig. 19, must be carefully 

chosen. For example, when the current passing through 

a transformer core is returning to zero, that transformer 

would actually produce a negative output voltage. Also, 

for any given adder input combination, some of the cores 

will have one current carrying wire passing through them 



62 

while, at the same time, other cores will have two such 

wires. Thus, the NLEQ gate inputs will have to withstand 

two different positive voltage levels, ground level, and 

two negative voltage levels. More specifically, these 

gates will have to be able to respond to both positive 

voltages as a logical 1 and respond to ground and the 

two negative voltages as a logical 0. Furthermore, 

consider what happens to all but one of the NLEQ gates 

every time data is fed into the adder stage. All gates 

whose correct sum output is "0" now have their inputs 

attempting to all rise simultaneously from logical O's 

to logical l's. If one of these inputs were to reach 

the logical 1 level before the others, transient undesired 

l's would appear on sum output lines which should remain 

fixed at 11 0." Interface circuitry between the transformer 

outputs and the NLEQ gates could remove these critical 

characteristics. However, such circuitry would also add 

to the cost of the adder stage. 

Despite its many cirtical areas and potential 

problems, a realization such as that of Fig. 19 merits 

real consideration. Rows of braid transformers are often 

capable of driving logic gates directly, are extremely 

cheap, and are capable of high speeds [8] . 
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VII. NBBL STORAGE REGISTER REALIZATIONS 

This section proposes some NBBL storage register 

realizations other than the one of Section III. It is 

quite possible that the SCR designs shown here can yield 

advantages over the more conventional designs consisting 

merely of a row of n standard binary flip-flops and some 

combinational logic, such as the one shown in Section III. 

These possible advantages lie mainly in the areas of 

lower power consumption and fewer internal components, 

where fewer components can offer smaller physical size, 

less frequent faults, and depending on the method of 

manufacture, maybe lower cost. 

A. Latch Realization 

The first circuit shown in Fig. 20 is another of 

the more conventional designs. It is a base 4 NBBL 

storage register stage made from "D flip-flops" [6], or 

latches. Unlike all other register stages shown in this 

entire paper, the unit of Fig. 20 is shown clocked. The 

only reason this unit is shown clocked is that standard 

binary latches are strictly clocked items. Again note 

that this circuit, like all others shown in this section, 

can easily be extended to a larger base, such as base 10. 

B. SCR Realizations 

Fig. 21 illustrates the first of the SCR model 
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Fig. 20. Latch 4BBL Register Stage 



register stages. There is no real reason why a "pnpn" 

device such as an SCR cannot be integrated onto a chip 
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just like a bipolar transistor. Now consider two different 

types of DBBL register stages, one made with SCR's like 

those shown in this section and the other made with binary 

S-R flip-flops like the one shown in Fig. 13 of Section III. 

The SCR register stage would have only 1 of its 10 SCR's 

on and drawing current at all times. However, assuming 

the S-R flip-flops, for example, to be the type consisting 

of two cross-coupled transistors, the S-R flip-flop 

register stage would always have 10 of its 20 transistors 

on and drawing current. Thus, in DBBL register stages, 

the SCR realizations can hold a decided advantage over 

the S-R flip-flop realization in the area of average 

power consumption. Actually, this power advantage holds 

true over all types of standard binary flip-flop reali

zations, not just the S-R flip-flop realization. Now 

consider the number of "major" components in the two types 

of DBBL register stages just compared, where "major" here 

will refer only to SCR's and transistors for the sake of 

simplicity. A single SCR register stage contains only 10 

SCR's (and possibly 2 transistors) while the S-R flip-

flop register stage contains 20 transistors, 2 transistors 

being in each of the 10 flip-flops. (If the S-R flip-

flops are more sophisticated types, such as "master-slave" 

units, far more than 20 transistors would be required for 
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such a DBBL register stage realization.) Of course, such 

a crude comparison proves nothing conclusive about the 

relative costs of the two different realizations. It does, 

however, hint very strongly that, in general, the SCR 

realizations, which are designed specifically for NBBL 

registers, require significantly fewer individual com-

ponents than the more conventional binary flip-flop 

realizations. Circuitry containing fewer components 

implies smaller physical size and less faults, two areas 

which are critically important in large digital machines. 

Fig. 21 depicts a "current sharing" (or current 

robbing) SCR base 2 NBBL register stage. The basic idea 

of this design is that the SCR's, the resistors, and the 

voltage supply are all chosen so that there is ample 

current available to sustain the ignition of only one 

SCR. Suppose that a "0" has been previously stored 

in the unit of Fig. 21 so that the left SCR is on. If 

one now attempts to alter this storage to a "1 11 by making 

input line x1 high and input line x0 low, the effect is 

that the right SCR, in attempting to turn on, robs the 

left SCR of enough of its original current so that this 

current falls below the required holding current of the 

SCR's. Therefore, the left SCR turns off, thus making 

enough current now available to the right SCR so that 

it can turn on. The major drawback of this design is 

that it requires SCR's which exactly follow ideal SCR 
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Fig. 21. Current-Sharing SCR 2BBL Register Stage 
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volt-ampere characteristic curves. Furthermore, all the 

SCR's used must be almost perfectly matched. Obviously, 

such SCR's are very hard to find in the real world. 

Fig. 22 illustrates a capacitive-coupled SCR base 2 

NBBL storage register stage. Fig. 23 shows some actual 

input and output waveforms for this capacitive-coupled 

model. It must be pointed out that this model and the 

final model that soon follows have both actually been 

built and thoroughly tested. 

