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ABSTRAcr 

This thesis shows that reaction jet thrust pulses, 

each of constant amplitude and time duration, in conjunc

tion with sampled data error information can provide 

satisfactory position and/or attitude control for space 

vehicles. 

Incremental phase-plane analysis of the system yields 

a technique for determining system response and suggests 

a means of compensation. Control system response for the 

vehicle under the influence of external forces is shown 

to be satisfactory by digital computer simulation. 
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CHAPTER I 

INTRODUCTION 

Recent years have found an increased interest in space 

exploration and utilization.·· Space vehicles with many 

types of attitude and position control systems have been 

designed. Common to many of these vehicles is the use of 

small thrust rockets to impart a directional force or an 

attitude control torque.' These systems usually employ 

elaborate methods to control the amplitude, duration, or 

time of application of the rocket thrusts.: 

Orbiting space laboratories and other manned space 

vehicles are projects of the near future.; With projects of 

this type comes the need to have simply equipped supply 

vehicles rendezvous with the manned vehicle.'1 One type of 

control system which could be used for either position or 

attitude control on such a supply vehicle would employ 

small thrust rockets that were all programmed to have equal 

thrust amplitudes and time durations. The fixed values of 

these parameters would allow the design of a simpler control 

system than those ordinarily employed; 

The control system would operate in the following 

manner.' Position error information would be gathered by a 

radar or some other type of error sensing device and would 

be in sampled data form.l If the position error exceeded some 

set threshold value. at the sampling instant, a correction 

thrust pulse would be commanded to reduce the recorded error.i 



If the position error was less than the threshold value at 

the sampling instant, no thrust pulse would be commanded. 

The control system described above amounts to a 

sampled data feedback system having a nonlinearity in its 

forward path. It is this nonlinearity and the inclusion of 

external forces which may act on the vehicle that cause 

difficulty in analysis of the control system. 

2 

This thesis examines the characteristics of the non

linear sampled data feedback control system described above. 

Since the general characteristics of this system are of 

interest, a single axis translational position control system 

is used as a model. This model was chosen since, for a 

three axis system, the equations for translational motion 

are independent while the equations for rotational motion 

are coupled. 

Often, the only method available to analyze a nonlinear 

sampled data control system is the simulation of the specific 

system using analog, digital, or hybrid computing techniques. 

Therefore, of secondary interest in this thesis is the appli

cation of incremental phase-plane analysis to study the 

system's general characteristics. 



CHAPTER II 

REVIEW OF LITERATURE 

J 

Research into space utilization and vehicle design 

began 1nearnest during the 1950's. During the later portion 

of this decade, plans began to be made to orbit satellites 

and later to have manned space flight. Inherent in these 

plans were attitude control design problems. Several 

investigators have reported on the use of reaction jets 

or rockets for spacecraft attitude stabilization. 

In April 1959, Pistiner (1) developed certain non

linear analysis and synthesis techniques as applied to on

off attitude control systems. The author used phase-plane 

analysis to study a hydrogen peroxide reaction jet control 

system. He established the requirement for lead compensation 

networks to achieve stable limit cycle operation and dis

cussed the effect of time delays on system performance. 

Fuel consumption was shown to be dependent on lead network 

configuration and a synthesis method for optimization of the 

compensation networks to achieve minimum fuel consumption 

was applied to this continuous feedback control problem. 

Marx (2), in February, 1961, discussed various design 

aspects of attitude control systems as required by the 

different phases of manned orbital flight. These phases 

were: boost, orbit injection, orbit, orbit ejection, re

entry, and landing. The applicability of numerous figures 

of merit to the attitude control problems during the different 



phases of flight were studied. Several appropriate and 

usable continuous feedback control systems were offered 

as possible solutions. 

During 1962, research in the area of reaction jet 

attitude control systems increased. In April, a report 

4 

i'J"as published by Dahl (3) which considered the effects of 

external torques on the limit cycle operation of a reaction 

jet attitude control system. Expressions were developed 

for the impulse requirements of the limit cycle operation 

of a system under the action of external torques.' Phase

plane analysis was used to study the system response for 

combinations of thrust pulse width modulation and pulse 

frequency modulation.' Among the results obtained was the 

fact that destabilizing torques can be used to reduce the 

impulse requirements below those of a torque free system.' 

Also during April, 1962, Gaylord (4) described the 

development of a new approach to pulsed jet attitude control 

which makes use of logical control to design efficient limit 

cycle operation. He also showed that by proper logical 

switching of the gas reaction thrusts one can eliminate the 

use of rate measuring and damping networks.· He also describes 

the use of controlled pulse lengths to reduce the effect of 

turn-off delays in order to minimize limit cycle amplitude 

and fuel consumption.' 

In October, 1962, Vaeth (5) described a. reaction jet 

control technique which combines low-thrust vapor jets and 

time-dependent on-off switching circuits.~ Analog computer 



studies of the system 1..;ere made to determine the capabil

i ti ties and limitations of this approach.' The paper also 

presents design guides for synthesizing the system to meet 

particular sets of performance specifications.· 

5 

Vaeth (6) at a later date, January, 1965, expanded his 

earlier paper in order to compare three different impulse 

modulation techniques.' Analog computers were used to simu

late the reaction control systems.·· Based on these analog 

results and theoretical correlation, design guides were 

evolved for selecting control system parameters and mini

mizing fuel consumption.; 

All of the attitude control systems referenced above 

had two basic common characteristics: 1. Each utilized 

continuous information feedback in making control corrections, 

2.' E~ch utilized a reaction thrust as the control element. 

