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ABSTRACT

In order to increase the reliability of the power system and to make use

of trapped generation potential from renewable sources due to lack of transmission

availability, the interconnection of modern day power systems is increasing day by

day. Lack of timely response to the ramping load and high degree of interconnection

can lead to cascading failures. Upon inception, these can spread through the system

within seconds and may result in a total system blackout.

Natural calamities and erroneous operations of components are often the causes

of system disturbances. The type and the location of these disturbances determine

it’s impact on the system. Cascading failures spread through the system rapidly and

pose a serious threat to system stability. Recent examples of such disturbances are

the major blackouts that occurred in India on 30th and 31st July 2012. A loss of load

of several thousands of megawatts was observed.

Blackouts not only result in inconvenience to the residential customers but also

cause a heavy monetary loss to the industry and to the nation as a whole. Depending

upon the current system conditions, generation rescheduling or load shedding can be

employed to combat system disturbances. System islanding is usually the last resort

if none of the above produces desired results.

The aim of this thesis to develop a program for identification of line out-

ages that can initiate a cascading failure in the system. Development of generation

rescheduling and load shedding algorithms to curb overloads in these lines. It also

includes development and implementation of islanding procedure on a IEEE 118 Bus

system, if the generation rescheduling and load shedding does not work. The system

will be split into 3 independent stable islands as a preventive measure to avert the

cascading failures.
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1 INTRODUCTION

1.1 POWER SYSTEM OPERATION AND BLACKOUTS

Starting from the load forecasting, the process of power system operation,

goes through a lot of technical, economical and security related analyses before the

power is ready to be delivered it’s consumers. In essence, a successful operation of

a power system means meeting many more constraints than just the generation and

load balance. This requires tremendous data to be monitored by the Load Balancing

Authorities(LBAs) and the power system operators. All the generated data is then

checked for its correctness and this process is called as the state estimation. The

collected reliable data is then fed to heavy computer programs for analyses. These

programs run the security constrained unit commitment and unit dispatch algorithms

to obtain generation schedules of the generating units and other settings.

Owing to enormous size of the system and its vulnerability to the disturbances

due to component outages, the above said process may have to be repeated after

every five minutes to take into consideration the changes in the system, round the

year. The equipment in power systems are protected by protection devices. In the

event of deviation from normalcy in operating conditions, these devices trip open

the transmission lines/transformers/generators to avoid permanent damage to the

costly equipment. It is essential to know the state of the system for; there can be

certain instances where outage of one line can lead another outage and the chain so

continues. This is called as cascading failure and is the nightmare of every power

system operator as this propagates through the system in a matter of seconds and

can cause a complete system blackout.

A power system blackout can be thought of as a situation when loads of thou-

sands of megawatts is disconnected from the generators supplying power in a specific
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wide spread area. The blackout situation does not arise all of a sudden but is a result

of series of events. The power system transits from normal operating condition to

critical condition and then to emergency condition before entering into a state of total

blackout.

If corrective actions are not taken well within time, then undesirable results

are inevitable. The one major problem encountered while dealing with today’s highly

interconnected power systems is it’s size. Thousands of kilometers of transmission

lines, several thousand buses and the protecting devices associated with it generate

a lot of data to be analyzed every second in order to ensure proper functioning of

the power system. The power system operation also has critical economic aspects

related to it. After initiation, if not arrested soon, cascading failures can lead to a

total blackout situation. A total blackout of the system results in distress to the

residential customers and a hefty monetary loss to the industry. Thus, it becomes

extremely essential to identify such events which can initiate a cascade failure and

try avoid landing up in such a situation or have some procedure ready to avoid total

system blackout.

1.2 PROBLEM STATEMENT

The problem statement for this thesis can be stated as follows -

Given the system with its topological, technical and operating details, if there is a

disturbance event that can result into a cascading failure in the system, what preventive

measures can be taken to prevent the system from a complete blackout?

This problem can be addressed by a couple of methods or a combination of

them. It should be noted that the method employed in a given situation, depends

upon the current state of the system, system topology and the location of disturbance.

Different lines are connected to different types of buses, for example generation bus
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or a load bus. Moreover, changing system operating parameters for mitigation of one

problem can result into another problem because of the interconnections. Thus, all

the solutions should be checked for complete accuracy before employed. Usually this

is done using computer simulations.

1.3 MOTIVATION

The motivation for working on this problem were the recent major blackouts

that happened in India in the month of July 2012. The country is mainly divided

into four grids by virtue of its geography. In two blackouts that occurred on two

consecutive days left one or more grids in the dark state for hours.

This happened on a hot day of summer and looked like a result of lack of

planning and action from the utility side. However, there are more aspects to it and

if any of such disasters are to be avoided in the future, a detailed analysis of the

sequence of events and the causes of failure have to be carefully analyzed. This will

not only increase our understanding about the large system behavior in the event of

such disturbances but will also help us in development of procedures to be followed

to avoid them.

1.4 TOOLS USED

The main tool for this thesis is MATLAB. The function codes for contingency

analyses, finding out the Bus-Branch Incidence Matrix, Overloaded Lines were all

developed using MATLAB. The code for running a power flow and optimal power

flow solution was taken from MATPOWER. This code was altered to suppress some

of the results it printed to make the results concise.
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1.5 THESIS LAYOUT

This thesis report is divided into 8 Sections. First Section explains the basics of

the power system operation and the problem statement. Second Section is dedicated

to a report on the blackouts in India. The third Section introduces cascading failures

and related aspects.

Fourth Section talks about the system security analysis and different meth-

ods of analysis including contingency analysis. Fifth Section explains the approach

proposed to attack the problem statement. Sixth Section is about the concept of

intentional islanding in power systems. The seventh Section enumerates the results

and the analysis done. The last Section discusses the conclusions that are drawn from

the thesis work.
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2 REPORT ON BLACKOUTS IN INDIA

This report is based on report generated by the Inquiry Committee formed

for the Grid Disturbance in the Northern, Eastern and North-Eastern Grids in India

[1]. The complete transmission system in India is divided into four regional grids by

virtue of geography. The four grids and their respective acronyms are shown in Table

2.1.

Table 2.1. Regional Grids and their acronyms

Grid Name Acronym
Northern Regional Grid NR
Western Regional Grid WR

North-Eastern Regional Grid NER
Southern Regional Grid SR

2.1 BLACKOUT ON 30th AUGUST 2012

The NR is connected to WR through a number of interconnections but it was

observed that many of the interconnections were out of service due scheduled and

forced outages at the time of disturbance. The 400(kV) Bina-Gwalior-Agra was the

only main AC circuit remaining which connected NR to WR. The power withdrawal

by the utilities in the NR was observed to be much more than scheduled, prior to

the disturbance. Thus the flow of power from WR to NR region via Bina-Gwalior-

Agra link increased which led to overloading of the tie-line (the line carried around

1450(MW) against the nominal capacity of 691(MW).

The regional load dispatch centers initiated load shedding to reduce the load

on this line but the measures taken were inadequate. WR was also informed to

reduce the generation to curb the power flow through this line but the response was

not quick enough. The line soon tripped zone 3 protection. This happened due to
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load encroachment. Load encroachment is defined as the measured impedance, due to

load, current and voltage, exceeding the impedance determined by the loadability of

an impedance relay at a specific power factor [2]. With the increasing load, the current

flow through the line increased and due to lack of reactive power compensation, the

voltage profile of the line dropped. This condition was sensed by the distance relay as

fault and it tripped the line. It should be noted that the real power flow on the line

was not very high but high amount of reactive power flow resulted into high currents

and low voltage at Bina end. The tripping of the line was confirmed to be due to

load encroachment as no records of faults on the line were found. Figure 2.1 shows

the four regional grids on the map of India along with the all major transmission

lines and interconnections between various grids. Different colors are used to indicate

different voltage levels.

Figure 2.1. Indian grid and interconnections [1]

Before the disturbance, the NR was already 5686(MW) deficit of generation.

Most of this power was supplied by the WR via tie lines. When the Bina-Gwalior-

Agra line tripped due to load encroachment, the power was re-routed to NR through
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ER. This path WR-ER-NR is much longer than the previous one. Re-routing resulted

in large angular separation between group of machines in WR and NR.

This can be verified from a simple Power-Angle equation as follows.

P1,2 = |E1|×|E2|
X1,2

× sin(δ)

Where -

P1,2 = Real power transferred from node 1 to node 2 in the circuit

|E1| = Voltage at node 1

|E2| = Voltage at node 2

X1,2 = Transfer reactance between nodes 1 and 2

δ = Angular separation between node 1 and 2

The two nodes here, can be thought of as the point of exit in WR and the

point of entry in NR for the power flow. Re-routing increased the transfer reactance

between these two points due to additional reactance from the lines in the ER. The

bus voltages are usually maintained within a range of +/- 5% of the nominal value.

Also, ’sin’ in an increasing function. So, if we are to transfer the same amount of power

between two points with increased transfer reactance (or impedance) between the two,

the value of δ has to go up. Which means that the rotors of the NR machines further

fall behind the rotors in the WR machines. This can result into another phenomenon

called as power swings.

Most of the installed relays were distance relays (ex. Impedance relays) and

thus could not differentiate between a power swing and a fault condition and so

tripped on power swings. At this stage the NR was totally isolated from other grids.

As previously stated, NR was generating around 5686(MW) less than it’s demand. So

the frequency dropped and the system went into blackout due to operation of under
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frequency relays.

