
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

1959 

Unsteady state heat transfer from a hot body to a liquid Unsteady state heat transfer from a hot body to a liquid 

Larry Clinton Atha 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Mechanical Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Atha, Larry Clinton, "Unsteady state heat transfer from a hot body to a liquid" (1959). Masters Theses. 
2686. 
https://scholarsmine.mst.edu/masters_theses/2686 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/2686?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


UNSTEADY STATE HEAT TRANSFER 

FROM A HOT BODY TO A LI~UID 

BY 

LARRY CLINTOO ATHA 

A 

THESIS 

Submitted to the Faculty o-r the 

SCHOOL OF MINES AND METALLURGY OF THE UNIVH'~SITY OF MI:SSOURI 

in Partial Fulfillment of the Work Required for the 

Degree of 

MASTER OF SCI:ENCE, MECHANICAL :BNGINEERING MAJ"OR 

Rolla, Missouri 

1959 

Approved by 

~~ J~~·~
~~ t~uk(/~ 

., 



ACID'iO WLEDG ~~mNT 

The author wishes to express his appreciation to 

Professor Aaron J . Mi1es for suggesting the thesis 

problem and for his guidance and assistance in preparing 

this thesis . 

11 



iii 

TABLE OF CONTJ!NTS 

Page 

Acknowledgement. • • • • • • • ii 

List of' Tables • • • • • • • • • • • • iv 

l ,ist of' Illustrations. • • • • • • • • v 

List of Plates • • • • • • • • • • • • vi 

In-trodueti on • • • • • • • • • • • • • 1 

Review of Li teratu.re • • • • • • • • • 3 

Table of Units • • • • • • • • • 6 

Discussion of Problem. • • • • • • • 7 

Conclusions. • • • • ·- • • • • • • • • 24 

summary. • • • • • • • • • • • • • • • 25 

Bibliography • • • • • • • • • • • • • 26 

Vita • • • • • • • • • • • • • .. • • 27 



iv 

LIST OF TABLES 

Table No. Page 

Io Temperature History in a semi-infinite 

Solid •••••••• • • • • • • • • • • • • 
II. Data for Determining the Heat Transfer 

~rom a Sead-infinite Solid to a Liquid • • • 

20 

22 



v 

LIST OF ILLUSTRATIONS 

Fig. Page 

1. Sketch of infinitesimal body in 

rectangular co-ordinates. • • • • • • • • • • • 7 

2. Sketoh of semi-infinite solid with 

vapor film and liquid • • • • • • • • • • • • • 10 



1 

INTRODUCTION 

The problem investigated in this thesis is that of 

unsteady state heat transfer from a hot body to a liquid, 

a quenching problem. Unsteady state or transient heat 

transfer is heat transfer in which the temperature distri

bution changes with time. 

If a hot body was suddenly quenched in a large mass 

ot liquid, 8 film of vapor would form between the hot body 

and the liquid. For exBJilple, if a hot body was quenched 

in water a film. of' steam would form. between the hot body 

and the water. It is the purpose of this thesis to deter

mine the heat transfer from the hot body to the liquid and 

the temperature distribution in the hot body for such a 

situation. In this thesis the hot body will be assumed a 

semi-infinite solid. 

A large class ot important industrial problems 

require the prediction of temperatures and heat transfer 

rates in a solid structure being heated or cooled by 

immersion in a large mass of fluid. Such problems are 

relatively common in metallurgical prooeases where it is 

necessary to estimate heating or cooling rates ot large 

solid ingots of var.ious shapes. This int'ormation is then 

used·to predict the time required for suoh objects to attain 

prescribed temperature 1 evel s :tor purposes of melting, hot

working, heat-treatment, and the like. Heating and cooling 

' ( 
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rates are also of extreme practical interest in the canning 

industry where perishable canned foods are chilled by 

immersi-on; in the paper i:ndustry where wood logs are immersed 

in steam baths p~eparatory to pulping and veneer cutting; 

in the manufacture of bricks; glass, and rubber products; 

in the prediction of allowable . eombustion ttmes in rocket

engine nozzles; and in the calculation of allowable 

acceleration rates for airborne vehicles subject to high

speed transient aerodynamic heating. 

