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ABSTRACT

The use of rational polynomials for approximating 
surfaces is investigated in this study. In particular, 
methods for estimating parameters for a rational polynomial 
model were investigated.

A method is presented for finding initial estimates 
of the parameters. Two iterative methods are discussed 
for improving those estimates in an attempt to minimize 
the sum of the squares of the residuals. These two methods 
are (1) Scarborough’s Method for applying the theory of 
least squares to nonlinear models and (2) the Method of 
Steepest Descent.

Data from two functions were chosen and approximated 
as illustrations. Each set of data was used two ways*
(1) as generated* and (2) with random errors added* thus 
giving four examples.

Scarborough’s Method for improving the starting values 
was very effective* for the examples chosen* and the approxi
mations were excellent. The study indicates* therefore* 
that rational polynomials have good potential as useful 
functions for surface approximants.
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CHAPTER I 
INTRODUCTION

Almost as long as man has had experimentally determined 
data he has needed to construct approximating functions that 
would correlate these data, with an acceptable degree of 
accuracy, so that analysis of an associated problem could 
proceed. The need is even more dire today for at least two 
good reasons. (1) There is, in some areas, a great deal of 
data available needing critical analysis. (2) In other 
areas, data are difficult to obtain and hence scarce, never
theless requiring satisfactory methods of analysis.

Without some means of correlating past results with 
present needs or present results with future needs each new 
response must be found by sampling and evaluating. The more 
information that can be obtained from presently accumulated 
data and the more costly the process of sampling and evalu
ating at every new observation point becomes, the more import
ant approximating functions become.

When data are collected experimentally no exact function, 
F, is known nor can be known which perfectly correlates such 
data. A model of F may be known experimentally but its para
meters may remain unknown. Or, even if a very accurate 
approximant for F is known, it may be so complicated or dif
ficult to evaluate that it is not expedient to use. In any 
of these cases, therefore, an approximating function, G, is 
important.
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For most applications, if Z is a function of two inde
pendent variables, x and y, for some range of the independent 
variables, the locus of Z is, in general, a surface. There
fore, the problem of approximating Z is generally a problem 
of surface fitting and this study shall consider only this 
situation.

Assume, therefore, that a function, G(x,y), is desired 
to approximate Z for some region, R, of the xy plane for which 
Z = F(x,y), i.e.,

G(x,y) « Z = F(x,y). (1.1)
The author shall herein investigate the use of rational 
polynomials as a surface approximating device.

G(x,y) is a rational polynomial if
G(x,y) = N(x,y)/ D(x,y) (1.2)

where N(x,y) and D(x,y) are polynomials. Specifically
K K-i

N(x,y) = 2 L  2 Z  A. x V  (1-3)i=0 j=0
and

L L-i
D(x,y) = 2 Z  X I  ’ (l-*0

1=0 j=0
This study shall concentrate on an appropriate method 

of estimating the parameters, A^j and B^j, using discrete 
samples ZR, from the region R. An attempt shall be made to 
find a suitable procedure to minimize 
N 2

Zn - G(xn ,yn)J for any number, N, of discrete sample
n=l
points.
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The study shall be made for two types of data and for 
two classes of functions, F(x,y). First, a study shall be 
made using data taken from tables or generated from known 
functions such that no significant errors are included* i.e., 
Zn is known to correctly represent F(xn,yn) within a certain 
number of places of accuracy. Approximations shall be exam
ined using these "errorless” samples when F(x,y) is a member 
of the family of G(x,y) and when it is not a member thereof.

The second type of Zn used shall contain errors* i.e.,
Z = F(x ,y ) + e . This type Z shall represent data that 
are collected during some experimental process where measure
ments are subject to errors. The errors considered herein 
shall be restricted to relatively small, random errors with 
an expected value of zero. The approximations of both classes 
of functions, those for which F(x,y) is a member of the family 
of G(x,y) and those for which it is not, shall be examined 
using this type data, also.

In summary, a method for estimating parameters of 
rational polynomials so that the sum of the squares of the 
residuals will be a minimum shall be attempted using sets of 
data "with" and "without" errors for both a class of functions 
which are members of the family of the approximant and for a 
class of functions which are not members thereof.