None of the reports examined considered the use of sampled 

data information to make control decisions, but each yielded 

an insight into the operation of reaction jet control systems.1 



CHAPTER III 

MATHE!1AI'ICAL MODEL 

6 

A general description of the control system examined in 

this thesis is given in Chapter I. ' It is the intent of this 

chapter to state more precisely the physical characteristics 

of the control system.· A mathematical model is derived 

from this statement of the system.1 It is this model upon 

which the analysis of the following chapters is based. ' 

For the vehicle to rendezvous with another vehicle or 

to be at a particular position in space at any given instant 

of time, its position must be closely controlled. ' If the 

speed in the forward direction is constant (coasting), then 

the vertical and horizontal positions must be controlled as 

a function of time. ' It is the position control in one of 

these directions that is investigated in this thesis.i 

The object under control is a mass which is assumed to 

remain constant.4 This mass is accelerated by pulsed control 

thrusts and external forces. ' The control thrusts, as described 

previously, are all of equal amplitude and duration. ' They 

are commanded when error between the actual position and the 

input signal (commanded position) exceeds a preset limit and 

they are directed so as to decrease the error being sensed.' 

The external forces mentioned would include those due to 

gravitational gradient, Coriolis acceleration, solar wind, 

magnetic fields, and so forth. 
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The error signal which commands the control thrusts is 