It is obvious that this loss of load rendered ER and WR regions with a surplus

generation and the frequency in these regions shot up. This also caused a few of the

WR generating units to shut down. Thus the connections between the WR and ER

were saved from being overloaded all the regions but NR survived from the blackout

condition.

2.2 BLACKOUT ON 31st AUGUST 2012

This was a more severe incident and the grid disturbance disconnected the WR

from ER, NER and the NR. The three regions finally collapsed and went into state of

black out. Before the disturbance, the ER and WR had surplus generation whereas

the NER and NR were importing powers from other regions. Many interconnecting

lines were out of service for different reasons and the system was operating in an

insecure condition at the frequency 49.84 Hz prior to disturbance. With the ramping

load in the NR, the system was pushed further into insecure condition and the load

dispatch centers were told to start shedding load. In addition to this, the WR was also

asked to reduce the generation to reduce the power injection into the interconnecting

lines.

The NR was connected to the WR via majorly 3 AC tie-lines but soon all of

them tripped one by one. It can be predicted that the first line tripped due to load

encroachment, same as on the previous day. The others tripped due to overloading,

which was a cascading effect. As done on the previous day, the power to the NR

from WR was rerouted via ER. But again this caused power swings. This time, the

electrical center of the power swing was inside the ER and nearer to the WR-ER

interface. So the situation was slightly different from that on 30th Aug.
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As a consequence of the power swing, the tie-lines between WR and the ER

tripped. This resulted into separation of NR+NER+ER from the WR at about

13:00 hrs. Thus the supply of about 3000(MW) from the WR was cut off and the

frequency in the NR+NER+ER (new grid) started dropping. The grid has Automatic

Under Frequency Load Shedding Schemes and df/dt relays. These two could together

shed a total load of around 5620(MW). But the load relief was not enough and the

frequency continued to drop. Eventually due to tripping of some generating unit

because of under frequency relay, large angular oscillations were generated in the rest

of the system and a large number of lines tripped within the new grid. At first the

NR separated from ER+NER and then collapsed due to under frequency. Later the

NER+ER system also collapsed leaving a few islands empowered.

2.3 CAUSES AND REMEDIES

There are a number of factors that initiated the disturbance and eventually

led to a major black out. Below are the causes and remedies, which, if would have

been observed earlier, could have saved this incident.

• Overloading and lack of reactive power compensation resulted in tripping of

transmission lines. Adequate reactive power compensation may have avoided

the load encroachment and the subsequent line tripping.

• The generating units were not on governor control due to other practical reasons.

If the generating units would have been on the governor control, their generation

would have increased with the dropping frequency and the chances of survival

of individual regions would have been better. Lack of governor response also

barred the formation of electrical islands, which could have been the ultimate

resort and could have accelerated the restoring action.

• All the generating units are equipped with Power System Stabilizers which pro-
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tect the power system from various destabilizing conditions. But they were not

tuned or calibrated properly and hence could not function well. These need to

be tuned and calibrated to account for the changes in the grid interconnections.

• It was observed that the load relief that should have been achieved due to

operation of under frequency relays and df/dt relays, was not achieved. The NR

has (Under Frequency Relays) UFR based load shedding of around 3000(MW)

and df/ft based shedding of around 6000(MW). If these schemes had operated

at the desired point of time, the collapse of NR could have been avoided. So

there is a need to give this aspect a bit more of attention and make sure that

these schemes operate in the correct manner henceforth. There is a strong need

to strengthen the inter-state transmission network.

• Lack of ample inter-state connections limits the power transfer capacity between

the states and also leads to voltage profile drops at the tail ends of the line.

The same this happened on both the days and this condition was sensed as a

fault by the distance relays.

• There is a need to provide better tools for the state estimation of the system

periodically. Currently the system administrators use the static state estimation

results to carry out the dispatch.

• There is a need of tools that can estimate the state of the system dynamically

and at a faster rate. This will enable the operators to know the actual power

flows on different lines. This data can be used to determine whether a particular

relay on a particular line will trip or not.

If at all the operators are provided with the data closest to the real data, they

can either

1. Initiate load shedding to obtain load relief
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2. Reschedule the generating units in order to decrease the loading on specific

overloaded lines

3. Can make efficient use of the HVDC links within the network Thyristor

Controlled Compensation Schemes to provide more reactive power com-

pensation

4. If none of that helps, breakdown the system into small independent sub-

systems, called as islands.
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3 CASCADING FAILURES

3.1 THE CONCEPT

A cascading failure is a condition of interconnected systems when the failure

of one part or component can lead to a failure in related areas of the system that

propagates itself to the point of an overall systems failure [3]. On a hot summer day,

the load profile is usually high due to excessive power used by the air-conditioning

units. Ramping up the load beyond certain limit can cause overloading of lines in

the transmission network. The lines and transformers are protected by protective

devices such as relays and circuit breakers. Various devices monitor the current or

power flows through the lines and voltages at the sending and receiving ends of the

transmission lines. The transmission lines can be tripped open if the flows through

the lines exceed their permissible limits or if the relays detect a fault in the line or if

the voltage at the receiving or sending end violates its limits. In any of these cases

the lines are tripped open in order to avoid damage to the equipment and to maintain

the stability of the power system.

Usually the system is designed to be (N−1) secured. Meaning that, loss of any

one of the lines/transformer/generator in the system will not result into instability of

the system. However, there can exist certain critical lines in the system, which when

tripped open, can overload other lines sharing a common bus. The other overloaded

lines are then tripped open by their respective protective equipment and this cycle

goes on. This is called a cascading failure. A cascading failure, once initiated, usu-

ally spreads though the system within seconds and can result into severe load and

generation imbalance. This in turn results in a total system failure.

Thus, closely monitoring such critical lines and taking safety measures before

any constraint violation becomes essential to avoid cascading failure. Taking the
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corrective action well within the time is another critical issue. All the power carrying

components have steady state and emergency ratings. The emergency rating has two

components. First one is the maximum amount of power that it can carry and the

second component it the time for which it can carry this amount of power before

sustaining a failure. Hence, taking the corrective actions well within the stipulated

time frame is of prime importance.

3.2 CAUSES

Invariably, the result of an uncontrolled cascading failure is either a total

blackout condition or formation of an island which is cut off from the rest of the

system. This process, is usually complex and a result of a series of events. Some of

these individual events may have the same cause while the other might have a different

one. For example, one transmission line may get tripped because of overloading.

When this line is taken out of service, the power flowing through it is taken up by

the adjacent lines. The increase in their flows may result in a lower voltage at the

end of the line and then it will trip on operation of the undervoltage relay.

The relays in the system may not be able to differentiate between a power

swing and a fault and trip open the line. Thus there can be numerous causes which

result into a cascading failure of the transmission lines in the power systems. Load-

Generation mismatch and its result being either sag or swell in the system frequency,

faults, load encroachment large power swings, forced outages because of natural

calamities,reactive power problems are some of the reasons which can be attributed

to the initiation of a cascading failure in the power system.
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3.3 EFFECTS

The consumers of the power can be broadly divided into two categories -

residential and industrial. Households and big apartment complexes constitute to

the residential loads while everything from manufacturing factories to hospitals and

airports make up for industrial customers. With no power supply, the manufacturing

in the industries come to a standstill resulting in wastage of man hours and loss

to the industry. The other services that rely on power supply from utilities such as

communication towers, water pumping stations are also affected by long lasting power

cuts.

In a country like India, where in most parts, weather does not take life threat-

ening form, 12 hour long power cuts will not cause lives. But countries facing severe

weather conditions, a loss of power for 12 hours, especially in the months of chilling

winters, can pose a serious threat to human lives.

3.4 NERC DIRECTIVES

The North American Reliability Council has laid out directives and standard

procedures that may be followed should an operator observe an event of cascading

failure in the system. The operators are also given certain rights which they should

exercise in order to put the system back into secured condition. The directives have

been in place for a long but were not mandatory until the year 2005. Energy Policy

Act of 2005 made these practices and standards mandatory for the system operators.

This decision was mainly influenced by the blackouts experienced by United States

in 2003[3].

The operating standards for the system operators and load balancing authori-

ties, are given in the Transmission Operations while the emergency procedures to be
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followed are stated in Emergency Preparedness and Operations. The operators or the

load balancing authorities are expected to take steps according to the current oper-

ating procedure of the power system. The Transmission Planning (TPL) directives

have categorized the operating range of the system into four categories A,B, C and

D. Table 3.1 gives a brief description of the operating system categories as laid out

by NERC.

Table 3.1. Description of NERC defined system operating categories

CATEGORY DESCRIPTION
A Normal system operation with non contingencies
B Single contingency
C Two or more contingencies
D Two or more contingencies or cascading out of service

The power systems should be operated (or modeled) in such a way that the

most severe single contingency should not induce sustained instability or cascading

outages or uncontrolled separation into the power system. The other directive says

that, if the system operator or the load balancing authority is generation deficient,

and in spite of taking all other possible measures, is not able overcome the load-

generation mismatch, then it (Operator / LBA) has the right to shed customer load

rather than putting the system into a risk of uncontrolled failures.

The most common contingencies observed in the power systems are loss of a

transmission line/transformer or loss of a generator. The system may lose a line or

a generator on account of the operation of protective devices installed for equipment

protection from damage. The protective relays may or may not operate due to actual

occurrence of fault on the line/machine. For example, high load levels (and lack of

reactive power compensation) may result in dip in the end voltages of the transmission

line and a distance relay may see it as a fault on the line. This is what happened as

one of the events in India and is called as load encroachment.