Before considering the choice of rational polynomials 
as a device for approximating surfaces, consider for a moment 
the related problem of curve fitting. Curve fitting, in the 
past, has mostly been limited to the use of polynomials, or 
at best, polynomials and a few transcendental functions.
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Several excellent techniques have been developed for estimat
ing the parameters of these functions including methods for 
using the theory of least squares to determine the "best fit" 
with the model selected. Surface fitting has largely been 
an extension of these ideas and techniques using the same 
type functions.

With the introduction and more common use of large high 
speed computers other functions for curve fitting are being 
examined. One of these is rational polynomials. These 
functions have been hailed by such noted analysts as Hamming^^ 
Thacher and Tukey^^, and others as having many advantages.
The study of rational polynomials as useful functions for 
surface approximations seemed, therefore, a logical choice 
in attempting to extend the ideas of surface fitting beyond 
their present bounds.



5

CHAPTER II
GENERAL REVIEW OF LITERATURE

There are apparently no publications available which 
deal directly with the use of rational polynomials for sur
face fitting. There are certain related materials, however, 
which make a contribution in this area.

Hamming devotes an entire chapter to rational func
tions. He discusses their use for curve fitting through 
points equal in number to the number of parameters of the mod
el and lists several of their advantages. He implies that 
the functions have good possibilities for development into 
useful approximants.

( 2)Thacher and Tukeyv ' discuss the merits of rational 
polynomials for curve fitting and interpolation. They 
appear very enthusiastic about the flexibility of rational 
polynomials and attribute to them qualities superior, in many 
ways, to regular polynomials. Their results indicate that 
their conclusions are justified.

Almost any textbook on numerical analysis has some dis
cussion of the theory of least squares and its use. Hilde
brand^^ devotes an entire chapter to the subject. His dis
cussion of "Least-squares Approximation over Discrete Value 
Ranges" is very good. His explanation of obtaining the 
normal equations is unusually clear.

Scarborough*sdiscussion of the theory of least squares 
adds a general method for the theory*s use with nonlinear 
models. His method is discussed in detail later in this
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study. His "Method of Averages" for making initial esti
mates of the parameters in nonlinear models is used, also.

Kunzw ', in his text on numerical analysis, suggests 
using the Method of Steepest Descent for solving nonlinear 
sets of equations. He includes a discussion of the method 
and its use.

The criteria for judging "best fit" with a parti
cular model depend upon the author consulted. Hamming, ̂ ^ 
for instance, lists four choices. The theory of least 
squares was chosen for this study because it is probably the 
most widely used. This is especially true when randon 
errors are apt to be contained in the data.
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CHAPTER III 
DISCUSSION

A. THE GENERAL PROBLEM.
The first step in using a rational polynomial for 

approximating a surface is selecting a model. This is often 
a major problem and appears worthy of its own investigation.
It is not the purpose of the author to solve this problem 
at this time.

The general form of the approximant is 

G(x, y) = A00+AL0x+A0iy+A20x£+Allxy+ ~ ' +A0Kyk . (2.1)
B00+B10x+B01y+ ■ • -+b olyL

In order that the estimation of parameters may be unique one 
parameter must be eliminated. It is convenient to define 
Bqq = 1. Thus equation 2.1 becomes

G(x,y) = A00+A10x+A01y+ ‘ ' ,+A0KyK___________. (2.2)
1+B10x+B01y+ . . .+B0IyL

Substituting Z for G(x,y), equation 2.2 can be rearranged as 
follows:

A00+A10x+A01y+ * * * +A0Ky - ^^10x"*~̂ 01y ~̂ * * * +^0Ly (2»3)
If x, y and Z are known for a set of discrete points 

equal to or greater in number than the number of parameters, 
the equations formed by inserting these data in equation 2.3 
become a system in which the parameters are the unknowns. If 
this system is solved using data points equal in number to the



8

number of parameters the resulting function, G(x,y), using 
the parameters thus found will pass through each of the data 
points used. This is of no particular value for approximating 
a surface containing other points throughout the region, R, 
except for the special case to be discussed next.

In the special case where the true model, F(x,y), is a 
member of the family of the approximating model, G(x,y), and 
the observations, ZR, are "errorless,11 the parameters found 
(using data points equal to the number of parameters) will be 
those which form the function, F(x,y), and the fit will be 
"exact" throughout the region, R.

If F(x,y) is not a member of the family of G(x,y), or 
if there are errors in the data, data points equal in number 
to the number of parameters are not adequate for a general 
fitting of the surface throughout the region, R.