The results of an analytical approach to heat 

conduction problems are by no means limited to heat transfer 

alone. Parts of t~e theory find application in various 

sta.t.ic and current electric! ty problems, gravitational 

problems, and the methods of development are of general . 
(1) 

application in mat.hematice.l physics. 

(1) L. R. Ingersoll, o. J. Zobel, and A. c. Ingersoll, 
Heat Conduction With Engineering and Geological Applications, 
1st Ed., N. Y., !ll'cGre.w-Hill, 1948, p. 5. 

The author chose this unsteady state heat transfer 

problem because of an interest in the analytical solutions 

o~ sueh problems, and to his knowledge, this particular 

problem had not been solved previously. 
I ( 



REVIEW OF LITERATURE 

The study of heat transfer is principally concerned 

with the distribution of temperature and the temperature 

history within the object under consideration. From the 

available literature it can be seen that there ·are 

essentially tour available methods for the eval~ation of 

these temperature fields: (1) analytical, (2) graphical, 

{3) numerical, and (4) experimental. 

The for•al analytical approach involves the deriva

tion and aolution of mathematical expressions for the 

temperature aa a function of space-t.ime coordinates. '!'he 

s .olution .must satisfy the dift'erential equation fro& which 

it was derived as well as certain initial and boundary 

conditions imposed by the specific problem itself. The 

tirat work done on this subject by mathematical analysis 

was done by Fourier.( 2 ) 

3 

(2) J. Fourier, The Analytical Theory of Heat, 
translated with notes by A. Freeman, London,· The University 
Press, 182a~ pp. 104-115, pp. 323-332. 

' (J) ( ) 
The aore recent works ot Caralaw and Jaeger and Schneid~r 4 

(3) H· s. Carslaw and J. c. Ja~ger, Conduction or 
. Heat ia SOlid a, 2n.d Ed., (London} O:xror~. ·at the Claredon 
Press, ·1959, pp. 50-64 



(4) P. J. Schneider, Conduction Heat Transfer, 
Reading, Mass., Addison-Wesley, 1955, pp. 229-271. 

contain the analytical solutions of many of the more 

di:tf'icult problems of unsteady state heat transfer. Some 

ot the previously mentioned material has been presented 

in a simpler and more readable f'orm by Ingersoll, Zobel 
( 5 ) 

and Ingersoll. 

4 

( 5) L. R. Ingersoll, o. J. Zobel, and A. c. Inger-s·oll, 
Heat Conduction with Engineering and Geological Applications, 
lat Ed., N.Y., McGraw-Hill, 1948, pp. 78-108. 

The graphieal method is based on properties of' the 

ahare.cteristie :field eque.tions and numerical principles. 

Some graphical method s , as well as analytical solutions, 
. . (6) . (7) 

may be found in works by Jakob and Jakob and Hawkins. 

(6) M. Jakob, Heat Transfer, N. Y., John Wiley & 
Sons, 1949, pp. 380-398. 

(7) M. Jakob end G. A. Hawkins, Elements of Heat 
Transrer, N.Y., John Wiley & Sons, 1957, pp. 73-79. 

The numerical method is based on finite difterenees. 

Some numerieal methods may be found in a work by Jakob and 

., 
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Hawkins. ( 8 ) 

(8) Ibid., pp. 71-73. ----
The experimental method can range anywhere from 

temperature measurements at points in a model of the proto

type structure to the use of analogic experiments whieh take 

advantage of the mathematical analogy between heat transfer 

and other potential-field phenomena. Some methods involv

ing the thermal-electrical analogy are described by Jakob 

and Hawkins. (9) 

(9) Ibid., pp. 79•97. -
There are various papers available on this and 

closely related subjects; however, the majority of this 

material is experimental in nature and is in the form of 

tables and curves. 
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DISCUSSION 

Since the .heat flow in the semi-infinite solid takes 

place by conduction, i t will be found to follow Fourier's 

law as stated in his conduction e quation . This law express

ed mat he.matically is 

dO 
de 

= - K A dt 
d~ 

where d ~ is the amount of heat flowing in differential 

(1) 

time dg, A is the area of the section across which Q is 

flowing, -dt/dx is the temperature gradient or the rate of 

change of temperature, t, with respect to the length or 
path x , and k is the thermal conductivity of the material . 