The most severe contingency case can be the most heavily loaded line in the
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system or the generating unit with highest generation levels. The directives then say

that, even if we lose any one of these, the system should have adequate resources

to make up for the loss of transmission/generation capability. In case of loss of

most heavily loaded transmission line, the other lines, when take up the power from

the lost line, should not get overloaded themselves otherwise it will lead to cascade

failure. While, in case of loss of the generator with highest generation levels, the other

generators, taking up the lost generation should have adequate spinning reserves.

They ratio in which different ’in-service’ lines take up the lost power from

outaged line depends upon the Line Outage Distribution Factors (LODF). Similar

happens in the case of a generator contingency and the ratio in which other generators

take up the lost generation depends upon the Generation Shift Factor(GSF), provided

their generation levels are not pegged.

There are many constraints under which the power systems operate. It’s op-

eration should make sure that all the electrical as well as the economic constraints

are met. The ’must-run’ status generators are always committed preferentially to

the load, after that come the most economical ones. So, the generation levels of the

generators in the system are set in a way that ensures lowest value of the cost func-

tion. If, due to occurrence of some failure the system security is at stake, then the

generation levels may be rescheduled so that any possibility of a cascade failure is

avoided. Even after this, if the LBA is not in a position to get the system back in the

secured condition, then the LBAs can shed load so as to avoid the mismatch between

the generation and load levels. Thus, it is clear that the system security is given the

utmost importance. The simple reason behind this is, if it enters in a blackout state,

then anyways the customers will face discontinuity in the power. Also, starting the

system back up from a blackout state is a very difficult task. The massive nuclear

plants and thermal plants have their minimum-up time and minimum-down time con-
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straints. The thermal power plants also have their Boiler Light Up times (BLUs). All

these need to be taken into consideration while restoring the system back in service

and is a tedious and time taking task.
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4 SYSTEM SECURITY ANALYSIS

All the large scale power systems are employ Energy Management System(EMS)

to monitor and control the operations of the power system. The power system oper-

ator, with the help of EMS, then takes corrective actions to drive the system into a

safer zone, if needed. IN order, to ensure economic, safe and reliable operation of the

power system, it has to go through a lot of processes. The different steps in system

security analysis are described as follows.

4.1 STATE ESTIMATION

The process of system security analysis starts with collection of different data

from all the substations within the system. Due to a large amount of data being

transmitted over long distances, it invariably has errors to certain extent. Since so

many parameters are measured at numerous substations, it may result in over estima-

tion of the parameters. Thus usually all the readings are assigned a weightage based

upon the correctness and accuracy of the monitoring devices measuring them. All this

data is then collected and transmitted to the control room where it is displayed on

the operator’s screen for monitoring. The different values that are usually monitored

are voltages, power flows, currents, status of the circuit breakers at the substation

level. In addition to this, other critical values like system frequency, generation unit

output levels can also be monitored.

With the help of the SCADA system, the system operator can give commands

to change the taps of the transformers installed at remote locations to maintain

voltage profile in a certain region. It is difficult for humans to analyze such huge

amount of data, so computers are employed which can generate an alarm should it

see a system constraint violation. The collected data can then also be fed to advanced
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computer programs which can analyze it to determine the probable threats to the

system security.

4.2 ANALYSES METHODS

There are a number of different analysis tools used to analyze the security of

the power system. The methods differ in the time-frame they take into consideration

for analysis or analyze different aspects of the system. For example some methods

just monitor the transient phenomenon of the system compared to other methods

which do a steady state system analysis. All these methods generate different reports

which can be used by the operators to take appropriate actions. Some of the security

analyses techniques are discussed in this thesis report.

4.2.1 Transient Security Assessment.The transient security assessment

is done to observe the transient behavior of the system. Thus the time frame of this

study is usually of the order of few milliseconds upto a second. They usually monitor

the power swings taking place in the systems or the transient oscillations (hunting)

phenomenon exhibited by the generator rotors in case of a sudden change (usually

loss) in the load.

4.2.2 Voltage Security Assessment.This method usually employs regular

power flow programs to solve for steady state voltage levels in the system. Typically

it may use Newton-Raphson power flow solution method. It should be noted the aim

of this study is to calculate the P-Q and P-V curves and thus they can not employ a

simpler and faster DC power flow method.

4.2.3 Available Transfer Capacity Analysis.This analysis is primarily

performed to calculate the total power transfer capacity of the system between two
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given points. This system takes into consideration all the limits and constraints

developed as a result of previous analysis methods.

4.2.4 Contingency Analysis.Owing to the enormous size of the systems

and the complex interconnection, everything from detection, analysis to preventive

action initiation becomes a complex and lengthy process. After studying the blackouts

in India, we now know that after initiation, the cascading failures spread through the

system within a fraction of a second before any human can take action. This makes it

extremely essential to study the probable cases which can initiate a cascading outage

in the system and operate the system in a preventive manner so that the initiation

can be avoided.

Contingency Analysis is a process that is used to imitate these problems on

a computer model of the power system and then study its effects so that we can

operate better and avoid landing into the trouble of cascading failure. For example,

the system model can be used to study the outage of a line between buses A and B.

The program pulls the line between buses A and B out of service deliberately so that

the after effects can be studied. If it is observed that outage of this line can initiate

a cascading failure, then preventive measures can be taken in advance to avoid its

outage.

The core idea of contingency analysis has been explained above and also it’s

purpose. If the operator intends to consider the bus voltages and the reactive power

flows, he may opt for a full Newton-Raphson solution otherwise a simple DC power

flow solution can be attempted. It should be understood that a typical large scale

power system may have tens of thousands of buses and tens of thousands of trans-

mission lines. Solving a full AC power flow solution can demand for extended time

and higher computational power than a DC decoupled power flow solution.
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Before a list of all possible contingencies that can initiate a cascading failure

in the system can be obtained, it becomes mandatory to remove each component in

the system one at a time, run a power flow solution and then analyze the results for

constraint violations. If a single component is taken out of service from and the system

is solved for a power flow solution then it is called as (N − 1) contingency solution.

Similarly taking out two components will mean it is a (N − 2) contingency. The size

of the problem explodes with every additional component taken out of the system

because of the combinations. Comprehensive computer programs can be written to

do this work.

4.3 SECURITY CONSTRAINED OPTIMAL POWER FLOW

The purpose of performing optimal power flow on a system is to meet the load

demand at the lowest possible cost. While the minimization constraint can also be

something else than the cost, mostly the optimal power flow solution is solved for cost

function minimization. The security constrained optimal power flow can be thought

of a combination of optimal power flow and contingency analysis. The incorporation

of the security constraint can result in different generation schedules, transformer tap

settings, than a normal optimal power flow without security constraints. This all

is done with an aim that whenever a contingency occurs, it should not result into

violations of the system constraints.

Allen J. Wood, in this book,’Power Generation Operation and Control’ divides

the process of security constrained power flow into four parts. The power system under

consideration is first modeled in a computer program. These steps are executed one

by one to reach to the ultimate solution of security constrained optimal power flow.
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4.3.1 Optimal Dispatch.This corresponds to a state of the power system

where an optimum solution for the system has been obtained and the system is

working as per it. However, this does not mean that the system is in the most

secured state.

4.3.2 Post Contingency.This is considered to be the state of the power sys-

tem where a contingency has occurred (say forced outage of a transmission line/transformer

due to overload) and this results in violation of one or many of the system constraints

(say overloading of another line in service).

4.3.3 Secure Dispatch.A state of the system no contingency has taken

place but the system is operating with corrected state so that, even if the same

contingency does happen, no constraints will be violated

4.3.4 Secure Post-Contingency Dispatch.After getting the system to

work with the corrections applied, again the same contingency is applied on the

system. But this time the system is observed to work within the limits and no

violations are observed.
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5 PROPOSED APPROACH

The initial problem statement said that, we are given model of a large scale

power system with all it’s technical and working conditions details. Now, the system

operating condition changes in such a way that a disturbance that can initiate cas-

cading failures is likely to occur. What should be the system operator’s response in

such a case? Starting with the identification of the possible contingencies that can

induce cascading failures in the system, we will work our way through the problem

in this Section to obtain a final solution.

5.1 SELECTION OF CRITICAL CONTINGENCIES

Before proceeding any further with the problem, it is made clear at this point

that, in order to avoid extreme complexity in the problem, we will only be considering

disturbances that either involve a transmission line or a transformer outage. This

means that generator contingencies are not considered in this problem.

In order to study the effect of the cascading failures on the system, firstly, it is

very important to identify the cases which can initiate such kind of disturbances. With

a system composed of thousands of transmission lines, transformers and generators.

analyzing the system in real time for critical contingencies can take too much of time

and before we identify a potential threat and try to apply the remedial measures, the

system may have already got under uncontrolled failures.

A power system can be modeled using a computer program. Any changes

happening in the system, for example addition of a new transmission line, can be

included in the program later as well. (N − 1) contingency algorithm is used in this

thesis work to identify the lines which can initiate a cascading failure in the system.

Figure 5.1 shows the process that has been used to identify the the lines which can
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initiate a cascading failure in the power system. For the purpose of discussion through

this thesis work, these lines are referred to as ’critical contingencies’.

START

SET N = NUMBER OF
LINES IN THE SYSTEM

TAKE I th LINE
OUT OF SERVICE

RUN LOAD
FLOW ANALYSIS

SYSTEM CON-
STRAINTS

VIOLATED?

FLAG LINE AS A CRIT-
ICAL CONTINGENCY

IS I = N?