assumed to be in sampled form.' This would be the case, for 

instanGe, if a scanning radar were used to sense position 

~~~or between two space vehicles. 

The system can be represented as shown by the block 

diagram in Figure 1. The output of the nonlinearity may be 

described by 

and 

where 

{
F 

N(e(kl')) = 0 
-F 

' e( ki') ~ o< 
, te(ki' )j< o< 

e (kl') <-o< 

kT = sampling instant 
Td = control force application delay time 
Tp = control force duration 
F = control force amplitude 
o< = error dead zone limit. 

(3-2) 

If the delay time, Td, is small compared to the sampling 

period, it can be neglected.' This can be shown by consid-

eration of the effect the time delay would have on the system 

response. For purposes of analysis, the time delay, Td, 

will be neglected.' Equation 3-1 then becomes 

f01~;:(t) = N(e(kr))[u(t-ltr)- u(t-kl'-Tp)] (3-3) 

where k denotes the kth term of the summation given in equa-

tion 3-1. The Laplace transform of equation 3-3 yields 

F ole ( s) = N ( e (kl')) [ ( 1-e -Tps) e-k1' s ] .' ( 3-4) 
s 

Following the example of reference (7) and expressing 

e-Tps as an infinite series, equation 3-4 becomes 
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r(tj ~ ~~ e* NONLINEAR 
' ~. ~ ELE!1EN'i' 

I + 
fo (t) 

+ 
)dtd ]c(t) o 

. -· I .___ ____ ....J 

Figure 1. Block Diagram of Position Control System 

The symbols used are defined as follows: 

c ( t) = output position 
r ( t·) = input sigDal (commanded position) 
e ( t) = error signal 

e~~ ( t ) :::: sampled error signal 
fo (t) = control force 
f e (t) = external force 

H = mass of vehicle 
T :::: sampling period 
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Folds)= N(e(kr))[ e-krs(l-(l-Tps+(Tps) 2 -('rps) 3 + ••• ))] 
s 2! .3! -

(.3-5) 

If fe(t) and all initial conditions are neglected, the trans

fer function G(s) = C0 k(s}/F0 k(s) can be written as 

G(s) = C0 k(s) = 1 
Fok(s) Ms2 

Therefore, 

• 

= N( e(k'r} }Tp[ 1 - Tp 
M ~s 

2!s 

( .3-6 ) 

+ T .a _ . · ·]e-ltrs , p • • • • (.3-7) 
JT 

Since, from consideration of the physical system an impul-

sive response cannot exist, 

Col<: (t} = N ( e (k'r) )Tp[ ( t-ld') - Tp]u ( t-ld'). 
M 2 

(3-8) 

The change in position during the period between error 

samples, i.e. bet";..;reen t=k'r and t=ki'-rr, due to an error at 

t=kT is given by ~cok(k'r) where 

6Cok(k'r) =lim c0 k(t) 
t~ (kr+T )-

= N(e(k'r))Tp[ T-'rp] 
M 2 

= N ( e ( kT ) )T p[ 1-~]T .' 
M ·· - 2T 

{.3-9) 

If the gain multiplication factor is defined as 

Kr = T [ 1-~J 
p 2T , {3-10) 

then equation 3-9 becomes 

£.Cok(ld') = N(e(ld'))KfT• 
I (3-11) 

M 



Since only the change in position between each error 

sample is of interest, equation 3-7 can be rewritten as 

10 

( 3-12) 

Eqt~t1on 3-12 shows that the control pulse may be con

sidered as a combination of a unit impulse and a nonlinearity 

havine; both dead zone and saturation regions.· For this 

combination to accurately describe the forward transfer 

function of the control system, the transfer function G(s) 

must be multiplied by the gain multiplication factor, Kr: 
As can be seen from equation 3-9, if the pulse duration 

time is small in comparison with twice the sampling period, 

i.e.· Tp<<2T, then Kf can be approximated by TP.· This 

assumption will be used throughout most of this thesis_. The 

position error that occurs during one sample period due to 

this approximation is shown graphically in Figure 2.' Its 

effect on system stability is examined in the last two 

chapters. 

The block diagram of Figure 1 is redrawn in Figure 3a 

using the previous approximations. In this diagram, the 

external force, fe(t), is assumed to act independently on 

the vehicle.' The vehicle positions caused by the separate 

forces are summed to give the total position.· This summation 

is justified because Laplace transforms are linear operators. 

The initial conditions, i.ie.' initial position and velocity, 

are applied to the mass upon which the external force acts.: 

The block diagram of Figure 3a is redrawn in parts b and c 

to show the equivalent Laplace and Z transform diagrams.~ 
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·. ·:);' - e l A I. 

(a) 

'" ~ lc I' _l'.;;..p...,.... 
~ ~·s:a I •.• 

( s) 

(b) 

12 

c ( t) 

C(s) 

F ~( z) (z) = C(z) 

(c) 

Figure J. Control system block diagrams using impulse 
representation. a) Time equations b) Laplace 
transformed equations c) Z transformed equations 
with fe(t) = o. 
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·rhe mathematical models of Figure 3 are used in the 

following chapters to analyze the control system. 

Certain characteristics of the control system can be 

discerned from the block diagrams of Figure 3 and the 

preceeding equations.· Consideration of the physical system 

shows that the use of the nonlinearity with saturation and 

dead zone regions and the unit impulse approximation is 

equivalent to an instantaneous change in velocity whenever 

the magnitude of the sampled error exceeds the dead zone 

limits.· The chang·e in velocity is given by the impulse-

momentum equation using vehicle mass, thrust amplitude, and 

thrust duration time, i.'e.' 

AC~k(kT) = Fl'p/M.' (3-13) 

Equation 3-13 gives an insight into the mechanics of 

the control system. The position is seen to be 0ontrolled 

by step changes in velocity in a direction to decrease the 

magnitude of the error signal. 



CHAPTER IV 

PHASE PLANE Al~ALYSIS 

14 

A number of techniques by which the stability of non

linear sampled data feedback control systems can be analyzed 

are available. These techniques include application of 

Popov's stability criterion, Lyapunov's second method, 

phase-plane ar~lysis, and system simulation. 

·rhe first two methods of stability analysis mentioned 

above were attempt~d, but accurate conclusions could not be 

reached. Popov's stability (8) criterion provides sufficient, 

but not necessary, conditions for system stability. If 

these conditions are met, the conclusion that the system is 

stable can be drawn. However, if these conditions are not 

met, as was the case for the control system under study, no 

conclusion concerning system stability can be drawn. 

Lyapunov's second method (9) provides necessary and 

sufficient conditions for stability. However, application 

of the method is contingent upon one's ability to derive a 

proper Lyapunov function from the system's state equations. 

The author was not able to apply this method of analysis. 

Phase-plane diagrams, often used as an analysis 

