rovided by Vietnam Academy of Science and Technology: Journals Onl

VIETNAM JOURNAL OF CHEMISTRY DOI: 10.15625/0866-7144.2015-2e-004 VOL. 53(2e) 13-17

STEROLS ISOLATED FROM THE SOFT CORAL SINULARIA DISSECTA

Nguyen Phuong Thao¹, Vu Anh Tu¹, Nguyen Van Thanh¹, Nguyen Hoai Nam^{1*}, Nguyen Xuan Cuong¹, Young Ho Kim², Phan Van Kiem¹, Chau Van Minh¹

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology

²College of Pharmacy, Chungnam National University, Korea

Received 23 January 2015; Accepted for Publication 18 March 2015

Abstract

Using various chromatographic methods, five sterols, gorgost-4-ene-3-one (1), ergost-4-ene-3-one (2), 24methyleneergost-4-ene-3-one (3), ergost-4-ene-3,6-dione (4), and 24-methylenecholest-4-ene-3,6-dione (5), were isolated from the methanol extract of the soft coral *Sinularia dissecta*. Their structures were elucidated by 1D and 2D-NMR experiments and comparison of their NMR data with reported values. These compounds were isolated from *S. dissecta* for the first time.

Keywords. Sinularia dissecta, Alcyoniidae, soft coral, sterol.

1. INTRODUCTION

Soft corals have been found to be storehouses of sterols, particularly in terms of unique side-chain structures and unusual functionalization [1, 2]. Marine sterols of *Sinularia* soft corals are often found in oxygenated forms, and such sterols sometimes shows a variety of biological and pharmacological activities [3].

Many novel sterols have been reported from the soft coral *S. dissecta* [4-7]. Previously, we reported a new gorgosterol-type sterol from this soft coral and its anti-inflammatory activity [8]. In this paper, we address the isolation and structure identification of five sterols including gorgost-4-ene-3-one (1), ergost-4-ene-3-one (2), 24-methyleneergost-4-ene-3-one (3), ergost-4-ene-3, 6-dione (4), and 24-methylenecholest-4-ene-3, 6-dione (5) from the same soft coral.

2. EXPERIMENTAL

2.1. General experimental procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR spectrometer, TMS was used as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1260 series single quadrupole LC/MS system. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh,

Merck) and YMC RP-18 resins $(30-50 \ \mu\text{m}, Fuji$ Silysia Chemical Ltd.). Thin layer chromatography (TLC) used pre-coated silica gel 60 F₂₅₄ (1.05554.0001, Merck) and RP-18 F_{254S} plates (1.15685.0001, Merck). Compounds were visualized by spraying with aqueous 10 % H₂SO₄ and heating for 3-5 minutes.

2.2. Marine materials

The sample of soft coral *S. dissecta* was collected during April 2010 at Hai Van - Son Cha, Hue, Vietnam and identified by Prof. Do Cong Thung (Institute of Marine Environment and Resources, VAST). A voucher specimen (SD042010_01) was deposited at the Institute of Marine Biochemistry and Institute of Marine Environment and Resources, VAST.

2.3. Isolation

Fresh frozen samples of the soft coral *S. dissecta* (1.5 kg) were well grinded and extracted three times with hot MeOH (at 50 °C for 5 h each time). The obtained solutions were filtered, combined, and concentrated under reduced pressure to yield a dark brown viscous residue (9.15 g, A). This residue was suspended in water (0.5 L) and partitioned in turn with *n*-hexane (2×0.5 L) and CH₂Cl₂ (3×0.5 L). The combined dichloromethane soluble portions were evaporated under reduced pressure to afford CH₂Cl₂ extract (1.83 g, B). Extract B was crudely separated

