
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 1984

The design and implementation of the programming language The design and implementation of the programming language

Natural Natural

Alan L. Sparks

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Sparks, Alan L., "The design and implementation of the programming language Natural" (1984). Masters
Theses. 219.
https://scholarsmine.mst.edu/masters_theses/219

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/219?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

THE DESIGN AND IMPLEMENTATION
OF THE PROGRAMMING LANGUAGE NATURAL

BY

ALAN LYLE SPARKS, 1960-

A THESIS

Presented to the Faculty ot the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

1984

Approved by

ii

ABSTRACT

This paper reports progress on the development of
the programming language Natural, currently under design
by Dr. Thomas J. Sager at the University of Missouri-Rolla.
Natural is a very high-level language with a mathematical
flavor, and includes several concepts relatively uncommon
in programming language design.

The text also discusses an implementation on the
IBM Personal Computer of Mini-Natural, a subset of
Natural, and presents examples of programs written in
Mini-Natural.

iii

ACKNOWLEDGEMENT

The author would like to extend his thanks to his
advisor, Dr. Arlan R. DeKock, and committee members Dr.
John B. Prater and Dr. Paul D. Stigall, for their
invaluable assistance in compiling this text. Thanks
also to Dr. Thomas J. Sager for allowing me a part in the
Natural project. Special thanks to my family, John and
Deborah, Star, Kevin, and all others who provided the
support necessary to make it happen.

Page
ABSTRACT.. ii
ACKNOWLEDGEMENT...................................... iii
LIST OF ILLUSTRATIONS............................... vii
LIST OF TABLES....................................... viii

I . INTRODUCTION............................... 1
A. REVIEW OF EXISTING LANGUAGES.......... 1
B . NATURAL................................ 8

II. THE MINI-NATURAL LANGUAGE SUBSET.......... 14
A. OMISSIONS FROM AND RESTRICTIONS

ON NATURAL........................ 14
B. LEXICAL CONVENTIONS.................... 15

1. Constants.......................... 15
2. Identifiers and Keywords............ 16

C. PROGRAM STRUCTURE...................... 17
D. DATA TYPES AND DECLARATIONS............ 17

1. Scalar Types....................... 17
2. Function Type...................... 18
3. Set Type........................... 18
4. Sequence Type...................... 19
5. Initialization..................... 19
6 . Type Declarations.................. 20

iv

TABLE OF CONTENTS

V

Page
E. EXPRESSIONS............................ 21

1. Scalar Operators................... 21
2. Relational Operators............... 21
3. Set Operators...................... 25
4. Sequence Operators................. 25

F. EXECUTABLE STATEMENTS.................. 27
1. LET Statement...................... 28
2. Assignment Statements.............. 28
3. IF Statement....................... 28
4. WHILE Statement.................... 29
5. Compound Statement................. 29

G. BUILT-IN FUNCTIONS..................... 30
1. Type Conversion - INT, CHAR, BOOL,

and TEXT........................ 30
2. Data Conversion - READINT and

READBOOL........................ 31
3. PRED and SUCC...................... 31
4. CHOOSE............................. 32

III. IMPLEMENTATION OF THE MINI-NATURAL SUBSET.. 33
A. OVERVIEW............................... 33
B. THE INTERMEDIATE CODE.................. 33
C. THE COMPILER........................... 34
D. THE INTERPRETER........................ 39

TABLE OF CONTENTS (continued)

VI

Page
IV. EXAMPLES.................................... 42

A. POWER.................................. 42
B. HAMMING................................ 45

V. SUGGESTIONS FOR FUTURE RESEARCH............ 48
BIBLIOGRAPHY... 52
VITA... 55
APPENDICES... 56

A. SYNTAX SUMMARY OF MINI-NATURAL............. 56
B. INTERMEDIATE CODE OPERATORS................ 60

TABLE OF CONTENTS (continued)

vii

LIST OF ILLUSTRATIONS

Figures Page
1. Example of nonlocal reference................... 13
2. Program segment, to illustrate Symbol Table..... 37
3. Symbol Table during compilation of figure 2..... 38
4. Interpreter data structures..................... 40
5a. The POWER program............................... 43
5b. Output from POWER............................... 44
6a. The HAMMING program............................. 46
6b. Output from HAMMING............................. 47

viii

LIST OF TABLES

Tables Page
I. SCALAR OPERATORS............................... 22
II. VALUE OF BOOLEAN OPERATORS..................... 23

III. RELATIONAL OPERATORS........................... 24
IV. SET OPERATORS.................................. 26

1

I. INTRODUCTION

The focus of this chapter will be to examine
features found in programming languages which are
currently in use, noting features which accent or detract
from the overall clarity and usefulness of programs
written in these languages. The programming language
Natural will then be discussed in light of these
features.

A. REVIEW OF EXISTING LANGUAGES
Programming languages can be classified into three

major divisions: conventional or procedural languages
such as PL/I [1] and Pascal [2], dataflow languages such
as VAL [3J and ID [43, and functional languages such as
LISP [53 and FP [6]. Procedural languages are
characterized by state-transition semantics, each state
represented by a "statement." Procedural languages are
common because the von Neumann machine uses state-
transition semantics, and the translation of programs in
these languages is made more direct and straightforward.
Dataflow languages characterize programs as tree
structures, where all operands to any operator can be
evaluated concurrently. Concurrent processing provides
an increase in execution speed over non-dataflow
languages. Functional languages are characterized by a
mathematical function notation and reduction semantics.

2

Programs written in functional languages are amenable to
axiomatic analysis (useful to prove properties about
programs) since their syntax closely resembles the
mathematical notation utilized for expressing symbolic
algebras.

The remainder of this section will compare languages
in their treatment of eight important design topics.
These topics are machine independence, storage
representation, data structuring facilities, abstract
operations, exceptions, variable scoping, the GOTO
statement, and file input/output.

Machine independence is the principal feature which
differentiates high-level languages from lower-level
languages. The typical applications programmer is rarely
concerned about the architecture of his machine, i.e.
whether it has one accumulator or sixteen, allowable
addressing modes, etc. By masking machine idiosyncrasies
from the programmer, considerable detail is removed from
the programmer's shoulder, and programs can more easily
be ported to other machines.

The "memory" or storage representation of the von
Neumann computer model is a collection of many bits, with
little overlying structure. It is helpful to the
programmer if a "type" can be associated with these
storage elements, declaring a certain element to be an
integer and another to be a Boolean variable, in order to

3

impose some measure of structure on the store. A
language with strong data typing associates with each
identifier a type class (integer, Boolean, etc) and
defines sets of operations which may be applied to data
of these types. The compiler can ascertain the type
compatibility of the operands presented to the language
operators, thus reducing the possibility that the
programmer will attempt to apply an operator to data of
inappropriate type (adding Booleans, for instance).

Data structuring facilities, the means available
with which to represent data, can play a major part in
deciding the usability of the language for a particular
application. PL/I has a multitude of data types and
precisions, while APL [73 has only three. FORTRAN [83
has one data structuring facility (the array), while
Pascal, with dynamic structures, is virtually unlimited.
A minimal set of powerful, abstract data types is
desirable, as too many types and precisions of data
provide arbitrary options to the programmer and weak or
insufficiently abstract types require the programmer to
expend more effort designing needed data structures.