It would seem rare indeed to have enough knowledge about 
the function, F(x,y), and about the data, ZR, to recognize 
the special case in advance. If the special conditions do 
apply, a general solution will give the proper parameters 
also, with only slightly more work. Therefore, the procedure 
for a more general solution will usually be followed from the 
beginning.

As was stated before, the theory of least squares shall 
be used as the criterion for judging the "best fit" of the 
surface with a given model, G(x,y). According to this theory 
"best fit" has been attained when the sum of the squares of 
the residuals is a minimum.
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There appears to be no simple or direct method for 
applying the theory of least squares to a function that is 
nonlinear in its parameters. Two methods which can be used 
were investigated. Both were iterative processes requiring 
an initial estimate of the parameters for starting values with 
subsequent efforts being made to improve those estimates.
Each improvement was based upon the last value obtained, thus 
forming the iterative process.

One of these methods is outlined by Scarboroughv ' and 
shall subsequently be referred to, in this paper, as "Scar
boroughs Method" for improving initial parameters. The 
other method investigated was the "Method of Steepest Descent" 
and shall be referred to by name. Both methods are very 
dependent upon the initial estimates of the parameters. For 
some choices the iterative processes converge very quickly, 
for others, they converge very slowly or not at all. There
fore, an effective method of obtaining starter values is very 
important.

B. METHODS FOR OBTAINING INITIAL ESTIMATES
The method which most consistently gave initial esti

mates of parameters which ultimately led to convergence is 
presented next.

First, a set of equations is found, using equation 2.3, 
employing points, (xn, Zn), greater in number than the
number of parameters to be determined. The set would appear 
as follows:
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A00+A10xl+A01yl+ ••• +A0KylK ■ zi(Bioxl+B0 1yl+-•• +BOLylL _̂Zl

To these equations apply the theory of least squares for 
finding parameters,, i.e.., form the general set of normal 
equations and solve them simultaneously. The values thus found 
are, in general, more dependable than those given by any other 
method investigated.

If successive iterations do not lead to convergence 
using these starting values a new set may be obtained by 
increasing or decreasing the number of data points used or 
by selecting other data points from the region, R.

It may appear to the casual observer that the initial 
estimates found for the parameters, using the method presented, 
will minimize the sum of the squares of the residuals since 
the "least squares" technique was used to obtain these values. 
This is not generally true.

The reason the method presented does not minimize the 
sum of squares of the residuals for the general case can be 
seen by inspecting that sum and the sum being minimized by 
the method presented.

The sum of the squares of the residuals is given by

(2.4)

2
(2-5)
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where d(x,y) = D(x,y) - 1.
The sum being minimized by the method presented for 

finding initial estimates of the parameters is given by

N 2

5 1  [ Zn - N<xn ^ n)+Zn' <2 -6)tier 1 1

It is evident, from these equations, that the parameters 
which minimize equation 2.6 will not, in general, be the 
parameters which minimize equation 2.5* except for the special 
case previously discussed.

An additional method, referred to as ’’The Method of 
Averages," is given by Scarborough^^. This simply requires 
that equations 2.4 be divided into groups equal in number to 
the number of parameters to be found. (The number in each 
group need not be equal.) The equations in each group are 
summed, thus forming a set of equations, which can be solved 
simultaneously for the parameters.

C. IMPROVING THE ESTIMATES.
"Scarborough's Method" for applying the theory of least 

squares to a general case of a nonlinear model can be adapted 
to rational polynomials as follows:

Consider Zn a function of the parameters, i.e., 

Zn = G (xn’V Aij’Bij> + en (2.7)
with A^j and defined as the ideal parameters for minimizing
the sum of squares of the residuals and en defined as the er
ror in any approximation. Assume the initial estimates of 
the parameters have been found and are identified as a £^ and
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(1) Define the corrections needed to make each starting

Thus
Ai j

- A < P  + a- .
i j  iJ

and
Bi i

= B^P + p. . . 
i j  i j

Bij
value equal to the corresponding ideal value as and .