technique, proved to be applicable to the study of the con

trol system defined in the previous chapter. Truxal (10) 

explains che technique of applying this type of analysis to 

continuous systems. Aseltine (11) and Lindorff (8,12) use 

difference equations to develop incremental phase-plane 



15 

analysis techniques which m~y be applied to nonlinear sampled 

data control systems. This chapter develops the incremental 

phase-plane techniques which apply to the nonlinear sampled 

data control system as shown in Figure 3 and uses these 

techniques to determine the system's general response 

characteristics. 

If the change in variables indicated by Lindorff (8,12) 

is now made, the block diagram shown in Figure 3c can be 

manipulated into the form shown in Figure 4. It should be 

noted that the two diagrams are exactly equivalent only 

when K=l. A value of K~ 1 is shown in Chapter V to be 

equivalent to employment of a compensator in the system. 

The equations which describe the system where K=l can 

now be written directly from the diagram of Figure 4. If 

the input signal is zero, i.e. R(z) = 0, these equations are 

written as 

and 

(z-1) 3 X(z) = -[TpT/M]F0 k(z), 

(z-l)X(z) = Y(z), 

( 4-1) 

(4-2) 

E ( z ) = KY ( z ) + X ( z ) • ( 4-3 ) 

The equation for the first forward difference is 

defined (8,9,11) as follows 

A X ( kl' ) = X ( kl'+T ) - X ( kl' ) • ( 4-4) 

The second forward difference is defined as 

Aax(kl') = A(Ax(kl')) = Ax(kl'+T) • Ax(kT) 

• x(ltr+2T) - 2x(kl'+T) + x(kT) •' (4-5) 
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R(z) X z 
+ 

+ 

-c(z) 

+ 
t-Y_(.._z_,___-l ( z -1 ) 

\ 
K=l 

+ 

Figure 4.' Control system block diagram showing change in 
variable for the uncompensated system. 
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Recalling that if initial conditions are neglected, 

z[ :x: < kT >] = x ( z > ( 4-6 > 

and 

Z[:x:(kT+T)] = zX( z). 

the Z transforms of equations 4-4 and 4-5 are 

Z[Ax(kT)] = (z-l)X(z) 

and 

Z[A3 x(kT)] = [z 2 -2z+l]X(z) 

= (z-1) 2 X(z).· 

(4-7) 

(4-8) 

( 4-9) 

Therefore, the inverse Z transforms of equations 4-1 through 

4-3 can be rewritten as 

Aa:x:(kl') s -[TpT/M]f0 k(kT) 

Ax(ld') = y(kT) 

e(kT) = Ky{kT) + x{kT).' 

Substituting equation 4-11 in 4-10, one gets. 

and dividing equation 4-13 by 

~1ru [ Jfok(kT) AX1'kfT = - TpT /M y ( kr) 

equation 4-11, one gets 

• 

( 4-10) 

( 4-11) 

( 4-12} 

( 4-13) 

{ 4-14) 

Equation 4-14 is the equation for the isoclines in an 

incremental phase-plane whose coordinates are x and y 

{ x and Ax); The trajectories are easy to plot since they 

are composed of straight line segments. The slopes of these· 

segments are given by equation 4-14 and change in the x 

coordinates is given by equation 4-11. 

If the y coordinate at the kth sampling instant is zero 

{y(kT} = O), the slope of the trajectory.is infinite as 
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shoiqn by equation 4-14. Equation 4-13 can then be solved to 

obtain the change in the y coordinate as 

AY(kl') = y(ld'+T) - y(ld') = -[TpT/M]f0 k(kl') 

and, therefore, 

( 4-15) 

The value of f 0 k(kT) is a factor in equation 4-14 

vThich gives the isoclines and slope of the trajectories. 

The value of f 0 k(kT) is given by equations J-2 and J-J. 
Combining these equations one obtains 

fok(kl') ={ ~ 
-F 

'e('kr)~O\ 
, le(kl')l<oc. 
, e ( 'kr ) -<;~ 

( 4-16) 

Equations 4-16 and 4-12 may be combined to give the equations 

for the switching curves' in the incremental phase-plane. The 

equations for the switching curves a!e 

Ky{kT) + x(kT) = 0( {4-17) 

and 

Ky ( Jfl' ) + X ( lCl' ) =-cA { 4-18 ) 

For the uncompensated feedback control system, i.e. 

K=l, the above equations become 

y{kl') + x{kT) = ol ( 4-19) 

and 

y(kT) + x(kl') =-o(. {4-20) 

Throughout the remainder of this chapter, the phase

planes are drawn using the assumption that T = 1 sec and 

FTp/M = 1 unit distance per second, Although these values 

would never be used in an actual system, they will yield 

trajectories which show the system's general characteristics. 
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It will be obvious from the trajectories that the use of these 

values has little effect on the amplitude characteristics of 

the system, but that they act as a time scaling to speed up 

the response of the system; The advantage to using these 

values is in simplification in construction of the phase

plane trajectories. This is easily seen since equation 4-14 

now becomes 

K2 = ~ = - sgn[fok(kT)] 
~ y(kT} • 

(4-21) 

and equation 4-15 becomes 

y(kT+T) = -sgn[fok(ld')]; (4-22) 

The incremental phase-plane in Figure 5 illustrates the 

simplicity entailed in its construction.' Figures 6 and 7 

show phase-plane trajectories for several values of dead zone 

(allowable error).' 

These figures show several important characteristics of 

the control system; The most important item is that for 

the uncompensated control system (K=l) a stable limit cycle 

exists for every set of starting values. Thus the origin 

is seen to be a "center" (9,10). 

The existence of stable limit cycles for the un-

compensated system is a reasonable solution if one recalls 

the discussion of the system's physical characteristics at 

the end of Chapter J.i Quoting from page 13,1 

"The position is seen to be controlled by step 

changes in velocity in a direction to decrease 

the magnitude of the error signal.'" 



Figure 5.· Phase-plane showing trajectory slopes 
and switching lines foroe-o.-s.• 

20 



Figure 6. Phase-plane trajectories tor the uncompensated 
system with 0(. 0.5. 
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Figure 7.• 
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Phase-plane trajectories tor the uncompensated 
srstem with 0(. o.'2.5.· 



Since the uncompensated system acts only on error magni

tude information (no rate feedback), there is an equal 

numbe-r of velocity steps for positive and negative values 

of orror. Thus, the position of the system is seen to 

always return through its starting position. 

23 

The second noticeable item seen in Figures 6 and 7 is 

that the period of each limit cycle oscillation depends upon 

the amplitude of the starting position and upon the value 

of dead zone.· 

The correspondence between the starting position in the 

phase-plane and the initial conditions of velocity and posi• 

tion is shown below with the aid of Figure 8.~ From this 

figure, one sees that 

~ = z[~ !~ = T~T (z:ll" 
and 