Many languages support the implementation of general
dynamic data structures with pointers to areas of machine
storage. Hoare [93 considers the introduction of the
pointer into high-level languages as "a step backward
from which we may never recover." Pointers create

4

difficulties in program verification and debugging,
forcing the user to deal with low-level details of memory
allocation and reclamation. The clarity of programs
which use pointers is questionable. Simulation of the
linked-list data structure is the basis of most pointer
applications; therefore, a high-level abstraction of the
linked-list data structure would shift the responsibility
of managing low-level machine details from the programmer
to the language translator.

Operator abstraction, the ability to hide the data
representation from the remainder of the program, is as
valuable to the programmer as abstract data types. Lack
of abstract operators has the effect of muddying the
algorithmic specification of the program with details not
intrinsic to the algorithm. Operator abstraction is
accomplished in many languages by hiding details in
subprograms. Much coding effort and programmer time can
be saved, however, if the language operators are already
"sufficiently" abstract.

Consider an algorithm for computing the sum of a
collection of numbers. A suitable statement might be
"set SUM to zero, then add each number x of sequence S
into SUM." A typical coding of this algorithm in Pascal
is

SUM := 0;FOR I := 1 TO N DO SUM := SUM + S[IJ;
This construction implies much more than the original

5

algorithm; namely, 1) an order in which to sum the
elements, 2) a data representation (a vector), and 3) an
access method for the individual elements. Better is the
ability to write

SUM ;= 0;FORALL X IN S DO SUM := SUM + X;
which is a more faithful expression of the original
algorithm. Even better would be to remove all procedural
specifications by writing

SUM := +/S
where the +/ operator specifies summation. FP and APL
both offer such operations.

Exceptions, such as "overflow," "undefined," and
"infinity," can be handled by a language in two manners.
PL/l can detect and handle exceptional conditions with a
programmer-written "ON-unit." Another means is to define
special values to represent exceptions and define
operators to return these values when exceptions occur.
Either method will work, but the special values
themselves often have uses not related to exception
handling.

Infinity constants are useful when implementing
algorithms which require the use of values known to be
larger or smaller than any program-generated quantity
(similar to MAXINT in Pascal). Finding the maximum or
minimum value of a data set is an example of such an
algorithm.

6

The "undefined" constant is useful to handle
operations which, for some reason, have failed. Should
an operation on the dataflow machine model fail, a
mechanism by which the failing operator can terminate
other pending operators must be implemented; a nontrivial
task. Defining an error value for this situation and
defining rules for propagating this value through
operators eases implementation.

The occurrence of an evaluation error using this
strategy can be detected by writing a test similar to

IF (X = UNDEF) THEN handle_error
The scope of a variable is the environment in which

the value of that variable is accessible. Block-
structured languages such as Pascal and PL/l extend the
scope of a variable to all subprograms nested inside the
block declaring the variable. Nested subprograms have
both read and write access to nonlocal variables, and are
free to modify these variables without using the standard
parameter communication interface between calling and
called routines. Doing so is termed a "side effect."
The undesirability of side effects is well documented in
the literature [2,10,11j. To reduce opportunities for
side effects, either data transfer should be restricted
to parameters and function return values, or nonlocal
variables should not be write-accessible from an inner
block

7

A "patch" added to the scope rules of block-
structured languages allows the global declaration of a
variable to be superceded by a declaration in a local
block. This serves as protection against side effects
only if the declaration is not inadvertently omitted.
Adding or removing a declaration can alter the semantics
of the program totally.

Few languages are without the GOTO statement,
admonished by Dijkstra L12] as being "too primitive" and
"too much an invitation to make a mess of one's program."
The unrestricted GOTO is a direct artifact of the von
Neumann machine architecture and provides a control
facility of little structure. The IF-THEN-ELSE and WHILE
structures found in most- newer languages removes much of
the need for the GOTO statement. Knuth [133 proposed
replacing the GOTO statement with a structured envelope
he termed an "event indicator" which can be used to
implement early block exits, the last remaining "good"
use of GOTO.

The presence of GOTO statements also complicates
optimization analysis of programs, since flowgraphs
representing these programs cannot be guaranteed to be
reducible (for a discussion of reducible flowgraphs, see
Aho and Ullman [143). BLISS [153 programs, with the GOTO
statement replaced by a set of block-exit statements, are
always expressible as reducible flowgraphs, considerably

8

easing dataflow analysis and allowing optimization
analysis to be performed concurrently with parsing.

File input and output is a controversial topic in
language design. Wirth [16] proposed that files be
viewed as a mathematical sequence with an identifiable
upper bound, and included in the design of Pascal
sequential files as an embodiment of the concept. FP
does not define file operations because file access is
inherently a nonfunctional operation (file writes cause
side effects, while file reads should return a new value
for each reference). Input-output is very difficult to
axiomatize, making program verification by proof
techniques currently impractical [1 0].

B. NATURAL
The programming language Natural [17] is presently

under development at the University of Missouri-Rolla by
Dr. Thomas «J. Sager. The principal aim of the design
project is to provide "a vehicle for expressing abstract
programming concepts clearly and precisely in a natural
and mathematical form." [18]

To realize this goal, three design criteria were
outlined when the project was initiated. The aim of the
Natural project was to:

1. Integrate the strong points of functional
languages such as LISP and FP, and conventional

9

languages such as Pascal and PL/l;
2. Promote structured programming techniques by

providing versatile and abstract selection and
iteration facilities and data structures;

3. Provide for explicit and implicit expressions of
parallelism.

Implicitly present among these three points are the goals
of simplicity and uniformity.

Natural, like APL and FP, has a decidedly
mathematical syntax. It is hoped that "the succinctness
and descriptive power of a mathematicized language will
enable the user to depict complex processes in their
totality, in decisive detail, and in a form free of
abstractly irrelevent detail [193*"

Natural is designed to be largely machine-
independent. The primitive operations (sequence
concatenation, set inclusion, etc.) have no direct hard­
ware equivalent in conventional von Neumann computer
models. Features of other languages which mirror hard­
ware features have either been abstracted (the sequence
structure) or eliminated (the GOTO statement).

The structure of Natural is a combination of
features found in the three languages classes discussed
in the previous section. The language is similar in
nature to procedural languages, since they are familiar
and simpler to translate for existing architectures.

10

Algorithms are constructed by defining functions, as in
functional languages, permitting employment of proof
techniques designed for functional languages on Natural
programs. Constructs for expressing parallelism have
been included, giving Natural some of the power of
dataflow languages.

Natural defines one precision of integer, real,
character, and Boolean scalar data. Type compatibility
is strictly enforced by the compiler. Conversions from
one data type to any other type is possible, but must be
explicitly specified by the programmer by referencing the
predefined type-coersion functions. Three structured
types, functions, sets, and sequences, are defined in the
language. Structured types are homogeneous collections
of scalar or structured values. Functions are code
bodies which are evaluated on some set of parameters to
yield an output value. Sets are an embodiment of the set
concept in mathematics. Sequences are ordered lists of
randomly-accessible values.

The structured types can define data in more than
one way. This has three advantages. The first is
flexibility; for example, sets can be defined either by
enumerating their elements, as in Pascal, or by a code
body which represents the set's characteristic function.
Secondly, the language can include statements which allow
abstract specification of operations, such as the FORALI,

11

statement, which parallels the FOR statement of Alphard
[20j. A third advantage is that a suitably smart
compiler can analyze the abstract source program and
choose an appropriate representation automatically C2 l3»
If, for instance, a programmer coded a difficult-to-
compute function with a limited domain, the compiler
might choose, in order to optimize execution speed, to
precompute each value within the function's range, and
store these values in an array.