(2 .8)

(2.9)

By substitution,
Z = G(x ,y .A^P+ct. .,b £P + p..) + e . (2.10)n v n^n* ij ij * lj ij n

Expanding this function by "Taylor^s Theorem of Several Vari
ables” about the starting values it becomes

ZrT G(xn j y n ,Ai 1 > ’ Bi i ) ) + ? 7 ai i  ('5 5 7 :)n+ ? - ^ i i  (H ^ ) n+6n- <2 -1 1 )i,j -- - ij " i,j -J — lj
The first term G(xn,yn ,A.£ĵ  ,B^^) is the first approximation

of Z and shall be identified hereafter as Z n n (1) Thus the

expansion becomes

Z = Ẑ +ZHa. . (If— ) +y  “Tft. . (If— ) + 6 .n n j— * ij''dAi./n .pij '•dBj.'n n (2 .12)

with 5̂  now containing the additional error caused by trun
cating the series after the first order terms.

These equations are linear in the corrections a i j and

and may be dealt with by the method of least squares to

find the "best” corrections.
The sum of the initial parameters and the corrections,

and B^P + may then be treated as new starting

values. This iterative process may be carried on until the
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corrections are no longer significant. Hopefully, the para
meters will then be those for which the sum of squares of

N 2the residuals, -» r« _ Gfx v \1 * is a minimum.
L n 1 n’yn>\

A discussion of the "Method of Steepest Descent" can be 
found in Kunz^^, and several other texts, and shall not be 
repeated here.

Both methods were used in attempting to solve the 
example problems which follow and comments shall be included 
concerning their respective effectiveness.

D. THE CHOICE OF FUNCTIONS FOR THE EXAMPLES AND THE 
PREPARATION OF DATA.
Two functions were chosen for generating data to be 

approximated as illustrations. The first function chosen was

z = F(x,y) = ...3 + g*. + + 5*y (2 .13)
1 + x2 + y2

and the second function chosen was

Z = F(x,y) = 1 - e~xy. (2.14)
The function chosen for the approximant in both cases was

G(x.y) = A00+A10x+A0iy+AgQxg+Allxy+A0gyg (2.15)
1 + Biox+Boiy+B2ox£+Biixy+Bo2y2

The first function, equation 2.13* is a member of the family 
of the approximant, G(x,y), and the second function, equation 
2.14, is not. It is obvious, therefore, that a "fit" exists 
for the first function. The existence of a good "fit" for the
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second function is not obvious. The second function, there
fore, should supply the better test of the effectiveness of 
rational polynomials as approximants.

Data was generated using both functions, equations 2.11 
and 2.12, from the region, R, 0 5 x < 3, and 0 < y < 2. In 
each case the x and y values were both incremented from zero 
to their upper bound by intervals of twenty-five hundredths 
(.25) thus giving 117 discrete data points with their res
ponses. This was done with an IBM 1620 and a card was punched 
for each point containing xn, y , and Zn .

To simulate data with random errors in the responses 
for the same functions and over the same region, R, a program 
was written to read the data from each card, add an error, 
taken at random within a predesignated range, to each res
ponse and a card punched for each point containing xn , yn

ZEn, and ZTn . ZE represents the response with random error 
added and ZT represents the true response as originally 
generated.

The errors added to the responses were bounded as follows
(1) The absolute value of any error, added to a 

response from the first function must be less than 
or equal to one-half, i.e., (ê | - 1/2. This 
represents a possible error of 14.4% of the mean 
value of the true responses.

(2) The absolute value of any error, eg, added to a 
response from the second function must be less than 
or equal to one-tenth, i.e., |e2j s 1/10. This
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represents a possible error of Vj .2% of the mean 
value of the true responses.

These four sets of data represent all the cases outlined.
To assure random selection from each set of data thus 

generated, each set was shuffled as one would shuffle playing 
cards. The data used were from these shuffled sets and were 
reshuffled from time to time.

E. TOE EXAMPLES AND THEIR SOLUTION.
EXAMPLE I. The first attempt to determine parameters 

was made using "errorless" data generated from equation 2 .1 3. 
This is, of course, the special case referred to in the gen
eral discussion and good results were expected. This provided 
an opportunity for checking the programs used since the re
sults could be anticipated.

First, a system of equations was formed and solved 
using eleven data cards. This was the minimum number possible 
because the approximant, equation 2 .15, has eleven parameters. 
This was repeated several times. These systems of equations, 
as well as all others, were solved by the Gauss-Jordan Method 
as outlined by Kunz^^ and others. The program for this 
method was taken from the M.S.M. Computer Center Library.

The parameters determined for each of these systems were, 
as expected, the coefficients of the function from whence the 
data were generated. Accuracy was approximately to four 
decimal places. Errors were only those accumulated by the 
computer through round-off and the reduction method used.