The area, A is taken normal to the direction of heat 

fl 
(10) ow . 

{ 10) 11. H· .McAdan1.s, Heat Transmission, 2nd Ed . , 
N . Y., lloGre.w-Hi.ll, 1942, pp . 6-7 . 

To arrive at a more general equation for heat flow 

by conduction, the following analytical reasoning will be 
z 

used . 

y 
Fig. 1 
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Referring to figure 1, an elemental cube of' volume dv=dxdydz 

receives a differential quantity of heat d~1 Btu through 

its left yz face in the time interval ·de. Assume all but 

the left and right yz faces of the elemental cube are 

insulated. In the same time interval the quantity of heat 

d~2 leaves at the right race. A storage term dQ can be 

defined as the difference between the heat entering and 

the heat leaving or 

(2} 

According to equation (1} the heat entering the left face 

may be given by 

~~ = K d Y d Z (- ~; ) 
The temperature gradient -~t/~ x may vary with both time 

and position in the cube. The variation of -ctt/~ x aa a 

function of x 1 s - ~2t/~ x2 • Over the distance d:x from x 

(3) 

to x + dx the total change in the temperature gradient will 

be the rate of change of the gradient multiplied by the 

distance over which the gradient changes or (-~2t/•x2 )dx. 

Then at x the gradient is -cat/~ :x, and at :x + dx the temper-

ature gradient is . 



The heat f l owing out of the r ight face, d Q2 , in the same 

rorm a s e quat i on ( J) is given by 

9 

1..92. = J< dY dZ(- _it _ Jzt d. x) 
de JX Jxl. · ( 4) 

The ne t amount of hea t stor ed in the cube in differential 

time de, will t h e n be the difference between the amoun_t of 

heat fl owing i n and t hat flowing out or 

s!S1 = s!.!J I - s!!d 2 
dB de de 

which can be writ t en as 

which r edu ces t o 

dQ = J<dX dYdZ (J2t). 
de t c> x1. ( 5 ) 

It is known t hat the amount of heat, d Q, , that is stored in 

a solid bod y i s d ependent upon the de.nsi ty of the materia l 

p , the volume of the body, in this case V=dxdydz, its· 

specifi c heat c, a rid the instantaneous temperature differ

ence ac ros s the bod y . ·de represents the i .ncre.ment o'f time 
' 

during which t he heat is stored. Written mathematically 

sf!J. ..,_ p C dXdYciZ (s!t). 
dB dS 

(6) 

Hence there are two expressions ror the · a.mount of heat 

stored in this elemental cube, namely equations (5) and (6). 



Equatin.g these equations 

which reduces to 

~t K 
~e = pc 

Letting k/pC:r.o(, the equation can be written as 

c=)t - o(. ~~t . 
c}9 - c) Xi-

10 

(7) 

This is the general conduction equation when the flow 

of heat is in the x - direction only. It expresses the con

ditions that govern the flow of heat in a body, and the 

solution of any particular problem in heat oonduetion must 

satisfy this equation regardless of what the initial and 

boundary conditions may be. 

---... LaqU\:D ~ 
. __ ......,.._ tL. ~... h~-.... 

Fig. 2 
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Figure 2 is a schematic representation of the hot 

body , the vapor film, and the liquid involved fn this 

investigation . From Figure 2 , it should be noted that the 

x co-ordinate system originates at the surfaee of the hot 

bod y and the positive direction extends to the right into 

the solid . 