Infinity is represented in Natural by the constants
NEGINF and POSINF, representing negative and positive
infinity, respectively. The constant UNDEF represents
the quality "undefined." The constants are typeless, and
may be assigned to or compared against any type of
variable.

The scope rules of Natural are similar to those
found in block-structured languages such as PL/l and
Pascal, i.e. a nested function has access to the
variables declared in its enclosing block. The values of
these nonlocal variables are not alterable by the nested
function, however - copies of the nonlocal variables are
manipulated within the nested definition (analogous to
call-by-value). Natural binds the nonlocal reference to
the value the nonlocal variable contained at the time of
function definition. The objective of this strategy is
to have all functions fully defined when declared, rather

12

than leaving "holes" which reduces the function's
independence from other program modules.

To clarify, consider Figure 1. Natural binds the
nonlocal reference to the value of A when C is defined;
hence the value 10 is assigned to B.

The GOTO statement is conspicuously absent from
Natural. It is replaced by the PENDING statement, which
is a syntactic variation of Knuth's event indicator.
This statement, together with the decision and iteration
statements, presents a minimal but complete set of
operators.

Files are conceptually similar to sequences, in that
a file is an ordered sequence of elements with a known
upper bound or size. Input to and output from Natural
programs is accomplished by binding files to variables
declared as sequences of the appropriate element type,
and using the sequence operators to read and write the
file. Therefore, once axioms describing the semantics of
sequence operations are invented, they can be applied
directly to the semantics of file I/O.

13

Let
a be int <- 5; b be int;c be func (int -> int) <- [output <- input * a]

Do [a <- 1 0 ;
b <- c (2)

]End

Figure 1. Example of nonlocal reference

14

II. THE MINI-NATURAL LANGUAGE SUBSET

This chapter is intended as a description of the
Mini-Natural language subset implemented during this
research. The reader is referred to Appendix A for a
summary of Mini-Natural syntax.

A. OMISSIONS FROM AND RESTRICTIONS ON NATURAL
The full Natural language is described by Sager

L17J. To reduce the project to a size which could be
completed and tested in the time available, certain
features were restricted or omitted entirely from the
Mini-Natural definition:

1. Parallel processing features were not included.
2. Input/output is defined only for p-System

diskette files. Device I/O is not implemented.
3. Concatenation and selection of a single element

are the only sequence operations.
4. The real data type is omitted. Sequences and

sets may contain only scalar elements, and
functions can accept and return only scalar
values.

3. The FOR and PENDING control structures are not
included in the Mini-Natural definition.

Many features present in Natural have not been discussed,
and have been omitted from the Mini-Natural language
definition

15

B. LEXICAL CONVENTIONS
A Mini-Natural source program is composed of

constants, identifiers, and operators (collectively
termed “tokens'*). Blanks, tabs, and carriage returns
(termed “separators") may be inserted between tokens as
the user wishes to separate adjacent tokens and enhance
readability. Separators may be omitted if doing so
results in no ambiguity in the specification of
identifiers and constants.

The sequence
>> any sequence of characters

may be included in the source text anywhere a separator
is allowed, without affecting the semantics of the
program. The compiler ignores any commentary between the
">>“ and the next carriage return.

1. Constants: Mini-Natural defines three classes
of constants: integer, character, and Boolean. Integer
constants are decimal numbers, optionally preceded by a
sign. Mini-Natural restricts integer constants to the
range -32768 to +32767. Character constants are written
'x, where x is any printable ASCII character. Note there
is no closing quote, as in other languages.

16

The remaining constants are summarized below:

Identifier_____Type Semantics
truefalse
eolineundef
neginfposinf

BooleanBoolean
chartypeless
typeless typeless

Logical truth Logical falsity End-of-line character
Undefined
Negative infinity Positive infinity

2. Identifiers and Keywords: An identifier
consists of a letter, optionally suffixed by one or more
letters or digits. Identifiers may be of any length, but
only the first eight characters are significant.
Uppercase and lowercase differences between letters are
ignored.

The following identifiers are reserved as keywords
in Mini-Natural and may not be used as user-defined
names:
be end input posinf text
bool eoline int pred true
char external let pwrseq
choose false mod pwrset ubnd
div func neginf readbool undef
do if next readint while
else in output succ

17

C. PROGRAM STRUCTURE
All Mini-Natural programs consist of a "LET

statement" followed by the keyword end to signal the
logical end of the source program.

program:
letstmt end

letstmt:let declarations do simplestrat
declarations:

declaration { j_ declaration }

D. DATA TYPES AND DECLARATIONS
All identifiers must be declared before use.

Declarations serve to associate data types with
identifiers.

declaration:identifier { j_ identifier } be type

Data types are grouped into two major divisions:
scalar types and structured types. Structured types are
compositions of scalar types, and can be further
separated into three classes: sets, sequences, and
functions.

1. Scalar Types: The allowable scalar types are
int, char, and bool, for integer, character, and Boolean
data, respectively. Each scalar variable holds a single
data value.

18

2. Function Type: Function variables are declared
type:

f unc _£intype outtypeX
where intype and outtype are scalar types. The function
accepts a scalar parameter of type intype and returns a
scalar of type outtype.

Functions are referenced by coding the expression
f(x), where f is a defined function name and x is an
expression of f's intype. Within a function body, the
argument passed to the function is accessible through the
identifier input. The output of the function can be
defined by assigning a value to the identifier output.
If no assignment to output occurs within the function,
the value of the function is undef.

3. Set Type; Set variables are declared
type:

pwrset Jbasetype_)_
where basetype is any scalar type. The set consists of
scalars of the specified base type. Mini-Natural treats
sets as though defined func Jbasetype bool).

A set may be defined either by enumerating its
elements or by associating with it a statement which
represents the “characteristic function" of the set.
Enumerations are written

set-enumeration:
X expr { j_ expr } 2

where expr is a scalar expression of the specified base

19

type. neginf, posinf, and undef are not allowable set
elements. Sets of int are restricted to the integers 0
through 4079. The { } brackets are called "set
builders."

4. Sequence Type: Sequence variables are declared
type:

pwrseq Jbasetype_).
where basetype is any scalar type. Sequences are vectors
of scalars of the specified base type. Mini-Natural
treats sequences as if defined func (int -> basetype^.

A sequence can be defined either by enumerating its
elements or by associating with it a statement which
specifies the values included. Enumerations are written

sequence-enumeration:
<. expr { j_ expr } _;_>

where expr is a scalar expression of the specified base
type. The <. •> brackets are called "sequence builders."

A shorthand notation is available for describing a
sequence of characters. The text string "STUFF" is
equivalent to the sequence <• * S, 'T, 'U, 1F, ’F . >, but
is clearly easier to write. To include a quotation mark
inside a text string, simply code two adjacent quotation
marks.

5. Initialization: Variables are automatically
initialized to undef when declared. This may be
overridden, and a different initial value specified, by

20

appending an assignment to the declaration. Only one
variable may be initialized per declaration,

declaration:
identifier be type <_̂ expr identifier be type stmt

Expr is an expression, which is evaluated. Stmt is a
statement. The type of expr must be consistent with the
type of identifier. Statements may be assigned to any
structured type.