~ z[~lJ=~ z ~ = M s M (z-1) 
• 

Therefore, 

~> = KJ[t< <z:d "K4e~T cz:l}j 
_ :m:KJZ ( z-1) - K4TZ] 4 

- M (z-l)a • 

Rewriting equation 4-1, one gets 

~ = ~[cz:ll~: 
Equating 4-25 and 4-26, one obtains 

KJz(z-1) - K4Tz = -T 

or 

( 4-23) 

( 4-24) 

( 4-25) 

( 4-26) 



E*(s) 
N(e(kl')) · 

Fok(S) ~~k(s) r Tp 1 1 C'(s) I M- s - I 

C' (z) I C'*(s) 

KJ 

+ 

Figure B. Generation of X(z) from C'(z} and C{z). 

1 
s I C( s) 

I 

C(z) I C*( s) 

K4 

X*(s) 
X(z) 

l\) 

-'=" 



K3za - z ( KJ+K4T) = -T .' 

Equation 4-27 is satisfied if 

KJ = Tz-1 

and 

From Figure 8, 

X(z) = KJC'(z)- K4C(z) 

= Tz-lc• (z) - C(z ).· 

The inverse Z transform yields the time solution 

25 

(4-27) 

(4-28) 

X ( kT ) = T c 1 ( ld' -T ) - c ( ld' ) , ' ( 4-2 9 ) 

For initial conditions, t is equal to zero.· Therefore, 

X ( 0 ) = T c ' ( -T ) - c ( 0 ) ( 4-3 0) 

For the unforced system, c'(-T) equals c•(o-),' The minus sign 

is used to indicate the value of c'(t) as t~o from the 

negative direction.' This designation is needed because if 

the error exceeds its dead zone limit (lei>~ ), a step change 

in velocity will occur at t=O,' Thus, c(o-) need not be 

equal to c ( o+) , · Using this designation, equation 4-30 

becomes 

x(O) = Tc' (o-) - c(O) ( 4-31) 

Recalling that for the unforce~ uncompensated . system 

e( kT ) equals -c(~ and K equals 1, equation 4-12 can be written 

as 

c( kr ) = -y(la) - x(Ia),1 

Subs titut i ng equation 4-29 in 4-32, one obtains 

y ( kT ) = -T c ' ( !a-T ) • I 

( 4-32) 

( 4-33) 



For the reasons given above, this equation becomes 

y { o ) = -T c ' { o- ) . , 
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{4-34) 

'rhe 1ni tial conditions as transformed to the phase

plane variables are therefore given by equations 4-31 and 

4-34. These equations show that the x axis of the phase

plane corresponds to sets of initial conditions whose 

initial velocities are all zero.' Thus, trajectories whose 

initial conditions lie along this axis are solutions to the 

control system for step inputs. 

The value of the error at any sample time t = kT can be 

read directly from the phase-plane trajectory as the sum of 

the coordinates {equation 4-12) .' For the absence of an 

input signal (r(t) = 0), the position is the negative of the 

sum of the coordinates (equation 4-32) •1 The velocity just 

previous to each sample time is the negative of the y 

coordinate (equation 4-33) •1 

The position values which correspond to the previous 

phase-plane trajectories, Figures 6 and 7, are plotted in 

Figures 9 and 10 respectively.' These graphs are the solu

tions for a system with various values of step input 

signal.' 

These graphs clearly illustrate the conclusions drawn 

from the orig inal phase-plane trajectories.' That a stable 

limit cycle exists for each set of initial conditions is 

evident. The effect of initial condition amplitude and 

dead zone limits on the period of an oscillation is also 

clear. 
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The incremental phase-plane analysis can be extended to 

analyze the control system for simple input signals. From 

Figure 4, the equation for E(z) can be written as 

E(z) = R(z) - C(z). 

Taking the inverse Z transform, 

e(kr) = r(ld') - c(lcr). 

Substituting equation 4-)2 in 4-)6, one gets 

e(kr) = r(kT) + y(kr) + x(kT), 

and, therefore, 

~e (ld') = ~r(kT) + ~y(kT) + ~x(kr); 

( 4-35) 

( 4-36) 

( 4-)7) 

( 4-38) 

From equation 4-38, one sees that the trajectory in the 

incremental phase-plane with coordinates x and y is equiva

lent to a plot of the sampled error if the increment Ar(kT) 

is added algebraically at each point t = kT. 

The initial conditions as transformed to the phase

plane can be obtained by slight modification of equations 

derived on page25. These equations now become 

x(O) = Tc•(o-)- c(O) + r(O) ( 4-39) 

and 

y(O) = -Tc•(o-·).· ( 4-40) 

The equations derived in the previous section hold for 

any input signal r(t).' However, as is seen from equation 4-)8, 

the value of~(t) must be known or calculated at every 

instant of time t = kT. 

The input signal which is most easily analyzed is 

the ramp given by 

r(t) =At+ r(O). (4-41) 



In applying this signal, one sees that 

~r(ld') = AT = a constant.l 

The analysis of the control system for the value of AT 

equal to -0.'.5 and several different initial conditions is 

shown in Figure 11.~ The corresponding time plots of the 

error and of the position are shown in Figures 12 and 13, 

respectively.' 
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This analysis of the system for the ramp input shows 

that the output position does follow the input, but that it 

also continues to display stable limit cycle oscillation.' 

Since slowly varying signals can be approximated by 

piece-wise linear signals (ramp signals), the above con

clusions can be extended to include various other input 

signals •1 For instance, if the input signal is sinusoidal, 

many piece-wise linear signals will be needed for a good 

approximation.' Therefore, the period of the sinusoidal 

signal must be much greater than the sampling period.' The 

amplitude of the input sinusoidal signal also influences 

the ability of the output of the control system to follow 

it since the nonlinearity possesses a saturation region: 
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CHAPrER V 

PHASE PLANE COMPENSATION DESIGN 

The uncompensated nonlinear sampled data feedback 

control system described mathematically in Chapter III 

was analyzed in Chapter IV.' It was found to possess a 

stable limit cycle corresponding to each set of initial 

conditions.' These oscillations also were found to exist 

for the ramp .input signal.' 

)4 

This chapter studies the system using a specific type 

of compensation element, namely an element which corre-. 
sponds to a value of gain K 1: l.i 

Equations 4-17 and 4-18, repeated below, are the 

general equations for the switching curves in the in-

cremental phase-plane.1 

Ky(la) + x(ld') = o( 

Ky(ld') + x(ld') = -o< 

(5-1) 

(5-2) 

The compensated system with no input signal (r(t) = 0) 

is considered first in this analysis.' Therefore, equation 

4-12 applies since e(kT) becomes e2 (kT) as is seen from 

comparison of Figures 4 and 14.1 Equation 4-32 also applies.' 

These equations are repeated below.' 

e3 (kT) = Ky(kT) + x(kT) = e2(kT) 

c(kT) = -y(kT) - x(kT) = -e(kT) 

(5-J) 

(5-4) 

At this point in the analysis, it becomes necessary to 

consider the coordinates of the phase-plane: From equations 

