
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1972

Decimal-base binary logic (DBBL) adders and registers Decimal-base binary logic (DBBL) adders and registers

James Oliver Bondi

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Bondi, James Oliver, "Decimal-base binary logic (DBBL) adders and registers" (1972). Masters Theses.
5079.
https://scholarsmine.mst.edu/masters_theses/5079

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5079?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5079&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DECIMAL-BASE BINARY LOGIC (DBBL) ADDERS AND REGISTERS

BY

JAMES OLIVER BONDI, 1949-

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirem7nts for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

1972 T2741
85 pa~es
e.I · ·

Approved by

ABSTRACT

This paper discusses a new type of base n adder

and storage register. This new type of logic is called

"n-base binary logic", or NBBL. The NBBL system is

compared and contrasted with the Post base n system

(a type of n-valued logic) ~ the binary-coded base n

ii

system, and the straight binary system. The main

purpose of this paper is to show that a decimal, or

base 10, system can have some important inherent advan

tages over a binary system, such as greater daily

operational efficiency. Furthermore, it is shown that

a "decimal-base binary logic" system, or DBBL system,

has inherent advantages over the Post and binary-coded

decimal systems. A cost analysis of the DBBL system

relative to the straight binary system is performed

and several circuit realizations for general NBBL adders

and storage registers are shown. Two of the storage

register realizations are SCR models that the author

has actually built and thoroughly tested.

ACKNOWLEDGEMENT

The author is very grateful to Paul D. Stigall for

his continued advice and assistance in preparing this

manuscript. The author also wishes to thank James H.

Tracey for his helpful suggestions and comments and to

thank Scott P. Stager for his willing assistance.

iii

iv

TABLE OF CONTENTS

Page

ABSTRA.CT... ii

ACKNOWLEDGEMENT. • iii

LIST OF ILLUSTRATIONS••••••••••••••••••••••••••••••••• vi

I. INTRODUCTION••••••••••••••••••••••••••••••••••• 1

II. ADDERS • •• 3

A. Standard Binary Adder •••••••••••••••••••• 3

B. Binary-Coded Base N Adder •••••••••••••••• 3

c. Post Base N Adder •••••••••••••••••••••••• 8

D. NBBL Adder••••••••••••••••••••••••••••••• 15

III. STORAGE REGISTERS•••••••••••••••••••••••••••••• 18

A. Standard Binary Register ••••••••••••••••• 18

B. Binary-Coded Base N Register ••••••••••••• 18

c. Post Base N Register ••••••••••••••••••••• 24

D. NBBL Register•••••••••••••••••••••••••••• 24

IV. COST ANALYSIS •••••••••••••••••••••••••••••••••• 32

A. Purchasing Cost - Tra~itional
Approach. • • . . • • • • • . 33

B. Purchasing Cost- Modern Approach •••••••• 36

c. Daily Operational Efficiency ••••••••••••• 42

v. NBBL SYSTEMS ••••••••• 50

A. General Advantages ••••••••••••••••••••••• 50

B. General Disadvantages •••••••••••••••••••• 52

VI. NBBL ADDER REALIZATIONS•••••••••••••••••••••••• 55

A. SCR Steering Array Realization ••••••••••• 55

B. ROM Realization&••••••••••••••••••••••••• 57

Table of Contents (continued)

VII.

VIII.

NBBL STORAGE REGISTER REALIZATIONS.
A.

B.

. Latch Realization ••

SCR Realizations.
CONCLUSION. •

REFERENCES. •

v

Page

63

63

63

75

77

VITA. • . 7 8

vi

LIST OF ILLUSTRATIONS

Figures Page

1. Standard Binary Adder Stage .••••.•.•.••....••.•.• 4

2. Binary-Coded Base N Adder Stage ••..••..••..•••••. 5

3. Correction Procedure in Traditional BCD
Addition.. 7

4. Three Useful Functions in Post Base N Logic •...•. 10

5. Post Base 10 Adder Stage •••.•.•••••.•••••.•..••.. 11

6. Possible MIN and MAX Gate Realizations for
N-Valued Logic, "..... 14

7. DBBL Adder Stage (Combinational Logic) •••••.••••• 16

8. S-R Binary Flip-Flop •••••••.•••••••.••.•••••••••• 19

9. BCD Storage Register Unit ••••••••.•.••••.•••••••• 21

10. 9's Complement of a BCD Digit •••.•••••••.••.•••.. 23

11. Post Base 10 Storage Register Unit •••••••••....•. 25

12. DBBL Storage Register Unit ••••••••••••••••••••••. 27

13. Possible Base 3 NBBL Storage Register Unit 28

14. 3's Complement Gate for Base 4 NBBL Logic •.••••• 30

15. Cost of DBBL Adder/Cost of Binary Equivalents •••. 38

16. Cost of DBBL Register/Cost of Binary
Equivalents ••••••••.•••••••.•••••••.••••.•••••••• 40

17. SCR Array 3BBL Adder Stage •••.••.•.••.••••.••.••• 56

18. Diode ROM 3BBL Adder Stage •••••••••.•••••••.••.•• 59

19. Braid Transformer ROM 3BBL Adder Stag~ ••••••.••. 60

20. Latch 4BBL Register Stage ••••••••.•.•••••.••.•••. 64

21. Current-Sharing SCR 2BBL Register Stage •••••••••• 67

22. Capacitive-Coupled SCR 2BBL Register Stage ••••••• 69

vii

List of Illustrations {Continued)

Figures Page

23. Waveforms for Fig. 2 2. • 7 0

24. Transistor Pre-Clear SCR 2BBL Register Stage ••••. 72

25. Waveforms for Fig. 24 •••••••••••••••••••••••••••• 73

1

I. INTRODUCTION

In most of today's digital computers it is necessary

to convert all input-output data between the decimal,

human world and the binary, machine world. On large

machines employing high-level languages, this necessary

conversion is usually done automatically by sophisticated

software and/or hardware conversion systems. On mini

computers, however, these automatic conversion routines

often may not exist or may not be practical to use in

the very small specific-task-oriented programs in which

minicomputers are often applied. Thus, a minicomputer

programmer may often find himself bothered with the

tedious task of having to write conversion routines or

having to actually use pencil and paper to convert his

machine input-output data. Even on large machines having

the automatic conversion routines, this conversion must

still be done. So whether some sophisticated automatic

routine does it or the programmer does it, time, and thus,

money, must be spent somewhere along the line doing this

conversion. Besides losing this conversion time, the

binary machine user, if his system uses software conversion,

must bear the ever-increasing cost of such software.

Obviously, machines that operate in the decimal

world, just as humans do, would eliminate these problems.

Of course, decimal machines, such as some of IBM's old

BCD machines, have existed for quite some time. In general,

however, such machines have been shied away from, the

excuse being that they were too expensive and too slow

when compared to binary machines. This does not mean

that the idea of decimal machines ever completely died.

On the contrary, IBM's use of a faster, improved type

of eight digit BCD adder in the recent IBM System/360

Model 195 indicates that the idea of decimal arithmetic

machines is still quite alive even in cost-conscious

industry [1] •

2

This paper proposes a new type of adder and storage

register made with 11 n-base binary logic .. (NBBL). Further

more, it is shown that a decimal mahcine using "decimal

base binary logic" (DBBL) adders and registers, although

it would still cost more to build, can offer its user

the important advantage of greater daily operational

efficiency.

3

II. ADDERS

The adder circuitry in a digital computer can be

designed to operate on numbers in any base. This section

discusses straight binary, traditional binary-coded base

n, Post base n, and NBBL adders.

A. Standard Binary Adder

The internal circuitry of a standard binary adder is

of little importance in this paper. Therefore, the standard

binary adder stage will be viewed as a 11 black box 11 con

taining a carry input from the previous stage, one input

from each of the two digits to be added, one sum digit

output, and a carry output to the next adder-stage (Fig. 1).

B. Binary-Coded Base N Adder

The binary-coded base n adder is traditionally a

modified standard binary adder designed to operate on

numbers in bases greater than two. The main difference

between a binary-coded base n adder stage and a straight

binary adder stage is that whereas the straight binary

device has only one input line from each digit to be

added and one sum output line, the binary-coded device

has multiple input lines from each digit to be added and

multiple sum output lines. These multiple lines represent

a binary-coded form of the digits [2] (Fig. 2). Note

that only one line is shown for the input and output

4

' v ,~

.JI' ~

' '

UT c
IN

' ~ Sour

Fig. 1. Standard Binary Adder Stage

CODED CODED
XIN YIN

• • • • •••

•••

CODED
Sour

Fig. 2. Binary-Coded Base N Adder Stage

5

6

carries. A little thouyht verifies that, no matter what

the base, as long as only two numbers are being added,

the input and output carries of any single adder stage

can only take on the values 0 or 1. Thus, one binary

valued line can suffice in representing the input and

output carries of any adder stage.