Within the LET statement which defines the program,
sequences may have an initialization of the form

declaration:identifier be type _<- external name
where type is a sequence definition and name is a
character sequence enumeration or text string containing
the name of a p-System diskette file. The sequence is
bound to the current contents of the external file (the
empty sequence if the file did not previously exist).
The final value of the sequence is saved on the external
medium upon normal program termination.

6 . Type Declarations: Type names may be declared
in Mini-Natural by a declaration of the form

declaration:identifier be type type
An identifier soaeclared may be used as a synonym for
type in subsequent declarations.

21

E. EXPRESSIONS
In the following discussion, operators with a

precedence level of 1 are executed before operators with
precedence 2, which are executed before precedence 3
operators, etc. Parentheses can be used to alter the
order of evaluation of an expression.

1. Scalar Operators: Table I lists the available
scalar operators.

If an operand of any int operator has the value
posinf, neginf, or undef, the operation yields the value
undef. Also, if the second operand to the division or
mod operator is zero, the operation yields undef. Table
II enumerates the values of the bool operators for true,
false, and undef. posinf and neginf act identically to
undef.

2. Relational Operators; The available relational
operators are listed in Table III. All relational
operators have a precedence level of 2 .

"Comparability" tests whether two elements have
attributes in common. A comparability test against any
two scalars, sequences, or functions yields true. A
comparability test against two sets yields true if the
sets are not disjoint. undef tests as comparable only to
undef.

For the remaining relational operators, neginf is

SCALAR OPERATORS
TABLE I

OPERATION
TYPE OF TYPE OF
OPERAND(S) RESULT PRECEDENCE MEANING NOTES

+ X int int 1 Identity 1
- X int int 1 Negation 1
x + y int int 5 Addition 1
x - y int int 5 Subtraction 1
x * y int int 4 Multiplication 1
x / y int int 4 Integer division 1 , 2
x mod y int int 4 Modulo division 1,2

a
X bool bool 1 Not 1

x & y bool bool 4 And 4
x 1 y bool bool 5 Or 4
x @ y bool bool 5 Exclusive OR 4
x \ y bool bool 5 And Not 4
x div y int bool 2 x evenly divides y 1,3
x ~div y int bool 2 "(x div y) 1,3

NOTES: 1. Yields undef for x and/or y undef, posinf, neginf.
2. Yields undef if y is zero.
3. Yields undef if x is < zero.
4. See Table II.

TABLE II
VALUE OF BOOLEAN OPERATORS

X Y X & Y X I Y X \ Y X @ Y
false false false false false false
false true false true false true
true false false true true true
true true true true false false
undef undef undef undef undef undef
undef false false undef undef undef
undef true undef true false undef
false undef false undef false undef
true undef undef true undef undef

KJu>

24

TABLE III
RELATIONAL OPERATORS

OPERATOR
SCALARS SEQUENCES
(Note 1) (Note 2) FUNCTIONS

X = YX ~<> Y X = Y X = Y X = Y X
X <> YX ~= Y X * Y X ^ Y X 5̂ Y X
X < YX ~>= Y X < Y X < Y illegal X
X <= YX Y X s Y XV

I

X illegal X
X > Y
X "<= Y X > Y X > Y illegal X
X >= Y
X ' < Y X * Y X 2: Y illegal X

X A 1! V X is "comparable" to Y (see text)
X > A II V Equivalent to > X A II V

NOTES: 1. Linear ordering, e.g. 1
Lexicographic ordering,

<.1 , 2 . > < < . 1 , 3 .>
<.'A, 'B . > < <.'A,

< 2 and false <
e.g.and
B, ‘C.>

SETS

: = Y

: t Y

; c y

£ Y

=> Y

• 2 Y

true
2

25

less than any value (except itself, to which it is
equal), and posinf is greater than any value (again,
except itself, to which it is equal). undef is equal
only to itself; other comparisons involving undef yields
the value undef.

Functions can be compared only for equality, non­
equality, or comparability. Functions are equal if they
are aliases.

3. Set Operators: The available set operations are
listed in Table IV.

The _in operator tests for set membership. If s is a
set of basetype t, and x is a scalar of type t, the
expression x in s returns true if x is a member of s,
false otherwise. x ^in s is equivalent to ~(x in s).
The in operator has a precedence level of 2.

4. Sequence Operators: The concatenation operator
I| takes two sequences of common base type as operands
and produces a new sequence, the second sequence "hooked
onto" the end of the first sequence. The concatenation
operator has precedence 4.

If s is a sequence, s * ubnd and s * next are variables
of type int. When used in an expression, s * ubnd returns
the current length of s. In the same context, s'next
returns the index of the element following the last
element referenced in s. next can be used to iterate

26

OPERATOR
~ S

S I T
S & T
S \ T

S @ T

x in S
x ~in S

TABLE IV
SET OPERATORS

PRECEDENCE__________ MEANING__________________
1 Complement of set S, e.g. theuniversal set U - S
5 Union of sets S and T
4 Intersection of sets S and T
5 Relative difference of sets Sand T, e.g. the set S with members of set T removed
5 Symmetric difference of sets Sand T, e.g. (S-T) | (T-S)
2 Membership of x in set S
2 Equivalent to (x in S)

27

through a sequence.
The assignment s*ubnd <- expr changes the upper

bound of s to the value of expr. The sequence is
truncated or extended with undef values on the right,
s'next <- expr sets the next index to the value of expr.
In either case, a runtime error occurs if expr evaluates
to undef, posinf, or neginf.

If s is a sequence and n a scalar expression of type
int, s(n) returns the nth element of s. If n is less
than 1 or greater than the number of elements in s, or if
s or n has the value undef, posinf, or neginf, s(n)
returns undef. s'next is automatically set to n+1.

s(n) <- expr, where n and expr are scalar
expressions of type int, assigns the value of expr to
the nth element of s. A runtime error occurs if n is
less than 1. s'next is automatically set to n+1.

F. EXECUTABLE STATEMENTS
The action of a program or function (the “DO" part)

is specified by a statement.
stmt: letstmt

ifstmt whilestmt compoundstmt
sdimple stmt:

ifstrat whilestmt assignstmt c ompound stmt

28

1. LET Statement: The LET statement permits the
declaration of one or more variables and a new "scope."

letstmt:
let declarations do simplestmt

Declarations were introduced in section D. The
variables declared are automatically created and
initialized before executing simplestmt.

2. Assignment Statements; The assignment operator
<- is used to define new values for variables.

assignstmt:
variable <-̂ expr variable stmt

If the first form is coded, expr is an expression,
which is evaluated. The value of the expression must be
compatible with variable. If the second form is used,
variable is defined as a function with definition stmt.
Statements may not be assigned to scalar types.

3. IF Statement; The IF statement allows
conditional execution of one or more statements.

ifstmt:if clause clause } [else simplestmt 3)_

clause:expr -> simplestmt
expr is an expression which must evaluate to a

scalar Boolean value. The expression portion of each
clause is evaluated in turn, left to right. The
simplestmt part of the first clause whose expr part
evaluates to true is executed, and the IF structure

29

terminates. If no expression evaluates to true, the else
statement is executed if present and the IF structure
terminates.

4. WHILE Statement: The WHILE statement is used to
cause repetitive execution of one or more statements.

whilestmt:
while {_ clause { j_ clause })_

clause:
expr ->_ simplestmt

expr is an expression which must evaluate to a
scalar Boolean value. The simplestmt portion of the
first clause is repeatedly executed while the expr
portion of the first clause is true; then the simplestmt
portion of the second clause is repeated while the expr
portion of the second clause is true; and so on. The
structure returns to evaluate the first clause after the
last clause terminates. The WHILE structure terminates
when the expression part of no clause evaluates to the
value true.