5-3 and 5-4, it appears that these coordinates could be 
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, 
R(z) EJ{Z) Fnlr(z) _TtT X{z) 

N(ejkl')) 
+ 

M z-1) 3 

+ 

E2{z) 

Y(z) 

... K;il (z-1) 

+ 

Figure 14. Control system block diagram sho~1ng change 

1n variable for the compensated system. 
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either Ky vs x or Y vs x.' However, if the former is chosen 

the equations for the initial condition transformations, 

equations 4-Jl and 4-)4 are no l~nger valid.~ Therefore, 

the phase-plane coordinates y and x are also used in this 

chapter.! 

It should be noted that the output position can be 

read directly from the phase-plane trajectories as shown 

• 

by equation 5-4; but the compensation error signal is not 

easily obtained unless the values of Ky are also shown along 

the y axis,1 

Phase-plane trajectories corresponding to values of 

gain, K, of 5.'0, 2,'0, and 1,'5 are shown in Figures 15, 16, 

and 17.' Figures 15 and 16 show that the trajectories 

converge to a limit cycle of small amplitude or to a small 

average value.' These results are clearly indicated by the 

output position plots of Figures 18 and 19 which correspond 

to representative trajectories of Figures 15 an4 16 respect

ively.· 

The existence of a small amplitude limit cycle is an 

expected result s~nce the nonlinearity in the forward path 

possesses a dead zone region.l The amplitude of the oscil

lation shown in these figures is equal to the dead zone 

limits.' 

A very interesting phenomena is displayed by several 

trajectories shown in Figure 17.1 These trajectories 

ind'icate that large amplitude oscillations may exist for 

certain particular initial conditions even though the 
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Figure 15.~ Phase-plane trajectories for the compensated 
system with K•5 and « .o.s. 
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Figure 17.' Phase-plane trajectories for the compensated 
system w1'th K=l • .5 and ()(sO • .5. 
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Figure 18.' Output position values corresponding to the 
trajectories of Figure 15.' 
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system has been compensated. However, contrary to the 

characteristics of most continuous phase-planes, trajectories 

starting at initial conditions lying within the boundaries 

of these stable limit cycles do not necessarily converge to 

either of these limit cycles. Trajectories which originate 

at these general points may converge to the expected small 

amplitude limit cycle. 

Even though theoretically these undesirable limit 

cycles can be shown to exist, in an actual physical 

system they probably would not be present. This is true 

since for their existence the trajectories must possess 

particular values at the sampling instants t = kT. However, 

due to the presence of external forces acting on the vehicle, 

and noise in the sampling mechanism, the values of 

sampled error will lie only in the neighborhood of the 

required particular values and, therefore, these tra

jectories should converge to the expected minimal limit 

cycle. 

The existence of large amplitude limit cycles could 

be due to the particular system parameters used in Figure · l7 

since the author could not determine their existence in 

Figures 15 or 16. However, even if they were found to exist 

in these figures, they probably would not be found in a 

physical system for the reasons given above. 

The response of the compensated control system to 

simple input signals can be analyzed using phase-plane 

trajectories in a manner similar to the approach used in 
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Chapter IV. From Figur 14 th e , e equation for E3{z} can 

be written as 

E3(z) = R(z) + E2(z). 

Taking the inverse Z transform 
' 

e3 ( k".r ) = r ( kl') + e2 ( kT ) 

= r(kl') + Ky(kT) + x(kl') 

and 

{5-5) 

(5-6) 

(5-7) 

{5-8) 

However, to retain the validity of the initial condition 

equations, i.;e. 1 equations 4-.31 and 4-.34, the coordinates x 

and Y are used on the phase-planes.1 Therefore, the values 

read from the phase-plane trajectories are 

e(kr) = r(kr) + y(kr) + x(kl') (5-9) 

where 

e(ld') = r(Kr) - c(kr ): (5-10) 

If the scale Ky were also shown along the y axis, the value 

e3 { kl') could be read directly.; 

The system response to the ramp input of equation 4-41 

with slope A equal to -0.5 and r(O) equal to zero is shown in 

Figure 20 using various different initial conditions and gain, 

K, equal to two.; The trajectories show·n in this figure may 

be compared with those of Figure 11 to see the difference 

bet1~een the compensated and uncompensated system. Observable 

in Figure 20 is the fact that the stable limit cycle is not 

centered at the origin.; The average value of the oscillation 

is equivalent to a system lag in following the input signal. 
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At the beginning of this chapter a compensation element 

corresponding to the value of K ~ 1 was mentioned.' The 

structure of this compensator is developed in the following 

paragraphs.· 

The block diagram of Figure 14 can be drawn in the 

equivalent form shown in Figure 21.· It should be noted that 

for K = 1, the diagrams shown in Figures 3c and 21 are ident

ical.' Thus, the feedback signal B(z) is a compensating 

signal.' 

The equation for the compensating signal can be written 

as 

B(z) = (K-1)(1-z-1) C(z).' (5-11) 

The inverse Z transform of this equation gives 

b(kr) = (K-l)[c(kT) - c(kT-T )].1 (5-12) 

Equation 5-12 describes the process by which the system 

has been compensated.i It is apparent that the compensation 

signal b(kT) is proportional to the rate of change in output 

position if the output position varies slowly in comparison 

to the sampling period. ' ·rhe constant of proportionality is 

K.5 = (K-1 )T 
(5-13) 

since the derivative of the output can be expressed 

approximately as 
(5-14) 

c ' c kT > ~ c ocr > - c < kT -T > 
T 

From Figure 21, the compensated error signal when R(z)= 

0 . is given as 

E3(z) = -C(z) - B(z)~ 
(5-15) 
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Figure 21. Feedback Compensation Block Diagram 
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Figure 22. Cascade Compensation Block Diagram 



The inverse transform yields 

e.3(kr) = -c(kl')- b(kT). 

Substituting equation 5-12 into 5-16, one gets 

eJ(kr) = -c(kl')- (K-l)[c(kl')- c(kr-T)]. 

( 5-16) 

(5-17) 