One i nitia l and one boundary condition that can be 

readily det ermined are i mposed on equation ·(7) by this 

specifie problem. The first is directly concerned with 

the initial te~perature of the hot body , just as it i s 

quenched in the liquid . This initis~ condition can be 

stated mathemati cally as 

The boundary condition is a direct result of the equiv

~lence of the heat transferred out of the surface of the 

hot body by conduction and the heat transferred by convec

tion in the vapor film and the liquid. It can be determined 

aS ShO\Vli bel OW 

Q -: Q ~OMV£>CT&ON CONOUC. "T lON ... (8 ) 

The equivalent film coefficient tor conv&ction 1~ given by 

'1~\. + '/hv 
H = (9) 

The ·equivalent :film ooetticient will be assumed independent 



of the surface temperature (t) of the hot body in this 

investigation . Therefore Equation (8) can be written as 

12 

f(A M 
JX = (10) 

(Contrary to the usual notation, the temperature gradient 

is positive in this case since the temperature increases as 

the distance (x) increases.) After cancelling like terms 

and rearranging equation (10), the boundary condition can 

be written as 
/' 

Jt =.J:L(t-t,.,); AT x=o, e>o. 
JX I< 

(11) 

Now, let T : t - t 1 , then equation ( 7), the initial 

condition, and the boundary condition can be expressed as 

functions of T . Equation (7) transforms into 

(12) 

The initial condition becomes 

T =ti-t; = 0; Ar 6 = 0, X~ 0. v 

By the reasoning shown 

the boundary condition, equation (11), becomes · 

il = 1!. (T-T,.); AT x=o ~ ·e>o. (13) 
c)Y\ I< 
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'fhe problem now is to integrate the partial dif:fer

ential equation, equation (12), to get a particular solution 

that satisries the given conditions. There are two more 

or less common methods used to integrate such partial 

differential equations , the first being the separation ot 

variables method, and the second the Laplace transform 

method. In this investigation the Laplace transform method 

will be used to find the solution of this problem as it is 

not asily determined by the separation or variables ~thod. 

The Laplace transformation of a function t(x), 

symbolized here as i ( u), is defi.ned as the operation ot 

multiplying t(x) by .-ux and integrating over all positive 

values ot the variable x, as 
d:) 

l<u..> = J Cf'lx f(X) dx 
0 

The Yalue of u may be real or imaginary, and in either case 

its real part must be sufficiently large to ensure the con

vergence of the given integral. Transforms of various 

functions :f(x) can therefore be ohtained by direct 1ntegra

tiono The inverse transform is the function 1tsel~.(ll) 

{11) Schneider, op. cit., p. 113. 

· However, there are many tables ot transform pairs 

now in use from. which transforms e.n.d inverse transforms can 
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be directly determined. 

Applying the Laplace transformation with respect to 

9 on both sides of the partial di:fferential equation, 

equation (12) , it becomes 
aO .0 

f e-""9 J
2
T elf) - ....!._ (e-'"" 9 ~ d8 · 

o JX'l c£ Jo' ~e 
(14) 

By \ISing 

l{~] = .u.J'(.u.)- ((o) 

aad interchanging the order o:f integration and differentia- . 

tion on the le~t side of equation (14), the ~quation becomes _, . 

g Je-46Tcx.e> dB =· _!_ f.u.J(.u.)- Tcx,o)l. . c15> 
~X'l a( L ~ . . J 

0 

. The lett-hand integral transfor.m.ation is . a f -unction of u 

and the single variable x, therefore the partial rderivative 

goes over to a total derivative. 

Wert, using the initial conditio.n 

T =- o ; Ar e -= o , x ~ o· 

and the abbreviation 

equation (15) becomes 

iL = tf(.u.) 

u-IL 
o(. 
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rearranging , it becomes 

o. (16) 

The general solution or this equation ean be obtained by 

the use of operator s , as follows 

(D'2- U.fd..) u_ = 0 

( P~- u./tL) = 0 

P= ± ff. 
The general solution of equation (16} can now be written as 

.. = c efif x + c ctV~ x 
~ I 2. • (17) 

However , if T and therefore u, is to remain fin.i te as :x ~eo 

then c1= 0. •rhe solution can then be written as 

iL = c' c::ffi x_ (lS) 

Wow , the boundary condition 

can be used as a boundary condition tor equation (18} by 

applying the Laplace transformation £ (u) with respect to e 
' 

on both sides of the equation. Performing this operation 

the boundary eondi~ion becomes 
~ . ~ ob . J eu.e~ de = !l Je"9

T de - !i.Je-"-9 Ta. c;le. (19) 
o ~~ K K . 