5. Compound Statement: The IF and WHILE clauses
allow only one action to be specified per clause. A
sequence of actions can be specified with the compound
statement.

compound stmt:_[simplestmt { ; simplestmt } 3.
The [] bracket pair serve to group multiple

statements into a single unit. Statements in a compound

30

statement are executed left to right.

G. BUILT-IN FUNCTIONS
Built-in functions are referenced from Mini-Natural

by coding an expression with the syntax:
bifreference:bifname expr
bifname:bool int readint

char pred succ
choose readbool text

where expr is an expression whose type depends on
which built-in function is named.

1. Type Conversion - INT, CHAR, BOOL, and TEXT:
These functions convert a scalar argument of any type to
the type indicated by the function name.

int (x) returns an integer corresponding to the
internal coding of x (true=l, false—0, ASCII collating
sequence). If x evaluates to posinf, neginf, or undef,
int returns undef.

char (x) converts x to an integer and returns the
x 1th character in the ASCII collating sequence. If x
cannot be converted to an integer in the range 0..255,
char returns undef.

bool (x) converts x to an integer and returns true
for x=l, false for x=0. If x cannot be converted to
either 0 or 1, bool returns undef.

text (x) converts x into a character sequence. The

31

result is a character representation of the value of x,
readable by the readbool and readint functions. true is
converted to the sequence <• 'T, 'r, 'u, 'e .>, f al se to
<. ’F, 'a, '1, 's, 'e .> . If x evaluates to posinf,
neginf, or undef, text returns undef.

2. Data Conversion - READINT and READBOOL: These
functions accept a character sequence as argument. Both
functions begin extracting characters from the sequence x
at x'next. Leading blanks are discarded, and scanning
stops with the first trailing blank or comma, or with the
end of the sequence. x"next will index the first
unprocessed character in x (if any).

readint (x) reads a sequence of characters from x
and interprets the sequence as an optionally signed
integer. If the characters do not form a valid integer
constant, readint returns undef.

readbool (x) scans x for the first character not a
comma or blank. If the character found is a T, readbool
returns true; if the character is an F, readbool returns
false. Characters following this character to the next
blank or comma or the end of the sequence are discarded.
If neither T or F is found, readbool returns undef.

3. PREP and SUCC: These functions accept a scalar
argument of any type. pred (x) returns the immediate
predecessor of x (or undef if no predecessor exists).

32

while succ (x) returns the immediate successor of x (or
undef if no successor exists). Both functions return
undef if the argument evaluates to undef, posinf, or
neginf.

4. CHOOSE: choose (x) returns an arbitrary element
extracted from x, where x is a set of any type. If no
elements exist, choose returns undef. The current
implementation also returns undef if x is represented by
a statement.

33

III. IMPLEMENTATION OP THE MINI-NATURAL SUBSET

A. OVERVIEW
Mini-Natural was implemented in Pascal on the IBM

Personal Computer, running the UCSD p-System operating
system. The system consists of two major components: the
Compiler, and the runtime Interpreter.

Natural is compiled to an intermediate language,
composed of fixed-format quadruples, and interpreted.
This scheme was chosen because the internal
representation of data contained within structured
variables can change during execution, and because the
operators of Natural have few direct equivalents on the
machine level. Pull compilation would entail either a
high percentage of runtime system calls, or inline
operator simulation, which would greatly increase the
size of the compiled code. Note that SNOBOL uses the
same technique for similar reasons C21j.

B. THE INTERMEDIATE CODE
The Compiler generates quadruples containing an

operator, two operand descriptors, and a destination
descriptor. These "quads" represent the machine language
of the hypothetical Natural machine, a machine containing
500 elements of storage and five registers, a Program

34

Counter (PC), a Stack Pointer (TOP), a local data pointer
(LCL), a global data pointer (GBL), and an auxiliary
(AUX) register.

Appendix B lists the intermediate code operators.
The operator field has an optional mask field, used by
the Interpreter to select variations of certain
operations. Operand descriptors, illustrated in figure
4, contain information regarding the addressing mode of
the operand, as well as operand type information.

C. THE COMPILER
Mini-Natural is compiled to intermediate code using

a one-pass compiler. Forward references are backpatched
when resolved. The Compiler is implemented in three
separately-compiled units: the Lexical Analyzer, the
Syntax/Semantic Analyzer, and the Code Generator.

1. The Lexical Analyzer returns one token per call
by the Syntax/Semantic Analyzer, and uses ad-hoc
methods to recognize and classify tokens from
the program source file. Also contained in the
Lexical Analyzer module are source-handling
facilities for reading source characters,
generating the source listing, and writing error
messages.

2. The Syntax/Semantic Analyzer uses recursive-
descent parsing techniques to analyze tokens
retrieved from the Lexical Analyzer. Code is
generated by calling the Code Generator modules
with operator and operand descriptors.

3. The Code Generator provides facilities for
storing generated quadruples into a code array,
and for dumping the code array to external
storage when compilation is complete. The Code
Generator also provides procedures which
generate the program and subprogram prologue and
epilogue code.

Providing error recovery is beyond the scope of this
research. When an error is detected, a pointer to the
current token and an error message is displayed, and
compilation is halted.

A stack symbol table, similar to that described by
Calingaert [22], is utilized to maintain information
p6rtsinin9 to declared variables. A hash table, with one
pointer corresponding to each letter of the alphabet,
points to a chain of symbol table entries for identifiers
beginning with that letter. Newly-declared identifiers
are entered into the symbol table by adding an entry to
the top of the symbol table and splicing the entry onto
the front of the corresponding hash chain. This
guarantees that a forward search of the chain will find

36

the identifier occurrence declared in the most-recently-
opened scope first. Scopes are opened by creating a copy
of the hash table for the enclosing scope, and closed by
discarding the hash table for that scope (freeing symbol
table storage). Figure 3 shows a view of the symbol
table mechanism while compiling the program fragment of
figure 2.

Storage for declared variables is allocated from
stack space. The Compiler assigns to each variable an
offset from the LCL register, and uses indexed addressing
for storage references. Offset assignments begin at LCL
offset 1; offset 0 is reserved for the variable output.
Input is allocated at LCL offset -4, the top-of-stack
before variable storage allocation. Offset assignments
begin at 0 for the main program, which has no input or
output.

Nonlocal variable references are handled by leaving
space at the end of the function body for an operand
descriptor, and generating a quadruple to copy the
current value of the non-local variable into the operand
descriptor. References are indexed by the GBL register,
which is initialized by the subprogram prologue code to
point to the first element of the global pool.

37

Let. A be int <- 6;
B be char;X be func (char -> int) <- Let Z be int <- A; >> A is nonlocalB be bool

Do . . .

Figure 2 Program segment to illustrate Symbol Table

Figure 3. Symbol Table during compilation of figure 2

39

D. THE INTERPRETER
The Interpreter is a software simulator of the

fetch-decode-execute cycle common in von Neumann
computers. Programs are executed by fetching
instructions from a code array and dispatching control to
appropriate simulation routines.

Data is stored in the code array with the program.
Scalar data is stored directly in an operand descriptor.
A function is stored by keeping the code address of the
body in the operand descriptor. A set or sequence is
stored by placing a pointer to the structure in the
operand descriptor. Figure 4 shows the data structures
utilized.