The second program tried was one to find starting values
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by the method presented in this study. Again,, each attempt 
gave the expected parameters. The only noticeable change 
was the loss of one decimal place accuracy when 99 data 
cards were used. This was to be exp cted due to the large 
number of operations performed in forming the coefficients.

The third program checked was the one for finding 
starting values by the "Method of Averages.” Three equations 
from equation 2.4 were summed to form each equation of the 
set of eleven equations needed. This was repeated using 
groups of five and nine to form the eleven equations. The 
results in each case gave approximately the same values for 
the parameters as were obtained by passing the surface through 
eleven points.

An attempt to improve some of the initial parameters„ 
found by the above methods, was made using the "Method of 
Steepest Descent." This was futile with the restrictions 
imposed upon the method. A brief description of those re
strictions is given next.

The direction numbers required to determine the path 
of steepest descent and thus reduce the sum of the squares 
of the residuals are given by

(2 .16)

(2.17)

for any parameter .. (®Q0 was defined to !•) The
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magnitude of the correction of the parameters is arbitrary 
but these were the restrictions imposed:

The direction cosines were found and movements were 
tried beginning with eight times each direction cosine.
If the sum of the squares of the residuals was not 
reduced with this choice the amount was divided by two 
and this was tried. This was repeated until the last 
attempt employed only one-eighth each direction cosine.
If this amount would not reduce the sum of the squares 
of the residuals the program would automatically exit. 
"Scarborough's Method" for improving the parameters 

produced a small surprise. One additional decimal place of 
accuracy, in addition to the four previously given, was always 
added and sometimes two. This had not been expected with the 
accuracy already given, and it indicated that the method had 
excellent possibilities.

The primary equation necessary for using Scarborough's 
Method is equation 2.12. The expansion of this equation,
2.12, for the approximant used, 2 .15* is

A00+A10xn+A01yn+A20xn+Allxn^n+A02^n

- Zn1>(B10xn+B0iyn+B20xn+Bllxn V B02yn> / Z -Z<1} .n n
(2.18)

The insertion of data values into this equation forms a set 
of equations equal in number to the number of data cards used. 
The normal equations used for a "least squares" solution are 
then formed using this set of equations as defining the
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residuals. The corrections found from the reduction of this 
system of equations are added to the starting values and these 
new estimates may, in turn, be used as the initial values 
for the next correction.

The parameters found by all the methods were different 
only in the number of decimal places of accuracy. Therefore, 
a listing of the true functions and the approximated func
tions for comparison is not given.

EXAMPLE II. The set of data for this example was taken 
from the same function, equation 2 .13j, but with the random 
errors added. Success was not as easily, nor as consistently, 
achieved as with Example I.

The parameters found using only eleven data cards were 
worthless. They were unpredictable from one set to the next 
and could not be successfully used as starting values. This 
was to be expected and after a few such attempts the idea 
was abandoned.

The "Method of Averages” for finding starting values 
was only moderately successful. Only one of three sets of 
initial estimates found was acceptable as starting values.

The method presented in this study produced consistently 
good results. Almost every set of initial estimates of the 
parameters were acceptable as starting values. Estimates 
using 25* 35* and 55 data cards were all acceptable. The 
smaller number was used thereafter because the program ran 
much faster.
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"Scarborough's Method" was by far the more successful 
of the two methods for improving the parameters. The 
"Method of Steepest Descent" was much slower and at times 
stopped moving the values at all. Apparently, local 
minima existed in the hypersurface which, with the restric
tions imposed, caused the program to exit. Further study 
to determine better choices of the magnitude of the change 
in the parameters could possibly make the method more useful.

A summary of the results of a "run" using data from 
Example II should be worthwhile. Starting values were obtained 
using 25 data cards. These were improved twice and the data 
cards were increased to 35 • This caused a large increase in 
the sum of the squares of the residuals but further itera
tions quickly reduced this sum. It is interesting to note 
that, using 35 points, the function was more nearly approxi
mating the true data than it was approximating the data being 
used. An increase to 55 data cards resulted in only a mod
erate increase in the average error.

For 95 data cards the sum of the squares of the dif
ferences between the estimated values and the true values 
reduced to 1.68, i.e.,

whereas the sum of the squares of the residuals had reduced 
only to 6.43j i.e.,

n=l
Zt I = 1.68 (2.19)

SZ[<n=l l
95

G(xn ,yn) - ZE (2 . 20)
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This indicates that the method of least squares produced the 
desired damping effect.