by silica gel CC using gradient concentrations of ethyl acetate in *n*-hexane from 0 to 100 % to yield four fractions, B-1 to B-4. Fraction B1 (647 mg) was further separated on silica gel CC using nhexane-EtOAc (25:1) as eluents, to give three subfractions, B1.1 to B1.3. Subfraction B1.1 (253 mg) was then chromatographed over silica gel CC using eluent of *n*-hexane–acetone (14:1), and further purified by YMC RP-18 CC eluting with LH-20 CC (MeOH-acetone Subfraction 1:1). B1.3 MeOH-acetone- H_2O (4:2:0.2) to afford 3 (110 mg). Compound 2 (20 mg) was purified from subfraction B1.2 (158 mg) by silica gel CC eluting with nhexane-EtOAc (15:1) and followed by Saphadex (230 mg) afforded 1 (52 mg), after subjecting it to silica gel CC eluting with dichloromethane-acetone (21.5:1), followed by YMC RP-18 CC with MeOH-acetone (6.5:1).

Fraction B2 (80 mg) was separated by YMC RP-18 CC, using eluent of MeOH-acetone-H₂O (95:3:2) to yield three subfractions, B-2.1 to B-2.3. Subfraction B2.3 (28 mg) afforded compound 5 (17 mg), after subjecting it to silica gel CC eluting with n-hexane-EtOAc (8.5:1). Fraction B4 (740 mg) was passed through Sephadex LH-20 with MeOH-acetone (1:1) to yield five subfractions, B4.1 to B4.5. Subfraction B4.2 (46 mg) was further separated by silica gel CC eluting with CH₂Cl₂-MeOH (25:1), followed by Sephadex LH-20 with MeOH-acetone (70:30) to yield compound 4 (10 mg).

Gorgost-4-ene-3-one (1): White powder; ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 1; ESI-MS m/z 425 [M+H]⁺ (C₃₀H₄₈O, M = 424).

Ergost-4-ene-3-one (2): White powder; ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 1; ESI-MS m/z 421 [M+Na]⁺ (C₂₈H₄₆O, M = 398).

24-methyleneergost-4-ene-3-one (3): White powder; ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 2; ESI-MS m/z 397 [M+H]⁺ (C₂₈H₄₄O, M = 396).

Ergost-4-ene-3,6-dione (4): White powder; ¹H-

NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 2; ESI-MS m/z 435 [M+Na]⁺ (C₂₈H₄₄O₂, M = 412).

24-methylenecholest-4-ene-3,6-dione (**5**): White powder; ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 2; ESI-MS m/z 433 $[M+Na]^+$ (C₂₈H₄₂O₂, M = 410).

3. RESULTS AND DISCUSSION

Compound 1 was obtained as a white powder. The ¹H-NMR spectrum revealed signals of three tertiary methyl [$\delta_{\rm H}$ 0.65 (H-18), 1.14 (H-19), and 0.87 (H-29), each 3H, s] and three secondary methyl groups [$\delta_{\rm H}$ 0.82 (H-26), 0.92 (H-27), and 0.90 (H-28), each 3H, d, J = 7.0 Hz]. A seventh methyl signal appeared as a broad singlet at $\delta_{\rm H}$ 0.96, which was overlapped with a methine multiplet of H-20, and four high-field protons at $\delta_{\rm H}$ 0.13 (1H, m, H-22), 0.20 (1H, m, H-24), -0.16 (1H, dd, J = 4.0, 6.0 Hz, H_{β} -30), and 0.46 (1H, dd, J = 4.0, 9.0 Hz, H_{α} -30), is characteristic of a gorgosterol-type side chain possessing a cyclopropane ring [14, 15]. In addition, one olefinic proton was identified at $\delta_{\rm H}$ 5.76 (1H, br s, H-4). The 13 C-NMR spectrum of **1** showed 30 carbon signals, of which even methyl groups were at δ_C 12.40 (C-18), 17.79 (C-19), 21.53 (C-21), 21.96 (C-26), 22.59 (C-27), 15.89 (C-28), and 14.70 (C-29). A good agreement of the ¹³C-NMR data for the side chain of 1 (table 1) with those of gorgost-5-ene- $3\beta,9\alpha,11\alpha$ -triol [9] and combination with the HMBC correlations (figure 2) confirmed the gorgosterol-type side chain. Moreover, one ketone group [$\delta_{\rm C}$ 200.00 (C-3)] and a tri-substituted double bond [δ_{C} 124.16 (d, C-4)/172.06 (s, C-5)] were observed. The carbon signals of the ketone group was strongly shifted upfield suggesting its conjugated location with the double bond. The ¹³C-NMR data for the steroidal skeleton of 1 were similar to those of 24-ethylcholest-4-ene-3-one [16]. Detailed analysis of other HMBC cross-peaks (figure 2) led to assignment of the structure of 1 as gorgost-4-ene-3-one [17]. This is the first report of the 13 C-NMR data of **1**.