As might be expected, there are some problems in

volved in trying to convert a straight binary adder into

a binary-coded adder which will operate successfully on

nonbinary numbers. The most important of these problems

is that if the base being used is not a power of 2,

correction circuitry must be added to each adder stage

to correct the sum digit output whenever a decimal out-

put carry occurs [1], [2). (This correction circuitry

is not necessary if one uses a direct logical implemen

tation designed specifically for binary-coded base n

addition instead of the traditional approach of using a

modified standard binary adder [1] .) Consider the example

in Fig. 3 using a binary-coded decimal, or BCD, adder

stage. The coded x input is decimal 9, or binary 1001,

the coded y input is decimal 3, or binary 0011, and the

input carry is decimal 1, or binary 1. Since the correct

sum is decimal 13, the BCD adder stage should produce a

carry output of 1 and a sum digit of decimal 3, or 0011

in binary-coded decimal. However, note that to get the

correct sum digit output, the adder stage must perform a

correction to the initial result which consists of

XIN

1001

YIN

00 I I

0 0 I I

Sour
1001 XIN

0011 YIN

+ I C IN

I I 0 I INITIAL Sour

7

+ 0 I I 0 CORRECT I ON FACTOR
0 0 I I CORRECTED Sour

Fig. 3. Correction Procedure in Traditional
BCD Addition

subtracting decimal 10. That is, binary 1010 must be

subtracted from the initial result whenever the correct

sum of the input data is greater than decimal 9. This

is usually done by the equivalent process of adding

binary 0110 to the initial sum digit result [l], where

binary 0110 is the 2's complement of binary 1010 if the

normal sign bits are deleted. Any output carry that

would result from the correction process is not needed

and therefore ignored.

c. Post Base N Adder

8

Wojcik and Metze, having found that multi-valued

logic could be advantageous in the control circuitry of

asynchronous systems, decided to investigate the feasi

bility of multi-valued logic in adders and storage

registers. Post adders and storage registers were there

fore researched by Wojcik and Metze in detail [2), [3].

Unlike the standard binary and binary-coded systems

already discussed, the Post base n system is not purely

2-valued logic. On the other hand, after detailed study,

one finds that the Post base n system is not purely n

valued logic either. Actually, it would be most accurate

to call this system a hybrid of 2-valued and n-valued

logic. This fact will become clearer as the discussion

progresses.

Perhaps the most pressing problem with n-valued

logic systems is deriving a set of basic functions with

inexpensive circuit realizations, combinations of which

9

can be used to form any complex logical function [2], [3],

[4]. The systems proposed by Wojcik and Metze use

three basic functions: (1) the "xi" functions

(i = 0,1, •••• ,n-1), (2) the "MIN" function, and (3)

the "MAX 11 function. These functions are described in

Fig. 4. (Note that throughout this paper, whenever n-

valued functions or n-valued logic are being discussed,

a general variable name without a superscript, such as

"x, .. will be used to indicate a single, fully coded,

multi-valued line. For a general base n, such a variable

name would usually indicate an n-valued line, although

in the case of carries, a 11 C 11 without a superscript

indicates a fully coded 2-valued (0 or 1 volt) carry line.

However, a superscripted variable name, such as "xi,"

indicates one of a group of 2-valued (0 or n-1 volts)

lines. The entire group of "xi .. lines compositely

represents, in general, a "1-out-of-n" multi-line coded

form of the general n-valued variable "x." In the special

case of carries .. co" and "c1 " are the two lines which

together form a "1-out-of-2" coded form of a carry.)

The use of these functions becomes clearer as one

studies Fig. 5 which illustrates the basic form of a Post

base 10 adder stage. Note that, in this adder stage, the

input lines and lines 1 1 2 9 c , s , s , •••.•. , s are all

•
xl =

X,X~Y

y I y~ X

Fig. 4. Three Useful Functions in Post
Base N Logic

10

11

FROM X, Y1 CIN STORAGE REGISTER UNITS

0 9 0 9 x ••••• xv ••••• v

AND AND 0 R
GATES

51 5253 545s5657s8s9 1
I CIN

2

3
ALL

THESE
ARE
MIN

7 GATES

8

Fig. 5. Post Base 10 Adder Stage

binary valued lines, taking on only the values 0 or

9. It must be pointed out that in a group of lines

h 0 1 9 1 2 9
sue as x , x , ••••.• , x or s , s , ••..• , s , only one

line in the group, say x2 or sS, can exhibit the high

voltage (9 volts in base 10) at any given time. At

12

this same instant, all other lines in the group must

exhibit 0 volts. That is, line s 5 , for example, assumes

a voltage level of 9 volts whenever the sum digit output

should be 5 and assumes a voltage level of 0 volts other-

wise. The final sum output line, s, on the other hand,

is a multi-valued line which can have any integer value

from 0 through 9. This multi-valued output line, s, is

formed essentially by "recombining 11 the binary-valued lines

s 1 , s 2 , •••• , s9 via the MIN and MAX gates shown. Wojcik

and .fv1etze make the tradi tiona! assumption that such a

multi-valued line can change from one value to another

nonadjacent value, say from 0 to 2, in such a way that

one need not worry about the effect of intermediate values,

such as 1, on the circuitry that the line drives. Obviously,

one cannot justify such an assumption by claiming that the

line changes instantaneously so that intermediate values do

not really even appear. Such instantaneous changes simply

do not occur in the real world. Indeed, if the circuitry

being driven by a multi-valued line were asynchronous

sequential circuitry, extreme design care would have to be

taken to insure that the appearance of undesired intermediate

13

values produced no ill effects such as race conditions.

On the contrary, to realistically justify this assumption,

Wojcik and Metze limit the circuitry being driven by

this multi-valued line to clocked sequential circuitry

so that the appearance of these intermediate values

poses no problem. Thus, it is important to realize

that intermediate values in n-valued logic could create

problems. Finally, in Fig. 5, the carry output line as

shown is identical in its functioning to the carry out

put line of a standard binary or binary-coded base n

adder stage. It is fully coded so that a level of 1

volt indicates the output carry is a 11 1" and a level of

0 volts indicates the output carry is a "0." Thus, this

carry output line may be separated into the next-stage

carry input functions c 0 and c 1 • This separation can

be accomplished by passage through a Post base 2 storage

register unit.

The circuit realizations that Wojcik and Metze assume

for the MIN and MAX gates also demand realistic comment.

Ordinary diode-resistor AND gates are proposed as MIN

gates and diode-resistor OR gates are proposed as MAX

gates. Fig. 6 illustrates the most basic forms of these

gates. Since, in diode-resistor gates, only the diode

with the lowest input voltage will conduct in an AND

gate and only the diode with the highest input voltage

wlll conduct in an OR gate, it is true that these gates

14

v+

X MIN(X 1 Y)

y

X

y MAX(X,Y)

--

Fig. 6. Possible MIN and MAX Gate Realizations
for N-Valued Logic

15

will function as MIN and MAX gates respectively. How

ever, even though more sophisticated models than the

ones of Fig. 6 are readily available, because all diode

resistor gates are basically passive, their ability to

transmit a voltage from input to output without degrada

tion is generally poor compared to that of active gates

having means for voltage reamplification. As a result,

a desired input value of 5 volts, for example, might

drop to approximately 4 volts after passing through

only a few MAX gates. Such a situation is very dangerous

in multi-valued (nonbinary) logic which generally requires

accurate voltage levels to insure proper functioning.

0 • NBBL Adder

The final type of adder to be discussed is the "n

base binary logic," or NBBL, adder. This adder, of the

author's own design, can be viewed as a simplification,

or special case, of the Post base n adder. Fig. 7

illustrates a .,decimal-base binary logic," or DBBL,

adder stage. The realization shown in Fig. 7 is entirely

combinational logic. Thus, the "black box" in this

figure essentially contains a large decoder possessing

22 inputs and 12 outputs. Detailed analysis of the

general realization equations presented by Wojcik and

Metze for their Post adders indicates that these equations

are very similar to the equations that would be used to

0
X •

o~

Cour
I~

• •
9 0

• X y • • •

COMB. LOGIC

9
• y

Cour
~--~~~~~~~~~--~

0 9
5 ••••••• 5

Fig. 7. DBBL Adder Stage (Combinational Logic)

16

realize NBBL adders. Thus, for example, a Post base 10

adder stage is quite similar to a DBBL adder stage.