END

I = I + 1

YES
NO

YES

NO

Figure 5.1. Contingency Analysis Flow-chart

5.2 REDUCING SIZE OF THE PROBLEM

All the analysis work has been done on a IEEE 118 BUS system which has 186

transmission lines in total. A real world power system may have thousands of buses

and tens of thousands of transmission lines. Since we are not concerned about the

generator contingencies, all those lines, which when switched opened for a (N − 1)

contingency analysis, leave one or more generators isolated, should not be removed.

Removing these lines will essentially result in two contingencies - one being the line

itself and another being the generator isolated.
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In order to reduce the time required to perform the (N − 1) contingency

analysis, such lines are flagged ahead of time and are then excluded from being taken

out of service during the contingency analysis. The program that identifies such lines

takes just a few seconds to identify such lines. For the sake of discussion through this

thesis, we will refer the set of such lines as ’critical lines’. The program analyzes the

topology of the system and then flags the critical lines in the system. Table 5.1 gives

the number of critical lines identified in a system against the total number of lines in

the system and also the time required to run the code.

Table 5.1. Time taken to flag critical lines

Test Case No. of lines No. of critical
lines found

Time Elapsed(s) Time per PF so-
lution(s)

ieee 30 41 3 0.03 0.05
case39 46 10 0.01 0.02
case57 80 2 0 0.01
case118 186 9 0.01 0.02

case2383qp 2896 574 3.78 0.22
case2737sop 3506 336 5.37 0.24

If, in the process of taking out lines one by one, such a ’critical branch’ is

taken out of service, then the power flow solution does not converge but still it takes

its time. So, flagging these lines ahead of time saves a lot of time and computational

effort. It can be easily pointed out from the figures in the table that as the system

size increases, it becomes more and more advantageous to flag the critical lines before

running the contingency analysis to save time.

5.3 PERFORMANCE INDEX

As said earlier, a large scale power system may have tens of thousands of

transmission lines. So, even if the generator contingencies are neglected, there are

several thousand power flow solutions to solve for each out of service line. However,
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mostly, the systems are so designed that only a few outages in the system can be a

serious threat to the system security.

The load demand on the system changes with time and also with the days of

week and seasons of the year. Thus the generation levels of of generating units in the

system keep on changing so as to maintain the most economical operating conditions

possible. In addition to this, some lines might be kept out of service for scheduled

maintenance. This makes it mandatory to run a power flow every time for every

contingency keeping incorporating the current generation schedules and the current

system constraints. But this task is greatly simplified if we have a list of the ’critical

contingencies’ based upon their effect on the system if they are tripped open. In

order to reduce the amount of data to be analyzed to make the computation process

faster, a Performance Index(PI) is defined for all the transmission lines in the system

as follows -

PI = Σ(Snormalflow

Smaxlimit
)2n

The meaning of the performance index can be explained in the following man-

ner. While running a contingency analysis, we take a line out of service and run the

power flow solutions to obtain the apparent power flows through all the lines in the

system. Now, for the every line in service we take the ratio of the actual apparent

power flowing through it to the apparent power limit of the line, raise it’s power

to an even number (say 2) and add the ratios calculated for all the lines in service.

Then this PI is defined for the line we initially took out of service. Moving ahead

with our contingency analysis, take out another line from service. Again calculate

the performance index for the line put out of service.

The reason for raising the power of the ratio to an even number is to give a

higher weightage to the overloaded lines while calculating the PI. If the power is a

number more than or equal to 2, then the overloaded lines will contribute towards
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the performance index more heavily than the lines with its flows under their limits.

5.3.1 Ordering PIs.At the end of PI calculation process, what we have is

a table with all the transmission lines listed and their respective performance indices

marked against them. Upon arranging this table in the descending order of the

performance indices, we essentially get a table that shows the effect of an outaged

line on the system in the descending order. Meaning, the top line in the system,if

outaged, will have maximum effect effect on the system, in terms of overloading of

other lines in service.

Now, we have the freedom to select a specific number of lines from the top of

the list of all the transmission lines in the power system. We will of course choose

a desired number of lines from the top of the table because these lines are the ones

which will leave a greater impact on the system if outaged. Note that the system

operator can decide how many lines to select. The lower a line is in the table, the

lesser impact it will leave on the system if outaged.

5.4 RELIEVING OVERLOAD

The system parameters of the IEEE 118 BUS system are then changed in such

a manner that running a load flow analysis indicates that the flow in one of the critical

contingency lines exceeds it’s limit by 10%. MATPOWER loadflow program is used

for this purpose. The program then uses three basic solution techniques in order to

relieve the overload on the line. The three solutions are listed below in the order of

their priority.

1. Generation Increase

2. Load Shedding

3. System Islanding
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5.4.1 Generation Increase.This is the first method that is used to relieve

the overload on the overloaded line. This approach basically takes advantage of the

spinning reserves that the system has at it’s disposal. Spinning Reserve is the on-line

reserve capacity that is synchronized to the grid system and ready to meet electric

demand within 10 minutes of a dispatch instruction by the ISO. Spinning Reserves

are usually expressed as a percentage of the Operating Reserves. The ISO norms

determine this percentage and it is 50% for CAISO and MISO [4][5]. The spinning

reserves are made use of before resorting to load shedding.

However, employing this solution depends upon the system topography as well

as the current system conditions. The direction of power flow in the overloaded line is

determined before moving ahead with the procedure. Let us consider the a situation

shown in Figure 5.2.

Node a
Node b

(Gen Bus)
Node c

(Load Bus)

Linea−b Lineb−c

Figure 5.2. Example 1

Let us assume that Linea−b is a critical contingency which has power flow of

10% above its limit. The power flows from bus a to bus b. Lineb−c is another line

with its power flow well under its limits and carries power from bus b to bus c. Bus b

is a generator bus and bus c is a load bus. The load at bus c is being fed partially by

the generator at bus b and the rest power comes via bus a, flowing through Linea−b.

If the generation at bus b is increased,it will result in lesser power flow through

Linea−b and it’s overload might be reduced. However, this is subject to the condition

that generator at bus b is not already operating at its peak and has some spinning

reserves available. Also, increasing generation at bus b will also result in more power

flowing through Lineb−c. Thus care should be taken that we do not overload Lineb−c

in the process of relieving overload on line Linea−b. The system may not then operate
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in the most economical condition possible, but initiation of cascading failure can be

avoided.

5.4.2 Load Shedding.NERC directives say that in spite of taking all the

possible remedial measures, if the system operator still sees a generation deficit, then

he can shed consumer load instead of putting the system security at risk. However,

there are more aspects to be considered before actually shedding any consumer load.

The location and the amount of load that should be shed has to be determined. The

obvious location can be the nearest load to the overloaded line.

The amount of load shed should just be enough to avoid the overloading of

the line in consideration. To achieve this, we use an iterative process. If the line is

overloaded by X(MW ), then X(MW ) of load is shed at first. The load flow is run

again to check whether the overload still persists. If it does, then again load equal to

the new overloading level is shed. This process is continued until the overload on the

system vanishes.

5.4.3 Exceptions.The process of increasing the generation and shedding

the load does not always work. Sometimes, the generation level at a particular bus

may reach its limit before the overload is relieved. In another case, the load might

have been fed partially through two lines with different impedances. Shedding the

load in such a case results in reduction in power flow through the line which has lower

impedance of the two. Thus the load shedding may not be enough to get rid of the

overload. In such cases, the iterations may just go on and on and may never succeed.

The other exception can be that no such generation bus might be available

for the generation to be increased or it might be operating at its limit. We may as

well not have a load available to shed in the exact position explained above. In all

such situations, we are left with no other alternative but to resort to islanding of the
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system. If such scenarios are detected, the program automatically moves over to the

islanding procedure. The overloaded line is then opened along with several other lines

in order to split the system into 3 independent islands.
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6 ISLANDING

The state of islanding in a power system can be defined as A condition in

which a part of the power system that have both load and generation resources

remains energized while isolated of the rest of the power system [5].

Islanding or breaking up of a large power system into smaller mutually disjoint

systems can either be intentional or unintentional. Many times, system disturbances

cause lines in the power system to open this disconnecting a certain portion of the

system from the rest. Such islands are called as natural islands and they are usually

a result of system disturbances. The system then breaks up into two or many dis-

connected parts which may have generation as well as loads. If they are to sustain as

small independent systems, the load-generation levels in all the islands should match.

The islands will otherwise collapse. A good example of this can be the NR grid in

India. During disturbances on both the days, the NR was disconnected from all the

other grids. Since the NR was significantly generation deficit, the frequency in the

NR went down and finally resulted in collapse of whole NR.

In such cases, splitting the system intentionally into islands which will be more

stable seems to be a better option. Since this splitting is intentional, the probability

of generation-load match is much better. If needed, the load in the individual islands

can also be adjusted to match the generation levels thus ensuring the sustainability

of the island. The process of intentional islanding can, thus, include opening up few

lines in the power system and breaking it up into smaller disconnected parts.

6.1 ANT SEARCH MECHANISM

Different algorithms such as min-cut algorithm (which ensures system split up

with minimum number of lines opened) or swarm algorithm have been used in the
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past for intentional islanding of the system.

In this thesis work, another approach known as the ant search mechanism is

used[6]. Based upon the ends of the overloaded line, the system is split up intention-

ally into 3 independent islands. The ant search mechanism basically involves creation

of one ant for each island to be formed. So, each of these ants start from a bus and

move towards the other unoccupied buses in the system. On reaching another bus,

the ants mark that bus as ’occupied’ and move towards a different bus.

All the possible buses are connected together in such a manner. However, it

is not possible to exhaust all the buses in the system using this procedure. So, the

remaining buses are connected to the nearest ’occupied’ buses. Since we intend to

split the system into 3 islands, we start with three ants.