Reference counts are maintained for sets and
sequences. The storage manager uses these counts to
decide whether a structure is reclaimable when released
by the completion of an instruction cycle.

To maintain file bindings, the Interpreter creates a
file control block (FCB) for the file and stores a
pointer to the FCB in the operand descriptor of the bound
sequence. File bindings are linked together so the
Interpreter can find and close all files when the END
operator is executed. The FCB structure contains a
pointer back to the operand descriptor to enable the
Interpreter to reference the KIND field of each binding
during shutdown.

OPERAND
DESCRIPTOR

S E T

IN TER N A L
SEQ U ENCE

EX TER N A L
SEQUENCE

RC = Reference Count
IN = Input or Scalar Type

OUT 1 Output Type

MORE DESCRIPTORS

CLASS TYPE IN OUT

KIND VALUE

Figure 4. Interpreter data structures

41

Since the UCSD p-System restricts standard Pascal by
disallowing file variables as fields in record
structures, FCBs are stored by copying the contents of a
Pascal file variable into a suitably-sized array in the
FCB structure. When file access is required, the FCB is
shifted back to a file variable, the access performed,
and moved back.

42

IV. EXAMPLES

In this section examples of small programs written
in Mini-Natural are presented.

Each figure is presented with two parts. Figure 'a'
is the Mini-Natural source program. Figure 'b' is a dump
of the file generated by the program when executed. The
dump is produced by the SHOWSEQUENCE utility program.

A. POWER
Figure 5 shows a program designed to compute the

value 6^ by an algorithm attributable to Dijkstra [23].
To compute X , X is repeatedly squared and Y halved while
Y is even, then multiplied by X the remaining Y times.
The reader can easily demonstrate that, for large Y, the
algorithm requires fewer multiplications than multiplying
X by itself Y times (4 as opposed to 8 for Y=8).

An interesting property about this program is that
it virtually mirrors Dijkstra's solution in its syntax
and semantic content. Indeed, Dijkstra’s conceptions
proved a fundamental influence in the design of Natural .

Note two properties regarding this program. First,
due to the scope rules, the assignment to A in the
program body has no effect on the value of A in the
definition of P (the nonlocal reference is bound before
this assignment). Second, program output is generated by

>> Mini-Natural program to compute the value of 6 to the 5th power
>> using Dijkstra's algorithm
Let a be int <- 6;b be int ;f be pwrseq (char) <- external "output.data”;

p be func (int -> int) <- >> output <- 6**inputLet
x be int <- a;
y be int <- input

Do [output <- 1;
while (y > 0 -> £

while (2 div y -> Cx <- x*x; y <- y/2J); output <- output * x ;
y <_ y-i3)

Do
[a <- 10;
b <- 5;
f <~ "6 to the " Ii text (b) ii ”th power = " it text (p(b))

]End
Figure 5a. The POWER program

CJ

6 to the 5th power = 7776

Sequence filename? OUTPUT.DATA
Format: I)nt C)har B)ool ? C

Figure 5b. Output from POWER

A

45

the assignment to the sequence F, bound to an external
file by the EXTERNAL expression in the declaration of F.

B. HAMMING
Figure 6 is a variation of an example which Dijkstra

credits to R. W. Hamming [23J. The program is to produce
the first N values of the increasing sequence defined by
the axioms:

Axiom I* The value 1 is in the sequence.
Axiom 2: If x is in the sequence, so are F(x) and

G(x), where F and G are increasing
functions, F(x) > x and G(x) > x.

Axiom 3: Only values accountable to applications of
axioms 1 and 2 belong to the sequence.

The algorithm operates by extending the sequence
(which starts with the value 1) with MIN(F(x),G(x)) and
computing the next value for the function whose value was
added to the sequence.

The availability of the sequence data type obviates
the need for the programmer to explicitly keep track of
the length of the sequence. Also, the sequence can grow
to any length, without modifying the program to declare a
size bound.

>> Generate in increasing order a sequence of numbers,
>> given the following three axioms:
>>
>>
>>
>>
>>

Axiom 1
Axiom 2
Axiom 3

The value 1 is in the sequence.
If x is in the sequence, so are f(x) and g(x).
The sequence contains only values attributable to
applications of axioms 1 and 2.

Let
q be pwrseq (int) <- external "seqout.data";
F be func (int -> int) <- [output <- input * 2];
G be func (int -> int) <- [output <- input * 3];

fx be int <- F(fi);
gx be int <- G(gi)

N be int <- 20;
fi be int <- 1?
gi be int <- 1;

Do
[q < - < . 1. > ?
while (q'ubnd *= N ->

[if (fx >= gx -> q <- q
gx >= fx -> q <- q

while (fx <= q(q'ubnd)
while (gx <= q(q'ubnd)
])3End

>> "1 is in the sequence"
>> upper bound of N numbers

I I < . g x . >;
I I < . f x .>);
-> [fi <- fi+1; fx <- F(q(fi))3);
-> [gi <- gi+1? gx <- G(q(gi))3)

Figure 6a. The HAMMING program

Sequence filename? SEQOUT.DATA
Format: I)nt C)har B)ool ? I

0 1 2 3
o 1 1 2 3
1 1 18 24 27

Figure 6b

4 5
4 6 6 7 8 9

8 9 12 16

Output from HAMMING

48

V. SUGGESTIONS FOR FUTURE RESEARCH

The Mini-Natural implementation discussed in this
paper is an experimental system, yet it demonstrates
that an abstract language such as Natural can be feasibly
implemented.

The inclusion of the sequence data type does make
programming easier by removing from the programmer the
responsibility for defining low-level primitives to
manipulate list structures. The ability to assign
various representations to structured data types permits
a flexibility found in few compiled languages.

The language shows room for further experimentation
in several areas. For instance:

1. The correct semantics of the special values
UNDEF, POSINF, and NEGINF is currently
unresolved. Should POSINF represent machine
infinity or "true" infinity? Should expressions
such as NEGINF+POSINF yield UNDEF or zero? The
author believes that attempting to algebraically
define operations upon the special values would
introduce a myriad of confusing exceptional
conditions, not consistent with the design goal
of simplicity.

2. Whether the special constants complicate program
debugging is unknown. Results of undefined or

49

erroneous operations can propagate through a
Natural program, where other languages generate
runtime errors. Experience with VAL should
prove helpful in this regard t3,243*

3. The type of the EOLINE constant is often incon­
venient. Choosing type char implies frequent
use of the TEXT built-in function to concatenate
the end-of-line marker to a sequence, however
choosing type pwrseq(char) complicates checking
a single input character against the marker. A
possible improvement might be to have the
compiler choose type char or pwrseq(char),
depending on the context in which EOLINE is
used.

The compiler and interpreter were coded using
straightforward algorithms, choosing clarity over
efficiency when tradeoffs were necessary. Suggestions
for improvements include:

1. The algorithms for handling sets and sequences
can be improved to reduce the number of copy
operations performed. For instance, the
statement F <- F II G might be performed by
modifying F rather than modifying a copy of F
and assigning the copy to F. Reference counts
can be used, as in Schwartz’ SETL implementation

50

[253, to determine whether a structure can be
modified, rather than copied, without affecting
the values of other variables which potentially
address that structure.