The above equation shows that compensation is achieved 

through ne5ative rate feedback. The equation also shows that 

positive rate feedback occurs if K<l. Since positive rate 

feedback corresponds to destabilization, only values of 

K>l are allowed. 

In a practical system, the signal measured would probably 

be the position error given as 

e ( k'r ) = r ( k'r ) - c ( ki' ) ( 5 -18 ) 

rather than the explicit value of output position. The 

compensator would then become a part of the forward path as 

ShOi'ln in Figure 22. Equation 5-17 then becomes 

e1 (kT) = e(ld') + (K-l)[e(~)- e(l<r-T)]. (5-19) 

'rhe compensator described by equation 5-19 is easily 

implemented if the equation is rewritten as 

8J;; ( kT ) = Ke ( ki' ) + ( K-1) e ( ld' -T). (5-2 0) 

Figure 23 shows the corresponding block diagram. The series 

zero order hold circuits act as a shift register so that the 

value of e(kT-T) is not destroyed at the next sampling, i.e. 

at time t = ki' ,' 

This chapter has presented a method of phase-plane 

analysis which can be used to determine the appropriate gain 

factors to use in a compensator of the form shown.· The 

optimum gain values must be determined by the response 
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desired from each particular control system, 1 

The value of necessary gain is also closely associated 

with system parameters such as sampling period, control force 

amplitude, control force duration, vehicle mass, etc,1 

Since the range of values of each of these parameters is limit

ed by environmental conditions and other design criteria, 

these characteristics must be considered in the phase-plane 

construction,· 

Since it is not possible to consider the effects of 

external forces in phase-plane analysis, the system analysis 

would probably culminate in a digital or hybrid simulation 

to determine their effect.~ 



CHAPTER VI 

DIGITAL C01>1PurER Sir1ULATION 

The nonlinear sampled data control system under in

vestigation can be simulated on a digital computer.' This 

simulation can be used to determine the effect external 

forces have on the system.; 

The block diagrams of the compensated system which 

include the effects of the external force are shown in 

Figure 24.' With the aid of these diagrams, the following 

equations can be written. ; 
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e(kT) = r(kT) - c(kT) 

e1 (kT) = Ke(kT) + (K-l)e(kT-T) 

(6-1) 

(6-2) 

, el(kT) ~ o< 
1 e1 (kT )I< ot. 
e1 { kT ) <:::-ct 

(6-3) 

These equations have been derived in previous chapters.; 

Equation 6-3 is merely equation 4-16 with subscripts 

added to correspond to the compensated system.' 

The change in position (see Chapter III) during the 

period between samples is given as 

(6-4) 

By differentiating equation 3-8 and changing notation, the 

change in position rate is given as 

~c~k(kT) ~ [TP/M]f0 k(kT).i (6-5) 

Initial conditions are not included in either equations 

6-4 or 6-5.·' However, these are accounted for later in the 

position and rate equations which correspond to external 
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force application.· 

For any external force, the position due to that 

force can be written as 

and the rate as 
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(6-7) 

The total position. is therefore given by 

+ c(kl') + Tc' (kl'), (6-8) 

where notation has been changed from that of equation 6-6 

since it was stated earlier that all initial conditions 

would be accounted for in equations 6-6 and 6-7 •· 

The total rate is given by 

(6-9) 

The external force applied to a space vehicle would 

probably vary slowly.; If the assumption is made that the 

external force is constant for a small number of sample 

periods, equations 6-8 and 6-9 can be written as 

and 

c(kr+T) = [KfT/M]f0 k(k1') +·.i5Ii'to/IJI + c(ld') + Tc' (kl') 

(6-10) 

c' (k1'+T) = [Tp/M]f0 k(k1') + F1T/M + c' (ld') 

where F1 is the magnitude of the external force; 

(6-11) 



The previously defined equations may be combined to 

form a digital computer simulation of the feedback control 

system. A proeram for this simulation is given in 

Appendix I. It should be noted that in this simulation a 

value of K=l corresponds to the uncompensated system 

while values of K~ 1 correspond to various amounts of 

compensation. 

This program provides a means to study the response 

of the control system under the influence of external 

forces when a step and/or ramp input signal is applied. 
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Since the incremental phase-plane is an exact solu

tion to the system equations, the computer was programmed 

using initial conditions corresponding to those used in the 

phase-plane analyses of Chapters IV and v. Identical 

results were obtained using the computer simulation. 

In addition, the computer was programmed using two 

values of constan~ external force and several different 

compensator gains. Representative solutions are shown in 

the following graphs for various initial conditions. 

Several interesting characteristics are observed in 

these solutions. As in the situation without external 

forces, large amplitude oscillations result for the forced 

system with the amplitude depending upon the initial 

conditions of the system. 

In the compensated system, the small amplitude steady 

state limit cycle is seen to possess an average position 

error. The magnitude of this average error is dependent 



z 
0 
H 
~ 
H 
(/) 
0 
p.. 

... :..J" 
jll :-4 

0 
H 
F--j 
H 
(/) 

0 
Pol 

53 

i: . I . . : : ·: · ; ; :: : : : t ::: : :: :: : : i: : :- ~ : , . . :: : : l : · :: :.i ~J .:1 . _·,: :·j _; i i: :: :: t i ; i ::: . i : : .... : : : d· : : . : : . : ; ::: : : : ; 
~· • : " ' , JI ~ • :II J 't -' '' l i ' " ' ~~ ~ · • l• •i :l·l' ~~~~ ' l ' l L 4-l o :u .: t: ! ,._t, ' ' " •o l • J"' ! 'J' " ' ' I ' ''' 1 . .1 1 .. :1 

a...:...: .. ~ . . ..:....:....:.L.:' ' ' . , .• , •·! ,,, .. . •. ; ' : I t -· · ~~· · . ··-·· · ~- ~ ~ ~H · ... I . .. . ,, . • • • • " I ·"~ 1." ' ' ···· • . . .. 

Figure 25.1 ··' output position values for the uncompensated 
system with «=0."5 and an external force to mass 
ratio of 0.'5.·' 
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Output position values for the compensated 
system with K=3 and 0\=0.'.5 and an external force 
to mass ratio of 0 • .5. 
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system with ot=0.'5 and an external force to 
mass ratio of o."25. 