Note that if one added an s 0 and a c 0 output to the

first major block of AND and OR gates in Fig. 5, this

block of AND and OR gates would then be the decoder of

Fig. 7. That is, the DBBL adder stage is very nearly

the first block of AND and OR gates in a Post base 10

adder stage with the final block of MIN and MAX gates

removed. Because this block of MIN and MAX gates is

17

not present, the DBBL adder stage has as outputs only

the binary-valued lines c 0 , cl, and sO, sl, ••••••••• , s9.

Therefore, unlike the Post base 10 adder, the DBBL adder

is entirely 2-valued binary logic.

A combinational logic realization such as the one

in Fig. 7 is definitely not the only means of formulating

an NBBL adder. Section VI. of this paper proposes

several other approaches to constructing a general NBBL

adder stage which could offer significant advantages

over a combinational realization in important areas such

as initial circuitry cost and operational speed.

III. STORAGE REGISTERS

Like the adder circuitry, the storage registers in

a digital computer can also be designed to operate on

numbers in any base. This section discusses straight

binary, binary-coded base n, Post base n, and NBBL

storage registers. For the sake of simplicity, all

storage register units shown here will be considered

unclocked.

A. Standard Binary Register

18

The internal circuitry of a standard binary storage

register unit will purposely not be restricted to a

specific type of circuitry at this point in the paper.

Therefore, the standard binary storage register unit,

or flip-flop, will, for now, be viewed as a "black box"

(Fig. 8). The type of flip-flop shown in Fig. 8 is the

well known S-R binary flip-flop, having a set input, a

reset input, a normal output, x, and an inverted output,

x.

B. Binary-Coded Base N Register

The binary-coded base n storage register unit (n > 2)

is simply a row of two or more standard binary flip-flops.

Like the binary-coded base n adder, the binary-coded base

n storage register unit has multiple input lines and

multiple output lines, these multiple lines again

19

' ~ \ ~

s R

.....
X X

' ~ ' v

Fig. 8. S-R Binary Flip-Flop

20

representing a binary-coded form of the input and output

data [2] • The multiple set input lines correspond to

the single set input of the standard binary flip-flop,

while the multiple normal output lines correspond to

the single normal output, x, of the binary flip-flop.

Fig. 9 illustrates one possible realization of a binary

coded base 10, or BCD, storage register unit.

Remember that in the binary-coded base n adder, when

the base being used was not a power of 2, the problem of

normall~ having to use extra correctional circuitry

appeared. Similarly, in the binary-coded base n storage

register unit, when the base is not a power of 2, a

problem is created. This time, however, the problem is

that of easily producing a complement form of the number

held in the storage register unit. On the straight

binary flip-flop, the inverted output, x, is actually

the l's complement form of the normal output, x. Thus,

to obtain the l's complement of a multi-digit binary

number stored in an entire binary storage register

(merely a string of binary flip-flops) , one simply uses

all the inverted outputs instead of the normal outputs.

Consider two binary storage registers containing two

separate binary numbers. In order to subtract the second

register from the first, one has only to gate the normal

outputs of the first register into the adder, gate the

inverted outputs of the second register into the adder,

CODED SET
INPUT

' I '

s

X

I \

R

-
X

' ~

I '
I

s R s R

- -
X X X X

' v ' v

..

' ~ ' ~ ' ~ ' I NORMAL CODED
OUTPUT

Fig. 9. BCD Storage Register Unit

21

RESET
INPUT

' ~

s R

-X X

' v

22

and also gate in a "pre-carry." This procedure is

equivalent to subtracting the second register from the

first by adding the 2's complement of the second register

to the first register. It should now be obvious that it

is quite desirable for a general base n storage register

to be capable of easily producing the n-l's complement of

its normal contents. In a binary-coded base n storage

register, if the base being used is a power of 2, the

n-l's complement of the register contents is again formed

by merely using all the inverted outputs in place of the

normal outputs. On the other hand, if the base being

used is not a power of 2, merely using the inverted out

puts will not produce the correct n-l's complement (unless

special, sophisticated codes are employed). In such

cases, additional combinational circuitry must be used

to produce this complement. Fig. 10 illustrates the

logic operations that must be performed on the 4 normal

outputs of a single BCD storage register unit in order to

produce the 9's complement of the decimal digit repre

sented by these 4 outputs [1]. (In base 10, the "excess-3"

code, for example, can produce the 9's complement merely

by direct complementation of the 4 normal outputs. How

ever, note that the "excess-3" code adder still requires

correction after the addition. In fact, unlike the tradi

tional BCD adder, it requires correction in all cases,

whether or not a decimal carry was produced [1} .)

23

0 l_ _Q_ j_~<-- 5 10 IN BCD

xl x2 x3 x4

Xcl =
Xc2 =
Xc3=
Xc4 =

0 I 0 0 ~<-- 915 COMP. OF
- - - 5 1 0 I N BCD
Xcl Xc2 Xc3Xc4

Fig. 10. 9's Complement of a BCD Digit

24

C. Post Base N Register

'I'he Post base n storage register unit [2], [3], like

the Post base n adder stage, is essentially a hybrid of

n-valued and 2-valued logic. The reader will recall

that the Post base n adder stage basically took several

binary, or 2-valued, input lines and transformed them into

an n-valued sum output line. On the other hand, the Post

base n storage register unit takes as input one n-valued

line, x, and transforms it into the 2-valued output

f . 0 1 n-1
unct~ons x , x , •.•••• , x • Fig. 11 depicts a Post

base 10 storage register unit.

A Post base n storage register unit merely stores

the value of voltage on its input by impressing a voltage

of n-1 on the appropriate output line. For example, if

a voltage level of 6 volts were supplied as input to the

base 10 unit of Fig. 11, the x 6 output line would assume

a value of 9 volts while all other lines assume 0 volts.

D. NBBL Register

The NBBL storage register, again of the author's own

design, is the last type of storage register that will be

discussed. Such a storage register could be used to

receive and hold data such as teletype input or core

memory output, to feed input into a DBBL adder, etc.

Just as the NBBL adder was essentially a modification of

the Post base n adder, the NBBL storage register is

25

X

Fig. 11. Post Base 10 Storage Register Unit

26

actually a simplification, or special case, of the Post

base n storage register. Unlike the Post base n storage

register unit with its single n-valued input line and n

binary output lines, the NBBL unit has n binary input

lines and n binary output lines. Actually, in this NBBL

unit, the n input lines are labeled identically to the

n output lines. In essence, these input lines receive

th ·f · 0 1 n-1 . e unct1ons x , x , ••••• , x wh1ch the output lines

then assume and hold. Remember that only one input and

only one output can possess the high voltage level, or

logic 1 level, at any particular instant. Thus, when

one puts a logic 1 on input line xi, output line xi then

assumes this logic 1. Fig. 12 illustrates a DBBL storage

register unit.

Obviously, since the NBBL storage register unit

need not transform a multi-valued line into binary lines

as the Post base n unit does, the internal circuitry of

the former can be much simpler. Fig. 13 shows one

possible realization for a base 3 NBBL unit using three

binary S-R flip-flops. Section VII. of this paper proposes

many more possible realizations for an NBBL storage

register unit. A sizeable portion of these realizations

are not mere interconnections of ordinary binary flip-

flops like the realization of Fig. 13, but instead, are

original creations designed by the author solely for use

in NBBL logic systems. These creations can offer advantages

27

0
X • • • • • • •

0
X • • • • • • •

Fig. 12. DBBL Storage Register Unit

28

XI

s R s R s R

-
X X X X X X

XI

Fig. 13. Possible Base 3 NBBL Storage Register Unit

29

over the more ordinary realizations in areas such as

power consumption and total number of circuit components.

It has been mentioned that the availability of the

n-l's complement from a register of general base n is

a desirable feature which permits an adder to easily

perform subtraction. Fortunately, the production of

the n-l's complement from then binary output lines of

the Post base n or NBBL storage register unit is not at

all difficult. In fact, an n-l's complement "gate" for

this purpose can be constructed from n pieces of wire,

a structure so simple it would not ordinarily be thought

of as a gate. Consider a "black box" having n input

pins and n output pins, where each of these sets of n

0 l n-1
pins represent the functions x , x , •••••• , x • An

n-l's complement gate is formed simply by connecting

each xi input to the x<n-l)-i output, where i = O,l, •.•• ,n-1.

Fig. 14 depicts a 3's complement gate for use in base 4

NBBL logic.

Decimal machines will very probably become increas-

ingly attractive in the future. Sections IV. and v. of

this paper will demonstrate sufficient justification for

such an increase in the popularity of decimal machines.

Furthermore, given this future demand for decimal machines,

Sections IV., v., VI., and VII. will further contrast NBBL

logic with its competitors and will specifically show

why DBBL logic could be quite advantageous over traditional

30

Fig. 14. 3's Complement Gate for Base 4 NBBL Logic

BCD and Post base 10 logic in the construction of these

machines.