2. Mapping sequences to external storage is very
inefficient. Work must be done on the sequence
handling routines if this method of file
access is to be feasible.

3. The file handling routines must be extended to
support input-output on devices such as
printers, consoles, etc. Certain operations
need to be defined; since sequences can be read
or written, how should input from the printer be
handled 1

4. The runtime representation of data, especially
sets and sequences, should be carefully
reviewed. More efficient access methods, such
as hashing, may be appropriate when processing
sets and function reassignments.

5. Post-compilation optimization could be included
to move some code (especially set or sequence
creation code) outside of loops and replace
references to these, as well as multiple crea­
tions of the same object, with a reference to a

51

temporary created by the compiler/interpreter
system.

A different representation of the compiled quads
might increase runtime efficiency. Rather than using
intermediate code operators and operands, which must be
painstakingly decoded during interpretation, the compiler
might instead produce a sequence of operation codes
driving a stack-based machine. The operation codes could
be jump-table indexes, so dispatching would entail only
indirect jumps to runtime system routines. This
technique (or a variant) is often used to implement FORTH
C263-

52

BIBLIOGRAPHY

1• OS PL/I Checkout, and Optimizer Compilers; Language
and Reference Manual. IBM GC33-0009-4, 5th Ed.
(October 1976).

2. Jensen, K. and N. Wirth. Pascal User Guide and
Report. 2nd Ed., New York: Springer-Verlag, 1975.

3. McGraw, J. R. "The VAL Language: Description and
Analysis." ACM Transactions on Programming
Languages and Systems, 4,1 (January 1982), pp 44-82.

4. Arvind, Gostelow, K. P. and W. Plouffe. "The
(Preliminary) ID Report." Tech. Rep. TR 114a,
Department of Information and Computer Science,
University of California Irvine, Irvine, California.

5. McCarthy, J., et al. LISP 1.5 Programmers Manual.
Cambridge: MIT Press, 1965.

6. Backus, J. "Can Programming be Liberated from the
von Neumann Style? A Functional Style and Its
Algebra of Programs." Comm. ACM, 21,8 (August
1978), pp 613-641.

7. Iverson, K. A Programming Language. New York: John
Wiley and Sons, 1962.

8. VS FORTRAN Application Programming: Language
Reference. IBM GC26-3986-3, 4th Ed. (March 1983).

9. Hoare, C. A. R. "Hints on Programming Language
Design." In Tutorial: Programming Language Design,
New York: IEEE, 1980, pp 43-51.

53

10. Myers, G. Software Reliability. New York: John
Wiley and Sons, 1976.

11. Pratt, T. W. Programming Languages: Design and
Implementation. Englewood Cliffs, NJ: Prentice-
Hall, 1975.

12. Dijkstra, E. "GOTO Statement Considered Harmful."
Comm. ACM, 11,3 (March 1968), pp 147-148.

13. Knuth, D. E. "Structured Programming with GOTO
Statements." In Tutorial: Programming Language
Design, New York: IEEE, 1980, pp 104-144.

14. Aho, A. and J. Ullman. Principles of Compiler
Design. Reading, MA: Addison-Wesley, 1979.

15. Wulf, W., D. Russell, and A. Habermann. "BLISS: A
Language for Systems Programming." Comm. ACM, 14,12
(December 1971), pp 780-790.

16. Wirth, N. Algorithms + Data Structures = Programs.
Englewood Cliffs, NJ: Prentice-Hall, 1976.

17. Sager, T. "The Natural Language Report." To appear
in 1984.

18. Sager, T. "Parallelism In the Language Natural."
Rep. CSc-84-2, Department of Computer Science,
University of Missouri-Rolla, Rolla, Missouri.

19. Schwartz, J. T. On Programming: An Interim Report
on the SETL Project. I, New York: Courant
Institute, 1976.

54

20. London, R., M. Shaw, and W. Wulf. "Abstraction and
Verification In Alphard: Defining and Specifying
Iteration and Generators." In Tutorial: Programming
Language Design, New York: IEEE, 1980, pp 145-155.

21. Schwartz, J. T. "Automatic Data Structure Choice In
A Language of Very High Level." Comm. ACM, 18,12
(December 1975), pp 722-728.

22. C a l i n g a e r t , P . A s s e m b l e r s , C o m p i l e r s , a n d P r o g r a m

T r a n s l a t i o n . P o t o m a c , M D : C o m p u t e r S c i e n c e P r e s s ,

1979.
23. Dijkstra, E. A Discipline of Programming.

Englewood Cliffs, NJ: Prentice-Hall, 1976.
24. Wetherell, C. S. "Error Data Values in the Data-Flow

Language VAL." ACM Transactions on Programming
Languages and Systems, 4,2 (April 1982), pp. 226-
238.

25. Schwartz, J. T. On Programming: An Interim Report
on the SETL Project. II, New York: Courant
Institute, 1973.

26. L o e l i g e r , R. G. T h r e a d e d I n t e r p r e t i v e L a n g u a g e s .

P e t e r b o r o u g h , NH: B Y T E P u b l i c a t i o n s , 1981.

55

VITA

Alan Lyle Sparks was born on June 26, 1960 in
Fulton, Missouri. He received his primary and secondary
education in Kingdom City, Missouri. He received a
Bachelor of Arts degree in Computer Science from
Westminster College, Fulton, in May 1982.

Alan has been enrolled in the Graduate School of the
University of Missouri-Rolla, in Rolla, Missouri, since
August 1982, and has held a graduate teaching
assistantship for the full time of his enrollment.

56

A P P E N D I X A

S Y N T A X S U M M A R Y O F M I N I - N A T U R A L

program:
letstmt end

letstmt:
let declarations do simplestmt

simplestmt: if stmt whilestmt assignstmt
compoundstmt

compoundstmt:
[simplestmt { j simplestmt }]_

declarations:declaration { j_ declaration }
declaration:

vardeclarationtypedeclaration
vardeclaration:scalarvar be scalartype [expr4 3 structuredvar be structuredtype C expr4 3

structuredvar be structuredtype [<̂ _ external expr4 3 structuredvar be structuredtype C stint] variable { j_ variable } be type
typedeclaration:scalartypevar be type scalartype

structuredtypevar be type structuredtype
scalartype: int

bool charscalartypevar
structuredtype:

pwrseq (scalartype)pwrset T scalartype Tfunc (scalartype scalartype)_structuredtypevar

57

type:
scalartype
structuredtype

scalartypevar: variable
structuredtypevar: variable
ifstmt:

if clause { j_ clause } C else simplestmt 3 _)
whilestmt:

while clause { j_ clause }
clause:expr4 simplestmt
assignstmt:variable expr4

variable <- stmt
stmt:letstmt ifstmt whilestmt

compoundstmt
expr4:expr3 + expr3 expr3 - expr3 expr3 T expr3 expr3 Tl expr3 expr3 W~ expr3 expr3 ^ expr3
expr3:expr2 * expr2

expr2 7 expr2expr2 mod expr2expr2 & expr2
expr2:exprl inop exprl exprl divop exprl exprl relop exprl
inop:

in
"*Tn

58

d i v o p :
div
Adiv

r e l o p :
< > <>

~<>
exprl:variable constant _(expr4) bifname expr4)_ unaryop exprlexpr4 { j_ expr4 }

<. expr4 { j_ expr4 } . >textstring
variable:identifieridentifier (expr4 _).

identifier ^ attribute input output
constant:

ii < . . > eolineuntypedconstintconstboolconstcharconst
intconst:[sign] digit { digit }
sign:

boolconst: true false
charconst:J_char
untypedconst: undef posinf neginf

59

attribute: ubnd next
bifname:

int char bool text
succ choose readint readbool

unaryop:
+

textstring:^ { char }
letordig:letter

digit
identifier:letter { letordig }

pred

60

APPENDIX B
INTERMEDIATE CODE OPERATORS

NILARY OPERATORS:
[DATA3Function: Mask: Mark data storage location. Not used.
[END]Function:

Mask:
Terminate execution, close files.
Not used.