6.2 SELECTION OF ANTS

Let us say that the overloaded line is carrying power from bus a to bus b. The

two ants are then selected in the following manner -

1. Ant 1 is bus a

2. Ant 2 is bus b

In a system with 118 buses, now we have a choice of choosing ant 3 from rest

116 buses. We start with setting bus 1 to be ant 3. The system is then split according

to the algorithm discussed above. After all the three islands have been formed, a slack

bus is assigned in each island. An optimal power flow analysis is then run for each

of the islands and the results are scanned for any system constraint violations. If all

the three islands are found to be stable after shedding some load, then the amount of

load that had to be shed and the number of lines that had to be opened are recorded.
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Then the ant 3 is changed to bus 2 of the system and the same procedure

is repeated again. This cycle continues until all the 116 buses in the system are

exhausted. Figure 6.1 shows the flow chart of this procedure.

6.3 POST ISLANDING PROCEDURES

Section 6.2 explained the algorithm for formation of the islands. After each

island is created, the total generation and total loads in each island is calculated. If the

island is generation deficit, then just enough load is shed to obtain generation - load

balance. The total amount of load shed in all three buses is recorded. After balancing

generation and load, an optimal power flow solution is run using MATPOWER.

Results of the optimal power flow solution are checked for any constraint violation.

Constraint violation may mean lower or higher bus voltage or higher power flows in

the transmission lines.

6.3.1 Power Flow and Voltage Constraints.Since we are operating the

system in an emergency situation, emergency power flow ratings of the transmission

lines are followed. Several factors govern the power flow ratings of the transmission

line but mostly the power flow capacity of a transmission line is determined by thermal

constraints. Thus, transmission lines can have different emergency ratings for different

times of year, summer or winter[7].

For the sake of simplicity, we assume that the emergency rating of all transmis-

sion lines in the system is 116% of the normal continuous rating, which is the average

of summer and winter ratings. The bus voltages are maintained within 0.94(pu) to

1.06(pu).

If any of these constraints are violated, then the solution is discarded. If all

the system parameters stay within the limits, then for that Ant3, the total load shed
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Figure 6.1. Island formation flow chart
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and the total number of lines opened for the islands formation is recorded. After

successful testing for stability of all the three island, if two of them are found to be

considerably smaller in size then the third one, then depending upon the topology of

the system, the two smaller islands can also be joined together. This will essentially

split the system into two islands. This decision is taken if it results in still lower

amount of load shed.

6.4 OPTIMAL SOLUTION

An optimal solution would be when the total load shed and the number of lines

opened will be minimum. For this purpose, we define another index which will be

called as ’Islanding Index’ for the sake of discussion in this thesis work. The Islanding

Index is defined as follows -

Islading Index = 0.15 × No. of lines opened + 0.85 × Total load Shed

Thus we weigh both the parameters differently to come up with a single Index. A

graph is plotted using all such indices for each successful selection of Ant3. The

scheme which gives the lowest value of Islanding Index is considered as the optimal

solution. This step concludes the islanding procedure for a particular overloaded line.
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7 ANALYSIS AND RESULTS

The system used for testing the program is IEEE 118 BUS system. The system

has 186 transmission lines in total. Out of these, 10 lines are considered as critical

contingencies in this thesis and a mitigation technique for overloading of all of them,

one at a time, is attempted.

7.1 CRITICAL LINES

Firstly, the system topology is analyzed in order to identify the critical lines

in the system. Since we are not considering any generator contingencies and only

(N − 1) contingency situations, identification of critical lines beforehand becomes

advantageous. Critical lines are those line, which if opened, result in isolation of one

or more generators from the rest of the system. Table 7.1 gives the list of critical

lines in the IEEE 118 bus system.

Table 7.1. List of Critical Lines

Serial No. From Bus To Bus
1 10 9
2 73 71
3 87 86
4 111 110
5 112 110
6 116 68
7 117 12
8 9 8
9 86 85

7.2 CRITICAL CONTINGENCIES

Later, a (N − 1) contingency analysis is performed on the system for each

transmission line and transformer in the system. The results for each of them are
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analyzed. The contingencies which result in overloading of other transmission lines,

thereby posing a risk of cascading failure, are identified. These lines are then arranged

in decreasing order of their impact on the system. The impact is measured in terms

of the overloading of other lines in service, then this line goes out of service. The

impact is measured by Performance Index (PI). It should be noted that the program

calculated Performance Indices for all the lines in the system. The operator has a

choice to select a definite number of lines to be monitored out of all. Table 7.2 lists

the top 10 critical contingencies.

Table 7.2. List of Critical Contingencies

Serial No. From Bus To Bus PI Direction
1 8 5 104.97 1
2 38 65 60.84 -1
3 26 30 60.43 1
4 38 37 58.18 1
5 30 17 54.85 1
6 64 65 54.48 -1
7 103 110 54.26 1
8 25 27 52.00 1
9 34 637 49.70 -1
10 100 103 48.24 1

In the table, PI stands for Performance Index and Direction shows the direction

of power flow in the line. 1 means power flowing from ’From Bus’ to ’To Bus’ and -1

means opposite.

7.3 LINE OVERLOADS AND MITIGATION TECHNIQUES

Unanticipated increase in power demand or inaccurate load forecasting can

lead to overloading of transmission lines in the system. Generation increase or load

shedding are the two simple options before the system operators, in such a scenario.

Out of the two, load shedding is always given the least preference. If, none of above
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two techniques are feasible, then, in order to keep the maintain system security, the

operators may resort to system islanding.

After the initial analysis, we now try to imitate a situation of overloading one

of the critical contingencies. For this purpose, first, the normal power flow in the line

is determined. Then the line limit is set to 10% below the normal flow limit. This

results in overloading the line by 10%. The data is then fed to the program and the

results are discussed below.

7.3.1 Line 8-5.Details of Line8−5 and the mitigation solution are given

below -

Normal Power Flow = 360.74(MVA)

Line Limit = 541(MVA)

New Limit Set = 327.94(MVA)

Overload = 32.8(MVA)

The power in Line8−5 flows from bus 8 to bus 5. Bus 5 is connected to buses

3, 4, 6 and 11. Generators 4 and 6 are not generating upto their limits. Generation

at bus 4 is 0(MW). Thus the generation at bus 4 is increased until the overload is

relieved. This results in generation at bus 4 to go up to 55.01(MW).

Thus the overload on Line8−5 is relieved by ramping up the generation at bus

4 from 0(MW) to 55.01(MW).
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7.3.2 Line 26-30.Details of Line26−30 and the mitigation solution are given

below -

Normal Power Flow = 224.00(MVA)

Line Limit = 336.00(MVA)

New Limit Set = 203.6(MVA)

Overload = 20.40(MVA)

Line26−30 carries power from bus 26 to bus 30. Bus 30 is also connected to bus

8 which is a generator bus. But if the generation level at bus 8 is increased, this does

help in reducing the overload on Line26−30 but at the same time, it starts overloading

another lines. If the generation at bus 8 is increased, Line8−30 and Line65−68 have

their flows exceeding their limits and thus this can not be a possible solution.

Bus 30 is also connected to buses 17 and 38. Bus 17 has a load which is less

than the ’overload’ value. Thus shedding that load will not relieve the overload. Bus

38 does not have any load at all. Thus in order to save initiation of cascading failures

in the system, the system is broken into 3 islands. Islanding Factor for every choice

of Ant3 is calculated. Figure 7.1 is a plot of Islanding Index against the choice of

Ant3.
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Figure 7.1. slanding Indices for Line26−30

Another approach, in this case is tried, where the system is split up in just

two lines. The results for both the split ups are given in Table 7.3.

Table 7.3. Islands comparison for Line26−30

Item 3 Islands 2 Islands
Buses in Island1 108 110
Buses in Island2 8 8
Buses in Island3 2 –

No. of lines opened 9 8
Total Load Shed 212(MW) 212(MW)

It can be seen that the Total Load Shed does not change with the number of

islands formed, in this case. However, one less line has to be opened in order to split

the system into 2 islands rather than 3.

7.3.3 Line 38-65.Details of Line38−65 and the results of mitigation solution

are given below -

Normal Power Flow = 189.76(MVA)

Line Limit = 285.23(MVA)

New Limit Set = 172.51(MVA)

Overload = 17.25(MVA)
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Line38−65 carries power from bus 65 to bus 38. Bus 38 is connected to buses 30

and 37. Both buses, 30 and 37, neither have any load or any generation. So, system

islanding is initiated. Figure 7.2 shows the Islanding Indices for different Ant3 choices.

Figure 7.2. Islanding Indices for Line38−65

It can be seen that if Ant3 is chosen to be bus 66, lowest value of the Islanding

Index can be obtained. The details of the islanding scheme with Ant3 being bus 24

are given below -

No. of buses in Island 1 = 25

No. of buses in Island 2 = 59

No. of buses in Island 3 = 34

Total Load Shed = 572(MW)

No. of Lines Opened = 24

In this case, when the system is split up into two islands, both the islands

formed are not stable. Meaning that, after running a optimal power flow solution,

one or more system constraints are found violated. If such a split up is done, the

lines in the individual buses soon trip open one by one and the islands will eventually

collapse. Thus, splitting the system in 2 buses is not a feasible solution.
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7.3.4 Line 38-37.Details of Line38−37 and the results of mitigation solution

are given below -

Normal Power Flow = 268.98(MVA)

Line Limit = 402.32(MVA)

New Limit Set = 244.52(MVA)

Overload = 24.26(MVA)

In Line38−37, power flows from bus 38 to bus 37. Bus 37 is also connected to

bus 34, which is a generator bus. If the generation at bus 34 is increased, it may

relieve overload on line Line38−37. When the generation level at bus 34 is increased

from 0(MW) to 53.67(MW), the overload on Line38−37 is relieved.