31

32

IV. COST ANALYSIS

This section presents a cost analysis of DBBL adders

and storage registers relative to straight binary adders

and storage registers. This analysis is performed on

a twofold approach, considering both initial purchasing

cost (or rental cost) and daily operational efficiency of

the two types of circuitry. Note that it is really quite

logical to consider pruchasing (or rental) cost and

operational efficiency as both being related to the over

all cost of using some particular type of machine.

Obviously, machine purchasing (or rental) cost represents

a deficit that the user must suffer. On the other hand,

machine operational speed and efficiency are directly

related to the daily assets that the user can realize.

Thus, for example, a user of a digital machine might be

willing to pay more for a more efficient machine initially

with the expectation that its greater operational effi

ciency and productiveness would eventually offset his

greater initial expense.

In the analysis of relative initial purchasing cost,

or price, of the circuitry, two entirely different methods

are employed. The first method is the traditional, but

virtually outdated, technique of comparing the number of

gates and the number of gate inputs needed for different

realizations. The second technique, far more relevant to

today's technology, assumes the circuitry in question to

be integrated onto an MSI or LSI chip so that merely

counting the relative number of pins on different chips

gives a fair measure of their relative cost.

A. Purchasing Cost - Traditional Approach

33

Wojcik and Metze have derived a detailed traditional

cost analysis of Post base n adders and registers rela

tive to their straight binary equivalents [2] , [3] •

Since their approach was the outdated "number of gates

and gate inputs" technique, it would be futile to run

through the same procedure in detail in this paper.

Instead, by making a few simple approximations, one can

directly transfer the results of Wojcik and Metze to the

author's DBBL adders and registers. Such transferral of

the traditional Post base 10 results to the author's DBBL

circuitry is indeed only approximate. However, this trans-

ferral does yield a rough indication of the DBBL/binary

cost ratio using traditional techniques. These traditional

techniques, in view of their general irrelevancy to modern

integrated circuit technology, simply do not merit extreme

accuracy.

The reader will recall from Section II. that a Post

base 10 adder stage (Fig. 5) could be converted to a DBBL

adder stage (Fig. 7) by adding the relatively small number

of extra AND and OR gates needed to produce the c 0 and s 0

outputs from the first block of AND and OR gates and by

34

removins the relatively small number of final MIN and MAX

gates. In other words, the Post base 10 and the combina

tional logic DBBL adder stage contain approximately the

same number of gates and gate inputs, so that from a

traditional point of view, these two types of adders

should differ little in price. Thus, by extrapolating

the results of Wojcik and Metze out to base 10, one finds

that a DBBL adder would cost about 5 times as much as a

straight binary adder with enough stages to handle

equivalent size numbers.

Concerning registers, Wojcik and Metze assume basically

that the ratio of the number of components in a single

Post base n stage to the number of components in a single

standard binary stage is always about n/2. Thus, the

traditional cost viewpoint implies that the relative cost

of a Post base n stage compared to a binary stage is also

about n/2. Certainly this assumed Post base n register

stage versus binary register stage cost ratio of n/2 is

only approximate and Wojcik and Metze give no real evidence

of its validity. However, this n/2 factor should be just

as applicable to an NBBL register stage versus binary

register stage cost ratio. For example, if one examines

the number of SCR's required for the SCR-type NBBL register

stage realizations of Section VII., one finds that a

2BBL stage requires 2 SCR's (just as a standard binary

S-R flip-flop can be made with essentially 2 cross-coupled

35

transistors), a 3BBL stage requires 3 SCR's, •••••••• ,a

DBBL stage requires 10 SCR's, etc. Thus, at least when

comparing the types of NBBL register stage and standard

binary register stage realizations just mentioned, one

finds that the ratio of NBBL stage SCR's to binary stage

transistors is exactly n/2 for any general base n (n > 2) •

Therefore, this crude n/2 register stage cost factor

assumed by Wojcik and Metze can be just as relevant in

comparing an NBBL register stage to a binary stage as it

is in comparing a Post base n stage to a binary stage.

Furthermore, now consider the difference between a Post

base 10 and a DBBL storage register stage. The reader

will again recall that whereas the Post base 10 storage

register unit (Fig. 11) had only 1 input, the DBBL storage

register unit (Fig. 12) had 10 inputs. On the other hand,

the Post unit required special components immediately

following the input in order to convert this 10-valued

input into 2-valued, binary outputs. These special com

ponents were not required in the DBBL unit. Thus, since

the n/2 cost factor of Wojcik and Metze has some validity

for the author's NBBL units and since the differences

between a Post base 10 and a DBBL unit tend to approxi

mately "cancel each other," one is finally led to the

conclusion that DBBL units can be at least as cheap as

Post base 10 units with similar output structures. That is,

if the DBBL unit has a row of S-R flip-flops forming its

outputs (see Fig. 13), the Post base 10 unit should

also have a row of S-R flip-flops forming its outputs.

Thus, again extending the results of Wojcik and Metze

to base 10, one finds that a DBBL register would cost

about 1.5 times as much as a straight binary register

with enough stages to hold equivalent size numbers.

It should now be obvious that, by traditional cost

analysis, DBBL adders and registers would definitely

have a higher initial cost than their standard binary

equivalents.

B. Purchasing Cost - Modern Approach

36

The modern cost analysis approach which follows not

only is more applicable to present computer technology

but also is easier to perform. The assumption in this

approach is that the circuitry in question is all inte

grated onto one chip and that the chips are all produced

in large volume quantities by modern automated techniques

so that by far the most important factor in the cost of

any single chip is the number of connecting pins which

must be fastened on the chip. With this assumption in

mind, one can then obtain a very reasonable measure of

the relative cost of different chips merely by comparing

the number of pins on the various chips [5].

First of all, in order to make a fair comparison

between the cost of a base 10 and a base 2 adder or

37

storage register, one needs to know the number of stages

required in each base to handle equivalent size numbers.

That is, one needs to know the number of digits necessary

to represent equivalent numbers in each base. Some

thought will verify that if one represents a number as

10d, then d, if rounded up to the next greatest integer

value, is the number of decimal digits needed to represent

that number in base 10. In fact, d, even without

rounding, is a very good indication of how many decimal

digits are required to represent a given number. Simi

larly, if one represents a number as 2b, then b is a very

good indication of how many binary digits are required to

represent that number in base 2. Therefore, the equation

10d = 2b essentially means that some particular decimal

number having d digits is exactly equal to a binary number

having b digits. Solving this equation for d/b yields the

approximate ratio of decimal to binary digits necessary

to represent equivalent numbers in base 10 and base 2

respectively. Taking log10 of both sides gives

d/b = 1/3.33. In other words, if a base 10 and a base 2

adder or register are intended to handle equivalent size

data, then the base 2 device must have about 3.33 stages

for every one stage of the base 10 device.

Thus, for example, a 20 bit binary adder could handle

the same data as a 6 digit DBBL adder. Fig. 15 illustrates

three chips, the first containing a 20 bit binary adder

38

X y X Y~_40
• • • • • • • 111111::0;

51 NGLE-RAI L IN PUT PINS
20 BIT BINARY ADDER CIN

s ~--20

XYXY XYXY
• • • • • • • ~so

DOUBLE-RAIL INPUT
CouT 20 BIT BINARY ADDER CIN

0
Cou

I CouT

• • • • • • • • • < 20
5 s

xf:l.·~Y~·Y9 xr;J.·~v9··Y9 120 ¥
0

CIN
• • •

c'IN ~ •..... a' ~6 0
sQ s9 s0 s9

DBBL COST _ 184 ~ 3
S.RL. 81 NARY COST- 6 2

DBBL COST I 8 4

D.RL. 81 NARY COST= I 0 2 ~ 1•8

Fig. 15. Cost of DBBL Adder/Cost of
Binary Equivalents

39

with "single-rail" inputs {only normal, or "true, .. inputs),

the second containing a 20 bit binary adder with .. double

rail" inputs {both normal and complemented inputs), and

the third containing a 6 digit DBBL adder. It must be

pointed out that a binary adder with "double-rail" inputs,

even though it obviously costs more than its "single-rail"

binary counterpart when using a pin-oriented cost approach,

is quite desirable in cases in which one wants the actual

adder circuitry on the chip itself to be a fast, basically

two level type of realization such as AND-OR or NAND-NAND.

In other words, since one might want to use either the

"double-rail" or the 11 Single-rail" binary adder, both types

are included in the DBBL adder versus binary adder cost

comparison. Note that the ratio of DBBL adder pins to

binary adder pins runs from approximately 1.8 to 3.0, indi

cating that, in general a DBBL adder would cost about

1.8 to 3.0 times as much as its straight binary equivalent.