[RETURN]Function:Mask:
Pop return address into PC. Not used.

UNARY OPERATORS:
[ASSIGN]Function:

Mask: Operandl: Destination:

Copy operandl to destination. Not used.Register, constant, or address. Register or address
[BIND]Function:

Mask: Operandl: Destination:

Bind external file to destination sequence.Not used.PWRSEQ(CHAR) containing filename. Address.
[COMPLEMENT]Function:

Mask: Operandl: Destination:

Complement of set operandl. Not used.
Address.Address.

[MINUS]Function:
Mask: Operandl: Destination:

Integer negation of operandl. Not used.
Register, constant, or address. Register or address.

61

[n o t]
Function:
Mask: Operandl:
Destination:

Boolean NOT of operandl and operand2.Not used.
Register, constant, or address. Register or address.

[STARTSEQ]
Function:
Mask: Operandl: Destination:

Create sequence containing value of operandl.Not used.Register, constant, or address. Address.
[STARTSET]Function:

Mask: Operandl:
Destination:

Create set containing value of operandl.Not used.Register, constant, or address.
Address.

BINARY OPERATORS:
[ADD]Function:

Mask:
Operandl:
Operand2: Destination:

Integer addition of operandl and operand2.
Not used.
Register, constant, or address. Register, constant, or address Register or address.

[ADDTOSEQ]Function:
Mask: Operandl: Operand2: Destination:

Append value of operand2 to sequence operandl.Not used.Address.Register, constant, or address. Address.
[ADDTOSET]

Function:
Mask: Operandl: Operand2:
Destination:

Include value of operand2 in set operandl.
Not used.
Address.Register, constant, or address.
Address.

62

[a n d 3
Function:
Mask: Operandl:Operand2:
Destination:

Boolean AND.Not used.
Register, constant, or address. Register, constant, or address. Register or address.

[ANDNOT3Function:
Mask:
Operandl: Operand2: Destination:

Boolean ANDNOT (x AND (NOT y)) of operandl and operand2.Not used.Register, constant, or address. Register, constant, or address. Register or address.
[ASSONFALSE]Function:

Mask: Operandl: Operand2: Destination:

Copy operandl to destination if
value of operand2 is zero.Not used.Register, constant, or address. Register, constant, or address. Register or address.

[ATTRIB]Function:
Mask: Operandl: Operand2: Destination:

Return attribute operand2 of sequence operand2.
Not used.Address.UBND or NEXT.Register or address.

[CAT 3Function:
Mask: Operandl: Operand2: Destination:

Concatenate operand2. Not used. Address. Address. Address.

sequences operandl and

[CMPFUNC3Function: Compare functions operandl operand2. and
Mask: 1 = not comparable AIIV<

6 = not equal < >
8 = equal =14 = comparable. <=>

Operandl: Address.
Operand2: Destination:

Address.Register or address.

63

[CMPSCALAR]
Function: Compare scalars operandl and

operand2.
Mask: 1 * not comparable

2 » greater-than >
4 » less-than <
6 » not equal < >
8 = equal *

10 = greater-than or equal > =
12 = less-than or equal < =
14 * comparable < = >

Operandl: Register, constant, or address.
Operand2: Register, constant, or address.
Destination: Register or address.

[CMPSEQ]
Function: Compare sequences operandl and

operand2.
Mask: Same as CMPSCAIAR.
Operandl: Address.
Operand2: Address.
Destination: Register or address.

[CMPSET]
Function: Compare sets operandl and operand2
Mask: 1 ** not comparable < = >

2 * proper superset >
4 * proper subset <
6 * not equal < >
8 -> equal =
10 * superset > =
12 * subset < =
14 * comparable < = >

Operandl: Address.
Operand2: Address.
Destination: Register or address.

CDIFF]
Function: Difference of sets operandl andoperand2.
Mask: Mot used.
Operandl: Address.
Operand2: Address.
Destination: Address.

CDIVIDE]
Function:
Mask*
Operandl:
Operand2:
Destination:

integer division of operandl by
operand2.

Mot used.
Register, constant, or address.
Register, constant, or address.
Register or address.

64

[DIVIDES}
Function:
Mask:
Operandl:
Operand2:
Destination:

Test if operandl evenly divides
operand2 »

1 - x DIV y; 0 « x "DIV y.
Register, constant, or address.
Register, constant, or address.
Register or address.

[EVAL]
Function:
Mask:
Operandl:
Operand2:
Destination:

Evaluate operandl with argument
operand2.

Mot used.
Register, constant, or address.
Register, constant, or address.
Register or address.

[IN3
Function:
Mask:
Operandl:
Operand2:
Destination:

Membership of operandl in set
operand2.

1 «■ x IN y? 0 ■ x "IN y.
Register, constant, or address.
Address.
Register or address.

[INTSECT]
Function:
Mask:
Operandl:
Operand2:
Destination:

Intersection of sets operandl and
operand2.

Not used.
Address.
Address.
Address.

[MODULO]
Function:
Mask:
Operandl:
Operand2:
Destination:

Modulo division of operandl by
operand2.

Not used.
Register, constant, or address.
Register, constant, or address.
Register or address.

[MULT]
Function:
Mask:
Operandl:
Operand2:
Destination:

Integer multiplication of operandl
and operand2.

Not used.
Register, constant, or address.
Register, constant, or address.
Register or address.

65

CORD
Function:
Mask:
Operandl:
Operand2:
Destination:

Boolean OR of operandl and
operand2.

Mot used.
Register, constant, or address.
Register, constant, or address.
Register or address.

[s u b t D
Function:
Mask:
Operandl:
Operand2:
Destination:

Integer subtraction of operand2
from operandl.

Not used.
Register, constant, or address.
Register, constant, or address.
Register or address.

[SYMDIFF]
Function:
Mask:
Operandl:
Operand2:
Destination:

Symmetric difference of sets
operandl and operand2.

Not used.
Address.
Address.
Address.

[UNION D
Function:
Mask:
Operandl:
Operand2:
Destination:

Union of sets operandl and
operand2.

Not used.
Address.
Address.
Address.

[XORDFunction:
Mask:
Operandl:
Operand2:
Destination:

Boolean XOR of operandl and
operand2.

Not used.
Register, constant, or address.
Register, constant, or address.
Register or address.

TRINARY OPERATORS:
[ASSATTRIBDFunction:

Mask:
Operandl:
Operand2:
Destination:

Assign value of operand2 to
attribute operandl of
destination.

Not used.
UBND or NEXT.
Register, constant, or address.
Address.

Ca s s c m p n t]
Function:

Mask:
Operandl:
Operand2:
Destination:

Assign value Of operand2 to
component operandl of
destination»

Not used.
Register, constant, or address
Register, constant, or address
Address.

	The design and implementation of the programming language Natural
	Recommended Citation

	tmp.1634565124.pdf.u75vz