The list of values from every fifth data point used in 
estimating the parameters is given in Appendix I for compari
son of the responses with errors added,, ZE, the true responses, 
ZT, and the approximations of the responses, ZA.

EXAMPLE III. For the third example parameters were 
estimated for an approximant to fit a function, equation 2.14, 
which was not a member of the family of the approximant. The 
data were "errorless."

Again, starting values were created using 25 data cards 
and the method presented. The results were excellent from 
the beginning. To check the ability of the approximant, 
equation 2.15, to fit the surface throughout the region, R,
95 data cards were ultimately used. The results were

This represents a mean difference between the average error 
and the true value of the function of .009 which is only 
1.6 percent of the value of the mean true value. Apparently 
the function was a very fortuitous choice.

A listing of every fifth data card is given for com
parison of the true responses, ZT, and the approximations of 
the responses, ZA, in Appendix II.

EXAMPLE IV. The last attempt to determine suitable 
parameters was made using the data originally taken from the

n=l
(2 .21)
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second function, equation 2.12, with random errors added.
As had now become regular procedure, starter values were 
found using 25 data cards. The errors delayed success only 
a few iterations and increased the sum of the squares of the 
residuals only slightly. Again, the approximant more nearly 
fit the true data than the data with errors after 35 data 
points were included. As in Example II this illustrates 
excellent damping of the random errors.

Using 95 data cards the results were

and

(2 .22)

(2.23)

The mean error is now .017 or 3 percent of the mean true 
value. But this is still very good considering the allowable 
error in the data was 17-2 percent.

A listing of every fifth set of values is given in 
Appendix III for comparison of the responses with errors 
added, ZE, the true responses, ZT, and the approximations 
of the response, ZA.
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CHAPTER IV 
CONCLUSIONS

Rational polynomials have excellent potential as surface 
approximants. One of the major disadvantages heretofore was 
the lack of an adequate method for determining a set of para
meters for which one of the criteria of "best fit" could be 
satisfied. Scarborough's Method appears to overcome this 
disadvantage by determining "best fit" by the criterion of 
"least squares" if adequate starting values can be found.
The method presented in this study for finding starting values 
appears sufficiently effective. The study indicates that 
these two methods used together provide the means necessary 
for successfully using rational polynomials.

A summary of the procedure found to be most successful 
is given as follows:

(1) Produce starting values by the method presented 
using about two data cards per parameter to be 
found. Twenty-five seemed ideal in the examples 
in this study.

(2) Start improvements by Scarborough* s Method without 
increasing the number of data points.

(3) When corrections become small increase the number of 
points. To begin with a large number of points or to 
increase by too large an amount may cause the correc
tions to "overshoot" and the solution to diverge.

(4) When an increase in the number of data points does 
not increase the relative error to a degree beyond
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acceptability,, a "fit" over the region, R, is 
indicated.

(5) Iterations for the final number of data cards
should be continued as long as a reduction in the 
sum of the squares of the residuals is significant.

Only by future use for many applications and through 
further theoretical research will the true value of rational 
polynomials as surface approximants be known.

There is nothing in the theory discussed that limits 
the methods presented and discussed to two independent vari
ables. The extension of the methods to any number of inde
pendent variables should be obvious.

There is nothing in the theory discussed which limits 
the rational functions to polynomials. The only limitation 
necessary is that both the numerator and the denominator be 
linear in their parameters. Therefore, the use of trans
cendental terms may be possible.
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APPENDIX I

VALUES FROM EXAMPLE I

X Y

2.50 .25 .

1.25 .75 .
.75 1.00 .
.25 .50 .

1.75 1.25 .

.25 1.25 .

2 .00 1.25 .

2 .00 1.50 .
1 .50 0 .00 .

1 .50 .50 .

1.75 .75 .

.75 .25 .

0 .0 0 2.00 .

3 .00 .75 .

2 .75 1.25 .

2 .5 0 1.75 .

2 .75 1.50 .

3 .00 1.25 .