. 0 0 



By using the same reasoning as was used before and 

.{(CoNSTANT) = _L ( CoH:)TAUT) .u. 
it can be seen that the partial differential equation , 

equati on (19) , goes over to a total different1Erl equation 

which can be ~Titten as 

16 

I . -., 
M 

(20) 

Now, equation (20) can be used as a boundary condition for 

equation {18) to deterRdne the constant C'. This is done 

in the following manner. First the derivative of equation 

(18} with respect to x will be found and evaluated at :x = o. 

This gives 

~\ = c'(-~) e~"\ ;:: -c'ff ~ (21) 
dX J ~ )(sO 

~--o 

This equation must be equal to equation (20) ., setting the 

two equal 

-c'•f# : dU. = J:L Ai - HT~.. ...L; AT x=o e>o. y;;;r d~ K K u. , {22) 

, -rio c' 
Next the substitution al : C e = 

J('SO 
will be mad.e. 

Equation ( 22) becomes 

-c'~ - J:L c'
K 

HT'
K.U. 
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solving fo r C' 

c'= H T._ 
(23) 

Ku. ( HJK +- V u./-.) 
Next , replacing C' in e quat i on (18) by equation(23) , 

equation (18) be comes 

(24) 

The inveTse transform of equation (24) can be deter

mined f rom a table of transform pairs . Carslaw and 

Jaeger 
(12) 

(12) ~~. , p . JSO 

· list the tran sform of 
-~X e 

where ertc, whi ch is known as the eDmplementary error 

function is derined as 

erfc. X = 1- er'f X 
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The inverse transfor-m of eque_ti on ( 24) is therefore by 

compari son , 

.I.= erfc.( X ~- ! exp. ( H )l + .1!~ .tGI} el"fc.I-L. ..,!:!v.,e\ (25) 
TL 2~cteJ ( K K" J) ~ZV~e K ') 

or, by rea.rre.nging and expressing in terms of the original 

temperatures , c an be written as 

Equation (26) gives t he te.lnperature dis tribution in the 

semi-infinite solid as a function of position (x) and 

time ( & ) • 

By evaluat ing equation (26) at x = 0 a.nd solving for 

t, the surface temperature of the semi -infinite solid as a 

function of time (e) can be found. This expression is 

The gen eral equation for heat trans~er involving 

film coefficients is 

( 28) 

where Q is the amount of heat flowing per unit time, A 1 s 

the area of the section taken normal to the direction or 
heat· flow, t is the temperature difference across the 

section under consideration , and His the equivalent film 

coefficient. 



The heat transfer from the hot body to the liquid 

can now be written using equations (27) and (28). The 

temperature difference for this problem is given by 

19 

At= t-tL= (t,-t;J[!-(exp. -H-:<9)~rfc .p.y.,_ij.,.t,--tL 
which reduces to 

6 t ~ (t,- -ttl(e"p.llzo~.el ~rfc l!..vote. 
H"l. 'I I< 

The equivalent film coefficient is given by equation (9). 

Taking the area as one square foot, the heat flowing per 

unit time is given by 

~ == fl(t;- tt>{exp- ( -H-V.L9 )j erfc 1 (..t.G. c29 l 

Equation (29) gives an equation for determining the 

unsteady state heat transfer from a hot body to a liquid. 