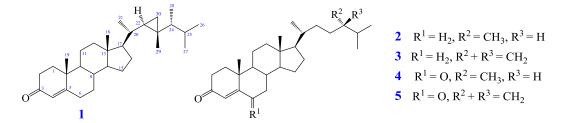


Figure 1: Chemical structures of compounds 1-5

Table 1: 1 H-NMR (500 MHz) and	13 C-NMR (125 MHz) data of 1–3 an	d reported compounds

<u> </u>	${}^{a}\boldsymbol{\delta}_{\mathbf{C}}$	1 ^b		°\$		2 ^b	${}^{d}\boldsymbol{\delta}_{\mathbf{C}}$	3 ^b	
С		δ _C	$\delta_{\rm H} (J = {\rm Hz})$	°δ _C	δ _C	$\boldsymbol{\delta}_{\mathbf{H}} \left(J = \mathbf{Hz} \right)$	άð _C	δ _C	$\delta_{\rm H} (J = {\rm Hz})$
1		36.10	0.98 m	35.7	36.22	1.66/1.97 m		36.23	1.66/1.97 m
			1.67 dd (5.0, 14.0)						
2 3		34.40	2.38/2.30 m	34.0	33.48	2.22/2.34 m		33.45	2.22/2.34 m
3		200.00	-	199.6	200.08	-		199.92	-
4		124.16	5.76 brs	123.7	124.28	5.68 brs		124.28	5.68 brs
5		172.06	-	171.9	172.15	-		171.97	-
6		32.45	1.81/0.98 m	32.9	32.58	1.79/0.97 m		32.56	1.79/2.31 m
7		33.26	2.35/2.22 m	31.1	31.09	0.89/1.33 m		31.47	0.89/1.33
8		36.07	1.47 m	35.6	36.14	1.47 m		36.12	1.47 m
9		54.25	0.89 m	53.8	54.35	0.87 m		54.39	0.85 m
10		38.99	-	38.6	39.11	-		39.10	-
11		21.48	1.49/1.37 m	21.0	21.55	1.48/1.38 m		21.55	1.45/1.36 m
12		40.11	1.15/2.02 m	39.6	40.14	1.52/2.02 m		40.15	1.97/1.09 m
13		43.24	-	42.4	42.90	-		42.94	-
14		58.28	1.21 m	56.0	56.39	0.95 m		56.39	0.95 m
15		24.84	1.06/1.58 m	24.2	24.71	1.55/1.04 m		24.70	1.54/1.69m
16		28.60	1.99/1.29 m	28.1	28.68	1.80/1.23 m		28.69	1.81/1.21 m
17		56.15	0.99 m	55.9	56.46	1.07 m	55.7	56.47	1.06 m
18		12.40	0.65 s	11.9	12.49	0.66 s	11.7	12.49	0.64 s
19		17.79	1.14 s	17.4	17.91	1.13 s	18.3	17.90	1.11 s
20	35.2	35.67	0.97 m	36.1	36.68	1.31 m	35.8	35.12	1.09 m
21	21.1	21.53	0.96 brs	18.8	19.36	0.87 d 7.0)	18.8	19.17	0.88 d 7.0)
22	31.9	32.46	0.13 m	33.7	34.18	1.34/0.89 m	34.7	34.49	2.38/2.24 m
23	25.8	26.23	-	30.6	31.09	0.89/1.33 m	30.9	31.47	2.03/1.78 m
24	50.7	51.88	0.20 m	39.1	40.67	1.98 m	157.0	157.14	-
25	31.9	32.47	1.53 m	31.5	31.98	1.51 m	33.9	34.30	2.27 m
26	21.6	21.96	0.82 d (7.0)	17.6	18.14	0.73 d (7.0)	22.1	22.53	0.95 d (7.0)
27	22.2	22.59	0.92 d (7.0)	20.5	21.07	0.80 d (7.0)	22.1	22.40	0.95 d (7.0)
28	15.5	15.89	0.90 d (7.0)	15.4	15.99	0.86 d (7.0)	106.0	106.57	4.64 d (7.0)
			. ,			. ,			4.58 d (7.0)
29	14.3	14.70	0.87 s						. ,
30	21.3	21.73	-0.16 dd (4.0, 6.0)						
			0.46 dd (4.0, 9.0)						
^a S of concert 5 and 2,00 and 1 a trial [0] ^b concerted in CDCI ^c S of concert 4 and 2 and [10]									