Imagine, that in this capacitive-coupled model, the 

left SCR is already on and the right SCR is off, this 

situation being the result of a previous input. Thus, 

the coupling capacitor is charged with the polarity 

indicated in Fig. 22. Now, if one turns on the right 

gate lead and turns off the left gate lead, the right 

SCR turns on. When this happens, .the charge that was on 

the coupling capacitor forces the voltage level on the 

cathode of the left SCR above the voltage level of its 

anode, thus causing the left SCR to turn off (Fig. 23). 

The major drawbacks of this model are (1) the appearance 

of momentary voltages higher than the normal logic 1 

level at an SCR's output when that SCR is turning off 

and (2) the relatively slow turn off times of each SCR 

caused by the inherent RC time constant of the circuit. 

The reader should not be alarmed by the 200 ohm load 

resistors in Fig. 22, which indicate a very large power 
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consumption. Such resistors were necessary only because 

the SCR's used were heavy-duty 8 ampere units with fairly 

large holding currents [9]. 

The final SCR register stage model to be discussed 

is termed the transistor pre-clear model. Fig. 24 

illustrates the circuit itself and Fig. 25 illustrates 

some actual input and output waveforms that this circuit 

produced. The operation of this circuit is really quite 

simple. Whenever any gate signal rises from the logic 

0 to the logic 1 level, this rise is differentiated by 

the series combination of the 390 picofarad capacitor 

and the 180 ohm resistor, thus producing a positive 

voltage spike. This positive spike momentarily turns on 

the two "pull up" transistors on the left side of the 

circuit, causing them to momentarily pull the voltage 

level of all SCR cathodes up to the same level as their 

anodes. This momentary shunting of all SCR's attempts to 

turn them off (Fig. 25). However, the SCR whose gate 

lead is now at the logic 1 level turns on and stays on 

after this momentary shunting effect has died away. The 

net effect then is that the circuit stores the logical 1 

supplied by the one high input ,line. This transistor pre

clear model improves greatly on the two major drawbacks 

listed for the capacitive-coupled model. The transistor 

pre-clear model does not allow the appearance of any 

voltages on the outputs higher than the normal logic 1 
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level. Furthermore, the lack of a prohibitive RC time 

constant, such as was found in the capacitive-coupled 

model, allows, in general, much lower turn off times. 

Therefore, the transistor pre-clear model is definitely 

the most promising of the three SCR models discussed 
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in this section. It does not place the nearly impossible 

ideal requirements on the SCR's as does the current 

sharing model and it offers "cleaner," higher speed output 

waveforms than does the capacitive-coupled model. 

It must be stressed here that neither the capacitive

coupled model nor the transistor pre-clear model, as they 

are shown in this section, have been refined as far as 

possible. None of the electronic components available 

to the author, especially the SCR's, were extremely 

high speed switching components. This is one reason 

why, in the transistor pre-clear model shown in Fig. 24, 

two-transistor equivalents [9], [10] were used to re

place the original heavy-duty SCR's used in the capacitive

coupled model. These equivalents were capable of lower 

power, higher speed switching. Thus, the point is that, 

with really good high speed con~onents, these SCR type 

register stages, especially the transistor pre-clear model, 

should be capable of speeds which are quite respectable 

by today's computer standards. For example, one text, 

already almost 3 years old, cites SCR's capable of turn 

off times as fast as 100 nanoseconds [6]. 
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VIII. CONCLUSION 

This paper has proposed a new type of logic called 

"n-base binary logic,n or NBBL. The basic structure of 

NBBL adders and storage registers has been compared with 

the structures of Post base n, traditional binary-coded 

base n, and straight binary adders and registers. Also, 

several realizations, both conventional and unconventional, 

have been shown for NBBL adders and registers. Some of 

these more unconventional realizations, such as the SCR 

circuits shown for NBBL storage register stages, are 

quite promising and deserve further research and extensive 

developmental work. 

This paper has also performed cost analyses of 

"decimal-base binary logic," or DBBL, adders and registers 

relative to their straight binary equivalents. These 

analyses indicated that, without a doubt, the DBBL adders 

and registers would cost more both to construct and to 

buy (or rent). On the other hand, a DBBL machine offers 

greater operational efficiency and speed over its binary 

counterpart as a result of the following major advantages: 

(1) no decimal-to-binary and binary-to-decimal conversion, 

(2) much simpler and faster "coding 11 of numerical input 

and output data, and {3) the potential of faster overall 

arithmetic operation within the machine. These advantages 

just listed mean that the DBBL machine should be capable 

of doing more work per unit of time, especially in high 
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numerical input-output usages. Thus, for example, a 

DBBL machine owner who allows others to use his machine 

on a shared-time basis can get more customer jobs done 

in a day's time, each customer having to pay for less 

used time than would customers of a binary machine 

shared-time system. Also, the DBBL system need not 

contain hardware or software to do conversion and re

conversion, and thus, the DBBL machine user, unlike 

the binary machine user, need not suffer the cost of 

these items. 

Today the development of computer circuitry is 

rapidly approaching the point where logic speeds are 

simply as fast as they can ever be. For example, emitter

coupled logic gates are capable of propogational delays 

of less than a nanosecond [6], not much more time than 

it takes for an electrical signal to travel the length 

of a small piece of plain wire. As a result, the use 

of DBBL adders and registers, like the use of parallel 

processors, could be one means of further increasing 

machine speeds even after logic speeds have reached their 

limit. Thus, at a time in the computer industry when 

speed seems to be taking precedence over everything else, 

even circuitry cost, a DBBL machine indeed has much to 

offer. 
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