Since the mathematical solutions for the temperature 

distribution and heat transfer ar e rather long, two sets of 

curves have been drawn to expedite the determination or 
temperatures and heat rates . Plate No. 1 , a graph or 
(t1-t)/(t1-tL) for dif:rerent valu s o-r x/2 ~o1. e am HI:Zi/k 

has been plotted to aid in determining the tamperature 

distribution . Plate No . 2, a graph of q for different 

values of H(t1-tL) and x/2 f~ e has been plotted to aid in 

determ:ini.ng heat rates . The points necessary for plotting 

these graphs were obtained :rrom equations (26) and (29) 

respectively. 
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'fABLE I 

'l'EMPERAtt'URE HISTORY _lli A SEMI -INFINITE SOLID 

From Equation (26) 

loO 0.4 0.2 0.1 

(t1-t)/(t1-tL) 

1.0000 0.5724 0.3292 0.1983 0.1036 

0.7237 0.3782 0.2500 0.1204 0.0748 

0.4795 0.2290 0.1239 0.0700 0.0373 

0.2886 0.1266 o.o664 0.0270 0.0195 

0.1573 0.0629 0.0327 0.0180 0.0095 

0.0771 0.0274 0.0146 ------- ..... ____ 

0.0339 0.0121 -.- .... ~ .. ------- --~-~-

20 

0.05 

0.0540 

o.OJJ6 

0.0193 

0.0085 

------
------
-------



21 

l±t 
j-t 

' 1' l jf~ '_IT ~ 
1- I I z 

t:): 
: ~ Llli : '1; 

J ~~ I 

j-1--i- l r+ 
tr t i:!J ft I 

10-:t ~- ~ .1 I ~:-

_::::;__ 

' fl r_{ ,_g_ 

l-': !::!_ (j-j_ --:--· !1 .:.:_!1 :-::_ 
t .__, .c 

il ·~ 

It i 

I 
'+I- ::± 

'\;; l: 
~ ti t! 4 

m: 11:11 

L:t 
-~ ~ 

3 
rt :il 

i 

1:-t S:.t 
} FlfU§a; _: 

'"" 7 

~ 
ij B. 6 

f -_ 5 

I 
4 

3 

I l 



TABLE II 

DATA FOR DETJ.ltMINING THE HF.AT TRANSFER FROM A 
._,_ ........... - .__. __._, --
~-ntFINITE SOLID !Q ! LI QUID 

From Equation (29) 

H( ti -tr,} 5000 4000 3000 2000 

H~c~.e 
lC 

q 

o.oo 5000 4000 3000 2000 

0.25 3852 3082 2311 1541 

0.50 3078 2463 1847 1231 

0.75 2531 2024 1518 1012 

1.00 2138 1710 128.3 855 

1.25 1839 1471 1103 736 
.. 

1.50 1608 1286 965 64.3 

22 

1000 

1000 

704 

616 

506 

427 

368 

322 
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CONCLUSIONS 

The analytical reasoning and mathematical relation• 

ships, as set fourth in this investig.a.tion, determine a 

relationship for the unsteady state heat transfer from a hot 

body to a liquid When a vapor film forms between the hot 

body and the liquid. It also provides a relationship for 

determining the temperature distribution within the hot 

body as a function of position and time. 

This solution was determined for the case of a semi

infinite solid quenched in a large enough mass of liquid to 

maintain the liquid temperature essentially constant. 

Before the solution can be put to practical use, the film 

coefficients involved will have to be determined experimen

tally. 

When the n cessary film coefficients are determined, 

this solution should furnish ·a relative quick and simple 

method for determining the unsteady state heat transfer 

from a hot body to a liquid and the temperature distribu

tion within the hot body. 
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St.JJrmARY 

The temperature distribution in a hot body suddenly 

quenched in a large mass or liquid involving a vapor film 

between the hot body and the liquid was found by the use of 

Laplace transforms. From this relationship the temperature 

of the surface of the hot body at any time ·was determined. 

By subtracting the temperature of the liquid from the temP

erature of the surface of the hot body the temperature dif~

erence was determined. By using the general equation for 

heat transfer involving film coefficients the equation tor 

the heat transfer from the hot body to the liquid was 

obtained. 

Graphs were included to expedite the determination 

ot temperatures and heat rates. 

There are many unsteady state heat transfer problems 

l ·ert to be investigated. Other problems are readily suggest~ 

ed by extending this problem far such various shaped hot 

bodies as parallelpipeds, cubes , and spheres . The author 

hopes that at some future date the film coefficients involved 

will be determined experimentally tor various materials so 

that this solution can be put to practical use. 
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