^aδ_C of gorgost-5-ene-3 β ,9 α ,11 α -triol [9], ^brecorded in CDCl₃, ^cδ_C of ergost-4-ene-3-one [10], ^dδ_C for the side chain of 3 β ,7 α -dihydroxyergosta-5,24(28)-diene [11].

The ¹H- and ¹³C-NMR data of **2** and **3** were similar to those of **1**, except for diffence in the data of the side chain. The most easily visible changes are the absence of four high-field proton signals and the presence of 28 carbon signals in **2** and **3** relative to **1**. Four secondary methyl proton signals (each 3H, d, J = 7.0 Hz) in the side chain of **2** were observed at $\delta_{\rm H} 0.87$ (H-21), 0.73 (H-26), 0.80 (H-27), and 0.86 (H-28) suggesting for the presence of an ergosterol-type side chain, which was further confirmed by an agreement of the ¹³C-NMR data of **2** (table 1) with those of ergost-4-ene-3-one [10] and combination with HMBC correlations (figure 2).

The presence of a 1,1-disubstituted double bond at $\delta_{\rm C}$ 157.14 (s, C-24) and 106.57 (t, C-28)/ $\delta_{\rm H}$ 4.64 and 4.64 (each 1H, d, J = 7.0 Hz, H-28), and three secondary methyl groups at $\delta_{\rm H}$ 0.88 (3H, d, J = 7.0 Hz, H-21) and 0.95 (6H, d, J = 7.0 Hz, H-26 and H-27) indicating a 24-methylene ergosterol-type side chain of **3** [11, 13].

Compounds **4** and **5** were elucidated as ergost-4ene-3,6-dione [10, 12] and 24-methylenecholest-4ene-3,6-dione [13] by comparison of their ¹³C-NMR data with the reported values and combination with 2D-NMR data. This is the first report of compounds 1-5 from *S. dissecta*.

VJC, Vol. 53(2e), 2015

	-113 -113	(105)(11) 1 (64 5	and reported compounds
$Table P H-NMR (\gamma$	\mathbf{M} \mathbf{M} \mathbf{H} \mathbf{Z} \mathbf{Z} \mathbf{M} \mathbf{M} \mathbf{K}	(125 MHz) data of 4 5	and reported compounds
10010 2. 11 10111 (3	joo mililj und Cittinit	(125 MIL) data of 1, 0,	und reported compounds