Fig. 16 compares a 6 digit DBBL register to both

a 20 bit "D flip-flop•• [6], or latch, type binary register

and a 20 bit S-R flip-flop type binary register. Fig. 16

again allows both types of binary registers to have either

11 Single-rail 11 or 11 double-rail 11 outputs. Note that in

all the registers shown, either the normal or the comple

ment outputs can be selected by means of the two selection

lines. Of course, one binary-valued line entering each

chip could, with a little extra logic on the chip itself,

N 0 R···._,_.

COMP.

X X
••••••••

40

-. • • • • • • • • ~- 20
X X X X OR40
SR SR

•••• -XX
x.Q ·X9

• •
NO

DBBL REG.

• • • • •
xQ. ···X9

DBBL COST 122
---------=---~ 3 OR 2
LATCH BINARY COST 42oR62

DBBL COST

5-R Bl NARY COST

122 rv
rv 2oRI.S

62 OR 82

Fig. 16. Cost of DBBL Register/Cost of
Binary Equivalents

serve the same purpose as these two selection lines.

However, the difference between one or two output

selection pins is insignificant when compared to the

total number of pins on each chip. Also note that no

clock lines have been shown in any of these registers

41

even though some units, such as the latch type binary

register, are always clocked. Since the number of clock

inputs would, in all cases, again be insignificant com

pared to the number of other pins, ignoring these clock

lines changes the accuracy of the calculations very little.

Thus, a DBBL register would, in general, cost from 1.5

to 3.0 times as much as its binary equivalents.

If the DBBL adder and register chips shown thus

far were enlarged to include maximal encoding on the

inputs and outputs, the number of pins on a DBBL chip

could be greatly reduced. For example, in a DBBL adder,

4 binary lines would suffice to encode each normal group

of 10 DBBL inputs and outputs and 1 line would suffice

to encode each of the normal pairs of DBBL carry inputs

and outputs. Obviously, such encoding would significantly

reduce the cost of these DBBL chips relative to their

binary equivalents. However, such encoding will not be

considered in this cost analysis because it would unfor

tunately induce additional propogational delays in the

DBBL units, cutting down substantially on their speed.

The inherent possibility of high speed operation in DBBL

logic will soon be shown to be one of its best "selling

points ... Thus, seriously hampering this speed by the

introduction of encoding merely to cut down on initial

cost is not practical.

It has now been shown that the traditional and the

modern methods of initial cost analysis both indicate

42

that DBBL adders and registers would be more costly than

equivalent standard binary units. In fact, given the

present state of the art in computer circuitry, by no

reasonable stretch of the imagination or plausible

series of assumptions could one ever propose that the

DBBL system would be cheaper to construct. Thus, since

the DBBL system would be more costly to build than would

an equivalent binary system, it is only natural to assume

that the DBBL machine user would suffer a greater purchasing

cost if he actually buys his machine or that he would

suffer larger periodic rental payments if he rents his

machine.

c. Daily Operational Efficiency

Unlike purchasing, or construction, cost, when one

considers the daily operational efficiency and speed of

the DBBL system versus that of its binary equivalent,

the picture is much brighter. First of all, consider

the simple fact that, in the DBBL machine, conversion

and reconversion of all input and output data from decimal

43

to binary and back again is not necessary. Not only does

this mean that the binary system must spend time doing

this conversion and reconversion, but it must also possess

the hardware or software to do these operations. Obviously,

this extra time and hardward or software mean money spent

by the binary machine user that the DBBL machine user

need not spend. For instance, in the IBM System/360

Model 50, the two machine instructions "Pack" and "CVB 11

(Convert To Binary) are necessary to convert the initial

coded numerical data read in from the card reader into

binary data. Similarly, the two instructions "CVD"

(Convert To Decimal) and "Unpack" are required to convert

binary machine data back into the coded data to be printed

by the printer. The "CVD" instruction, as a specific

example, can take anywhere from 13.00 to about 44.75

microseconds of machine time depending on the size of

the data being reconverted [7]. It is clear that in a

commercial operation having relatively large amounts of

input and output data, such as a bank's use of a computer,

the amount of time spent doing conversion and reconversion

could represent a substantial portion of the machine's

daily running time [1].

Now consider the potential speed of a DBBL adder

compared to the speed of its standard binary equivalent.

The reader should by now have grasped the idea that DBBL

logic has a highly parallel form of structure. This

inherent parallelism is a definite advantage over the

traditional BCD adder system with its basically serial

approach of "first add --then correct." Consider,

for the sake of argument, that one wants to create AND

and OR gate realizations of both a DBBL adder stage and

44

a binary adder stage. These stages will be assumed to not

have carry inputs or carry outputs, but only sum outputs,

in order to keep the comparison simple. Furthermore, since

the binary adder stage will require its inputs in both

normal and inverted form ("double-rail" form), the inverted

form of the inputs will be assumed to come either from

storage register units feeding the adder stage or from

inverters preceeding the adder stage so that no inverter

gates need be included in the realization. Thus, the

equation for the sum output line of the binary adder stage

is s = xy + xy. This equation implies a two-level logic

network, 2 parallel AND gates feeding into 1 common OR

gate. Each sum output line of the DBBL adder stage can

be formed from exactly the same type of two-level reali

zation. For instance, the equation for the s 0 output is

so= xoyo + xly9 + x2y8 + •••. + x8y2 + x9yl, again implying

a two level AND and OR realization. Thus, an entire DBBL

adder stage is nothing more than 10 of these two-level

realizations in parallel. In other words, as long as a

DBBL and a binary adder stage are realized via similar

structures, the propogational speed of both stages should

45

be the same. Obviously, if one insisted on building his

entir~ adder by merely connecting individual stages together

to form a row of connected, but discrete, stages, the

determining speed factor would be the time required for

the carry to serially propogate down through all stages.

Therefore, given such an adder layout, since a DBBL adder

requires only 1/3.33 times as many stages as its binary

equivalent, it should be capable of adding a number at

least 3.33 times as fast as the equivalent binary adder.

However, such a binary adder layout employing a mere

connected row of discrete single adder stages is a virtually

outdated type of layout. For example, it is quite common

to see 4 individual binary adder stages grouped together

as one block having a fast 11 look-ahead" carry available

from the fourth individual stage on the block of 4 stages.

Such blocks using carry "look-ahead" help to increase the

speed of the entire adder. Obviously, to further increase

the speed of a binary adder, one could in fact form the

binary adder by connecting blocks together, each of which

contains a purely two-level realization of a 3 or 4 bit

binary adder. These separate 3 or 4 bit binary adders

thus could each complete their 3 or 4 bit addition in the

same time required by a single DBBL adder stage to complete

its addition. Therefore, since 3.33 binary digits are

about equivalent in numerical size to 1 decimal digit, a

binary adder constructed according to this scheme could

add numbers approximately as fast as its DBBL equivalent

46

providing the DBBL adder is a mere connection of discrete,

single-digit DBBL stages.

Finally, in situations requiring the ultimate in

speed, one could also extend the idea of a two-level

realization to an entire adder. That is, one can form

two-level combinational logic realizations for both an

entire 20 bit binary adder and its 6 digit DBBL equiva

lent. Of course, such two-level realizations of entire

multi-stage adders require huge numbers of logic gates

and gate inputs, far more than are required in the slower,

more serial realizations previously mentioned. However,

the modern integrated circuit cost approach already pre

sented indicates that the complexity, or size, of the

internal circuitry of a chip containing such a two-level

adder has very little effect on the cost of the adder.

Therefore, it is reasonable to assume that, in the interest

of overall adder speed, one might want to construct such

two-level realizations. Given then, that both the 20 bit

binary adder and its 6 digit DBBL equivalent are both

entirely two-level realizations, both adders would be

capable of adding their equivalent size numbers with

identical speeds after these numbers reach the adders. The

only difference is that the binary adder demanded previous

"uncoding" of each of its binary inputs into "double-rail"

inputs including both the normal and the inverted forms

of each input variable. Whether this uncoding was done

47

by passing the inputs through a binary register or whether

it was done by separate inverter gates, this necessary

uncoding potentially implies, in general, one extra

level of propogational delay which is not present in

the DBBL system. The alert reader will note that this

particular advantage of DBBL results directly from the

fact that the DBBL system, as proposed in this paper, is

a highly "uncoded" form of logic. That is, the DBBL

system does not transmit its signals from circuit to

circuit via maximally encoded lines as today's binary

system usually does. At best, one could refer to a group

of 10 DBBL data transmission lines as using a "1-out-of-10"

code to indicate each possible value of the decimal digit

represented by such a group of lines. (Of course, one

could create a binary machine which has all variables

that are transmitted throughout the machine available in

both true and complemented form. However, such a machine

would be, in reality, a base 2 NBBL, or 2BBL, machine.)