7.3.5 Line 30-17.Details of Line30−17 and the results of mitigation solution

are given below -

Normal Power Flow = 249.09(MVA)

Line Limit = 373.80(MVA)

New Limit Set = 226.44(MVA)

Overload = 22.65(MVA)

Line30−17 carries power from bus 30 to bus 17. Bus 17 is in turn connected

to buses 15 and 18. Bus 15 is a generator bus. So, an attempt is made to relieve

the overload on Line30−17 by increasing the generation level at bus 15. However, to

self arrest the program, a limit is set on the maximum number of iterations. The

system is not able to get rid of the overload on line Line30−17 even after 20 iterations

of increasing the generation at bus 15. As bus 18 is also a generator bus, the program

them jumps to bus 18. When the generation level at bus 18 is increased to 68.54(MW)
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from 0(MW), the overload on Line30−17 is relieved.

7.3.6 Line 64-65.Details of Line64−65 and the results of mitigation solution

are given below -

Normal Power Flow = 194.55(MVA)

Line Limit = 291.71(MVA)

New Limit Set = 176.86(MVA)

Overload = 17.89(MVA)

The power in Line64−65 flows from bus 65 to bus 64. Bus 64 is also connected

to buses 61 and 63. Since bus 61 is a generator bus, its generation is increased from

160(MW) to 191(MW) in order to relieve the overload on Line64−65. So an increase

in generation of 30(MW) is needed.

7.3.7 Line 103-110.Details of Line103−110 and the results of mitigation so-

lution are given below -

Normal Power Flow = 61.19(MVA)

Line Limit = 91.01(MVA)

New Limit Set = 56.08(MVA)

Overload = 5.11(MVA)

Line103−110 carries power from bus 103 to bus 110. Bus 110 itself is a generator

bus. Taking the direction of pwoer flow into consideration, it is obvious that if the

generation level at bus 110 is increased, it may result in lower loading of Line103−110.

After increasing the generation at bus 110 from 0(MW) to 9.31(MW), it is observed

that the overload on Line103−110 is relieved. It should be noted that since the generator
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is on the end bus of the line itself, the generation increase at bus 110 and the initial

overloading level of the line match more closely.

7.3.8 Line 25-27.Details of Line25−27 and the results of mitigation solution

are given below -

Normal Power Flow = 146.65(MVA)

Line Limit = 329.82(MVA)

New Limit Set = 133.31(MVA)

Overload = 13.34(MVA)

Power in Line25−27 flows from bus 25 to bus 27. In this case, bus 27 is a

generator. So the generation level at bus 27 is boosted to 39.85(MW) from 0(MW),

in order to relieve the overload on the line.

7.3.9 Line 34-37.Details of Line34−37 and the results of mitigation solution

are given below -

Normal Power Flow = 97.90(MVA)

Line Limit = 153.41(MVA)

New Limit Set = 88.88(MVA)

Overload = 9.02(MVA)

Line34−37 carries power from bus 37 to bus 34. Just like the previous few

cases, bus 34 is a generator bus. Also, the generation level of bus 34 is below the

maximum limit. Thus the program attempts to boost up the generation level at bus

34 to relieve overload on line. It is found that when the generation at bus 34 reaches

29.86(MW), the overload on Line34−37 is gone.
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7.3.10 Line 100-103.Details of Line100−103 and the results of mitigation

solution are given below -

Normal Power Flow = 123.74(MVA)

Line Limit = 181.85(MVA)

New Limit Set = 112.49(MVA)

Overload = 11.25(MVA)

Line100−103 has a power flow from bus 100 to bus 103. Bus 103 itself is a

generator bus. Thus incraesing its generation level may relieve the overload on the

line. Previous generation level of bus 103 is 40(MW). It is seen that when this

level reaches 55.7(MW), the overload on the line vanishes. Thus an increase in the

generation level of bus 103 by 15.7(MW) avoided Line100−103 from being tripped open

due to overload.

This section summarizes the mitigation techniques that can be adopted to

avoid overloading of 10 lines. Once the methodology is developed, it can be extended

for more lines as well. The next section will discuss the accomplished work.



46

8 CONCLUSION

For a defensive mechanism to be developed against cascading failures in the

power systems, it is very essential to analyze any of such previous events. Mainly

because, such disturbances occupy a vast area and can result into a total blackout.

Blackouts are usually a result of series of event rather than one single. However,

it becomes extremely essential to find out that one single incident that initiated the

process. Although less frequent, the blackouts cause inconvenience on a massive scale.

This Section is dedicated to discussion of conclusions that can be drawn from this

thesis work.

The different remedial measures that could have been taken in order to prevent

the system from blackout have already been discussed in section 2.3. From the study

of blackouts in India, it can be inferred that unanticipated load ramping or in other

words, inaccurate load forecasting put the power system components under a lot of

stress. From the blackouts in India, it inferred that had there been a better forecast

of the load in the NR, they Load Balancing Authorities would have been better

prepared. They might even have initiated the load shedding well in advance to avoid

overloading few inter-regional lines in service. The blackouts in India also bring out

the importance of SCADA system and the concept of real time monitoring of the

system. Real time voltage profiles of the buses and power flows in the line help the

system operators to operate better and take timely decisions based on the changing

parameters of the system.

In a power system system of real world size, there can be thousands of trans-

mission lines, transformers and generators. Not all of them, if outaged, will initiate

a cascading failure in the system. Finding out the critical lines in the system, hugely

reduces the size of the problem. Even if the data is collected by a SCADA system

and displayed on the monitors for the system operators in a concise way, it still is
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a lot of data to analyze. Just monitoring the most significant transmission lines (or

components in general) increases the effectiveness of the monitoring process.

The process of mitigating overloads on lines can be different for different lines.

It totally depends upon the location of line, how much power was the line carrying,

the direction of power flow in the line as well as the surroundings of the line. This

conclusion can be bolstered by the fact that we had many more options for Ant3

in case of Line26−30 than for Line38−65. Surroundings here may mean availability of

a generator or a load center near the overloaded line. It is usually observed that a

change in load or generation at a bus which is 3 buses away from the concerned line,

does not affect the loading of the line much. So different lines need to be treated

differently.

System security is always given a priority over the economic operation of the

system in case of emergency situations. Also, shedding load bears the least priority

and is done if the operator is generation deficit even after trying all the other possible

options. Increasing generation at a generator bus to avoid overloading of a particular

line, may result in overloading of other adjacent lines. Such a solution only makes

the situation worse and hence should be avoided.

Intentional islanding is always the last option for the system operators. Split-

ting up the system into different islands needs opening up transmission lines. In our

case, we came across a situation where we had to open 11 or 13 transmission lines.

Opening transmission lines can be significantly difficult tasks as it can also induce

transient disturbances in the power system risking its stability. Just splitting up the

system into islands is not enough. The stability of the islands should be checked first.

Since intentional system islading may include decommissioning fewer generators from

the loads or fewer load shedding, it ensures a faster recovery from the emergency sit-

uation to a normal working condition. Thus, intentional islanding is always a better
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option than system blackout.

It can be concluded that the system can be split up into varying number of

islands, grouping different buses together. An active method of islanding which takes

into consideration of current generation levels of different generators, geographical

aspects of the system and ensuring minimum generation - load imbalance, can be

the best possible method. Sometimes the generators in a particular geographic area

are coherent. This property can be beneficially exploited while performing inten-

tional power system islanding in order to minimize the risks of pwoer swings and the

disturbances happening on account of it.



APPENDIX

IEEE 118 BUS SYSTEM DATA

The bus data for IEEE 118 bus system is given in the following table on a

100(MVA) base [8].

Where -

Bus No. = Bus Number

Type = Bus type

1 = Load Bus

2 = Generator BUs

3 = Slack Bus

4 = Isolated Bus

Pd = Real Power Demand

Qd = Reactive Power Demand

Gs = Shunt Admittance

Bs = Shunt Suseptance

baseKv = Base Voltage (kV)

Vmax = Maximum Voltage

Vmin = Minimum Voltage
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Bus No. Type Pd Qd Gs Bs baseKV Vmax Vmin

1 2 51 27 0 0 138 1.06 0.94

2 1 20 9 0 0 138 1.06 0.94

3 1 39 10 0 0 138 1.06 0.94

4 2 39 12 0 0 138 1.06 0.94

5 1 0 0 0 -40 138 1.06 0.94

6 2 52 22 0 0 138 1.06 0.94

7 1 19 2 0 0 138 1.06 0.94

8 2 28 0 0 0 345 1.06 0.94

9 1 0 0 0 0 345 1.06 0.94

10 2 0 0 0 0 345 1.06 0.94

11 1 70 23 0 0 138 1.06 0.94

12 2 47 10 0 0 138 1.06 0.94

13 1 34 16 0 0 138 1.06 0.94

14 1 14 1 0 0 138 1.06 0.94

15 2 90 30 0 0 138 1.06 0.94

16 1 25 10 0 0 138 1.06 0.94

17 1 11 3 0 0 138 1.06 0.94

18 2 60 34 0 0 138 1.06 0.94

19 2 45 25 0 0 138 1.06 0.94

20 1 18 3 0 0 138 1.06 0.94

21 1 14 8 0 0 138 1.06 0.94

22 1 10 5 0 0 138 1.06 0.94

23 1 7 3 0 0 138 1.06 0.94

24 2 13 0 0 0 138 1.06 0.94

25 2 0 0 0 0 138 1.06 0.94

26 2 0 0 0 0 345 1.06 0.94

27 2 71 13 0 0 138 1.06 0.94
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Bus No. Type Pd Qd Gs Bs baseKV Vmax Vmin