\mathbf{C} ^a $\mathbf{\delta}_{\mathbf{C}}$		^b δ _C	4 ^c		$- {}^{d} \delta_{C}$	5 °		
	υ _C	δ _C	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)	- 0 _C	δ _C	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)		
1		36.63	36.15	2.12/1.88 m	35.5	36.01	1.39/1.86 m	
2		34.46	34.60	2.51/2.43 m	33.8	34.46	2.12/2.52 m	
3		198.16	200.21	-	199.5	200.01	-	
4		125.82	126.08	6.14 brs	125.5	125.94	6.12 brs	
5		160.77	161.75	-	161.0	161.56	-	
6		200.98	203.03	-	202.4	202.82	-	
7		46.36	47.45	2.01/2.65 m	47.8	47.28	2.63/1.99 m	
8		34.44	34.84	1.87 m	34.0	34.29	2.18 m	
9		51.09	51.60	1.34 m	50.9	51.43	1.33 m	
10		39.78	40.70	-	39.1	40.30	-	
11		23.65	21.50	1.61/1.47 m	20.8	21.37	1.46/1.60 m	
12		40.07	39.74	1.21/2.07 m	39.8	39.62	1.22/2.06 m	
13		43.07	43.15	-	42.5	43.07	-	
14		56.46	57.16	1.18 m	55.8	57.02	1.15 m	
15		24.50	24.61	1.59/1.15 m	23.9	24.46	1.57/1.14 m	
16		28.69	28.60	1.30/1.87 m	28.0	28.50	1.28/1.87 m	
17	55.9	56.98	56.40	1.14 m	56.5	56.29	1.14 m	
18	11.9	12.54	12.52	0.69 s	11.9	12.39	0.68 s	
19	17.4	18.03	18.22	1.13 s	17.5	18.01	1.12 s	
20	36.1	36.63	36.71	1.35 m	35.6	36.11	2.11 m	
21	18.8	19.39	19.45	0.90 d (7.0)	18.6	19.14	0.92 d (7.0)	
22	33.7	35.97	34.60	2.51/2.43 m	34.5	35.04	1.50/1.12 m	
23	30.6	26.69	31.15	1.35/0.93 m	30.9	31.42	1.84/2.06 m	
24	39.1	34.40	39.66	2.07 m	156.6	157.11	-	
25	31.5	29.71	32.08	1.54 m	34.2	34.29	2.17 m	
26	17.6	19.77	18.14	0.76 d (3.0)	21.8	22.50	0.99 d (3.5)	
27	20.5	20.53	21.15	0.82 d (7.0)	22.0	22.37	0.97 d (3.5)	
28	15.4	21.41	16.08	0.75 d (3.0)	106.1	106.61	4.68/4.61 brs	

^aδ_C for the side chain of ergost-4-ene-3-one [10], ^bδ_C of 24*S*-ergost-4-ene-3,6-dione [12], ^crecorded in CDCl₃, ^dδ_C of 24-methylenecholest-4-ene-3,6-dione [13].

Figure 2: Key HMBC correlations of 1, 2, and 5

4. CONCLUSION

Five sterols, gorgost-4-ene-3-one (1), ergost-4ene-3-one (2), 24-methyleneergost-4-ene-3-one (3), ergost-4-ene-3,6-dione (4), and 24methylenecholest-4-ene-3,6-dione (5), were isolated from the methanol extract of the soft coral *Sinularia dissecta*. Their structures were elucidated by 1D and 2D-NMR spectroscopic methods and comparison of their data with the published values. This is the first report of these compounds from *S. dissecta*.

Acknowledgements. This work was financially supported by Vietnam Academy of Science and Technology, codes: VAST.TĐ.ĐAB.02/13–15 and VAST.HTQT.Nga.06.13-14.

REFERENCES

1. M. V. D'Auria, L. Minale, R. Riccio.

Polyoxygenated steroids of marine origin, Chem. Rev., **93(5)**, 1839-1895 (1993).