Thus, at one extreme, if one organizes equivalent

size DBBL and standard binary adders using single-digit

adder stages as the basic building block (allowing the

carry to "trickle down" serially through each stage) , the

resultant DBBL adder would be much faster than its binary

equivalent. At the other extreme, if one uses a purely

two-level realization of both adders in their entirety

(such as AND-OR or NAND-NAND), then both adders would

themselves be equal in speed. However, even at this

purely two-level extreme, the DBBL system due to its

highly "uncoded 11 form of data transmission, still holds

the general advantage over the standard binary system

of never needing additional uncoding delays preceeding

the adder itself. Therefore, the DBBL system exhibits

the definite potential of faster overall arithmetic

operation.

48

Whether or not the overall DBBL system offers any

advantage over its overall binary equivalent in average

power consumption is questionable. Consider the combina

tional logic realizations of each adder discussed thus

far. The traditional initial cost analysis demonstrated

that the DBBL adder would cost more to purchase because

it contained many more gates and gate inputs than its

binary equivalent. It is therefore reasonable to deduce

that this DBBL adder realization consumes more average

power than its binary counterpart. On the other hand,

now consider a 6 stage DBBL storage register and its 20

stage binary equivalent. If the DBBL register stages

are the SCR types shown in Section VII.,then only one

SCR is on at any given time in each register stage.

Similarly, if the flip-flops in the binary register are

the familiar type consisting of two cross-coupled transis

tors, then one transistor is also on in each binary stage.

Assuming then that the SCR's and the transistors have

49

identical voltage supplies and load resistors, the average

power consumption of the DBBL register would be less than

that of its binary counterpart. Note that this would not

be true if the DBBL stages were built from a row of

binary flip-flops like those in the binary register (see

Fig. 13). Therefore, although the DBBL and the binary

system each have some advantage in the area of power con

sumption, it is not fair to say that either system as a

whole is definitely superior.

By far the most significant advantage of the DBBL

system over the equivalent size binary system lies in

the area of daily operational efficiency and speed. The

DBBL system need not waste time performing conversion and

reconversion, and thus also need not have any hardware

or software to perform this conversion and reconversion.

Furthermore, when compared to a standard binary system,

the DBBL system has the definite potential of faster

overall arithmetic operation within the machine. Such

considerations indicate that the DBBL system is generally

capable of doing more work per unit of time.

50

V. NBBL SYSTEMS

This section discusses some of the advantages and

disadvantages of NBBL systems compared to straight binary,

binary-coded base n, and Post base n systems. The major

asset of a base 10 NBBL, or DBBL, system, namely greater

daily operational efficiency than that of a standard

binary system, has already been discussed in detail in

Section IV. Therefore, this particular advantage will

not be mentioned again here. Instead, this section con

centrates on basic characteristics of NBBL systems

which might easily be overlooked.

A. General Advantages

One important advantage of an NBBL system that must

be stressed is its good, binary noise immunity. In a

multi-valued Post base n system, voltage levels would,

in general, be much more critical than in purely binary

systems such as the straight binary, the binary-coded

base n, and the NBBL systems.

It cannot be said that the NBBL system offers any

advantage in the area of computer architecture, or "lay

out." However, it can be said that NBBL should not force

architecture to be more complex than it is in today's

standard binary systems. Actually, one can picture an

NBBL machine as merely having n lines routed wherever the

binary machine has one. Thus, the architecture of an

51

NBBL machine is not more complex, but simply on a larger

scale than that of the equivalent binary machine.

Similarly, the NBBL system creates no new problems

in the area of fault diagnosis. For example, the very

commonly assumed "stuck-at-1" and "stuck-at-0" faults

which are used in ordinary binary systems are also

applicable to the NBBL system. Obviously, a more complete

list of possible faults would be necessary in a multi

valued Post base n system.

Another important advantage of an NBBL system is the

possibility of simpler peripheral devices. In a straight

binary or binary-coded device, all characters, including

the numerical digits O, 1, •••• , 9, which enter the computer

from a device such as a card reader or teletype must be

put in some form of binary code. Obviously, this means

that these peripheral devices must contain coding networks

to perform this coding. Even in a Post base 10 system,

the numerical digits would have to be transformed into 10

accurate discrete voltage levels. However, in the DBBL

system, the "coding•• of the numerical digits would consist

only of sending each of the digits 0, 1, ••••• , 9 into the

computer on the corresponding correct line of the group

0 1 9 . f
of 10 lines x , x , ••••• , x • Of course, th1s lack o

actual numerical coding in DBBL peripheral devices should

also make the DBBL system capable of getting numerical

data into and out of the machine faster than is possible

52

with the other systems.

Finally, it must be mentioned that since NBBL logic

is entirely binary in nature, it is, in general, just as

capable of successful asynchronous operation as are

binary systems. Thus, unlike a Post base n system [2],

[3], an NBBL system could take advantage of the speed

increase that asynchronous operation offers over syn

chronous operation.

B. General Disadvantages

Naturally, just as NBBL has several inherent advan

tages, it also has some basic inherent disadvantages.

The most obvious of these general NBBL disadvantages is

the increased inter-module wiring and the increased

number of individual circuit components required by most

bases in comparison to an equivalent binary system.

Using the equivalent 20 bit binary and 6 digit DBBL adders

of Section IV. as an example, these wiring and component

increases are evidenced respectively by the greater modern

and traditional purchasing costs of the DBBL adder. Among

other things, more inter-module wiring and more components

mean, for the general NBBL system, increased physical size,

and greater probability of at least one component fault

occurring during any given time period.

Another disadvantage of a general NBBL system would

be increased initial cost of core storage compared to

53

equivalent core storage in a standard binary system.

The reader will recall from Section IV. that a 6 digit

DBBL storage register was equivalent to a 20 bit straight

binary storage register. Similarly, a 6 digit word of

DBBL core storage would be the equivalent of a 20 bit

word of straight binary core storage. However, note

that 6 digits of DBBL core storage actually require 60

individual magnetic cores while 20 bits of straight

binary core storage require only 20 magnetic cores.

Thus, this comparison yields, for core memories, a DBBL

to binary initial cost ratio of about 3 to 1. Thus,

one can conclude that, in general, "NBBL" implies

costlier core memories than does "binary".

Finally, one last point must be mentioned concerning

the use of adders to realize logic functions such as

the "Exclusive Or" function. In a standard binary machine,

the bit-by-bit Exclusive Or of two binary numbers is

easily performed by merely adding the two numbers while

inhibiting the carries in the adder. Even though one

might never have any need for such an Exclusive Or in

a base n machine (n > 2) , if one attempted to form the

Exclusive Or of two numbers (each of which were all l's

or O's) in an NBBL machine using the above technique, the

result would not always be correct. For example, with the

carries inhibited in a DBBL adder, the sum of two l's

would yield "2," not "0" as desired in an Exclusive Or

54

operation. This does not mean that comparably easy

techniques for realizing such binary logic functions in

NBBL machines cannot be found. It simply means that

the normal techniques now in use in standard binary

machines would not work.

55

VI. NBBL ADDER REALIZATIONS

This section proposes some NBBL adder realizations

other than the strictly combinational one of Section II.

It is possible that thorough research with the realizations

shown here might yield advantages over such combinational

realizations in areas such as simplicity, initial cost,

and speed. For the sake of simplicity only, the adder

stage circuits shown in this section do not contain input

and output carries. That is, each adder stage shown here

produces a sum digit from only the addend and augend digits

without allowing an input carry digit and without pro

ducing a carry output digit. Eliminating these carry

inputs and outputs does not detract from the real world

practicality or applicability of these circuits. It does

however allow the presentation and explanation of these

circuits to be of reasonable length.

A. SCR Steering Array Realization

The first circuit shown in Fig. 17 is an SCR steering

array base 3 NBBL adder stage. Note that this circuit,

like all others shown in this section and the next section,

can easily be extended to a larger base, such as base 10.

A simple example can best illustrate how this adder stage

functions. Consider feeding two l's into this circuit

to be added. Obviously, the answer should be 2 in base

3. one of these l's would enter the circuit on input line

56

XI

sl

Fig. 17. SCR Array 3BBL Adder Stage

57

x1 while the other "1" would enter on line yl. The function

of the latter "1" is to shift the logical one voltage on

line x1 over to the s 2 output line. Thus, only the s2

output is at the logic one voltage level, indicating a

sum output of 2 as desired. The reader might wonder why

no load resistors are shown leading from each of the sum

output lines to ground. Such resistors are not shown

because they would not be necessary in all cases. For

example, if this adder stage were feeding one of the SCR

type storage register stages shown in Section VII., the

load for each sum output is already contained in the

storage register stage. On the other hand, inputs, y0 ,

y1 , and y 2 would definitely need resistors not shown in

order to keep the SCR gate currents in the adder at the

proper level.