28 1 17 7 0 0 138 1.06 0.94

29 1 24 4 0 0 138 1.06 0.94

30 1 0 0 0 0 345 1.06 0.94

31 2 43 27 0 0 138 1.06 0.94

32 2 59 23 0 0 138 1.06 0.94

33 1 23 9 0 0 138 1.06 0.94

34 2 59 26 0 14 138 1.06 0.94

35 1 33 9 0 0 138 1.06 0.94

36 2 31 17 0 0 138 1.06 0.94

37 1 0 0 0 -25 138 1.06 0.94

38 1 0 0 0 0 345 1.06 0.94

39 1 27 11 0 0 138 1.06 0.94

40 2 66 23 0 0 138 1.06 0.94

41 1 37 10 0 0 138 1.06 0.94

42 2 96 23 0 0 138 1.06 0.94

43 1 18 7 0 0 138 1.06 0.94

44 1 16 8 0 10 138 1.06 0.94

45 1 53 22 0 10 138 1.06 0.94

46 2 28 10 0 10 138 1.06 0.94

47 1 34 0 0 0 138 1.06 0.94

48 1 20 11 0 15 138 1.06 0.94

49 2 87 30 0 0 138 1.06 0.94

50 1 17 4 0 0 138 1.06 0.94

51 1 17 8 0 0 138 1.06 0.94

52 1 18 5 0 0 138 1.06 0.94

53 1 23 11 0 0 138 1.06 0.94

54 2 113 32 0 0 138 1.06 0.94



52

Bus No. Type Pd Qd Gs Bs baseKV Vmax Vmin

55 2 63 22 0 0 138 1.06 0.94

56 2 84 18 0 0 138 1.06 0.94

57 1 12 3 0 0 138 1.06 0.94

58 1 12 3 0 0 138 1.06 0.94

59 2 277 113 0 0 138 1.06 0.94

60 1 78 3 0 0 138 1.06 0.94

61 2 0 0 0 0 138 1.06 0.94

62 2 77 14 0 0 138 1.06 0.94

63 1 0 0 0 0 345 1.06 0.94

64 1 0 0 0 0 345 1.06 0.94

65 2 0 0 0 0 345 1.06 0.94

66 2 39 18 0 0 138 1.06 0.94

67 1 28 7 0 0 138 1.06 0.94

68 1 0 0 0 0 345 1.06 0.94

69 3 0 0 0 0 138 1.06 0.94

70 2 66 20 0 0 138 1.06 0.94

71 1 0 0 0 0 138 1.06 0.94

72 2 12 0 0 0 138 1.06 0.94

73 2 6 0 0 0 138 1.06 0.94

74 2 68 27 0 12 138 1.06 0.94

75 1 47 11 0 0 138 1.06 0.94

76 2 68 36 0 0 138 1.06 0.94

77 2 61 28 0 0 138 1.06 0.94

78 1 71 26 0 0 138 1.06 0.94

79 1 39 32 0 20 138 1.06 0.94

80 2 130 26 0 0 138 1.06 0.94

81 1 0 0 0 0 345 1.06 0.94
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Bus No. Type Pd Qd Gs Bs baseKV Vmax Vmin

82 1 54 27 0 20 138 1.06 0.94

83 1 20 10 0 10 138 1.06 0.94

84 1 11 7 0 0 138 1.06 0.94

85 2 24 15 0 0 138 1.06 0.94

86 1 21 10 0 0 138 1.06 0.94

87 2 0 0 0 0 161 1.06 0.94

88 1 48 10 0 0 138 1.06 0.94

89 2 0 0 0 0 138 1.06 0.94

90 2 163 42 0 0 138 1.06 0.94

91 2 10 0 0 0 138 1.06 0.94

92 2 65 10 0 0 138 1.06 0.94

93 1 12 7 0 0 138 1.06 0.94

94 1 30 16 0 0 138 1.06 0.94

95 1 42 31 0 0 138 1.06 0.94

96 1 38 15 0 0 138 1.06 0.94

97 1 15 9 0 0 138 1.06 0.94

98 1 34 8 0 0 138 1.06 0.94

99 2 42 0 0 0 138 1.06 0.94

100 2 37 18 0 0 138 1.06 0.94

101 1 22 15 0 0 138 1.06 0.94

102 1 5 3 0 0 138 1.06 0.94

103 2 23 16 0 0 138 1.06 0.94

104 2 38 25 0 0 138 1.06 0.94

105 2 31 26 0 20 138 1.06 0.94

106 1 43 16 0 0 138 1.06 0.94

107 2 50 12 0 6 138 1.06 0.94

108 1 2 1 0 0 138 1.06 0.94
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Bus No. Type Pd Qd Gs Bs baseKV Vmax Vmin

109 1 8 3 0 0 138 1.06 0.94

110 2 39 30 0 6 138 1.06 0.94

111 2 0 0 0 0 138 1.06 0.94

112 2 68 13 0 0 138 1.06 0.94

113 2 6 0 0 0 138 1.06 0.94

114 1 8 3 0 0 138 1.06 0.94

115 1 22 7 0 0 138 1.06 0.94

116 2 184 0 0 0 138 1.06 0.94

117 1 20 8 0 0 138 1.06 0.94

118 1 33 15 0 0 138 1.06 0.94
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The line data for IEEE 118 bus system is given in the following table on a

100(MVA) base [8].

Where -

Fbus = ’from’ bus of line

Tbus = ’to’ bus of line

R = Resistance of line

X = Reactance of line

B = Suseptance of line

Rate A = Continuous rating of line

Ratio = Tap Ratio of transformer
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Fbus Tbus R X B Rate A Ratio

1 2 0.0303 0.0999 0.0254 60.63 0

1 3 0.0129 0.0424 0.01082 63.6 0

4 5 0.00176 0.00798 0.0021 160.5 0

3 5 0.0241 0.108 0.0284 107.19 0

5 6 0.0119 0.054 0.01426 132.82 0

6 7 0.00459 0.0208 0.0055 80.64 0

8 9 0.00244 0.0305 0.581 674.5 0

8 5 0 0.0267 0 541 0.985

9 10 0.00258 0.0322 0.615 679.32 0

4 11 0.0209 0.0688 0.00874 96.319 0

5 11 0.0203 0.0682 0.00869 115.89 0

11 12 0.00595 0.0196 0.00502 110.44 0

2 12 0.0187 0.0616 0.01572 85.78 0

3 12 0.0484 0.16 0.0406 53.31 0

7 12 0.00862 0.034 0.00874 59.74 0
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Fbus Tbus R X B Rate A Ratio

11 13 0.02225 0.0731 0.01876 82.96 0

12 14 0.0215 0.0707 0.01816 63.06 0

13 15 0.0744 0.2444 0.06268 29.31 0

14 15 0.0595 0.195 0.0502 29.98 0

12 16 0.0212 0.0834 0.0214 49.51 0

15 17 0.0132 0.0437 0.0444 243.73 0

16 17 0.0454 0.1801 0.0466 40.28 0

17 18 0.0123 0.0505 0.01298 189.035 0

18 19 0.01119 0.0493 0.01142 83.79 0

19 20 0.0252 0.117 0.0298 39.78 0

15 19 0.012 0.0394 0.0101 91.76 0

20 21 0.0183 0.0849 0.0216 66.32 0

21 22 0.0209 0.097 0.0246 64.94 0

22 23 0.0342 0.159 0.0404 82.23 0

23 24 0.0135 0.0492 0.0498 39.98 0

23 25 0.0156 0.08 0.0864 256.75 0

26 25 0 0.0382 0 208.9 0.96

25 27 0.0318 0.163 0.1764 329.82 0

27 28 0.01913 0.0855 0.0216 49.28 0

28 29 0.0237 0.0943 0.0238 38.14 0

30 17 0 0.0388 0 373.8 0.96

8 30 0.00431 0.0504 0.514 157.95 0

26 30 0.00799 0.086 0.908 336 0

17 31 0.0474 0.1563 0.0399 69.99 0

29 31 0.0108 0.0331 0.0083 27.16 0

23 32 0.0317 0.1153 0.1173 209.53 0
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Fbus Tbus R X B Rate A Ratio

31 32 0.0298 0.0985 0.0251 73.71 0

27 32 0.0229 0.0755 0.01926 63.95 0

15 33 0.038 0.1244 0.03194 44.23 0

19 34 0.0752 0.247 0.0632 57.64 0

35 36 0.00224 0.0102 0.00268 33.9 0

35 37 0.011 0.0497 0.01318 83.29 0

33 37 0.0415 0.142 0.0366 64.96 0

34 36 0.00871 0.0268 0.00568 49.08 0

34 37 0.00256 0.0094 0.00984 153.41 0

38 37 0 0.0375 0 402.32 0.935

37 39 0.0321 0.106 0.027 82.64 0

37 40 0.0593 0.168 0.042 66.29 0

30 38 0.00464 0.054 0.422 187.03 0

39 40 0.0184 0.0605 0.01552 63.22 0

40 41 0.0145 0.0487 0.01222 35.17 0

40 42 0.0555 0.183 0.0466 45.31 0

41 42 0.041 0.135 0.0344 77.26 0

43 44 0.0608 0.2454 0.06068 38.8 0

34 43 0.0413 0.1681 0.04226 41.57 0

44 45 0.0224 0.0901 0.0224 75.89 0

45 46 0.04 0.1356 0.0332 83.04 0

46 47 0.038 0.127 0.0316 47.21 0

46 48 0.0601 0.189 0.0472 35.7 0

47 49 0.0191 0.0625 0.01604 32.49 0

42 49 0.0715 0.323 0.086 135.92 0

42 49 0.0715 0.323 0.086 135.92 0
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45 49 0.0684 0.186 0.0444 77.2 0