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Figure Jl.' Output pos ition values for the compensated 
system with K=3 and 0\=0.'5 and an external force 
to mass ratio of. 0.'25 . ' 
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Figure 32. Output position values for the compensated 
system witf1 K=5 and ac0,5 and an external force 
to mass ratio ·of 0.25. 
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upon the value of compensate~ gain. The graphs shoN that the 

averag e error is 5reater when large values of gain are used. 

These solutions indicate that to insure small averae;e error 

a value of K greater than 1, but less than 3 should be used. 

The computer solutions also show that the t ime before 

the steady-state output conditions a~e reached is smaller for 

large values of compensator gain. The same conclusion can be 

reached by studying the phase-plane trajectories derived 

earlier. 

The main conclusion that can be drawn from the position 

solutions obtained from the simulation is that satisfactory 

system response can be obtained when the vehicle is under 

the influence of external force fields. The optimum value 

of compensator gain must be determined for each individual 

set of vehicle parameters and enviroTh~ental characteristics. 



CHAPTER VII 

CONCLUSIONS 

I'he response characteristics of a nonlinear sampled 
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data position control system employing pulsed thrust control 

have been analyzed using two basic techniques. The methods 

utilized were incremental phase-plane trajectory construction 

and digital computer system simulation.· 

Many conclusions concerning the system's stability and 

response characteristics have been reached in the previous 

chapters.' The phase-plane analysis shelved that the un

compensated system is stable in the sense that its output 

is not divergent.! However, its response is oscillatory \'lith 

the amplitude depending upon initial conditions. Its output 

will follow a ramp or slowly varying input signal, but the 

oscillations i'lill be superimposed upon this response.· 

The phase-plane analysis, utilizing a change in variables, 

aided in the design of a compensator and provided the analysis 

of the compensated system. The output of this system was 

seen to converge to a small amplitude, steady state, limit 

cycle response.; The amplitude of this limit cycle is 

closely governed by the dead zone limits of the system.' This 

s ys t em g ives a satisfactory response for step, ramp, and 

slowly varying input signals.' 

The response for the system when under the influence 

of external forces proved to be adequate provided the control 

force was sufficient to overcome the impressed acceleration.~ 



The application of external forces does cause an average 

position error to be present.' 

6) 

This thesis does not attempt to provide criteria for 

choosing optimum sampling periods, control force amplitudes, 

or control force durations. · These, as well as the problems 

associated with designing for minimal fuel consumption, are 

closely associated with actual.vehicle parameters and en

vironmental characteristics and must be considered during 

actual vehicle design.' 

The investigation has shown that reaction jet pulses, 

each of constant amplitude and time duration, in conjunc

tion with sampled data error information can provide satis

factory position and/or attitude control for a space vehicle.· 



APPENDIX I 

DIG IT AL COMPt.rl'ER PROGRAM 

The digital computer program simulating the position 

control system is listed in this appendix.; 

This simulation allows the study of the control 

system response for the vehicle in a constant external 

force field.' The program allows the external force to be 

of any magnitude, including zero. 1 

Any combination of step and ramp input signals may 
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be studied with this program.1 With slight modification, the 

response-to sinusoidal input signals could also be studied.' 

The definition of the program variables is given in the 

following list •1 

R ( K ) = f ( ld' -T ) 

CT (K) = c (ld'-T) 

CTP(K) = c 1 (kr-T) 

E ( K ) = e ( ld' -T ) 

El ( K) = e1 ( kr -T ) 

FO(K) = f 0 k(kT-T) 

ALPHA= o< 

BEI'A = A 

GAINK = K 

TP = Tp 

T = T 

TPOT = Tp/1' 

input signal 

output position 

output position rate 

error signal 

compensated error signal 

control force 

dead zone limit 

slope of ramp input 

compensator gain 

control force duration 

sampling period 

time ratio 



WTI1.AS • M 

Fl = F 
1 

F = F 

I>!ass 

magnitude of constant 
external force 

magnitude of control force 
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A NONLINEAR SAMPLED DATA POSITION SONTROL SYSTEM SIMULATION 
CONTROL SYSTEM EMPLOYS PULSED THRUST CONTROL 
D lt·i ENS I UN R ( 100 l, C T ( 100) , C T P ( 100), E ( 100 l , FO ( 100), E 1( 100) 

__ RE_AD __ 2QQ_,_I __ t L~---
RFAD 400,TP,TPOT,WTMA~,T,Fl,F 
DO 500 J=1,L 

-----'~f,-~ D 4 <ill.I_A L P H A , R ( 1 l , C T ( 1 l , C T P ( 1 l , B ETA, G A I N K 
1 T P OH = T PI IH MAS 
2 TMHTP=T*(1.-TPOT/2.) 
3 TPMT=TPOM*TMHTP 

_4_F_TY2M;-i=-Y*-T*T /( 2.*::-;vJ:-:;T~I"';-;IA:-;:S:-);------------------

5 FTOM=Fl*T/WTMAS 
__ N=I+1 

71 E(~1~l~=~R~(~l~l--~C~T7( 717)-----------------------------------------

E 1 ( ll =GAINK*E ( 1) 

_7_2_I_~j_~_l_LU -ALPHA l 7 3, 7 4, 74 
73 IF(E1(1)+ALPHA)75,75,76 
74 FO( ll=F 

_ __,GO TO 77 
75 F0(1l~-~-~F~-----------------------------------------------

GO TO 77 
76 FO(l)=O.O 

--_ i7--CTC-2--r~F~0~(~1~)~*~T~P~M~T~+~F~T~T~2~M~+~C~T~(~l~)-+~T7*C~T~P7( 71~)-----------------

78 CTP(2 l=FO(l)*TPOM+FTOM+CTP(l) 
79 R(2J=BETA*T+R(l) 
10 on 19 K=2,I 
11 E(K)=R(K)-CT(Kl 

El(Kl=GAINK*E(K)-(GAINK-l.Ol*E(K-1) 
-1-2-iFTE-1 ( K ) -ALPHA) 1 3, 1-;4c-,-:;;1-;4---'-----------------

13 IF(E1(K)+ALPHA)15,15 7 16 
14 FO(K)=F 

GO TO 17 
15 FO(K)=-F 

GO TO 17 
---16--FofK)-=-o.o--------- -------------------

17 CT(K+1l=FO(Kl*TPMT+FTT2M+CT(K)+T*CTP(K) 
18 CTP(K+1l=FO(Kl*TPOM+FTOM+CTP(Kl - -----19 R(K+l)=BETA*T+R(K) 
25 E(N)=R(NJ-CT(N) 
26 El(N)=GAINK':CE(N)-(GAINK-1.0)*E( I) 

- -5 5_P_R_I r\f'f-36-5 
60 PRINT 120,(K,E(K),R{K),CT(K),CTP(K),E1(K),K=1,N) 

500 PRINT 550,TP,TPOT,WTMAS,T,Fl 7 F,ALPHA,BETA,GAINK 
-fzo-FORMAT-0 12 7 5F12.5) 
2 0 0 F 0 R HAT ( 2 I 5 ) _ __ . __ ___ _ _ _ _ 

305 FORMAT(16X,4HE(K) 7 8X,4HR(K),7X,5HCT(K),7X,6HCTP(K),6X,5HE1(K)) 

..!:!_0 0 F Q RM AT ( 6 E 12 • 5 ) 
550 FORMAT (9F8.4) 

PARAMETERS LISTED ARE TP,TPOT,WTMAS,T,Fl,F,ALPHA,BETA,GAINK 

CALL EXIT 
END 
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