B. ROM Realizations

The next two types of adder realizations are termed

Read Only Memory (ROM) realizations because their structures

are very similar to common types of ROM's. These reali

zations do not actually contain standard ROM's because, for

instance, they do not contain the addressing circuitry

included at the input of standard ROM packages. However,

these realizations do contain diode arrays and rows of

transformer cores exactly like those found in various ROM's.

58

Fig. 18 illustrates a diode ROM [8) realization for

a base 3 NBBL adder stage. This realization is really

nothing more than a group of diode-resistor AND and OR

gates set up so that each sum output line represents

a sum-of-products equation for the proper sum digit.

For example, the top three horizontal lines and the

vertical s 0 line actually represent the equation s 0 =

x0y 0 + x1y2 + x 2y1 • Note that, just as was the case

with the SCR array of Fig. 17, the resistors shown in

Fig. 18 between each of the sum output lines and ground

may not be needed if the adder stage is feeding an SCR-

type register stage such as those shown in Section VII.

Obviously, without these resistors, when a particular

sum output line is "off," it would essentially be pro-

viding the circuitry it feeds an open circuit condition

instead of a ground. With most types of logic, such an

open circuit would not produce the same results as a

ground. However, with many SCR's, an open circuit on

a gate lead will function identically to a ground on a

gate lead.

Finally, Fig. 19 depicts a braid transformer.ROM [8]

realization of a base 3 NBBL adder stage. Note that

each transformer core contains a list of the input lines

that pass through it. Any input lines not listed in a

particular core pass around that core. Further note

that each particular core is bypassed by a different

59

- - ----

Fig. 18. Diode ROM 3BBL Adder Stage

60

xO x1 xO xO xl xO xO
x' x2 x2 x1 x2 x2 x1
yO yO yl yO yO yO yl

yl y2 y2 y2 yl yl y2 y2
.
• •

v<>v1Yf . .

--

NLEQ OUTPUT= 0 IFF ALL INPUTS SAME

Fig. 19. Braid Transformer ROM 3BBL Adder Stage

pair of input lines. In fact, each core is bypassed by

a different one of the nine unique input combinations.

For example, the first, second, and third cores on the

left are bypassed by x 0y 0 , x1y2 , and x 2yl respectively,

where each of these combinations should produce a "0"

61

sum digit. Thus, when any of. these three input combina

tions are gated into the adder, the left NLEQ (Not Logical

Equivalence) gate will always have one of its three inputs

at ground level while the other two NLEQ gates will have

all high inputs. The result is that the left NLEQ gate

will produce a logical 1 output while the others produce

logical 0 outputs, thus forming the correct s 0 , s 1 , and

s2 outputs. Note that since all transformer outputs will

be zero when the adder stage is not being used, all NLEQ

outputs will then be zero. Thus, if these adder stage

outputs were connected directly to an SCR register stage

like those in Section VII., this special case of all

register stage input lines being zero would simply not

affect the register stage outputs.

The NLEQ gates, if driven directly by the transformer

output windings as shown in Fig. 19, must be carefully

chosen. For example, when the current passing through

a transformer core is returning to zero, that transformer

would actually produce a negative output voltage. Also,

for any given adder input combination, some of the cores

will have one current carrying wire passing through them

62

while, at the same time, other cores will have two such

wires. Thus, the NLEQ gate inputs will have to withstand

two different positive voltage levels, ground level, and

two negative voltage levels. More specifically, these

gates will have to be able to respond to both positive

voltages as a logical 1 and respond to ground and the

two negative voltages as a logical 0. Furthermore,

consider what happens to all but one of the NLEQ gates

every time data is fed into the adder stage. All gates

whose correct sum output is "0" now have their inputs

attempting to all rise simultaneously from logical O's

to logical l's. If one of these inputs were to reach

the logical 1 level before the others, transient undesired

l's would appear on sum output lines which should remain

fixed at 11 0." Interface circuitry between the transformer

outputs and the NLEQ gates could remove these critical

characteristics. However, such circuitry would also add

to the cost of the adder stage.

Despite its many cirtical areas and potential

problems, a realization such as that of Fig. 19 merits

real consideration. Rows of braid transformers are often

capable of driving logic gates directly, are extremely

cheap, and are capable of high speeds [8] .

63

VII. NBBL STORAGE REGISTER REALIZATIONS

This section proposes some NBBL storage register

realizations other than the one of Section III. It is

quite possible that the SCR designs shown here can yield

advantages over the more conventional designs consisting

merely of a row of n standard binary flip-flops and some

combinational logic, such as the one shown in Section III.

These possible advantages lie mainly in the areas of

lower power consumption and fewer internal components,

where fewer components can offer smaller physical size,

less frequent faults, and depending on the method of

manufacture, maybe lower cost.

A. Latch Realization

The first circuit shown in Fig. 20 is another of

the more conventional designs. It is a base 4 NBBL

storage register stage made from "D flip-flops" [6], or

latches. Unlike all other register stages shown in this

entire paper, the unit of Fig. 20 is shown clocked. The

only reason this unit is shown clocked is that standard

binary latches are strictly clocked items. Again note

that this circuit, like all others shown in this section,

can easily be extended to a larger base, such as base 10.

B. SCR Realizations

Fig. 21 illustrates the first of the SCR model

64

XI

' I ' I ' ~ ' I
- - ~ - \
" LATCHES

CLO cK, I \ I ~ I ' I XI

Fig. 20. Latch 4BBL Register Stage

register stages. There is no real reason why a "pnpn"

device such as an SCR cannot be integrated onto a chip

65

just like a bipolar transistor. Now consider two different

types of DBBL register stages, one made with SCR's like

those shown in this section and the other made with binary

S-R flip-flops like the one shown in Fig. 13 of Section III.

The SCR register stage would have only 1 of its 10 SCR's

on and drawing current at all times. However, assuming

the S-R flip-flops, for example, to be the type consisting

of two cross-coupled transistors, the S-R flip-flop

register stage would always have 10 of its 20 transistors

on and drawing current. Thus, in DBBL register stages,

the SCR realizations can hold a decided advantage over

the S-R flip-flop realization in the area of average

power consumption. Actually, this power advantage holds

true over all types of standard binary flip-flop reali

zations, not just the S-R flip-flop realization. Now

consider the number of "major" components in the two types

of DBBL register stages just compared, where "major" here

will refer only to SCR's and transistors for the sake of

simplicity. A single SCR register stage contains only 10

SCR's (and possibly 2 transistors) while the S-R flip-

flop register stage contains 20 transistors, 2 transistors

being in each of the 10 flip-flops. (If the S-R flip-

flops are more sophisticated types, such as "master-slave"

units, far more than 20 transistors would be required for

66

such a DBBL register stage realization.) Of course, such

a crude comparison proves nothing conclusive about the

relative costs of the two different realizations. It does,

however, hint very strongly that, in general, the SCR

realizations, which are designed specifically for NBBL

registers, require significantly fewer individual com-

ponents than the more conventional binary flip-flop

realizations. Circuitry containing fewer components

implies smaller physical size and less faults, two areas

which are critically important in large digital machines.

Fig. 21 depicts a "current sharing" (or current

robbing) SCR base 2 NBBL register stage. The basic idea

of this design is that the SCR's, the resistors, and the

voltage supply are all chosen so that there is ample

current available to sustain the ignition of only one

SCR. Suppose that a "0" has been previously stored

in the unit of Fig. 21 so that the left SCR is on. If

one now attempts to alter this storage to a "1 11 by making

input line x1 high and input line x0 low, the effect is

that the right SCR, in attempting to turn on, robs the

left SCR of enough of its original current so that this

current falls below the required holding current of the

SCR's. Therefore, the left SCR turns off, thus making

enough current now available to the right SCR so that

it can turn on. The major drawback of this design is

that it requires SCR's which exactly follow ideal SCR

67

v+

-

Fig. 21. Current-Sharing SCR 2BBL Register Stage

68

volt-ampere characteristic curves. Furthermore, all the

SCR's used must be almost perfectly matched. Obviously,

such SCR's are very hard to find in the real world.

Fig. 22 illustrates a capacitive-coupled SCR base 2

NBBL storage register stage. Fig. 23 shows some actual

input and output waveforms for this capacitive-coupled

model. It must be pointed out that this model and the

final model that soon follows have both actually been

built and thoroughly tested.