- N. S. Sarma, M. S. Krishna, S. G. Pasha, T. S. P. Rao, Y. Venkateswarlu, P. S. Parameswaran. *Marine metabolites: The sterols of soft coral*, Chem. Rev., 109(6), 2803-2828 (2009).
- 3. V. Lakshmi, R. Kumar. *Metabolites from Sinularia species*, Nat. Prod. Res., **23(9)**, 801-850 (2009).
- 4. B. M. Jagodzinska, J. S. Trimmer, W. Fenical, C. Djerassi. Sterols in marine invertebrates. 49. Isolation and structure elucidation of eight new polyhydroxylated sterols from the soft coral Sinularia dissecta, J. Org. Chem., **50**(9), 1435-1439 (1985).
- B. M. Jagodzinska, J. S. Trimmer, W. Fenical, C. Djerassi. Sterols in marine invertebrates. 51. Isolation and structure elucidation of C-18 functionalized sterols from the soft coral Sinularia dissecta, J. Org. Chem., 50(16), 2988-2992 (1985).
- 6. P. Jin, Z. Deng, Y. Pei, H. Fu, J. Li, L. Van Ofwegen, P. Proksch, W. Lin. *Polyhydroxylated steroids from the soft coral Sinularia dissecta*, Steroids, **70(8)**, 487-493 (2005).
- 7. P. Ramesh, Y. Venkateswarlu. Novel steroid constituents of the soft coral Sinularia dissecta, Steroids, 64(11), 785-789 (1999).
- N. P. Thao, N. H. Nam, N. X. Cuong, B. H. Tai, T. H. Quang, N. T. T. Ngan, B. T. T. Luyen, S. Y. Yang, C. H. Choi, S. Kim, D. Chae, Y.-S. Koh, P. V. Kiem, C. V. Minh, Y. H. Kim. Steroidal constituents from the soft coral Sinularia dissecta and their inhibitory effects on lipopolysaccharide-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells, Bull. Korean Chem. Soc., 34(3), 949 - 952 (2013).

Corresponding author: Nguyen Hoai Nam

- H. T. D'Armas, B. S. Mootoo, W. F. Reynolds. Steroidal compounds from the Caribbean octocoral Eunicea laciniata, J. Nat. Prod., 63(12), 1669-1671 (2000).
- 10. W.-R. Abraham, G. Schmeda-Hirschmann. (24S)- 3β -hydroxy-ergost-5-en-6-one from Cyttaria johowii, Phytochemistry, **36(2)**, 459-461 (1994).
- F. De Riccardis, L. Minale, M. Iorizzi, C. Debitus, C. Lévi. Marine sterols. Side-chain-oxygenated sterols, possibly of abiotic origin, from the new Caledonian sponge Stelodoryx chlorophylla, Journal of Natural Products, 56(2), 282-287 (1993).
- K. A. Eshbakova, B. Tashkhodzhaev, Z. I. Tursunov, K. K. Turgunov, K. M. Bobakulov, N. D. Abdullaev. Structure of a new sterol 24S-4-en-3,6dione from Aconitum septentrionale, Chem. Nat. Comp., 47(1), 73-75 (2011).
- A. Migliuolo, V. Piccialli, D. Sica. Steroidal ketones from the sponge Geodia cydonium, J. Nat. Prod., 53(5), 1262-1266 (1990).
- H. T. D'Armas, B. S. Mootoo, W. F. Reynolds. Steroidal compounds from the Caribbean octocoral Eunicea laciniata. J. Nat. Prod., 63(12), 1669-1671 (2000).
- A. Rueda, E. Zubía, M. a. J. Ortega, J. Salvá. Structure and cytotoxicity of new polyhydroxylated sterols from the Caribbean gorgonian Plexaurella grisea, Steroids, 66(12), 897-904 (2001).
- P. Georges, M. Sylvestre, H. Ruegger, P. Bourgeois. Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax, Steroids, 71(8), 647-652 (2006).
- S. Popov, R. M. K. Carlson, A. Wegmann, C. Djerassi. *Minor and trace sterols in marine invertebrates 1. General methods of analysis,* Steroids, 28(5), 699-732 (1976).

Institute of Marine Biochemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: namnguyenhoai@imbc.vast.vn.