48 49 0.0179 0.0505 0.01258 52.99 0

49 50 0.0267 0.0752 0.01874 82.9 0

49 51 0.0486 0.137 0.0342 104.55 0

51 52 0.0203 0.0588 0.01396 43.85 0

52 53 0.0405 0.1635 0.04058 26.25 0

53 54 0.0263 0.122 0.031 46.71 0

49 54 0.073 0.289 0.0738 79.94 0

49 54 0.0869 0.291 0.073 79.94 0

54 55 0.0169 0.0707 0.0202 26.24 0

54 56 0.00275 0.00955 0.00732 43.15 0

55 56 0.00488 0.0151 0.00374 49.95 0

56 57 0.0343 0.0966 0.0242 37.09 0

50 57 0.0474 0.134 0.0332 55.54 0

56 58 0.0343 0.0966 0.0242 22.87 0

51 58 0.0255 0.0719 0.01788 43.27 0

54 59 0.0503 0.2293 0.0598 46.93 0

56 59 0.0825 0.251 0.0569 72.1 0

56 59 0.0803 0.239 0.0536 72.1 0

55 59 0.04739 0.2158 0.05646 53.34 0

59 60 0.0317 0.145 0.0376 99.34 0

59 61 0.0328 0.15 0.0388 118.88 0

60 61 0.00264 0.0135 0.01456 169.04 0

60 62 0.0123 0.0561 0.01468 61.61 0

61 62 0.00824 0.0376 0.0098 65.27 0

63 59 0 0.0386 0 249.1 0.96
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63 64 0.00172 0.02 0.216 249.1 0

64 61 0 0.0268 0 169.96 0.985

38 65 0.00901 0.0986 1.046 285.23 0

64 65 0.00269 0.0302 0.38 291.71 0

49 66 0.018 0.0919 0.0248 270.86 0

49 66 0.018 0.0919 0.0248 270.86 0

62 66 0.0482 0.218 0.0578 61.47 0

62 67 0.0258 0.117 0.031 42.38 0

65 66 0 0.037 0 163.67 0.935

66 67 0.0224 0.1015 0.02682 84.82 0

65 68 0.00138 0.016 0.638 99.4 0

47 69 0.0844 0.2778 0.07092 89.25 0

49 69 0.0985 0.324 0.0828 75.32 0

68 69 0 0.037 0 253.3 0.935

69 70 0.03 0.127 0.122 167.3 0

24 70 0.00221 0.4115 0.10198 31.08 0

70 71 0.00882 0.0355 0.00878 46.67 0

24 72 0.0488 0.196 0.0488 27.38 0

71 72 0.0446 0.18 0.04444 37.13 0

71 73 0.00866 0.0454 0.01178 18.46 0

70 74 0.0401 0.1323 0.03368 50 0

70 75 0.0428 0.141 0.036 44.45 0

69 75 0.0405 0.122 0.124 167.79 0

74 75 0.0123 0.0406 0.01034 79.13 0

76 77 0.0444 0.148 0.0368 101.65 0

69 77 0.0309 0.101 0.1038 93.75 0
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75 77 0.0601 0.1999 0.04978 81.44 0

77 78 0.00376 0.0124 0.01264 103.48 0

78 79 0.00546 0.0244 0.00648 71.08 0

77 80 0.017 0.0485 0.0472 210.6 0

77 80 0.0294 0.105 0.0228 210.6 0

79 80 0.0156 0.0704 0.0187 108.78 0

68 81 0.00175 0.0202 0.808 131.41 0

81 80 0 0.037 0 131.41 0.935

77 82 0.0298 0.0853 0.08174 378.17 0

82 83 0.0112 0.03665 0.03796 81.92 0

83 84 0.0625 0.132 0.0258 67.36 0

83 85 0.043 0.148 0.0348 101.93 0

84 85 0.0302 0.0641 0.01234 56.81 0

85 86 0.035 0.123 0.0276 28.02 0

86 87 0.02828 0.2074 0.0445 23.39 0

85 88 0.02 0.102 0.0276 77.01 0

85 89 0.0239 0.173 0.047 108.74 0

88 89 0.0139 0.0712 0.01934 150.8 0

89 90 0.0518 0.188 0.0528 221.69 0

89 90 0.0238 0.0997 0.106 221.69 0

90 91 0.0254 0.0836 0.0214 75.5 0

89 92 0.0099 0.0505 0.0548 404.06 0

89 92 0.0393 0.1581 0.0414 404.06 0

91 92 0.0387 0.1272 0.03268 42.12 0

92 93 0.0258 0.0848 0.0218 88.02 0

92 94 0.0481 0.158 0.0406 81.19 0
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93 94 0.0223 0.0732 0.01876 72.63 0

94 95 0.0132 0.0434 0.0111 63.13 0

80 96 0.0356 0.182 0.0494 46 0

82 96 0.0162 0.053 0.0544 41.59 0

94 96 0.0269 0.0869 0.023 49.53 0

80 97 0.0183 0.0934 0.0254 56.28 0

80 98 0.0238 0.108 0.0286 45.75 0

80 99 0.0454 0.206 0.0546 34.83 0

92 100 0.0648 0.295 0.0472 52.63 0

94 100 0.0178 0.058 0.0604 73.65 0

95 96 0.0171 0.0547 0.01474 31.95 0

96 97 0.0173 0.0885 0.024 34.15 0

98 100 0.0397 0.179 0.0476 20.4 0

99 100 0.018 0.0813 0.0216 34.78 0

100 101 0.0277 0.1262 0.0328 44.21 0

92 102 0.0123 0.0559 0.01464 67.85 0

101 102 0.0246 0.112 0.0294 60.98 0

100 103 0.016 0.0525 0.0536 112.49 0

100 104 0.0451 0.204 0.0541 86.11 0

103 104 0.0466 0.1584 0.0407 75.12 0

103 105 0.0535 0.1625 0.0408 98.05 0

100 106 0.0605 0.229 0.062 91.92 0

104 105 0.00994 0.0378 0.00986 109.78 0

105 106 0.014 0.0547 0.01434 34.21 0

105 107 0.053 0.183 0.0472 40.25 0

105 108 0.0261 0.0703 0.01844 59.73 0
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106 107 0.053 0.183 0.0472 36.44 0

108 109 0.0105 0.0288 0.0076 54.79 0

103 110 0.03906 0.1813 0.0461 91.04 0

109 110 0.0278 0.0762 0.0202 28.73 0

110 111 0.022 0.0755 0.02 54.07 0

110 112 0.0247 0.064 0.062 113.85 0

17 113 0.00913 0.0301 0.00768 31.95 0

32 113 0.0615 0.203 0.0518 60.16 0

32 114 0.0135 0.0612 0.01628 34.12 0

27 115 0.0164 0.0741 0.01972 48.32 0

114 115 0.0023 0.0104 0.00276 26.66 0

68 116 0.00034 0.00405 0.164 293.57 0

12 117 0.0329 0.14 0.0358 32.31 0

75 118 0.0145 0.0481 0.01198 69.91 0

76 118 0.0164 0.0544 0.01356 40.03 0
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The generator data for IEEE 118 bus system is given in the following table on

a 100(MVA) base [8].

Where -

Bus = Generator Bus Number

Pg = Generation Level

Qmax = Maximum reactive Power at bus

Qmin = Minimum Reactive Power at bus

Pmax = Maximum Real Power at Bus

bus Pg Qmax Qmin Pmax

1 0 15 -5 100

4 0 300 -300 100

6 0 50 -13 100

8 0 300 -300 100

10 450 200 -147 550

12 85 120 -35 185

15 0 30 -10 100

18 0 50 -16 100

19 0 24 -8 100

24 0 300 -300 100

25 220 140 -47 320

26 314 1000 -1000 414

27 0 300 -300 100

31 7 300 -300 107

32 0 42 -14 100

34 0 24 -8 100



65

bus Pg Qmax Qmin Pmax

36 0 24 -8 100

40 0 300 -300 100

42 0 300 -300 100

46 19 100 -100 119

49 204 210 -85 304

54 48 300 -300 148

55 0 23 -8 100

56 0 15 -8 100

59 155 180 -60 255

61 160 300 -100 260

62 0 20 -20 100

65 391 200 -67 491

66 392 200 -67 492

69 516.4 300 -300 805.2

70 0 32 -10 100

72 0 100 -100 100

73 0 100 -100 100

74 0 9 -6 100

76 0 23 -8 100

77 0 70 -20 100

80 477 280 -165 577

85 0 23 -8 100

87 4 1000 -100 104

89 607 300 -210 707

90 0 300 -300 100
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bus Pg Qmax Qmin Pmax

91 0 100 -100 100

92 0 9 -3 100

99 0 100 -100 100

100 252 155 -50 352

103 40 40 -15 140

104 0 23 -8 100

105 0 23 -8 100

107 0 200 -200 100

110 0 23 -8 100

111 36 1000 -100 136

112 0 1000 -100 100

113 0 200 -100 100

116 0 1000 -1000 100
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