Imagine, that in this capacitive-coupled model, the

left SCR is already on and the right SCR is off, this

situation being the result of a previous input. Thus,

the coupling capacitor is charged with the polarity

indicated in Fig. 22. Now, if one turns on the right

gate lead and turns off the left gate lead, the right

SCR turns on. When this happens, .the charge that was on

the coupling capacitor forces the voltage level on the

cathode of the left SCR above the voltage level of its

anode, thus causing the left SCR to turn off (Fig. 23).

The major drawbacks of this model are (1) the appearance

of momentary voltages higher than the normal logic 1

level at an SCR's output when that SCR is turning off

and (2) the relatively slow turn off times of each SCR

caused by the inherent RC time constant of the circuit.

The reader should not be alarmed by the 200 ohm load

resistors in Fig. 22, which indicate a very large power

69

--

+ -

0.1 p:f'

20011.. 200.n

-10.75 v

Fig. 22. Capacitive-Coupled SCR 2BBL Register Stage

70

ov

-10.75 v

x8uf\t ~ 8o~51 P~+IOV
-0.75 V : SCRtON

ISCR
~F

-I O. 7 5 V----:,.:.-----

-10.75 v

I
~XOUT >

-0.75 v

-10.75 v

Fig. 23. Waveforms for Fig. 22

71

consumption. Such resistors were necessary only because

the SCR's used were heavy-duty 8 ampere units with fairly

large holding currents [9].

The final SCR register stage model to be discussed

is termed the transistor pre-clear model. Fig. 24

illustrates the circuit itself and Fig. 25 illustrates

some actual input and output waveforms that this circuit

produced. The operation of this circuit is really quite

simple. Whenever any gate signal rises from the logic

0 to the logic 1 level, this rise is differentiated by

the series combination of the 390 picofarad capacitor

and the 180 ohm resistor, thus producing a positive

voltage spike. This positive spike momentarily turns on

the two "pull up" transistors on the left side of the

circuit, causing them to momentarily pull the voltage

level of all SCR cathodes up to the same level as their

anodes. This momentary shunting of all SCR's attempts to

turn them off (Fig. 25). However, the SCR whose gate

lead is now at the logic 1 level turns on and stays on

after this momentary shunting effect has died away. The

net effect then is that the circuit stores the logical 1

supplied by the one high input ,line. This transistor pre

clear model improves greatly on the two major drawbacks

listed for the capacitive-coupled model. The transistor

pre-clear model does not allow the appearance of any

voltages on the outputs higher than the normal logic 1

1.3K.O.

Fig. 24.

-
SCR

EQUIVALENTS
.-----..._ / ~ .---......._

0
X our

I
X our

I SOn

-5 v

Transistor Pre-Clear SCR 2BBL
Register Stage

72

73

ov

-5V

-sv

-0.7 v

-sv

Fig. 25. Waveforms for Fig. 24

level. Furthermore, the lack of a prohibitive RC time

constant, such as was found in the capacitive-coupled

model, allows, in general, much lower turn off times.

Therefore, the transistor pre-clear model is definitely

the most promising of the three SCR models discussed

74

in this section. It does not place the nearly impossible

ideal requirements on the SCR's as does the current

sharing model and it offers "cleaner," higher speed output

waveforms than does the capacitive-coupled model.

It must be stressed here that neither the capacitive

coupled model nor the transistor pre-clear model, as they

are shown in this section, have been refined as far as

possible. None of the electronic components available

to the author, especially the SCR's, were extremely

high speed switching components. This is one reason

why, in the transistor pre-clear model shown in Fig. 24,

two-transistor equivalents [9], [10] were used to re

place the original heavy-duty SCR's used in the capacitive

coupled model. These equivalents were capable of lower

power, higher speed switching. Thus, the point is that,

with really good high speed con~onents, these SCR type

register stages, especially the transistor pre-clear model,

should be capable of speeds which are quite respectable

by today's computer standards. For example, one text,

already almost 3 years old, cites SCR's capable of turn

off times as fast as 100 nanoseconds [6].

75

VIII. CONCLUSION

This paper has proposed a new type of logic called

"n-base binary logic,n or NBBL. The basic structure of

NBBL adders and storage registers has been compared with

the structures of Post base n, traditional binary-coded

base n, and straight binary adders and registers. Also,

several realizations, both conventional and unconventional,

have been shown for NBBL adders and registers. Some of

these more unconventional realizations, such as the SCR

circuits shown for NBBL storage register stages, are

quite promising and deserve further research and extensive

developmental work.

This paper has also performed cost analyses of

"decimal-base binary logic," or DBBL, adders and registers

relative to their straight binary equivalents. These

analyses indicated that, without a doubt, the DBBL adders

and registers would cost more both to construct and to

buy (or rent). On the other hand, a DBBL machine offers

greater operational efficiency and speed over its binary

counterpart as a result of the following major advantages:

(1) no decimal-to-binary and binary-to-decimal conversion,

(2) much simpler and faster "coding 11 of numerical input

and output data, and {3) the potential of faster overall

arithmetic operation within the machine. These advantages

just listed mean that the DBBL machine should be capable

of doing more work per unit of time, especially in high

76

numerical input-output usages. Thus, for example, a

DBBL machine owner who allows others to use his machine

on a shared-time basis can get more customer jobs done

in a day's time, each customer having to pay for less

used time than would customers of a binary machine

shared-time system. Also, the DBBL system need not

contain hardware or software to do conversion and re

conversion, and thus, the DBBL machine user, unlike

the binary machine user, need not suffer the cost of

these items.

Today the development of computer circuitry is

rapidly approaching the point where logic speeds are

simply as fast as they can ever be. For example, emitter

coupled logic gates are capable of propogational delays

of less than a nanosecond [6], not much more time than

it takes for an electrical signal to travel the length

of a small piece of plain wire. As a result, the use

of DBBL adders and registers, like the use of parallel

processors, could be one means of further increasing

machine speeds even after logic speeds have reached their

limit. Thus, at a time in the computer industry when

speed seems to be taking precedence over everything else,

even circuitry cost, a DBBL machine indeed has much to

offer.

[1]

[2]

[3]

[4)

[5]

[6]

[7]

(8]

[9]

[10]

77

REFERENCES

M. s. Schrnookler and A. Weinberger, "high Speed
Decimal Addition, .. IEEE Transactions on Computers,
Vol. C-20, No. 8, pp. 862-866, Aug., 1971.

A. s. Wojcik and G. Metze, "On the Cost of Base N
Adders," IEEE Transactions on Computers, Vol. c-20,
No. 10, pp. 1196-1203, Oct., 1971.

A. S. Wojcik and G. Metze, "Cost Considerations of
Base N Adders Using N-Valued Logic Elements,"
Proceedings of the 7~ Annual Allerton Conference,
pp. 680-689, l969.

L. Sintonen, "On the Realization of Functions in
N-Valued Logic," IEEE Transactions on Computers,
Vol. C-21, No. 2, pp. 610-612, June, 1972.

s. s. Yau and c. K. Tang, "Universal Logic Modules
and Their Application," IEEE Transactions on Computers,
Vol. C-19, No. 2, PP• 141-149, Feb. 1970.

L. Strauss, Wave Generation and Shaping, Second
Edition. United States: McGraw Hill, Inc., 1970,
pp. 183, 270-273, 500-502, 569.

IBM System/360 Model 50 Functional Characteristics,
Second Edition, IBM Corporation, Systems Development
Division, Product Publications, Poughkeepsie, N.Y.,
Form A22-6898-l, 1967.

J. Marino and J. Sirota, "There's a Read-Only Memory
That's Sure to Fill Your Needs, .. Electronics, Vol. 43,
No. 6, pp. 112-116, March 16, 1970.

GE Silicon Controlled Rectifier Manual, Fourth Edition,
General Electric Company, Application Engineering
Center, Semiconductor Products Department, Syracuse,
N.Y., 1967, pp. 7-9, 424.

GE Silicon Controlled Rectifier Manual, Second Edition,
General Electric Company, Application Engineering
Center, Rectifier Components Department, Auburn,
N. Y., 1961, PP• 2-3.

78

VITA

James Oliver Bondi was born on May 29, 1949 in

St. Louis, Missouri where he received both his primary

and secondary education. He began his college education

in September, 1967 at the University of Missouri-Rolla

at Rolla, Missouri, later receiving his Bachelor of Science

degree in Electrical Engineering from this institution in

May, 1971.

He then enrolled in the Graduate School of the

University of Missouri-Rolla in September, 1971 to begin

work on his Master of Science degree in Electrical

Engineering. He was awarded a three-year NDEA Fellowship

which has financed his graduate studies to date and which

will continue to support him in his future Ph.D. endeavors.

	Decimal-base binary logic (DBBL) adders and registers
	Recommended Citation

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085