ZE

20173394E+01 

47151225E+01 

50666047E+01 

4294816 1 E + 0 1 

43272182E+01 

37847485E+01 

38943937E+01 

35906144E+01 

13543954E+01 

33810361E+01 

34137345E+01 

41910542E+01 

25415089E+01 

19511708E+01 

28369178E+01 

30837905E+01 

35088807E+01 

23709392E+01 

22126483 E+01

ZT

•16581197E+01 

•42200000E+01 

.47804878E+01 

•46666667E+01

• 39888889E+01 

•38333333E+01 

•37333333E+01 

•38620690E+01 

•18461538E+01

• 33 571429E+01 

•34729730E+01

• 3961538 5 E + 01 

•22000000E+01 

•22011834E+01 

•30308642E+01 

•35757576E+01

• 32485549E + 01 

•28324324E+01 

•23960396E+01

ZA

•15247543E+01 

•44029208E+01 

•49547123E+01 

•45291360E+01

• 40086663 E + 0 1

• 3 8 508707E+01 

•37250502E+01 

•38324754E+01

• 14601571E + 01 

•32802585E+01

• 34434378 E+01

• 39977469E+01 

•24168184E+01

• 2 245358 OE+01 

•30440471E+01 

•35388374E+01 

•32529856E+01 

•28780375E+01 

•22544210E+012 .25 50
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APPENDIX II 

VALUES FROM EXAMPLE II

X Y

• 25 .5 0 .

1 • 75 .25 .

2 • 25 1 .00 .

.75 .25 .

1 .25 .5 0 .
3.00 0 .0 0 .

M . O o . 5 0 .
2.75 1 .00 .
1.25 .75 .

1.00 1 .50 .

0 .00 1.75 .

2 .50 .5 0 .

1.00 1.75 .

3.00 .5 0 .

1.25 0 .0 0 .

1.25 2 .0 0 .

2.00 1.00 .

• 25 1.75 .

• 50 • 25 .

ZT

11750310E+00 

35435150E+00 

89460080E+00 

17097090E+00 

46473860E+00 

OOOOOOOOE-99 

39346940E+OO 

93607220E+00 

60839440E+00 

77686990E+00 

00000000E-99  

71349520E+00 

82622610E+00 

77686990E+00 

00000000E-99  

91791500E+00 

86466480E+00 

35435150E+00 

11750310E+00

ZA

•10562699E+00

• 36730453E+00

• 89403075E + 00

• 15 566876E+00 

•46231942E+00

-•62291718E-02

• 38343406E+00 

•92676198E+00 

•60956108E+00

• 77668299E+00 

-•58872274E-02

• 71741143E+00 

•81790406E+00 

•76039567E+00

• 35 392870E—02 

•90029273E+00 

•86673801E+00

• 37460472E + 00 

•10284492E+00
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APPENDIX III

VALUES FROM EXAMPLE I I I

X Y ZE ZT Z A

.2 5 • 50 •49897180E-01 •11750310E+00 • 11378238 E+00

1.75 .25 •41966289E+00 •35435150E+00 • 38771498 E+00

2 .25 1.00 •87425988E+00 • 89460080E+00 •89074186E+00

.7 5 .25 •88233170E-01 •17097090E+00 •16669466E+00

1.25 .50 •47756413E+00 •46473860E+00 •48599937E+00

3 .0 0 0 .0 0 -•69323658E-01 •00000000E-99 - .2 2 2 7 5 3 6 2E-01

1.00 .50 •43619975E+00 .3 9346940E+00 •40886789E+00

2 .7 5 1.00 •83826193E+00 •93607220E+00 •92182071E+00

1.25 .75 .57405019E+00 .60 8 3 9 4 4 0 E+00 •62872925E+00

1 .00 1.50 •83324874E+00 •77686990E+00 •78963057E+00

0 .0 0 1.75 •65740784E-01 •OOOOOOOOE-99 •10251432E-01

2 .5 0 .50 .79202952E+00 .71349520E+00 •72379932E+00

1 .00 1.75 •79298391E+00 •82622610E+00 •82973812E+00

3 .0 0 .50 •83127638E+00 •7768699OE+OO •76414269E+00

1.25 0 .00 -• 86903648E —01 •00000000E-99 - .4 5 6 5 0 0 5  I E -02

1 .2 5 2.00 •96031749E+00 • 91791500E+00 • 90695429E+00

2 .00 1.00 •76954671E+00 •8646648OE+OO •86573609E+00

• 25 1.75 • 38688485E+00 •35435150E+00 •41031992E+00

.50 • 25 • 20137774E+00 •11750310E+00 • 10558996E+00
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